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Abstract—Quantifying the notion of fairness is under-explored
when there are multiple types of resources and users request
different ratios of the different resources. A typical example
is datacenters processing jobs with heterogeneous resource re-
quirements on CPU, memory, network, bandwidth, etc. This
paper develops a unifying framework addressing the fairness-
efficiency tradeoff in light of multiple types of resources. We
develop two families of fairness functions that provide different
tradeoffs, characterize the effect of user requests’ heterogeneity,
and prove conditions under which these fairness measures satisfy
the Pareto efficiency, sharing incentive, and envy-free properties.
Intuitions behind the analysis are explained in two visualizations
of multi-resource allocation. We also investigate people’s fairness
perceptions through an online survey of allocation preferences
and provide a brief overview of related work on fairness.

I. INTRODUCTION

A. Motivation

Comparing fairness of different allocations of a single
type of resource has been extensively studied. Fairness can
be quantified with a variety of metrics, such as Jain’s in-
dex [1]. Alternatively, different notions of fairness, including
proportional and max-min fairness, can be achieved through
maximization of α-fair or isoelastic utility functions [2]. These
approaches, as well as others from economics and sociology,
have recently been unified as the unique family of functions
satisfying four axioms for fairness metrics, as summarized in
Appendix A [3]. The tradeoff between fairness and efficiency
has also been studied in [4]–[6].

When it comes to allocating multiple types of resources,
however, there has been much less systematic study, the recent
paper [7] being a notable exception. Indeed, it is unclear what
it means to say that a multi-resource allocation is “fair.” Each
user in a network requires a certain combination of different
resource types to process one job, and this combination may
differ from user to user. For example, datacenters allocate dif-
ferent resources (memory, CPUs, storage, bandwidth, etc.) to
competing users with different requirements. One user might
have computational jobs requiring more CPU cycles than
memory, while another might have the opposite requirements.

The need for multi-resource fairness functions can be il-
lustrated with a very simple example, as shown in Fig. 1. In
this example, two users require CPUs and memory in order
to perform some jobs. User 1 requires 2 GB of memory and
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Fig. 1. An example of multi-resource requirements in datacenters.

3 CPUs per job, while user 2 needs 2 GB of memory and 1
CPU per job. There is a total of 6 GB of memory and 4 CPUs.

Many allocations might be considered “fair” in this exam-
ple: should users be allocated resources in proportion to their
resource requirements? Or should they be allocated resources
so as to process equal numbers of jobs? The fairness measure
proposed recently in [7], called Dominant Resource Fairness
(DRF), allocates resources according to max-min fairness on
dominant resource shares. In this example, DRF would allocate
0.76 jobs to user 1 and 1.71 jobs to user 2, for a total of 2.47
jobs processed. But this allocation brings about a significant
loss in system efficiency; e.g., a more unequal allocation of
0.17 jobs to user 1 and 2.83 jobs to user 2 yields a total
of 3 jobs. An in-between allocation can be realized if another
well-known fairness metric, α-fairness, is adapted for multiple
resources following our methods in Section III-B. For α = 0.5,
user 1 has 0.57 jobs and user 2 has 2.29 jobs, for a total of
2.86 jobs. Each of these allocations represents one point of
the fairness-efficiency tradeoff. This paper develops a unifying
framework for studying this tradeoff in light of multiple types
of resources and heterogeneity in users’ resource requirements.

Multi-resource allocation problems arise in increasingly
many applications. Datacenters that sell bundles of CPUs,
memory, storage, and network bandwidth are just one example.
In fact, even the classical problem of bandwidth allocation in
a congested network can be viewed as a special case of multi-
resource allocation. Given a network and its topology, we can
view each link as a separate resource with a distinct capacity.
Each user is represented by a network flow, which uses a pre-
defined subset of links. In this special case, resource requests
on all the links must be the same for each user.

In general, multi-resource allocation cannot be trivially
turned into single-resource allocation by assuming different
resources are interchangeable. For example, if a cloud client
needs 2 units of CPU and 5 units of networking bandwidth to
finish 1 unit of job, adding many more units of CPU does not
reduce the need for 5 units of bandwidth.
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B. Unique Challenges of Multi-Resource Fairness

The following new challenges on fairness arise due to the
presence of multiple types of resources:
• In a single-resource scenario, users’ resource require-

ments can be represented with a scalar. With multiple
resources, users have vectors of resource requirements,
which may all look different and must be scalarized
before fairness can be evaluated. We present two ways
to visualize user heterogeneity in Section III-A and two
methods for this scalarization in Section III-B, yielding
parametrized families of multi-resource fairness measures
that satisfy the axioms of [3].

• In a single-resource scenario, the most efficient allocation
will clearly use the entire resource. In a multi-resource
scenario, however, users’ heterogeneous resource require-
ments may not allow each resource to be completely used.
Even how to measure efficiency is unclear: should we
use the total number of jobs allocated?1 Or the amount
of leftover resource capacity? Section V numerically
examines both of these efficiency metrics, while Props.
1 and 2 and their corollaries examine the impact of user
heterogeneity on the number of jobs processed.

• The extension of max-min fairness to multiple resources
is shown in [7] to satisfy such properties as Pareto-
efficiency for certain parameter values. We characterize
the parameterizations under which our multi-resource
fairness functions satisfy Pareto-efficiency, sharing incen-
tive, and envy-freeness (Props. 3-5 and their corollaries).

• The existence of a fairness-efficiency tradeoff depends
on both the scalarization of users’ resource requirements
and the subsequent evaluation of fairness. We show
that a greater emphasis on equity or fairness need not
always decrease efficiency (Prop. 6) and give analytical
conditions on when the fairness-efficiency tradeoff exists
(Props. 7 and 8 and their corollaries).

• When a fairness-efficiency tradeoff exists, the “best”
operating point along this tradeoff heavily depends on the
operator’s intrinsic, exogenously determined preferences.
We characterize this psychological component to fairness
by conducting a human subject experiment in which
participants are asked to rank possible allocation choices
given in an online survey. Our results indicate that people
tend to cluster into two different groups–one preferring
efficiency over fairness and one fairness over efficiency.

After further discussion of related work in Section II,
Section III develops our two new families of fairness functions,
which we call Fairness on Dominant Shares (FDS) and
Generalized Fairness on Jobs (GFJ). FDS includes the
max-min fairness measure DRF proposed in [7] as a special
case. We investigate key properties of these functions in
Section IV and characterize conditions under which they are
satisfied by FDS and GFJ. Section V then applies our fairness
functions to numerical examples of datacenters. We examine

1The phrases “jobs allocated” and “jobs processed” are used interchange-
ably throughout the paper.

the relationship between the fairness-efficiency tradeoff and
FDS and GFJ parameterizations. In Section VI, we experiment
with characterizing the parameter values consistent with real
people’s fairness judgements, analyzing results from an online
survey in which participants were asked to rank different
possible resource allocations for an example datacenter.

II. RELATED WORK

Much of the existing theory on the fairness of resource
allocations is devoted to allocations of a single resource [3],
[8]–[10] (e.g. allocating available link bandwidth to network
flows [11]–[14]). The recent work [3] develops the following
family of fairness functions for a single resource, unifying
previously developed fairness measures. It was proven that
this family, parametrized by two numbers, is the only family
of functions satisfying four simple axioms of fairness metrics:

fβ,λ(x) = sgn(1−β)

 n∑
i=1

(
xi∑n
j=1 xj

)1−β
 1

β ( n∑
i=1

xi

)λ
,

(1)
where β ∈ R and λ ∈ R are parameters. The parameter β gives
the “type” of fairness measured by (1), and the parameter λ
gives the emphasis on efficiency. A larger |λ| indicates greater
emphasis on efficiency over fairness. If we take λ = 1−β

β and
β > 0, we recover α-fairness for α = β. In particular, taking
the limit as β → 1 yields proportional fairness.

Even multi-resource allocation problems, such as scheduling
jobs in a datacenter, are often simply treated as a single
resource problem (e.g. the Hadoop and Dryad schedulers [15]).
A recent paper [7] generalizes the max-min fairness measure
to multiple resource settings. Our work develops a unified
analytical framework for fairness of multi-resource allocations.
In particular, in contrast to [7], we incorporate the tradeoff
between fairness and efficiency in multi-resource settings.

In Appendix D, we provide a more comprehensive survey
of other work on fairness. In addition to further discussion
on fairness in engineering frameworks, we summarize theo-
ries of fairness from computer science, economics, political
philosophy, and sociology.

III. FAIRNESS-EFFICIENCY OF MULTI-RESOURCE
ALLOCATIONS

We first present “dual” visualizations of heterogeneity
among users’ requirements for multiple resources in Sec-
tion III-A. Section III-B then develops two new families
of fairness functions, which scalarize these heterogeneous
resource requirement vectors and use them to evaluate the
fairness of multi-resource allocations. These two families are
Fairness on Dominant Shares (FDS) and Generalized Fairness
on Jobs (GFJ). FDS measures the fairness of users’ resource
allocations by accounting for both the number of jobs allocated
to each user (a function of the resources available) and the
heterogeneity in different resource requirements across users.
GFJ, on the other hand, assumes that users’ utility depends
solely on the number of jobs they are allocated, irrespective
of their differing resource needs.
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A. Visualizing User Heterogeneity

A major challenge of multi-resource fairness is incorpo-
rating the heterogeneity of different users’ requirements for
different resources into the assessment of its fairness. Visual-
izing this heterogeneity can yield useful insights. Moreover,
Section V examines in detail how heterogeneity affects the
optimal allocation and achieved efficiency.

Figure 2 provides two ways to visualize user heterogeneity.
Each user j requires Rij of resource type i for each job.

The first (top) visualization has as many dimensions as there
are different types of resources. The axes correspond to the
resources (two types of resources here for visual simplicity),
with the box representing the resource constraints. The slope
σi of the line corresponding to each user i is the ratio of that
user’s requirements for the two resources. The heterogeneity of
users’ resource requirements can be captured with the variance
of the {σi}:2 homogeneity occurs at 0 variance (all users have
the same resource requirements) and the dashed line becomes
straight. Heterogeneity increases with the variance of σ.

The second (bottom) visualization has as many dimensions
as there are different users. The axes correspond to the
jobs allocated to each user (two users here for simplicity of
drawing), with feasible allocations shown as shaded regions
bounded by linear resource constraints. The slopes τi of
constraint line i reflect the ratio of user 1’s and user 2’s
requirements for resource i. Again, the heterogeneity of users’
resource requirements can be captured in the variance of the
τi. Homogeneity occurs when the variance is 0; in that case
the resource constraints have the same slope and reduce to one
constraint. Heterogeneity increases with the variance of τ .

B. Defining Multi-Resource Fairness

1) Fairness on Dominant Shares (FDS): As defined in
[7], a user’s dominant share is the maximum share of any
resource allocated to that user.

Let xj denote the number of jobs allocated to each user
j and Ci the capacity of each resource i. Then we have the
resource constraints

∑n
j=1Rijxj ≤ Ci for all resources i,

where Rij is the amount of resource i which user j requires
for one job, and there are n users. For ease of notation, we
define γij = Rij/Ci as the share of resource i required by
user j to process one job. We let

µj = max
i

{
Rij
Ci

}
(2)

denote the maximum share of a resource required by user j
to process one job; then µjxj is user j’s dominant share.

We introduce the fairness measures fFDS
β,λ :

sgn(1− β)

 n∑
j=1

(
µjxj∑n
k=1 µkxk

)1−β
 1

β
 n∑
j=1

µjxj

λ

.

(3)
These fairness measures extend those developed in [3] for
a single resource; details on their derivation are given in

2We assume that the σi are realizations of a random variable σ.

Fig. 2. Two visualizations of user heterogeneity. The lines in the top graph
show the ratio of users’ requirements for two different resources, while the
lines in the bottom graph show the feasible allocation region. The slopes of
those lines reflect the ratio of two users’ requirements for each resource.

that work and Appendix A. Here β 6= 1 and λ are pre-
specified parameters. Note that β = 1 is a trivial case, since

(3) then reduces to n
(∑n

j=1 µjxj

)λ
, so that each allocation

gives equal fairness. We make a standard assumption that all
resources and all jobs are infinitely divisible, which is typical
of many multi-resource settings [16], [17]. An illustrative
example of FDS is given in Section III-B3.

The fairness function (3) may be divided into two compo-
nents, one representing fairness and one efficiency. The sum
of the dominant shares raised to the power λ represents effi-
ciency; thus, λ parametrizes efficiency’s relative importance.

The remainder of (3) is parametrized by β and represents the
fairness of the allocation. It is easily seen that for any value
of β 6= 1, this component of (3) is maximized at an equal
allocation. However, different values of β will yield different
orderings of unequal allocations. One allocation may be more
fair than another when β = β1 is used to parametrize fairness,
but the second allocation may be more fair than the first when
β = β2 6= β1 is used.

Though different values of β give different types of fairness,
we can generally say that “larger β is more fair.” As β →
∞, we obtain max-min fairness on the ratio of each user’s
dominant share to the sum of all the dominant shares.

As β → ∞ and λ = 1−β
β , the fairness function fβ,λ ap-

proaches max-min fairness on the dominant shares. Dominant
resource fairness (DRF), proposed in [7], is thus a special case
of FDS. Again letting µjxj denote the dominant share of user
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j, DRF can be expressed as

min {µ1x1, µ2x2, . . . , µnxn} . (4)

Maximizing this equation subject to the constraints∑n
j=1Rijxj ≤ Ci, ∀ i, yields the DRF-optimal allocation.

FDS is therefore a generalization of DRF, in which choosing
the parameters β and λ allows one to achieve different
tradeoffs between fairness and efficiency.

FDS also includes the well-known α-fairness family of
functions as a special case. This fact easily follows from
the relationship of the single-resource functions in [3] to
α-fairness, which is generally used to measure fairness in
bandwidth allocation (see references in Section II). Taking
α = β ≥ 0 and λ = 1−β

β , the FDS function (3) becomes

sgn(1− β)

(
n∑
i=1

(µixi)
1−β

) 1
β

; (5)

optimizing this function is equivalent to optimizing the α-
fairness function on dominant shares

n∑
j=1

(µjxj)
1−α

1− α
. (6)

2) Generalized Fairness on Jobs (GFJ): Since some users
require more resources per job than others, it might be more
fair for those who require more resources to be allocated fewer
jobs, thus increasing efficiency across all users. FDS captures
this perspective. However, an individual user often cares only
about the number of jobs processed (without accounting for
heterogeneous resource requirements), and hence each user’s
notion of fairness may be based only on the number of jobs
she is allocated. This motivates us to introduce another fairness
measure called Generalized Fairness on Jobs (GFJ), which
uses the number of jobs allocated (instead of dominant shares)
in the fairness function.

GFJ can be further motivated with bandwidth allocation
examples. The utility function used in these scenarios is
generally α-fairness applied to the bandwidth allocated to each
flow. These functions are therefore a special case of GFJ, a
family of functions given by

fGFJ
β,λ = sgn(1− β)

 n∑
j=1

(
xj∑n
k=1 xk

)1−β
 1

β ( n∑
k=1

xk

)λ
.

(7)
Here β and λ are two parameters (just as in FDS) and xj is
the number of jobs processed for user j. As for FDS, we have
the resource constraints

∑n
j=1Rijxj ≤ Ci for each resource

i. An illustrative example is given in the next section.
For β > 0 and λ = 1−β

β , GFJ reduces to α-fairness on the
number of jobs allocated to each user.

3) Differences between FDS and GFJ: We can summarize
FDS’ and GFJ’s approaches as follows:
• FDS measures fairness in terms of the relative size of the

dominant shares, explicitly accounting for heterogeneous
resource requirements in both the objective function and
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Fig. 3. Overall schematic of our multi-resource fairness approach.

the constraints. As a limiting case of FDS, DRF also
follows this approach.

• On the other hand, GFJ measures fairness only in terms
of the number of jobs allocated to each user; the het-
erogeneity in resource requirements only appears in the
resource constraints. Users requiring more resources are
thus treated equally, a result observed in Section V.

When µj = µ for all j, FDS and GFJ are equivalent.
Revisiting the example in the Introduction, we have the

resource constraints 2x1 + 2x2 ≤ 6 and 3x1 + x2 ≤ 4. Thus,
the dominant share of user 1 is 3

4x1, since user 1 requires 3
4

of the available CPUs and 1
3 of the available memory for each

job. Similarly, the dominant share of user 2 is 1
3x2, since user

2 requires 1
3 of the available memory and 1

4 of the available
CPUs for each job. FDS and GFJ can then be expressed as

max
x1,x2

f(x1, x2) (8)

s.t. 2x1 + 2x2 ≤ 6, 3x1 + x2 ≤ 4,

where the fairness function is

f = sgn(1− β)

((
3x1

4

)1−β
+
(
x2

3

)1−β(
3x1

4 + x2

3

)1−β
) 1
β (

3x1
4

+
x2
3

)λ
for FDS and

f = sgn(1− β)

(
x1−β1 + x1−β2

(x1 + x2)
1−β

) 1
β

(x1 + x2)
λ

for GFJ.
Figure 3 illustrates the approaches to multi-resource fair-

ness. We transpose the matrix R to capture users’ resource
requirements; each row represents one user’s requirements.
One simplistic approach would assume perfectly substitutable
resources; in that case, this matrix immediately collapses into
a vector of users’ single resource requirements. However, this
substitutability often does not hold. For example, CPUs and
memory are not directly substitutable.

FDS and GFJ represent alternative approaches to the scalar-
ization of each row in Fig. 3’s matrix. FDS and its limiting
case DRF choose a dominant entry from the row vector of
users’ requirements. GFJ, on the other hand, scalarizes each
row by the number of jobs processed with a bundle of different
resources. These row-by-row scalarizations then yield another
vector of users’ scalars; evaluating fairness with fFDS

β,λ or fGFJ
β,λ

further reduces this vector to a final scalar quantifying fairness.
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IV. PROPERTIES OF FDS AND GFJ

In this section, we prove key properties of the FDS and
GFJ functions introduced above. Section IV-A characterizes
the optimal fairness values in certain special cases, while
Section IV-B examines the conditions of β and λ under which
FDS and GFJ satisfy important properties relevant to fairness
quantification and fairness-efficiency tradeoffs:

• What happens to the optimal allocations when users have
the same resource requirements?

• What fairness properties do FDS and GFJ satisfy? For
instance, are their optimal allocations Pareto-efficient?
Sharing incentive compatible? Envy-free?

• Does there always exist a fairness-efficiency tradeoff?

Finally, Section IV-C examines the conditions under which a
fairness-efficiency tradeoff exists.

We consider n users and m different resources. Users have
the same resource requirements when they are homogeneous,
i.e., their heterogeneity is zero. In the special cases n = 2
or m = 2, user heterogeneity may be easily visualized as in
Fig. 2 in Section III-A. We use the term user-resource system
to refer to a given set of resources and users with associated
resource requirements and capacities.

A. Values of FDS and GFJ

Heterogeneity is measured by the variance in the slopes σi
or τi of Fig. 2. When all users have the same ratios of multi-
resource requirements (i.e., the variance of the {σi} and {τi}
is zero), the problem reduces to that of a single resource:

Proposition 1 (Reduction to Single-Resource Case):
Suppose that the resource constraints may be written as

ηi (µ1x1 + µ2x2 + . . .+ µnxn) ≤ 1, (9)

i = 1, 2, . . . ,m. Let ηmax = maxi ηi. Then the problem
reduces to single-resource fairness on resource 1. Moreover,
FDS and DRF both yield the allocation xj = 1

ηmaxµjn
. GFJ

yields the allocation xj =
µ
− 1
β

j

ηmax
∑n
i=1 µ

β−1
β

i

.

Proof: If ηmax = maxi ηi, then each resource i’s capacity
constraint is automatically satisfied whenever resource k’s is,
where ηmax = ηk. Since ηkµj is the dominant share of each
user j, the problem reduces to the single-resource problem
with resource k. Expressions for the optimal allocations may
be derived from the proofs of Props. 4 and 5.

Definition 1 (Efficiency): Let X = x1+x2+. . .+xn denote
the allocation efficiency.
In this special case, we also have the following corollary:

Corollary 1: For allocations that maximize DRF and FDS,

∂X

∂µj
=

(
−1

nηmax

)(
1

µ2
j

)

and the efficiency of these allocations increases the fastest if
minj µj is decreased. For allocations that maximize GFJ,

∂X

∂µj
=

−µ−
1+β
β

j

ηmaxβ
∑n
i=1 µ

β−1
β

i

+
(1− β)µ−

1
β

j

∑n
i=1 µ

− 1
β

i

ηmaxβ

(∑n
i=1 x

β−1
β

i

)2 .

Proof: Without loss of generality, we may assume that
each µj ≤ 1, due to the scaling factor η1. We have the equation

∂X

∂µj
=
−1
η1β

 µ
− 1+β

β

j∑n
i=1 µ

β−1
β

i

+
(β − 1)µ

− 1
β

j

∑n
i=1 µ

− 1
β

i(∑n
i=1 x

β−1
β

i

)2

 .

(10)
Then if β > 1, we easily see that decreasing minj µj yields
the greatest increase in efficiency.

If β < 1, we see that the first term
µ
− 1+β

β
j∑n
i=1 µ

β−1
β

i

in the sum

of (10) is positive, and the second term is negative. Thus,
since this first term is largest when µj is smallest, decreasing
minj µj also yields the greatest increase or smallest decrease
in efficiency. One can show that decreasing minj µj always
increases efficiency; setting (10) greater than zero, we obtain
after some simplification

µ
− 1+β

β

j

n∑
i=1

x
β−1
β

i > (β − 1)µ
− 1
β

j

n∑
i=1

µ
− 1
β

i .

Rearranging again, this equation becomes
n∑
i=1

µ
β−1
β

i > (1− β)µj
n∑
i=1

µ
−1
β

i ,

which always holds for j = argminjµj .
In other words, the system’s efficiency will increase if the

user with the lowest µj gives up some resources.
We now consider heterogeneous users, and assume that

their resource requirements Rij are uniformly distributed in
[0, νCi], ν a given positive constant. Then, as the number
of users n goes to infinity, the optimal FDS and GFJ values
converge as follows:

Proposition 2 (Optimal FDS and GFJ Values): The opti-
mal FDS value converges in probability as

lim
n→∞

(
max fFDS

∞,−1
)−1 · 2m

n(m+ 1)
= 1. (11)

Thus, users’ asymptotic dominant share is 1
n ·

2m
m+1 . In contrast,

the optimal GFJ value converges in probability as

lim
n→∞

(
max fGFJ

∞,−1
)−1 · 2

ν
(√

mn/3 + n
) = 1. (12)

Users are asymptotically allocated resources for 2
νn jobs.

We note that ν appears in (12) but not (11), since the
dominant shares, not the number of jobs, appear in the FDS
objective function. Scaling the resource requirements Rij by
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ν is equivalent to scaling the optimal allocations xj by ν−1;
these cancel in calculating the dominant shares µjxj .

Proof: We prove the FDS and GFJ properties separately.
Optimal FDS values: Let resource requirements µij =

Rij/Ci be uniformly distributed in [0, ν]. If max fFDS
∞,−1 is

the optimal FDS value with β =∞, we have

max fFDS
∞,−1 = max

f
f

s.t.

n∑
j=1

µij
µj
f ≤ 1, ∀i.

=

max
i

n∑
j=1

µij
µj

−1 . (13)

Therefore, to prove (11), it is sufficient to show that for
arbitrary ε > 0,

lim
n→∞

P


∣∣∣∣∣∣
max

i

n∑
j=1

µij
µj

 · 2m

n(m+ 1)
− 1

∣∣∣∣∣∣ > ε

 = 0.

(14)
Toward this end, we remove the absolute value and bound

the probability in (14) by a combination of two inequalities:

P


max

i

n∑
j=1

µij
µj

 · 2m

n(m+ 1)
− 1 > ε


≤

m∑
i=1

P


n∑
j=1

µij
µj
· 2m

n(m+ 1)
− 1 > ε


= m ·P


n∑
j=1

µij
µj

> (1 + ε)
n(m+ 1)

2m

 (15)

where the the last step uses the symmetry of resource con-
straints, and

P


max

i

n∑
j=1

µij
µj

 · 2m

n(m+ 1)
− 1 < −ε


≤ P


n∑
j=1

µij
µj
· 2m

n(m+ 1)
− 1 < ε, ∀i


≤ P


n∑
j=1

µij
µj

< (1− ε)n(m+ 1)

2m

 . (16)

Since µj = maxi µij , {µij/µj , ∀j} are i.i.d. random vari-
ables. Using the Central Limit Theorem, as n→∞, we have∑n

j=1
µij
µj
− nE

[
µij
µj

]
√
nσµij

µj

→ z in distribution. (17)

Here z is a standard normal random variable with mean 0 and
variance 1.

To simplify (17), we obtain

E
[
µij
µj

]
= E

[
E
[
µij
µj

∣∣∣∣µij]]
=

∫ ν

0

E
[
x

µj

∣∣∣∣µij = x

]
dx

=

∫ ν

0

[
1 · xm−1 +

∫ ν

x

x

y
· fµj |µij=x(y)dy

]
dx

=

∫ ν

0

[
xm−1 +

∫ ν

x

x

y
· (m− 1)ym−2dy

]
dx

=

∫ ν

0

[
xm−1 +

m− 1

m− 2
x(νm−2 − xm−2)

]
dx

=
νm

2
· m− 1

m− 2
− νm

m(m− 2)

=
νm

2
+
νm

2m
(18)

where the forth step uses fµj |µij=x(y) = (m−1)ym−2 for all
y > x, because µj = maxi µij . Similarly, we have

E
[
µ2
ij

µ2
j

]
=

∫ 1

0

E

[
x2

µ2
j

∣∣∣∣µij = x

]
dx

=

∫ ν

0

[
1 · xm−1 +

∫ ν

x

x2

y2
(m− 1)ym−2dy

]
dx

=

∫ ν

0

[
xm−1 +

m− 1

m− 3
x2(νm−3 − xm−3)

]
dx

=
νm(m− 1)

3(m− 3)
− 2νm

m(m− 3)

=
νm(m+ 1)

3m
(19)

To derive the standard deviation of µij/µj , we combine (18)
and (19) to derive

σ2
µij
µj

= E

[
µ2
ij

µ2
j

]
−
{
E
[
µij
µj

]}2

=
νm(m+ 1)

m

(
1

3
− νm

(
m+ 1

4m

))
. (20)

Combining (17), (18), and (20), we obtain that for arbitrary
m,

lim
n→∞

m ·P


∣∣∣∣∣∣
n∑
j=1

µij
µj
− n(m+ 1)

2m

∣∣∣∣∣∣ > ε · n(m+ 1)

2m


= lim
n→∞

m ·P

|z| > ε · n(m+ 1)

2m
· 1√

nσµij
µj


= lim
n→∞

m ·P

{
|z| > ε

√
n · 1

2νm
(
1
3 − νm

(
m+1
4m

))}
= 0. (21)
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Plug (21) into (15) and (16). We conclude that

lim
n→∞

P


∣∣∣∣∣∣
max

i

n∑
j=1

µij
µj

 · 2m

n(m+ 1)
− 1

∣∣∣∣∣∣ > ε


≤ lim
n→∞

(m+ 1)P


∣∣∣∣∣∣
n∑
j=1

µij
µj
− n(m+ 1)

2m

∣∣∣∣∣∣ > εn(m+ 1)

2m


= 0, (22)

which is exactly the desired result in (14). Therefore, it
completes the proof of (11).

Optimal GFJ values: If max fGFJ
∞,−1 is the optimal GFJ

value with β =∞, we have

max fGFJ
∞,−1 = max

f
f

s.t.

n∑
j=1

µijf ≤ 1, ∀i.

=

max
i

n∑
j=1

µij

−1 . (23)

Therefore, to prove (12), it is sufficient to show that for
arbitrary ε > 0,

lim
n→∞

P


∣∣∣∣∣∣
max

i

n∑
j=1

µij

 · 2

ν
(√

mn/3 + n
)
∣∣∣∣∣∣ > ε

 = 0.

(24)
Notice that {µij , ∀j} are i.i.d. random variables uniformly

distributed in [0, ν]. Using the Central Limit Theorem, as n→
∞, we have∑n

j=1 µij −
nν
2√

nν2

12

→ z in distribution. (25)

Here z is a standard normal random variable with mean 0 and
variance 1. Let x = ν

(√
mn/3 + n

)
/2. Then for any m,

lim
n→∞

P


∣∣∣∣∣∣
n∑
j=1

µij − x

∣∣∣∣∣∣ > εx


≤ lim
n→∞

P


∣∣∣∣∣∣
n∑
j=1

µij − x+
ν
√
mn/3

2

∣∣∣∣∣∣ > εx+
ν
√
mn/3

2


= lim
n→∞

P


∣∣∣∣∣∣
n∑
j=1

µij −
νn

2

∣∣∣∣∣∣ > (ε+ 1)ν
√
mn/3 + νn

2


= lim
n→∞

P

|z| > (ε+ 1)ν
√
mn/3 + νn

2
√

nν2

12


= lim
n→∞

P
{
|z| > (1 + ε)

√
m+

√
3n
}

= 0. (26)

Plugging the inequality into the left hand side of (24) and
using the same technique from (15) and (16), we derive

lim
n→∞

P


∣∣∣∣∣∣
max

i

n∑
j=1

µij

 · 1
x
− 1

∣∣∣∣∣∣ > ε


≤ lim
n→∞

(m+ 1)P


∣∣∣∣∣∣
n∑
j=1

µij − x

∣∣∣∣∣∣ > εx


= 0. (27)

This completes the proof of (12).
We thus see that in the limit of a large number of hetero-

geneous users, with β = ∞ and λ = −1, the optimal FDS
value increases while the optimal GFJ value decreases as more
resources are added to the system. This proposition highlights
the fundamental difference between FDS and GFJ: in the limit,
they yield very different allocations.

B. Three Key Properties of Fairness

We next turn our attention to fairness and its relationship
with efficiency, using three widely-used properties of fairness
functions (see e.g., [7] and the many references therein):

Definition 2: A function f is Pareto-efficient if, whenever
x Pareto-dominates y (i.e., xi ≥ yi for each index i and xj >
yj for some j), f(x) > f(y).

Definition 3: Sharing incentive is the property that no
user’s dominant share is less than 1

n ; each user has an incentive
not to simply split the resources equally.

Definition 4: Envy-freeness holds if and only if no user
envies another user’s allocation. Mathematically, let rij denote
the amount of resource i allocated to user j. User j can then
process maxi rij/Rij . Envy-freeness is defined as the property
that maxi rij/Rij > maxi rik/Rij for any j 6= k. In words,
no other user’s allocation would enable a user to process more
jobs than her allocation would.

We investigate if and when these properties are satisfied
by FDS and GFJ. Our results show that the answer depends
on several factors, e.g. the values of the parameters β and λ.
Tables I and II summarize our findings.

We first consider Pareto-efficiency. Evidently, this property
holds for large λ. Based on [3], we can in fact specify a
threshold for λ above which Pareto-efficiency holds:

Proposition 3 (Pareto-efficiency of FDS and GFJ): The
fairness functions (3) and (7) are Pareto-efficient when β > 0

if and only if |λ| ≥
∣∣∣ 1−ββ ∣∣∣.

The absolute value signs are necessary, as for β > 1, (3)
and (7) are negative. For this range of β, a more negative
λ therefore emphasizes efficiency. As Pareto-efficiency is a
highly desirable property for fairness functions (both single
and multi-resource), the following analysis considers only
values of λ satisfying |λ| ≥

∣∣∣ 1−ββ ∣∣∣.
Proposition 4 (Sharing Incentive of FDS): Suppose β > 0.

Then we can prove the following:
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(a) Sharing incentive is satisfied by the FDS-optimal alloca-
tion when λ = 1−β

β and β > 1.
(b) For 0 < β < 1 and λ = 1−β

β , there exists a user-
resource system such that the FDS-optimal allocation for
this system does not satisfy the sharing incentive property.

(c) For any β > 0, there exists λ with |λ| sufficiently large
so that for some user-resource system, the FDS-optimal
allocation need not satisfy the sharing incentive property.

(d) If λ = 0, then the FDS-optimal allocation always satisfies
the sharing incentive property.

Proof: We prove each item in the proposition in sequence.
(a) Suppose that β > 0, λ = 1−β

β . We index the n users by
j = 1, 2, . . . , n and the m resources by i = 1, 2, . . . ,m,
and consider the resource constraints

n∑
j=1

γijxj ≤ 1 ∀ i.

First, we show that sharing incentive holds for β > 1.
We introduce a multiplier λi for each resource constraint
corresponding to resource i. We let µjxj denote the
dominant share of user j; µj ≥ γij for all i. Then we
have the Lagrangian

n∑
j=1

(µjxj)
1−β

1− β
−

m∑
i=1

λi

 n∑
j=1

γijxj − 1

, (28)

and at optimality we have

µ1−β
j x−βj =

m∑
i=1

λiγij ∀ i (29)

and by slackness,
m∑
i=1

n∑
j=1

λiγijxj =

m∑
i=1

λi. (30)

From (29), we have for each j = 1, 2, . . . , n,

µ−βj x−βj =

m∑
i=1

λi
γij
µj
≤

m∑
i=1

λi.

Then from (29) and (30),
m∑
j=1

µ1−β
j x1−βj =

m∑
i=1

λi,

and therefore

µ−βj x−βj ≤
n∑
j=1

µ1−β
j x1−βj ≤ n

(
min
j
µjxj

)1−β

for β > 1. Then

min
j
µjxj ≥

1

n
. (31)

(b) If 0 < β < 1, sharing incentive may not be satisfied.
Suppose for instance that only one constraint is tight
at optimality. Denote γ1j by γj . Then introducing the

Lagrangian function as in the β > 1 case, we obtain from
(29) that

xj = x1

(
γj
γ1

)− 1
β
(
µ1

µj

) β−1
β

n∑
j=1

γjxj = 1.

Solving for the xj , we obtain

xj =
γ
− 1
β

j

µ
β−1
β

j

n∑
i=1

(
γi
µi

) β−1
β

. (32)

Now in order for sharing incentive to not be satisfied,

µjxj <
1

n

for some user j. Substituting (32) for xj , we simplify to

n <
γj
µj

+

(
γj
µj

) 1
β ∑
i 6=j

(
γi
µi

) β−1
β

. (33)

Evidently, as γi ≤ µi for all i, these equations may be
satisfied if and only if 0 < β < 1. Indeed, consider the
n-user system with two resources and resource constraints∑n
i=1 xi/2 ≤ 1, x1 ≤ 1. Then µi = 0.5 for all

i > 1, while µ1 = 1. Let λ1 denote the Lagrange
multiplier for the constraint

∑n
i=1 xi/2 ≤ 1, and λ2

denote the Lagrange multiplier for x1 ≤ 1. At the
optimal allocation, we have xi = 2λ

−1/β
1 for i > 1,

while x1 = (λ1/2)
−1/β . Clearly, λ1 > 0 at the optimal

allocation, so λ−1/β1

(
2(n− 1) + 21/β

)
= 2, and

λ1 = 2−β
(
2(n− 1) + 2

1
β

)β
=
(
n− 1 + 2

1
β−1

)β
.

Thus, x1 < 1, i.e., the constraint x1 ≤ 1 is not tight, if

21/β
(
n− 1 + 2

1
β

)−1
< 1 or

2
1
β < n− 1 + 2

1
β ,

which holds for any β > 0 if n > 2. Our condition (33) for
sharing incentive not to be satisfied is then, taking j 6= 1,

n < 1 +
(
n− 2 + 2

1
β−1

)
= n− 1 + 2

1
β−1,

which is clearly true for all n and 0 < β < 1.
(c) We now show that for |λ| sufficiently large, sharing

incentive need not be satisfied by the optimal allocation.
Consider a two-user, two-resource system with constraints
x1 ≤ 1 and γx1+x2 ≤ 1, γ < 1. Then µ1 = µ2 = 1, and
for as λ → ∞, we maximize x1 + x2. But this quantity
is maximized when either x1 = 1, x2 = 1 − γ or when
x1 = 0, x2 = 1. Clearly, the optimal allocation occurs
when x1 = 1, x2 = 1 − γ. But then user 2’s dominant
share is 1− γ < 1/2 if γ > 1/2.

(d) If λ = 0, the dominant shares of all users are equalized at
the optimal allocation. But since the sum of the dominant
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shares is ≥ 1, no user’s dominant share falls below 1/n,
and the sharing incentive property is satisfied.

We can further bound the allocation efficiency:

Corollary 2 (Bounds on Allocation Efficiency of FDS): If
β > 0 and λ = 1−β

β , the efficiency X ≥ 1
maxj µj

.

Proof: From (30), we obtain
m∑
i=1

λi =

m∑
i=1

n∑
j=1

λiγijxj

≤
m∑
i=1

n∑
j=1

λiµjxj

=

(
m∑
i=1

λi

) n∑
j=1

µjxj

 .

Then
∑n
j=1 µjxj ≥ 1, and

n∑
j=1

xj ≥
1

maxj µj
.

For λ = 1−β
β , the FDS function becomes equivalent to

the isoelastic α-fair utility in economics; β corresponds to a
measure of constant relative risk-aversion for individual users.3

As β increases, individual risk-averse users find the resource
allocation more equitable and become collectively envy-free.
The following corollary establishes that this interesting envy-
free behavior emerges (for FDS) at a threshold of β > 1:

Corollary 3 (Envy-Freeness of FDS): For β > 0 and λ =
1−β
β , the envy-freeness property holds if β > 1; if λ = 0,

then envy-freeness holds for all user-resource systems and any
β. Moreover, there exists a user-resource system whose FDS-
optimal allocation does not satisfy envy-freeness under the
same conditions (b) and (c) in Prop. 4 for which the sharing
incentive property does not always hold.4

Proof: Suppose that β > 1. Then if user j envies user
k’s share, then γikxk ≥ γijxj for all resources i, with strict
inequality for at least one resource. Then from (29), we have

µ1−β
j x1−βj =

m∑
i=1

λiγijxj

<

m∑
i=1

λiγikxk

= µ1−β
k x1−βk ,

which is impossible since µjxj ≥ µkxk and β > 1.
If λ = 0, then as in the proof of Prop. 4, we see that the

dominant shares are equal at the optimal allocation for any

3Isoelasticity and relative risk-aversion in economics are defined as
∂u(x)
∂x

x
u(x)

and −xu
′′(x)

u′(x) respectively, where u is the utility function.
4Though it may appear so from this proposition, sharing incentive and

envy-freeness are not equivalent [7].

β. But then no user can envy another; user i’s share of her
dominant resource j is larger than or equal to any other user’s
share of resource j.

The counterexamples used in the proof of Prop. 4 may be
used to show that envy-freeness does not hold for all user-
resource systems under the conditions specified.

In contrast to FDS, GFJ need not always satisfy sharing
incentive even for β > 1:

Proposition 5 (Sharing Incentive of GFJ): Suppose again
that β > 0. Then under the conditions enumerated below, there
exists a user-resource system whose GFJ-optimal allocation
does not satisfy the sharing incentive property:
(a) |λ| = |(1− β)/β|,
(b) |λ| > |(1− β)/β| and 0 < β < 1,
(c) |λ| < |(1− β)/β| and β > 1,
(d) |λ| sufficiently large,
(e) λ = 0.

Proof: As in Prop. 4, we prove each item in the propo-
sition in sequence.
(a) Suppose that exactly one constraint

∑n
j=1 γjxj = 1 is

tight at the optimal allocation. The GFJ fairness function
for β > 0, λ = 1−β

β is then

sgn(1− β)

 n∑
j=1

(xj)
1−β

 1
β

;

letting p denote a Lagrange multiplier for the resource
constraint, the function

sgn(1− β)

 n∑
j=1

(xj)
1−β

 1
β

− p(γTx− 1) (34)

is maximized at the optimal allocation. Taking the deriva-
tives with respect to each xj and p, we obtain the equations

xj = x1

(
γj
γ1

)− 1
β

γTx = 1.

Solving for the xj , we obtain

xj =
γ
− 1
β

j∑n
i=1 γ

β−1
β

i

. (35)

Now, in order for sharing incentive to not be satisfied,

µjxj <
1

n

for some user j. After substituting (35) for xj , these
conditions simplify to

n <
γj
µj

+

γ 1
β

j

µj

∑
i6=j

γ
β−1
β

i .
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For 0 < β < 1, this equation is satisfied for γi, i 6= j,
relatively small, and γj relatively large. In other words,
user j requires a relatively large amount of resources. For
β > 1, this equation is satisfied for γi, i 6= j, relatively
large.

(b) We now suppose that |λ| > |(1− β)/β|, with the sign of λ
equal to that of 1−β, and show that the optimal allocation
need not satisfy the sharing incentive property. Consider
a two-user, one-resource system with resource constraint
x1 + γ2x2 ≤ 1. At the optimal allocation, x1 = 1− γ2x2,
and the total number of jobs processed is 1+(1− γ2)x2,
with fairness value

sgn(1−β)
(
(1− γ2x2)1−β + x1−β2

) 1
β

(1 + (1− γ2)x2)ξ

where ξ = λ+ (β − 1)/β. We note that ξ is negative for
β > 1 and positive for β < 1. Taking the derivative with
respect to x2, we have(
x1−β2 + (1− γ2x2)1−β

) 1−β
β

(1 + (1− γ2)x2)ξ−1[
|1− β|
β

(
x−β2 − γ2 (1− γ2x2)−β

)
(1 + (1− γ2)x2)+

|ξ|
(
x1−β2 + (1− γ2x2)1−β

)
(1− γ2)

]
, (36)

which is positive for γ2 < 1 and x−β2 > γ2 (1− γ2x2)−β ,
i.e., x2

(
1 + γ

1−1/β
2

)
< γ

−1/β
2 or

x2 <
1

γ
1/β
2 + γ2

.

To show that γ2x2 > 1/2, i.e., user 1’s dominant share is
less than 1/2, it suffices to show that

1

2γ2
<

1

γ
1/β
2 + γ2

,

i.e., γ1/β2 < γ2, which is true for 0 < β < 1. If β > 1,
then ξ < 0 and (36) is increasing as λ becomes more
negative, γ2 < 1. Then for λ sufficiently large, (36) is
positive for x2 large enough so that at optimality, user 1’s
share is less than one-half.

(c) We now suppose that |λ| < |(1− β)/β|. In this case,
(36) is negative for x−β2 < γ2 (1− γ2x2)−β and γ2 < 1,

i.e., for x2 >
(
γ
1/β
2 + γ2

)−1
. Then at optimality, x2 ≤(

γ
1/β
2 + γ2

)−1
and user 2’s dominant share is

γ2x2 ≤
1

γ
1/β−1
2 + 1

<
1

2

for γ2 sufficiently small and β > 1.
(d) We use the example from the proof of part (c) of Prop. 4

to show that for λ sufficiently large, the sharing incentive
property need not be satisfied. Indeed, in this example,
maximizing the sum of the dominant shares is equivalent
to maximizing the total number of jobs processed.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1
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(a) FDS.
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0

1

2

3

4

5

β
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λ = −∞ λ = −∞

Counterexamples
exist for SI and EF

(b) GFJ.

Fig. 4. Conditions under which sharing incentive (SI) and envy-freeness
(EF) can be shown either to hold or not to hold (c.f. Props. 4 and 5 and their
corollaries 3 and 4).

(e) Consider a two-user, one-resource system with resource
constraint γx1 + x2 ≤ 1, γ < 1. Then if λ = 0, at the
GFJ-optimal allocation for any β, x1 = x2 = (1 + γ)−1.
But then user 1 receives γ(1+γ)−1 share of the resource,
which is less than one-half for γ < 1/2.

Similarly, GFJ-optimal allocations need not be envy-free for
any value of β:

Corollary 4 (Envy-Freeness of GFJ): Under the conditions
specified in Prop. 5, there exists a user-resource system such
that envy-freeness does not hold for the GFJ-optimal alloca-
tion.

Proof: We can use the counterexamples introduced in
the proof of Prop. 5 to show that for the ranges of β and λ
given, the GFJ-optimal allocation is not envy-free for all user-
resource systems. Indeed, in a single-resource allocation with
two users, envy-freeness is equivalent to sharing incentive:
one user envies another if and only if the second user receives
more of the resource (i.e., more than one-half) than the first
user.

Figure 4 illustrates Props. 4 and 5’s results on the sharing
incentive property, as well as Corollaries 3 and 4’s results on
envy-freeness.

C. Fairness-Efficiency Tradeoff

We now consider two ways in which a fairness-efficiency
tradeoff does not exist: first, an increased emphasis on fair-
ness need not decrease efficiency. Second, the efficiency-
maximizing allocation may also be the “most fair.”
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Fairness Pareto-Efficiency Sharing Incentive Envy-Freeness Optimal Asymptotic Value

FDS |λ| ≥
∣∣∣ 1−ββ ∣∣∣, β > 0

λ = 1−β
β
, β > 1 λ = 1−β

β
, β > 1 2m

n(m+1)λ = 0, any β λ = 0, any β

GFJ |λ| ≥
∣∣∣ 1−ββ ∣∣∣, β > 0 – – 2

ν
(√

nm/3+n
)

TABLE I
SUFFICIENT CONDITIONS FOR PROPERTIES OF THE FAIRNESS MEASURES.

Fairness Sharing Incentive Envy-Freeness

FDS λ = 1−β
β
, 0 < β < 1 λ =∞, any β λ = 1−β

β
, 0 < β < 1 λ =∞, any β

GFJ λ = 1−β
β
, β > 0 λ =∞ or 0, any β λ = 1−β

β
, β > 0 λ =∞ or 0, any β

|λ| < |1−β|
β

, β > 1 |λ| > |1−β|
β

, 0 < β < 1 |λ| < |1−β|
β

, β > 1 |λ| > |1−β|
β

, 0 < β < 1

TABLE II
CONDITIONS UNDER WHICH PROPERTIES DO NOT HOLD FOR ALL USER-RESOURCE SYSTEMS.

Traditionally, a larger parameter α in α-fairness functions
is thought to be “more fair” [18], [19]; this statement is made
mathematically precise in [3]. In [11], however, it is shown
that when a network allocates bandwidth so as to maximize
α-fairness, total throughput in the network will sometimes
increase with α. It may even decrease as capacity increases.
These “counter-intuitive” results hold in the general multi-
resource problem:

Consider the general family of utility functions U(x, α);
here α is a parameter indexing the family of utility functions,
and the specific functional form of U is not specified. For
instance, we could use the functions in (3), with α = β and
λ = 1−β

β , so that the utility function uses “α-fairness.” We
incorporate the resource capacity constraints in the matrix
inequality Rx ≤ C and assume that R is a matrix of full
row rank consisting only of those constraints which are tight
at the optimal allocation x for the given value of α.

We let S be an n × (n − m) dimensional matrix whose
columns form a basis for the nullspace of R, and again let
X =

∑n
j=1 xj denote the total efficiency. The negative of

the utility function’s Hessian matrix is denoted by D, and we
define b = ∂2U

∂x∂α , A = STDS, vj = sj
Tb and βj = −1T sj ,

where the sj are the columns of the matrix S. Let Ai denote
the matrix A with the ith row replaced by β = [β1 β2 · · ·βn].
We use δ to denote a direction of perturbation of the capacity
vector C and DX(δ) to denote the derivative of X in the
direction of δ. From [11], we have

∂X

∂α
= 1TSA−1STb (37)

DX(δ) = 1T
∂x

∂C
δ = 1TD−1RT (RD−1RT )−1δ. (38)

We can further prove the following proposition:

Proposition 6 (Efficiency Non-Monotonicity): Efficiency

increases with α if and only if

N−L∑
i=1

videtAi ≥ 0. (39)

Moreover, efficiency may decrease with an increase in the
capacity vector C. If capacity increases proportionally, i.e.,
δ = εC for some small ε, then DX(δ) ≥ 0.

As a special case, when only one capacity constraint is tight
(e.g., one resource), efficiency always increases with capacity.
Appendix B contains a numerical example in which efficiency
increases with β.

We next examine the conditions under which an equal
allocation (equal dominant shares for FDS or an equal number
of jobs for GFJ) maximizes efficiency. In these situations,
there is no fairness-efficiency tradeoff; the most fair allocation
maximizes the total number of jobs processed. As this property
is an ideal case, it will likely be satisfied only under rather
stringent conditions. Indeed, our results show that this ideal
case occurs only when the resource constraints “line up”
exactly.

We again express the resource constraints in matrix form
as Rx ≤ C, and simplify them to γx ≤ 1m, where 1m is a
vector of m 1’s and γij =

Rij
Ci

.

Proposition 7 (Maximizing Fairness and Efficiency (I)):
Suppose that m = n constraints are tight at the maximum-
efficiency allocation. Then this allocation equalizes the
dominant shares (FDS has no fairness-efficiency tradeoff) if
and only if

n∑
j=1

γij
µj

= ρ (40)

for some constant ρ and all resources i. The number of jobs
per user is equalized (GFJ has no fairness-efficiency tradeoff)
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Fig. 5. Illustration of Prop. 7.

if
n∑
j=1

γij = r (41)

for some constant r and all resources i.

Proof: Suppose that n resource constraints
∑n
j=1 γijxj ≤

1 are tight at some efficiency-maximizing allocation x∗. Then
γ is an n×n matrix and γx∗ = 1m. If this allocation equalizes
the dominant shares, then each µjxj = d for some constant
d, and we have the condition

n∑
j=1

γij
µj

= d−1

for all resources i. The number of jobs per user is equalized
if xj = d for all users j; then

n∑
j=1

γij = d−1

for all resources i. Figure 5 illustrates the two conditions in
Prop. 7 for a two-resource allocation. The top figure 5a shows
a scenario in which users’ dominant shares are equalized
at the efficiency-maximizing allocation, while in the bottom
figure 5b the number of jobs are equalized at the efficiency-
maximizing allocation.

Looking back at Fig. 2, we see that the number of jobs
per user is equal at the efficiency-maximizing allocation if
σ1 = . . . = σn for n users and two resources. For two users
and m resources, the number of jobs per user is equal at the
efficiency-maximizing allocation if

∑m
j=1 τjRj2 =

∑m
j=1Rj2.

Our conclusions are more subtle when m < n constraints
are tight at an efficiency-maximizing allocation:

Proposition 8 (Maximizing Fairness and Efficiency (II)):
Suppose that m < n constraints are tight at an efficiency-
maximizing allocation x∗. If this allocation is the unique
allocation maximizing efficiency, then at least one of the
x∗j = 0 and one user is allocated no jobs. If other allocations
also maximize efficiency, an allocation equalizing either the
dominant shares or number of jobs processed maximizes
efficiency if and only if at the equal allocation, the constraint
set intersects the hyperplane

∑n
j=1 xj =

∑n
j=1 x

∗
j on a set of

dimension at least 1.

x1!

x2!
Maximum Efficiency!

x1 + x2 = X*!

Resource 
Constraints! x1!

x2! Maximum Efficiency!
x1 + x2 = X*!

Resource 
Constraints!

Fig. 6. Illustration of Prop. 8 in two dimensions. In the top graph, exactly
one resource constraint is tight at the unique efficiency-maximizing allocation,
and x2 = 0. In the bottom graph, exactly one resource constraint is tight at
any of the multiple efficiency-maximizing allocations.

Figure 6 shows the two-dimensional illustration of this the-
orem’s statements. The top graph shows a unique efficiency-
maximizing allocation when exactly one resource constraint is
tight, and the bottom graph shows a set of multiple efficiency-
maximizing allocations.

Proof: Suppose that m < n resource constraints are tight
at an efficiency-maximizing allocation. These m constraints
together with the constraint x ≥ 0 form a convex polyhe-
dron of possible allocations. Thus, if the optimal (efficiency-
maximizing) allocation is unique, then it will be at a vertex of
the polyhedron. But then n of the linear inequalities forming
the polyhedron (the m resource constraints and nonnegativity
of the xj) must be tight, and at least n−m users are allocated
no jobs (xj = 0 for n−m users j).

Suppose that there are multiple efficiency-maximizing allo-
cations, and that x∗ is one of them. The set of optimal alloca-
tions is a face of the polytope formed by the (linear) resource
constraints. Thus, the condition that at the equal allocation, the
constraint set intersects the hyperplane

∑n
j=1 xj =

∑n
j=1 x

∗
j

on a set of dimension at least 1 is equivalent to the statement
that both x∗ and an equal allocation with the same efficiency
lie on the face of the constraint polytope formed by the
polytope’s intersection with

∑n
j=1 xj =

∑n
j=1 x

∗
j , and that

this face is not a vertex. If x∗ and an equal allocation with
the same efficiency both lie on this face, then clearly an equal
allocation also maximizes efficiency. Conversely, if x∗ and an
equal allocation y∗ both maximize efficiency, then they both
lie on this face.

We can use this proposition to derive a sufficient condi-
tion for the efficiency-maximizing allocation to equalize the
dominant shares or number of jobs for each user:

Corollary 5: Suppose m < n resource constraints hold at
the efficiency-maximizing allocation. Then if Rij > Rik for
some users j and k and all resources i, xj = 0 (user j is
allocated no jobs) at any efficiency-maximizing allocation.

Proof: Suppose that at the optimal allocation, xj > 0.
If we replace xj with 0 and xk with xk + mini

Rikxj
Rik

, then∑n
l=1 xl increases, but Rikxk + Rijxj remains within the

constraint set. Then at the efficiency-maximizing allocation,
xj = 0.

If m = 1 (the single-resource case), this result implies the
following:
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Corollary 6: The maximum efficiency allocation equalizes
the dominant shares (FDS) or jobs per user (GFJ) if and only
if µj = µ ∀ users j. In other words, each user needs the same
amount of the single resource to process one job.

Proof: The maximum-efficiency allocation will allocate
jobs only to that user requiring the least resource per job.
Thus, in order for this allocation to equalize dominant shares
or jobs allocated among users, each user must require the same
amount of the resource to complete one job. In other words,
the constraint set must be µ

∑n
j=1 xj ≤ 1.

V. APPLICATIONS AND ILLUSTRATIONS

We consider an illustrative example of a datacenter with
CPU and RAM constraints. There are two users, each of whom
requires a fixed amount of each resource to accomplish a job.
Jobs are assumed to be infinitely divisible [16], [17]. In order
to benchmark performance, we use the same parameters as
[7]: user 1 requires 1 CPU and 4 GB of RAM for each job,
and user 2 requires 3 CPUs and 1 GB of RAM for each job.
There are 9 CPUs and 18 GB of RAM at first. Later in this
section, we vary these constraint values to observe their impact
on fairness.

Suppose that the fairness function is given by f (e.g. FDS
(3), DRF (4), GFJ (7)). Then the allocation problem is

max
x,y

f(x, y) (42)

s.t. x+ 3y ≤ 9, 4x+ y ≤ 18 (43)

where x and y are the number of jobs allocated to users 1 and
2 respectively.

We use DRF as the benchmark fairness to compare the
performance of our FDS and GFJ functions. We define percent
fairness as the percentage difference between the optimal
DRF fairness value (i.e., the minimum dominant share) and
the DRF fairness value of the allocation obtained from FDS
or GFJ. The percent efficiency is defined as the percentage
difference between the total number of jobs processed in the
given allocation and the maximum number of jobs that can
be processed, given the same capacity constraints. We also
introduce another efficiency measure, the leftover capacity
(i.e., the amount of unused resources).

We investigate the outcomes of the proposed fairness mea-
sures along two dimensions:
• Comparing the achieved efficiency when user heterogene-

ity and resource capacity are varied.
• Examining the range of attainable fairness-efficiency

tradeoffs for different values of the parameters β and λ.

A. Efficiency

We first use our two efficiency measures–leftover capac-
ity and percent efficiency–to investigate user heterogeneity’s
effect on achieved efficiency. Heterogeneity is measured by
the variance in the slopes τi and in the slopes σi of users’
resource requirements, as introduced in Fig. 2 in Section III-A.
If two users have identical resource requests, they become
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Fig. 7. Too much or too little variance in τ leads to inefficiency from
leftover capacity: Leftover capacity versus variance in user heterogeneity in a
datacenter example. Variances below 0.5 have only leftover CPUs; variances
above 0.5 have only leftover RAM.

homogeneous, and both variances are 0. At the other extreme,
the users do not share any resource requirements; they become
decoupled, with infinite variances.

We calculate the optimal FDS, GFJ and DRF allocations
for β = 2, λ = −0.5. First, Fig. 7 examines the leftover
capacity as a function of the variance in τ . The heterogeneity
was varied by changing the RAM requirement of user 2 from
1 GB to 13 GB. Thus, the RAM constraint line in Fig. 2’s
representation tilts from very steep to very flat. This tilting
geometrically explains the overall “V” trend in Figs. 7 and 8.
When the RAM requirement is below 3 GB (a steep constraint
line), the variance of τ is over 0.5 and the variance of σ is
over 4.5: only RAM is leftover. When the RAM requirement
is above 3 GB (a flatter line), the variance of τ is less than 0.5
and the variance of σ less than 4.5: only CPUs are leftover.
The change in the leftover resource is due to the changing
shape of the feasible region.

In this example, we see that for low heterogeneity in
users’ resource requirements, FDS, GFJ, and DRF have similar
efficiency values. In fact, Prop. 1 states that at zero hetero-
geneity, DRF and FDS are optimized at the same allocation,
predicting part of the observed behavior. As the heterogeneity
increases, DRF has a lot of leftover capacity compared to
GFJ and FDS, especially for a variance larger than 1 in
Fig. 7 and larger than 5 in Fig. 8. DRF trades off efficiency
significantly to preserve users’ minimum dominant share with
increasingly heterogeneous resource requirements. Even GFJ
performs worse than FDS, which yields the lowest leftover
capacity. As FDS includes resource requirements in its fairness
function, we intuitively expect such a result.

We next examine the percent efficiency in jobs processed
as a function of the variances in τ and σ in Figs. 9 and
10. As in the previous figures, for low heterogeneity across
users’ resource requirements, FDS, GFJ, and DRF perform at
similar efficiency levels. All three achieve full efficiency for
a τ variance near 0.5 and σ variance near 4.5. Again, the
efficiency attained is also much higher (about 15%) for FDS
and GFJ than for DRF as the variance increases.

In summary, enforcing DRF can significantly reduce ef-
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Fig. 8. Too much or too little variance in σ leads to inefficiency from
leftover capacity: Leftover capacity versus variance in user heterogeneity in a
datacenter example. Variances below 4.5 have only leftover CPUs; variances
above 4.5 have only leftover RAM.

0 0.5 1 1.5 2 2.5 3
55

60

65

70

75

80

85

90

95

100

105

Variance in τ

E
ff

ic
ie

n
c

y
 (

T
o

ta
l 
J

o
b

s
 A

ll
o

c
a
te

d
, 

%
)

 

 

FDS

GFJ

DRF (FDS, α = ∞)

Fig. 9. Greater variance in τ leads to DRF inefficiency in the number of
jobs processed: Percentage efficiency versus variance in user heterogeneity in
a datacenter example.

ficiency as measured by either leftover capacity or percent
efficiency. This is also the case when the number of users
grows; Fig. 11 shows the leftover capacity versus the number
of users in the system. Only RAM capacity was leftover; in all
scenarios, all of the CPUs were used. For a large number of
users, we see that FDS and GFJ both use more capacity than
DRF. Users’ CPU requirements were fixed at 2 CPUs; their
RAM requirements were drawn from a uniform distribution.
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Fig. 10. Greater variance in σ leads to DRF inefficiency in the number of
jobs processed: Percentage efficiency versus variance in user heterogeneity in
a datacenter example.
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Fig. 11. Even with a large number of users, DRF uses less available
capacity than FDS and GFJ: Leftover capacity versus the number of users in
a datacenter example.
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Fig. 12. Capacity expansion can increase the range of operating effi-
ciencies for FDS and GFJ over DRF: Attainable efficiency for varying
capacity constraint, given different implicit realizations of β ∈ (−5, 5) and
λ ∈ (0.01, 1.91) for β < 0, λ ∈

(
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(
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β
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)
, 0.955

(
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))
for

β > 0 values. The region labels refer to the fairness functions that attain
those efficiencies.

The plot shown is typical of other randomly chosen RAM
requirements.

Finally, we examine the impact of changing RAM capacity
on the attainable efficiency levels. Figure 12 shows how
varying this capacity affects the efficiency attained at the
optimal allocation. We see that when the dominant shares for
both users are equal, at 12 GB of RAM capacity, GFJ and
FDS have the same range of achievable efficiency. Moreover,
β and λ can be chosen to achieve higher efficiency in FDS
and GFJ. The DRF function serves as a “lower bound” to the
efficiency values attainable with the FDS functions.

The impact of capacity expansion also highlights an interest-
ing dimension of the economy of scale in large networks. The
standard view is that a large scale helps smooth out temporal
fluctuations of demands through statistical multiplexing, e.g.,
at any aggregation point in a broadband access network. In ad-
dition to temporal “heterogeneity” (bursting at different times),
network users may have resource type heterogeneity: some ap-
plications need more CPU processing while others need more
storage or bandwidth. Can this heterogeneity be exploited
to utilize different types of resources more efficiently? The
answer depends on how these different resources are allocated
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Fig. 13. Larger β values lead to more equitable allocations: Optimal
allocations for various fairness measures in a datacenter example, using α = β
fairness for FDS and GFJ.

among the users. If DRF is used, for example, efficiency
can be quite low. However, by using the appropriate FDS
parametrization, resource request heterogeneity can indeed be
leveraged along with increases in resource capacity and turned
into another type of economy of scale.

B. Fairness-Efficiency Tradeoffs

The previous section established that when users are very
heterogeneous, FDS and GFJ outperform DRF, achieving a
much greater efficiency. However, we expect that this larger
efficiency comes at a cost of decreased fairness. This section
examines the general behavior of fairness when a larger
efficiency is achieved. Here we measure fairness as percent
fairness with the DRF metric and efficiency as percent effi-
ciency on the number of jobs processed.

Figure 13 shows the optimal allocations of jobs for different
values of β, λ = 1−β

β . Both FDS and GFJ become α-fair on
the dominant shares of and jobs allocated to each user, respec-
tively, for α = β. As β increases, λ decreases, so that fairness
is emphasized more than efficiency and FDS asymptotes to
DRF. For small β (i.e., more relative emphasis on efficiency
than fairness), the optimal FDS allocation maximizes effi-
ciency. In the case of GFJ, which emphasizes the fairness on
jobs allocated, larger β values produce a more fair allocation
of jobs across users than FDS, as expected. Consequently, the
total number of jobs processed (i.e., efficiency) is lower for
GFJ than for FDS.

Figure 14 gives a representative plot of how this tradeoff
varies with β and λ = 1−β

β . As β grows larger, the percent
efficiency from the FDS measure drops, approaching DRF in
the limit β →∞. The GFJ fairness increases until β = 2.6, at
which point the GFJ-optimal allocation is also DRF-optimal.
(We see in Fig. 13 that the GFJ allocation “crosses” the DRF
allocation line at this value of β). For larger values of β, GFJ
quickly converges to an allocation with a more equal number
of jobs per user; thus, its efficiency decreases. But efficiency
in FDS decreases more slowly since FDS attempts to make
the dominant shares, not the number of jobs, more equitable.

Finally, we show the interaction between capacity con-
straints and the range of fairness-efficiency tradeoffs achieved.
The shaded region in Fig. 15 shows the attained tradeoffs for
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Fig. 14. The fairness-efficiency tradeoff can be tuned by changing β:
Percentage of fairness and efficiency achieved for various fairness measures
in a datacenter example, using α = β fairness for FDS and GFJ. Notice that
an increased emphasis on fairness (i.e. larger β) need not always decrease the
efficiency of the allocation, as seen for β < 2.6 for GFJ measure.

a large range of β and λ values; each point corresponds to
some β and λ values in the FDS function that achieve the
shown operating tradeoff. This achieved tradeoff depends on
the available capacity, with contour lines for various RAM
capacities shown in the figure. As RAM capacity increases
from 4 GB to 6

√
3 GB, the tradeoff stops: one can increase

both fairness and efficiency. At a RAM capacity of 6
√
3

GB, the conditions of Prop. 7 are satisfied, and efficiency is
maximized when the dominant shares are equal. When the
RAM capacity goes above 6

√
3 GB up to 25 GB, user 1’s

dominant share 4x1

RAM capacity decreases. Thus, an increase in
fairness requires an increase in x1 and user 1’s CPU allocation.
User 2 is then allocated fewer jobs, decreasing efficiency. In
this figure, one can achieve 100% efficiency and fairness when
RAM capacity is 6

√
3 GB, but such an ideal operating point

does not always exist.
Figure 16 shows the analogue of Fig. 15 for GFJ functions.

In this case, the range of attainable efficiency at the maximum
allocation decreases as the fairness value increases. Thus, one
can increase both fairness and efficiency as RAM capacity
goes from 4 GB to 25 GB. Moreover, the contour lines “bend
back” on themselves, indicating that for different β and λ pa-
rameters, the same fairness value can result in many efficiency
values at the optimal allocation. When RAM capacity equals
11.25 GB, the conditions of Prop. 7 are satisfied and there is
no tradeoff between fairness and efficiency.

C. A Bandwidth Allocation Example

We now illustrate the fairness-efficiency tradeoff for a
bandwidth allocation example. As discussed in Sections I and
III, bandwidth allocation can be viewed as a special case of
multi-resource fairness. Here we consider a network with the
topology shown in Fig. 17. The capacity of links 1 and 2
is assumed to be constant at 1 MBps; the capacity of the
remaining links is 2 MBps. Each user is represented by a flow
x(i), i = 1, 2, . . . , 6; these flows utilize the links as indicated
in the diagram.

We first study the optimal allocation for varying β, λ =
1−β
β . Figure 18 can be compared to Fig. 13 in the previous
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datacenter example. Unlike in Fig. 13, GFJ and FDS for
this bandwidth allocation example limit to the same optimal
allocation. The minimum dominant share is 0.5, flows 1 and
2’s (equal) share of link 2. Since link 2 has a capacity
of 1, the minimum bandwidth among all flows is also 0.5
MBps for flows 1 and 2. (The other four flows equally divide
the remaining bandwidth on links 3-6.) Thus, FDS and GFJ
converge to the same allocation; maximizing the minimum
dominant share also maximizes the minimum bandwidth.

In Fig. 13, GFJ always produces a more equal allocation
than FDS; however, in Fig. 18, FDS produces a more equal
allocation than GFJ for small values of β. FDS’ efficiency

X(2) X(6) X(4) 

X(3) 

X(1) 

X(5) 

L1 L2 L3 L4 L5 L6 

Fig. 17. Network topology for our bandwidth allocation example.
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Fig. 19. Percentage of fairness and efficiency achieved for various fairness
measures in an NUM example, using β = α fairness for FDS and GFJ.

component is the sum of the dominant shares, which in
this case is x1 + x2 + 1

2

∑6
i=3 xi. Thus, when efficiency

is emphasized (at low β values), FDS will allocate more
bandwidth to flows 1 and 2. GFJ’s efficiency component, on
the other hand, is simply the sum of the bandwidth allocated
to each flow. The network topology in Fig. 17 shows that one
can increase x3, x4, x5 and x6 at the expense of x1 and x2.
Thus, GFJ will allocate more bandwidth to flows 3-6, and
less to flows 1 and 2, in order to increase the total bandwidth
allocated to all users.

Figure 19 shows the percent efficiency versus the percent
fairness attained by Fig. 18’s optimal allocations. As is typical,
while β increases, the percent fairness increases, though the
percent efficiency decreases for both FDS and GFJ.

Figure 20 shows the attained fairness-efficiency tradeoffs for
a large range of β and λ, as well as different capacities for
links 3-6 in Fig. 17. One cannot simultaneously attain 100%
efficiency and fairness, unlike in Fig. 15. Tradeoff lines for
selected capacity values are shown; as capacity increases, the
percent efficiency attained at DRF fairness increases, but stays
below 100%. Link 2 acts as a bottleneck, preventing us from
simultaneously achieving 100% efficiency and fairness.

VI. SURVEY ON FAIRNESS PARAMETERS

A. Survey Methodology

We now provide a brief description of a survey we under-
took to better understand how people psychologically perceive
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values in a bandwidth allocation example, using FDS. DRF is used as the
fairness benchmark and metric.

the fairness-efficiency tradeoff. In particular, this survey pro-
vides a crude estimate of the values of typical fairness function
parameters, visualizes participant clusters in the fairness-
efficiency space, and connects the FDS and GFJ functions
with people’s responses. The purpose of the survey is mainly
demonstrative rather than prescriptive.

We conducted an online survey in January-February 2012,
which received 143 responses, mostly from the U.S. Out of
these responses, 110 were complete and were used in the
subsequent analysis. The participants were given six questions,
each with a simplified ‘toy’ scenario of resource allocation
in a datacenter, where jobs from two different clients had
heterogeneous resource requirements over multiple resources
(CPU and storage). We limited our question scenarios to
only two types of resources in order to make it easy for
the participants to understand the questions, although more
sophisticated methods using conjoint analysis can be used on
data with more resources. In the last question, we increase
the number of resources to three: clients’ jobs required CPU,
storage, and bandwidth. Each of the six questions had five
different options of distributing resources among the two
datacenter clients, with each option resulting in a particular
outcome.

In four of the questions, the five options that the survey
participants had to rank were reported in terms of the number
of jobs completed for each datacenter client under the resource
allocation given in that ‘option.’ In the other questions, the
options were reported as outcomes in terms of the leftover
capacity resulting from that resource allocation option. For
each question, the survey participants were asked to rank
in order of their preference over the five options, as shown
in Fig. 21. Based on these responses, we identified their
relative considerations for fairness and efficiency in allocating
resources in the example scenarios. The results from this
survey are reported in the next subsection, and the full survey
questions are given in Appendix C.

B. Results

Our analysis of the survey results focuses on three goals:
• Verify Appendix A’s fairness axioms,

Fig. 21. Question 2 of our online fairness survey. Client A required 1 CPU
and 4 TB per job, while client B required 3 CPU and 1 TB per job. The
datacenter had a total of 108 CPUs and 180 TB to allocation.
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Fig. 22. Participant rankings for question 2 of the survey. The size of the
bubble is proportional to the number of participants choosing a particular rank
for a particular allocation.

• Cluster participants based on the fairness and efficiency
preferences in their rankings of resource allocations,

• Determine the different β and λ heat maps of compatible
parameter values for participants in each cluster.

We address these sequentially below.
1) Axiom Validation: We first use the survey results to

validate our construction of the fairness functions, examining
two of the four axioms from which these functions are
constructed (see Appendix A for a full list of the axioms).
Due to the nature of the survey questions, we were unable to
empirically validate the first and second Axioms of Continuity
or Saturation. However, the Axiom of Continuity is perhaps the
most intuitive of our four axioms, and the Axiom of Starvation
serves more to normalize the fairness function values rather
than impose an ordering on different allocations.

Figure 22 shows the number of people ranking each al-
location first, second third, etc. in question 2 of the survey
(shown in Fig. 21). We see that a clear consensus emerges:
most people rank the allocations from best to worst as 3, 5,
1, 2, 4. The low ranking of the fourth allocation partially
validates the Axiom of Starvation, as allocation 4 gave no jobs
to client B. In fact, allocation 2 is less efficient than allocation
4, indicating that the participants generally dislike starvation
allocations, even when they are more efficient than a more
equal allocation.

We implicitly test the remaining two axioms (those of
Saturation and Partition) by examining the consistency of
participants’ responses when the allocations are scaled up or
down. Our fairness functions predict that a person’s rankings
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Fig. 23. Allocation rankings for each survey question. The responses to
each question are shown in a row at each allocation, e.g. the first six dots
correspond to rankings of allocation 1 in questions 1-6, the second six dots
correspond to rankings of allocation 2 in questions 1-6, etc. The size of the
bubble is proportional to the number of people choosing a particular rank for
a particular allocation.

of different allocations should not change with this scaling.
Figure 23 shows the number of people ranking each allocation
first, second, etc. for each question. We see that for each
question, a clear consensus ranking emerges; moreover, this
ordering of allocations is consistent across all questions. This
result is especially surprising since questions 3 and 5 gave the
leftover capacity as an efficiency metric instead of the total
number of jobs–thus, even when the efficiency metric changes,
participants’ answers are consistent across the different survey
questions.

2) Participant Clustering: We now evaluate the consistency
of different people’s responses by calculating the average pre-
ferred fairness and efficiency values for each person and each
question. These are calculated by taking a weighted average
of the efficiency and fairness values for each allocation; the
weights are determined by the participant’s ranking of that
allocation. The fairness metric is defined to be the negative of
the difference between the numbers of jobs allocated to clients
A and B, while the efficiency metric is given in the survey (the
total number of jobs processed or the leftover capacity). The
leftover capacity is measured by the negative of the percentage
of leftover capacity for each resource, to facilitate comparison
of leftover CPUs with leftover GB. We use negatives for the
fairness value and leftover capacity metric so that an increase
in the fairness or leftover capacity value indicates a more fair
or more efficient allocation.

We see from Fig. 24 that for all questions, participants
tend to fall into two distinct groups, one of which puts more
emphasis on efficiency, and one which puts more emphasis on
fairness. The two groups have approximately equal numbers of
participants, with 52 in each for question 1. Moreover, these
groups are consistent across questions. While the numerical
fairness and efficiency values vary depending on the question
scale and efficiency metric used, we see that both clusters
lie in approximately the same position in the graph for each
question. This consistency strengthens the ranking consensus
shown in Figs. 22 and 23, as the average fairness and efficiency
values take into account the full allocation rankings given by

each person. In contrast, Figs. 22 and 23 separately compare
the first, second, etc. rankings of each person.

3) Parameter Choices: We next determine β and λ values
which are compatible with the answers in Figure 24’s clusters.
The results for cluster 1 participants were the same for all
questions; thus, we only show the β and λ values for question
2. The results for cluster 2 participants are shown for all
questions.

We use exhaustive search for discretized β and λ values
to determine whether a given person’s allocation ranking
is compatible with that obtained using the (β, λ) fairness
function. Figures 25 and 26 show the heat map of compatible β
and λ values for a person in each of the two dominant clusters:
the intensity of the color corresponds to the number of times
an answer is compatible with the given (β, λ) value. A darker
color indicates a larger number of compatible answers. We
assume in both Figs. 25 and 26 that the person uses a GFJ
fairness function. No (β, λ) value is black, i.e., compatible
with all participants (the single black squares represent a
maximum number of compatible answers). This result is likely
due to our discretization; for instance, using a λ closer to
zero may improve the compatibility with cluster 2 participants,
who emphasize fairness over efficiency. Using a larger λ may
improve compatibility with cluster 1 participants.

As expected, we see that the compatible λ values for cluster
1 are much higher in absolute value than those in cluster 2.
We can see from Fig. 24 that cluster 2 participants prefer
fairness over efficiency. The reference lines in the figure show
the Pareto-efficient frontier. We see that for β > 1, most of the
compatible (β, λ) values are above the Pareto-efficient frontier,
i.e., not Pareto-efficient. This does not happen for cluster 1
participants, as might be expected since they emphasize effi-
ciency. However, as β increases, more Pareto-efficient (β, λ)
values are compatible with at least some answers. Indeed, for
questions 1, 2, and 4, more answers are compatible with these
values, as we might expect. Interestingly, in question 6, the
(β, λ) pairs with the largest number of compatible answers
are not Pareto-efficient. In questions 1, 2, 4 and 6 in Fig. 26,
there are two sets of (β, λ) pairs, one with higher λ and one
without.

Figure 27 shows the (β, λ) heat graphs for both participant
clusters when FDS-fairness is used. Only the heat graphs for
question 2 are shown; the other questions give similar results.
We see that all of the (β, λ) values tested are inconsistent
with cluster 2’s allocation preferences. In fact, we can account
for this result by noting that all cluster 2 participants prefer
allocation 5 (giving each client an equal number of jobs)
over allocation 3. However, calculating the dominant shares
of each client, we see that allocation 5 actually gives clients
less equitable dominant shares, and that the sum of dominant
shares for allocation 3 is also larger than that for allocation
5. Thus, no matter which β and λ are considered, allocation
3 will be ranked above allocation 5, which is inconsistent
with cluster 2 participants. We thus conjecture that GFJ is
a “more natural” fairness function: for certain β and λ values,
most of cluster 1 and cluster 2 participants exhibit preferences
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Fig. 25. Heat map of compatible (β, λ) values for cluster 1 participants in
Fig. 24, GFJ fairness. The reference line is the Parero-efficient boundary |λ| =
|(1− β)/β|, and the black dot at (β, λ) = (2, 2) represents a maximum
number of compatible answers. Only question 2 responses are shown; those
for all other questions are indistinguishable.

consistent with GFJ fairness.
All of the (β, λ) values tested in Fig. 27a are compatible

with the cluster 1 responses. We may partially explain these
results by the fact that cluster 1 participants all favor allocation
3 over allocation 5, and since allocation 3 is both more
equitable and more efficient (for FDS) than allocation 5, all
(β, λ) pairs are consistent with this ranking. Most participants
rank the other allocations in a manner consistent with ranking
3 above 5; those participants whose additional rankings are
inconsistent do not show any compatible (β, λ) fairness values.

The fact that participants generally seem to follow GFJ
rather than FDS fairness is quite interesting, as Props. 4
and 5 show that sharing incentive is more likely to hold
when FDS is used instead of GFJ. Participants thus pay
more attention to the number of jobs allocated to each client,

rather than each client’s share of the resources allocated; more
generally, we can say that they do not fully take into account
clients’ different resource requirements. Intuitively, this might
be expected, since the number of jobs allocated is a more
“natural” measure of fairness than the amount of resources
allocated.

VII. FUTURE WORK

Initial exploration suggests that both FDS and GFJ can
be unified into a single framework. The idea is to use a p-
norm function g(γ1,j , . . . , γn,j) =

(∑
i γ

p
i,j

) 1
p to scalarize the

resource requirement vector of user j, and then evaluate the
resulting fairness by fβ,λ. This method leads to a new family
of fairness measures, parameterized p, β, and λ, i.e.,

fp,β,λ = sgn(1− β)

 m∑
j=1

(
n∑
k=1

Rpkj

) 1−β
p

x1−βj


1
β

×

 m∑
j=1

(
n∑
k=1

Rpkj

) 1
p

xj

λ+1− 1
β

. (44)

Fairness fp,β,λ includes many fairness measures as special
cases. It is easy to verify that f0,β,λ = fGFJβ,λ and f∞,β,λ =

fFDSβ,λ . Further, f1,β,λ gives the total resource usage in the
system.

This function again satisfies the four axioms of [3], as
do FDS and GFJ. Moreover, Pareto-efficiency is satisfied for
|λ| ≥

∣∣∣ 1−ββ ∣∣∣, β > 0. We expect that, in analogy with Props. 4
and 5 and their corollaries, threshold values of p and β can be
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Fig. 27. Heat map of compatible (β, λ) values for clusters 1 and 2
participants in Fig. 24, FDS fairness. The reference line is the Parero-efficient
boundary |λ| = |(1− β)/β|, and the black dot at (β, λ) = (2, 2) represents
a maximum number of compatible answers.

found, above which sharing incentive and envy-freeness are
satisfied if β > 0 and λ = 1−β

β .
In addition to the functional unification proposed in (44), a

number of extensions to the current framework are possible.
First, we have assumed that both resources and jobs are
infinitely divisible. However, in practice a job may require
a minimum, indivisible bundle of resources, e.g., 2 GB of
memory and 1 CPUs, to run one instance of the job, whereas
allocating 1 GB of memory and 1/2 CPUs offers no more
benefits than allocating nothing at all. Second, our fairness
measures are assumed to be irrelevant to the feasible region of
resources. Adding a feasible region and indivisible resources
would leads to a fairness version of the knapsack problem,
which has no known solution. Some approaches to the knap-
sack problem are summarized in Appendix D-A1.

In formulating our multi-resource fairness theory, we have
ignored the process of resource allocation, such as the schedul-
ing and timing of resource assignment. In practice, an allo-

cation that maximizes long-term fairness may still produce
extreme unfairness if the lack of resources during a specific,
short-term period can have an adverse effect on job execution.
Finally, our fairness analysis is restricted to static jobs whose
resource demands follow a constant pattern. Many practical
applications not only encounter elasticity demands, but also
allow jobs to dynamically change the composition of a bundle
of different types of resources.

VIII. CONCLUDING REMARKS

In this paper, we introduce FDS and GFJ, two families
of fairness functions for multi-resource allocations. FDS also
includes as a special case the recently-proposed generalization
of the max-min fairness measure for multiple resources. Dif-
ferent parameterizations of these functions generate a range
of fairness-efficiency tradeoffs, thus allowing for different de-
grees of emphasis on fairness and efficiency that suit different
network operation needs.

We consider three key properties of fairness functions:
Pareto-efficiency, sharing incentive, and envy-freeness. FDS
and GFJ are both Pareto-efficient if |λ| ≥ 1−β

β , β > 0. FDS
satisfies the sharing incentive property and is envy-free for
β > 1 and λ = 1−β

β ; if 0 < β < 1 and λ = 1−β
β , then sharing

incentive and envy-freeness are only sometimes satisfied. GFJ
may or may not be sharing-incentive compatible or envy-free
for any β > 0, λ = 1−β

β .
We also explore the estimation of the β and λ values

which correspond to people’s preferences. Preliminary results
along these lines are given in Section VI, though one can
easily imagine extensions of both the results analysis and
the questions asked to participants. Given the limited set of
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allocations ranked by the participants, we were unable to
reverse-engineering unique (β, λ) values compatible with each
response; it would be interesting to determine if such unique
parameters exist given the rankings of more allocations. More-
over, our current sample size consists primarily of students
and others in the academic community; with a more diverse
demographic of participants, we could examine the impact
of various demographic factors on participants’ responses. In
particular, we could investigate whether participants naturally
group themselves into more than two clusters, and whether
these have any demographic correlations.

ACKNOWLEDGMENT

This work was partly supported by NSF grant CNS-
0905086, DARPA grant FA8750-11-C-0254, and AFOSR
MURI grant FA9550-09-1-0643. C. Joe-Wong was supported
by the NDSEG fellowship when part of this work was done.

REFERENCES

[1] R. Jain, D. M. Chiu, and W. R. Hawe, A quantitative measure of fairness
and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corp., 1984.

[2] K. J. Arrow, “The theory of risk aversion,” Essays in the theory of risk-
bearing, pp. 90–120, 1971.

[3] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory
of fairness in network resource allocation,” in Proceedings of IEEE
INFOCOM. IEEE, 2010, pp. 1–9.

[4] H. Varian, “Equity, envy, and efficiency,” Journal of Economic Theory,
vol. 9, no. 1, pp. 63–91, 1974.

[5] A. Odlyzko, “Network neutrality, search neutrality, and the never-ending
conflict between efficiency and fairness in markets,” in Review of
Network Economics, vol. 8, no. 1, March 2009, pp. 40–60.

[6] M. Zukerman, L. Tan, H. Wang, and I. Ouveysi, “Efficiency-fairness
tradeoff in telecommunication networks,” in IEEE Communications
Letters. IEEE, 2005, pp. 643–645.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proceedings of the 8th USENIX conference on
networked systems design and implementation. USENIX Association,
2011, pp. 24–37.

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[9] J. F. Nash, “The bargaining problem,” Econometrica, vol. 18, no. 2, pp.
155–162, 1950. [Online]. Available: http://www.jstor.org/stable/1907266

[10] R. Mazumdar, L. G. Mason, and C. Douligeris, “Fairness in network
optimal flow control: Optimality of product forms,” IEEE Transactions
on Communications, vol. 39, no. 5, pp. 775–782, 1991.

[11] A. Tang, J. Wang, and S. H. Low, “Counter-intuitive throughput behav-
iors in networks under end-to-end control,” IEEE/ACM Transactions on
Networking, vol. 14, no. 2, pp. 355–368, 2006.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” The Journal of the Operational Research Society, vol. 49,
no. 3, pp. 237–252, 1998.

[13] R. Srinivasan and A. K. Somani, “On achieving fairness and efficiency
in high-speed shared medium access,” IEEE/ACM Transactions on
Networking, vol. 11, no. 1, pp. 111–124, 2003.

[14] M. Dianati, X. Shen, and S. Naik, “A new fairness index for radio
resource allocation in wireless networks,” in Proceedings of the 2005
IEEE Wireless Communications and Networking Conference, vol. 2.
IEEE, 2005, pp. 712–717.

[15] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
Conference on Computer Systems. ACM, 2010, pp. 265–278.

[16] Y. Yang, “Rumr: Robust scheduling for divisible workloads,” in Proceed-
ings of the 12th IEEE Symposium on High Performance and Distributed
Computing. IEEE, 2003.

[17] M. Drozdowski. (2011, Jul.) Introduction to divisible tasks. [Online].
Available: http://www.cs.put.poznan.pl/mdrozdowski/divisible/divisible
intro/divisible intro.html
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APPENDIX A
AXIOMS FOR THE CONSTRUCTION OF SINGLE RESOURCE

FAIRNESS FUNCTIONS

The fairness measures in [3] are functions f : Rn → R
which give the fairness f(~x) of an allocation vector ~x, repre-
senting the amount of a resource allocated to each user. These
measures may be derived from five distinct axioms:

1) Axiom of Continuity: The function f : Rn → R is
continuous for any fixed number of users (i.e., length of
the vector ~x).

2) Axiom of Saturation: As the number of users approaches
infinity, the fairness value of an equal allocation should
be independent of the number of users

lim
n→∞

f(1n)

f(1n+1)
= 1,

where 1n denotes an equal allocation among n users.
3) Axiom of Partition: Consider an arbitrary partition of a

system into two subsystems. Let ~x =
[
~x1 ~x2

]
and ~y =[

~y1 ~y2
]

be two partitioned resource allocation vectors,
with

∑
j x

i
j =

∑
j y

i
j for i = 1, 2. There exists a mean

function h such that the fairness ratio of ~x and ~y equals
the mean of the fairness ratios of the two suballocations,
i.e.,

f(~x)

f(~y)
= h

(
f(~x1)

f(~y1)
,
f(~x2)

f(~y2)

)
,

where h is a mean function if and only if it can be
expressed as

h = g−1
(
s1g

(
f(~x1)

f(~y1)

)
+ s2g

(
f(~x2)

f(~y2)

))
,

with the si positive weights such that s1 + s2 = 1 and
g a continuous and strictly monotonic function. These si
are are chosen to satisfy

si =

(∑
j x

i
j

)ρ
(∑

j x
1
j

)ρ
+
(∑

j x
2
j

)ρ ,
with ρ ≥ 0 an arbitrary exponent.

4) Axiom of Starvation: In a two user system, an equal
allocation is more fair than starving one user: f([1 1]) ≥
f([1 0]).
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Fig. 28. Percentage fairness and efficiency for FDS-optimal allocations as
a function of β, λ = 1−β

β
. Note that efficiency increases with β for β ∈

(0, 0.36), while fairness increases for all β ∈ (0, 1).

Using the above four axioms yields the fairness measure

fβ,λ(~x) = sgn(1− β)

 n∑
i=1

(
xi∑n
j=1 xj

)1−β
 1

β ( n∑
i=1

xi

)λ
(45)

and its limit

n∏
i=1

(
xi∑n
j=1 xj

)( xi∑n
j=1

xj

)(
n∑
i=1

xi

)λ
(46)

as β → 0. Note that these are both symmetric with respect to
the order of the users.

APPENDIX B
COUNTER-INTUITIVE BEHAVIOR OF EFFICIENCY:

NUMERICAL EXAMPLE

While efficiency often decreases as β grows in FDS and GFJ
(e.g. see [11] and the references therein), this is not always the
case (see Prop. 6). As a counterexample, consider three users
sharing two resources. The capacity of resource A is 8 units,
and that of resource B is 1000 units. User 1 requires 1 unit of
resource A and 200 of resource B; user 2 requires 3 units of
resource A and 100 of resource B; and user 3 requires 1 unit
of resource A and 50 units of resource B.

We numerically solve for the optimal allocation, using FDS
as the fairness function with varying values of β, λ = 1−β

β .
The percent fairness and efficiency are shown in Fig. 28; for
β ∈ (0, 0.36), percent efficiency increases with β. Percent
fairness always increases with β. At β = 0.36, there is a kink
in the curve; resource B’s capacity constraint is no longer tight,
changing the condition for efficiency monotonicity (Prop. 6).

We can explain the increase in efficiency for small β as
follows. For small β, FDS emphasizes the sum of the dominant
shares; thus, users 1 and 2 are allocated many jobs, since their
dominant shares are x1

5 and 3x2

8 , while user 3’s dominant share
is x3

8 . Increasing x1 and x2 increases the sum of dominant
shares more than increasing x3 would. However, as β grows,
more emphasis is placed on the fairness of the dominant
shares. Thus, x3

8 is increased by increasing x3, offsetting the
decrease in x1 and x2.
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APPENDIX C
SURVEY QUESTIONS

Figures 29 show the allocation choices given to the survey
participants in each of the six survey questions. The ranking
format is shown in Fig. 30. Participants were also asked to
provide basic demographic information, e.g. age range and
occupation; however, our sample was fairly homogeneous so
these were not examined in Section VI-B’s results analysis.

APPENDIX D
OTHER THEORIES OF FAIRNESS

Fairness has been widely studied not only in the networking
research community, but also in the economics, sociology and
political science communities. In this section, we provide an
overview of works on fairness from these perspectives, and
relate such works to the theory developed here and in the
related paper [3] for multi- and single-resource allocations
respectively.

A. Multi-Resource Scenarios

1) Multi-Dimensional Knapsack Problems: The multi-
dimensional knapsack problem is a form of multi-resource
allocation in which different resources are not substitutable,
but jobs are indivisible. Thus, a user receives no utility from
a fractional amount of jobs, and the optimization variables
xi are constrained to be integers. The simplest form of this
knapsack problem is a binary version in which the number of
jobs xi ∈ {0, 1}; allowing xi ∈ N is called the multiple-
choice knapsack problem. The objective function in these
problems, instead of a nonlinear fairness function as in our
model, is taken to be linear in the number of jobs xi allocated
to each user, with the utility depending on the value of xi
chosen (recall that the xi are restricted to nonnegative integers,
so only a finite number of possibilities exist). Even with
this simplifying assumption, however, no definitive solution
algorithm has emerged.

The study of multi-dimensional knapsack problems has
generally focused on algorithms for generating either exact
or approximate solutions [20]. Though finding a polynomial-
time solution algorithm has been shown to be NP-hard [21],
some (non-polynomial time) algorithms have been found that
yield exact solutions [22], and polynomial-time approximation
algorithms exist [21]. As for the knapsack problem with
a single resource constraint (i.e., the single-resource alloca-
tion problem with indivisible jobs), dynamic programming
approaches have also been proposed, often combined with
branch-and-bound [20], [23]. However, due to the large (> 1)
number of constraints, these are generally inefficient or even
computationally infeasible in practice [20].

More recently, several heuristic algorithms have been pro-
posed to solve the multi-dimensional knapsack problem. The
most efficient algorithms in this vast body of literature tend
to use greedy or similar assignment, searches based on linear-
programming, duality information, local searches, and reduc-
tion to simpler problems. For instance, genetic algorithms
utilize greedy assingnment and local search to converge to

an optimal solution [24], while a hybrid approach utilizing
linear programming and local search is proposed in [25]. These
approaches are summarized in [20].

Some studies have been performed on the nonlinear ver-
sion of the knapsack problem, in which the objective is
allowed to be a nonlinear function. However, in most of these
works, the objective function is still assumed to be separable:
f(x) =

∑n
i=1 ri(xi), where f is the objective function and

ri a single-variable function of the number of jobs allocated
to user i [26], [27]. Thus, most of our fairness measures
would not fall into this category. Efficient algorithms based on
dynamic programming have been used to solve this problem
for multiple resource constraints [26]; if only a single resource
is present, many algorithmic solutions have been proposed
[27].

The nonseparable, nonlinear multiple choice knapsack prob-
lem has received comparatively little attention in the literature,
though some special cases have been studied. A popular
approach is to approximate the nonseparable problem by
solving several separable, quadratic knapsack problems [28],
[29]. Indeed, most of the nonseparable problems studied in the
literature have quadratic objective functions [27], [30]. These
functions need not be convex, but are still quite restrictive
for describing the fairness of resource allocations. Another
type of function is considered in [31]; in this work, which
allows multiple constraints and multiple choices for the integer
optimization variables, the objective function is assumed to
take the form f(x) = pTx− g(sTx), where p and s are given
coefficient vectors, s is nonnegative, and g is locally Lipschitz-
continuous and concave. For instance, g might measure the
importance of efficiency (1Tx).

2) Cake-Cutting: In this form of the multi-resource allo-
cation problem, also known as fair division, users receive
allocations of different resources, in analogy to different parts
of a cake (e.g. the batter and the frosting) [32]. As for multi-
dimensional knapsack problems, most of the research on cake-
cutting has focused on developing an algorithm that produces a
fair allocation of resources. Users are assumed to have certain
entitlements to the resource(s) being divided, and to have their
own valuations of different parts of the resource. Generally,
algorithmic solutions force users to judge between different
allocations, thus ensuing that users’ own valuations are the
direct criteria giving the final allocation result.

The cake-cutting problem suggests an extension of our
multi-resource fairness formulation in weighting users by their
contribution to the resource system. In a datacenter context,
this could be interpreted as clients paying different amounts
to the datacenter operator. However, the cake-cutting problem
is somewhat different from our multi-resource problem: while
we assume in this work that resources are non-substitutable
and that users have fixed ratios of resource requirements, in
the cake-cutting problem resources are perfectly substitutable.
Users may have different preferences for different resources
(e.g. preferring frosting to the cake batter), but these resources
need not be allocated in any particular proportion. Thus,
algorithmic solutions to the cake-cutting problem may inspire
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(a) Question 1. (b) Question 2.

(c) Question 3. (d) Question 4.

(e) Question 5. (f) Question 6.

Fig. 29. All six survey questions. Table III gives the resource requirements for each client and the resource capacities.

Question CPUs TB
Client A Client B Capacity Client A Client B Capacity

1 1 3 9 4 1 15
2 1 3 108 4 1 180
3 1 3 108 4 1 180
4 0.5 1.5 216 2 0.5 360
5 2 6 216 8 2 360
6 1 3 108 4 1 180

In question 6, client A also required 2 Mbps and client B 3 Mbps per job.
A total of 144 Mbps was available.

TABLE III
PER-JOB RESOURCE REQUIREMENTS AND CAPACITIES FOR EACH OF THE SIX SURVEY QUESTIONS.

similar solutions to the multi-resource problem with non-
substitutable resources, but cannot be directly applied.

Research on the fair-division problem has generally used
Pareto-optimality and envy-freeness as fairness criteria, though
proportionality (each user receives at least her fair share in
proportion to her contribution to the system) is also some-
times used. Many algorithms for a division by two users
are known, satisfying these propositions: for instance, the
“cut-and-choose” method satisfies Pareto-optimality and envy-
freeness, while the “surplus procedure” satisfies envy-freeness
and proportionality [33]. If three or more users must share the

cake, many algorithms have been proposed, but achievability
of a “fair” allocation is still an open question. Indeed, in
this scenario proportionality may be incompatible with Pareto-
optimality [33].

B. Network Resource Allocation

As mentioned in Section II, a large body of work has
been devoted to the problem of fairness in network resource
allocation, e.g. allocating bandwidth to different flows in the
network. Various fairness measures have been proposed, e.g.
[1], [14], [34]–[37]. While fairness measures such as Jain’s
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Fig. 30. Wording of each survey question.

index [1] apply to general resource allocations, many of
these fairness measures are specific to the given scenario.
For instance, [14] adapts a utility-based approach to radio
allocation in wireless networks by defining “normalized fair
shares,” while [34] uses a sliding window analysis of packet
traces to study the fairness of wireless media access protocols.
The fairness of the distributed coordination function for ran-
domized access in IEEE 802.11 is studied in [35], while mean
end-to-end delays in channel allocations are used to define
fairness in [37]. Such definitions of fairness are not easily
generalizable to generic resource allocation scenarios.

The majority of fairness literature in networking focuses on
the well-known α-fairness. In this approach, the “most fair”
allocation is defined to be one maximizing a utility function
of the bandwidth allocation, parameterized by a scalar α [12],
[38]. This utility function enforces a fairness on the links
allocated to different flows and can be linked to divergence
measures quantifying the difference between individual user
and overall system satisfaction [39]. We can interpret this
difference between user and system satisfaction as a form of
the fairness-efficiency tradeoff explored in this paper for mutli-
resource allocations.

C. Axiomatic Theories in Economics

The fairness functions used in this work are adapted from
the single-resource fairness functions used in [3], which are
derived from the axioms in Appendix A. Other axiomatic
theories of fairness have also been developed and compared
to Appendix A [40]. In this section, we summarize these
comparisons of different axiomatic theories.

1) Renyi Entropy: Renyi entropy is a family of functionals
quantifying the uncertainty or randomness of generalized prob-
ability distributions, developed in 1960 [41]. These generalize
Shannon entropy [42] and may be derived from a set of five
axioms:

1) Symmetry.
2) Continuity.
3) Normalization.
4) Additivity.
5) Mean-Value property.
Comparing Renyi’s axioms to those in Appendix A, we

notice that the Axioms of Continuity and Normalization are

equivalent to our Axioms of Continuity and Homogeneity,
respectively. The Axiom of Symmetry becomes the Corollary
of Symmetry proved in [3], due to our Axiom of Partition.
Next, the Axioms of Additivity and Mean-Value are replaced
by Appendix A’s Axiom of Partition. More precisely, the
Axiom of Additivity can be directly derived from our Axiom
of Partition [3]. The Axiom of Mean-Value, which states that
the entropy of the union of two incomplete distributions is the
weighted mean value of the entropies of the two distributions,
plays a role similar to the Axiom of Partition in deriving the
unique fairness functions specified by the given set of axioms
[40]. The Axioms of Saturation and Starvation are unique to
our system.

2) Lorenz Curves: A Lorenz curve is a graphical represen-
tation of a resource allocation x, defined as

Lx(u) =
1

µ
·
∫
{Px(y)≤u}

ydPx(y), (47)

where Px is the cumulative distribution of x [43]. The ordering
of Lorenz curves can thus be used to rank resource allocations,
e.g. income or social welfare distributions in economics. In
2001, an axiomatic characterization of Lorenz curve orderings
was proposed based on a set of four axioms [43]:

1) Order. (The ordering is transitive and complete.)
2) Dominance. (The ordering is Schur-concave.)
3) Continuity.
4) Independence.

It is shown that a Lorenz curve ordering Lx � Ly satisfies the
four axioms above if and only if there exists a continuous and
non-increasing real function p(u) defined on the unit interval,
such that

Lx � Ly ⇔
∫ 1

0

p(u)dLx(u) ≥
∫ 1

0

p(u)dLy(u). (48)

We can use the fairness functions derived from Appendix A’s
axioms to find an equivalent representation of fairness, thus
defining a Lorenz-curve ordering. This ordering then satisfies
the four axioms above.

3) Nash Bargaining: The Nash bargaining theory, devel-
oped to study collective decisions of groups, derives from a
set of four axioms [9]:

1) Invariance to Affine Transformation.
2) Pareto-Optimality.
3) Independence of Irrelevant Alternatives (IIA).
4) Symmetry.

Comparing these axioms to Appendix A’s, symmetry is shown
as a corollary in our theory [3]. Due to our focus on fairness,
Pareto-optimality is not imposed as an axiom, though we
specify parameter conditions under which it holds in Prop. 3.
Nash’s axiom of IIA contributes most to his uniqueness result
and is also often considered as a value statement. Many others
have shown that replacing IIA with other value statements
may result in solution classes different from the bargaining
solution. Given a feasible region of individual utilities, the
Nash bargaining solution is also equivalent to a maximization
of the proportional fairness utility function.
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4) Shapley Value: The Shapley value also derives from the
study of collective group decisions [44]. It applies to a setting
in which users can form coalitions or groups, based on whether
they increase the group utility and their share of the collective
group utility. Given the structure of such a game, the Shapley
value yields a set of “fair” utility allocations to all players in
the game. It is uniquely characterized by four defining axioms:

1) Pareto-Optimality.
2) Symmetry.
3) Dummy.
4) Additivity.

As with Nash bargaining, Pareto-optimality is included as
an axiom. Although the Shapley values’ input of a coalition
game structure is different from a simple division of resources,
some parallels are apparent. For instance, Shapley’s axiom of
additivity provides a method of building up a single coalition
game with potentially many individuals from smaller games,
which may have only two players. This is similar to Appendix
A’s Axiom of Partition, which allows the fairness measure
to be recursively constructed from the fairness attained by
subsets of the overall allocation [3]. The Nash bargaining
and Shapley value approaches differ from ours, however, in
taking efficiency (i.e., Pareto-optimality) as an axiom, rather
than deriving it from particular conditions on the fairness
parameters.

D. Sociology

A common sociological approach to comparing different
resource allocations quantifies not the fairness of a given
allocation, but rather its unfairness or inequality. In this
context, Jasso proposes two principles and three laws to define
a justice evaluation index; the three laws state that humans
evaluate justice by comparing an actual resource allocation to a
“just” one, that an equal allocation maximizes justice, and that
the aggregate justice of an allocation is the arithmetic mean of
the justice evaluation for individual users. In accordance with
these principles, the justice evaluation index is quantitatively
defined as the logarithm of the ratio of an actual allocation
and the “just” allocation. This definition can be shown to
be equivalent to the single-resource versions of our fairness
functions [40]. Indeed, the Axiom of Partition allows the
fairness of a given resource allocation to be calculated from
the “mean” of two suballocations.

Atkinson’s index also uses the notion of a mean to define
inequality as one minus the ratio of the geometric and arith-
metic means [45]. It may be derived from a set of six axioms,
including those of symmetry and homogeneity. Qualitatively
speaking, the ratio of the arithmetic and geometric means
quantifies the spread of a given resource allocation and can
also be shown to be a special case of our fairness theory [40].

E. Political Philosophy

John Rawls’ theory of “justice as fairness” has been widely
recognized as one of the most influential works of political
philosophy since its publication in 1971 [46], [47]. Rawls
defines justice as the fulfillment of two fundamental principles:

1) “Each person is to have an equal right to the most
extensive scheme of equal basic liberties compatible with
a similar scheme of liberties for others.”

2) “Social and economic inequalities should be arranged
so that they are both (a) to the greatest benefit of the
least advantaged persons, and (b) attached to offices and
positions open to all under conditions of equality of
opportunity.”

The first principle (axiom stated in words) is a distributive
principle, and can be interpreted in the context of resource
allocation as follows: if an equal amount of resource is added
to each user, then the fairness value will not decrease. In [3],
it is shown that the single-resource fairness functions derived
from Appendix A satisfy this requirement.

The first part of Rawls’ second principle can be interpreted
as a type of max-min fairness, as explained in [40]. It thus
corresponds to taking β → ∞, λ → −1 in our theory of
fairness. The second part of Rawls’ second principle concerns
the equal distribution of opportunity, rather than resources.

The utilitarian framework from philosophy also provides a
natural connection to our fairness measures, through simply
taking fairness as the utility function to be maximized [48].
However, the utility function in this theory can be extremely
broad, and thus suffers from the same problems as our
framework in requiring a specification of the utility function.

A more economic perspective is given by Kolm [49],
in which he defines a fair allocation as one without envy
between users (i.e., envy-freeness holds). Corollary 3 thus
gives parameter conditions under which FDS fairness satisfies
this criterion. Using envy-freeness as a definition of fairness
is common in economics, c.f. Section D-A2 above, but taking
envy-freeness as the sole fairness criterion can lead to counter-
intuitive results [50].


