
FLARE: Coordinated Rate Adaptation for HTTP
Adaptive Streaming in Cellular Networks

Youngbin Im,∗ Jinyoung Han,† Ji Hoon Lee,‡ Yoon Kwon,§

Carlee Joe-Wong,¶ Ted “Taekyoung” Kwon,‖ and Sangtae Ha∗
∗University of Colorado Boulder †Hanyang University ‡Juni Korea
§Kakao ¶Carnegie Mellon University ‖Seoul National University

Emails: {youngbin.im, sangtae.ha}@colorado.edu, jinyounghan@hanyang.ac.kr, brandon.lee@juniglobal.com
alberto.kwon@kakaocorp.com, cjoewong@andrew.cmu.edu, tkkwon@snu.ac.kr

Abstract—Fog computing is an emerging architecture that
aims to run applications on multiple devices that lie on a
continuum from cloud servers to personal user smartphones.
These architectures allow applications to optimize over the
information stored at and functionalities run on each device,
based on individual device capabilities. We demonstrate the
benefits of this approach for mobile video streaming. Existing
HAS (HTTP adaptive streaming) techniques often suffer from
problems like unstable video quality and suboptimal resource uti-
lization. We find that a lack of coordination prevents both client-
and network-side HAS techniques from solving them. However,
our fog approach can exploit existing telecommunication APIs,
which expose network capabilities to applications, in order to
coordinate between clients and the network. Our coordinated
HAS solution, FLARE, optimizes the total utility of all clients
in a cell while maintaining stable video quality and supporting
user- and device-specific needs. We implement FLARE on a
commodity LTE femtocell and use the implementation to conduct
the first comparison of HAS players on an LTE femtocell. By
conducting extensive experiments using the ns-3 simulator, we
also demonstrate that FLARE (i) enhances the average video
bitrate, (ii) achieves stable video quality, and (iii) balances the
throughput of simultaneous video and data flows, compared to
other representative HAS solutions.

I. INTRODUCTION

Traditional computing applications have largely been run
from either the client–e.g., mobile applications’ triggering
content downloads from a remote server–or from a centralized
server, e.g., cloud-based fusion of data collected by multiple
distributed sensors. More recently, however, fog and edge
computing approaches have begun to develop hybrid architec-
tures in which application functionalities are divided between
the client and server [1], [2]. Such architectures are likely
to become increasingly popular as more and more devices
emerge along the “cloud-to-things continuum” between re-
mote cloud servers and personal devices like smartphones
or smartwatches. We can thus envision applications that are
cooperatively run on multiple devices along this continuum.

A fog architecture can bring significant benefits compared
to a purely client- or server-based approach: for instance,
putting some control at the client makes it easier to customize
the application’s configuration according to individual clients’
preferences. Client-based control can also allow these config-
urations to more rapidly adapt to changes in client preferences
or background information. A central server component, on the

other hand, can improve coordination between different clients
who might compete for resources, e.g., a cellular network set-
ting in which multiple applications share network bandwidth.
Thus, fog computing allows applications to optimize over both
client and server information, leading to an intelligent division
of labor between the client and server.

Cellular networks are an especially compelling example of
fog computing architectures. Network operators like Vodafone,
for instance, are beginning to expose their network APIs
(application programming interfaces) as a way to find new
revenue opportunities and help third-party app developers [3].
These APIs can reveal statistics such as network availability
and congestion in near real-time, which can then be used to
optimize the bandwidth requested by different client flows.
OneAPI [4], for instance, allows UE applications to specify
their QoS (quality-of-service) requirements and to be notified
of the QoS level that the network can provide. Thus, OneAPI
can be used to develop fog applications that have a presence
at both the client and the network server, leveraging informa-
tion from both to optimize network bandwidth allocation. In
this work, we focus on one particular application that often
dominates bandwidth usage: video streaming.

A. HTTP Adaptive Streaming (HAS)

Recent advances in mobile communications and video
compression technologies have led to significant growth in
video traffic over mobile networks. Many major video service
providers, including Netflix and YouTube, employ HTTP
adaptive streaming (HAS) to deliver this video content, largely
due to its adaptability to time-varying network conditions [5]–
[8] and ability to use existing HTTP web server infrastructure.
The basic idea of HAS is to divide a video into multiple
segments over the time dimension, e.g., of a few seconds each.
Each segment can be encoded with multiple bitrates (e.g.,
640p, 1080p), and in each time interval, HAS selects the bitrate
of a corresponding segment. Information about each segment,
such as its sequence, timing, bitrate, and URL, is stored in a
Media Presentation Description (MPD) file that is sent to the
client streaming the video. Either the client or a server in the
network can then choose the segment bitrates.

The choice of which video segment to download depends
on a variety of both client and network factors, including the

client device capabilities, the time-varying amount of available
network bandwidth, and the relative priority of non-video
flows in the network. Thus, HAS is uniquely suited to a
fog computing approach that takes advantage of client and
network information. Clients cannot obtain information about
the available network resources, the number of devices in the
network, etc., while network entities alone cannot access some
device information that impacts the optimal video bitrates.
Indeed, network-side and middleware solutions cannot handle
encrypted video traffic, which constitutes a large share of
today’s data traffic [9] and obscures even the identity of video
traffic from any entity placed in the network.

This fog-based philosophy distinguishes our work from
existing HAS systems, which generally select the segment
bitrates based only on information at the user equipment (UE)
clients or inside the network. We overcome these challenges
by designing and implementing FLARE (Fair and Link-Aware
RatE adaptation), the first HAS system that uses both individual
client information and newly standardized network APIs that
expose network information.

B. Related Work: Existing HAS Techniques

As suggested by their name, client-side HAS approaches
run an adaptation algorithm on each UE. At each given time,
the algorithm estimates the available network bandwidth based
on the throughput history of recently downloaded segments.
It then chooses a desired bitrate for the next video segment
based on this estimate, the video encoding information, the
amount of video data in its buffer, and the previously selected
bitrate [10]–[12]. For instance, the FESTIVE algorithm [13]
considers tradeoffs between stability of the video quality,
fairness, and efficiency. Tian et al. [14] similarly seek to
balance the smoothness (i.e., stability) of the video rate with
high bandwidth utilization. However, both algorithms can yield
unstable video quality in LTE wireless networks, due to highly
variable link bandwidth (cf. Section IV).

Li et al. [10] showed that the discrete nature of video
bitrates makes it hard for clients to find their fair share of
available bandwidth, proposing an adaptation algorithm akin
to TCP congestion control. Yin et al. [11] introduced a model
predictive control algorithm in order to optimally combine
throughput and buffer occupancy information. Xie et al. [12]
proposed a cross-layer approach in which the PHY-layer
information of the LTE network is used to estimate available
bandwidth. However, all client-side techniques suffer from the
fact that a UE has no information about the overall radio
resources in the cell. Consequently, clients may suffer from
frequent re-buffering, unfair bitrate assignments, and abrupt
bitrate changes. Network-side HAS techniques can overcome
these problems, but have their own limitations.

Network-side techniques collectively consider individual
clients’ channel conditions and utilities and then choose
clients’ bitrates so as to maximize their aggregate utility [15]–
[18]. These bitrates are enforced by setting the guaranteed
bit rate (GBR) and/or maximum bit rate (MBR) for each
flow using the base station (BS) scheduler or a resource

slicing technique. For instance, Chen et al. [15] proposed
AVIS, an in-network resource management framework that
schedules HTTP-based video flows in cellular networks. How-
ever, clients’ realized bitrates may still be suboptimal: these
approaches assume that the bitrates for the segments requested
by the UE adaptation modules will quickly converge to the
bitrates chosen by the network entity, which may not occur
in practice (cf. Section IV-B). Moreover, the network entity
is oblivious to some UE characteristics, such as the buffer
memory, computation capability, client preferences, etc., that
may affect clients’ desired bitrates and utilities. Indeed, if the
video traffic is encrypted the network may not even be able
to identify HAS flows. Some network-side HAS techniques
(e.g., [15]) also suffer from a static division of resources
among video and other data flows, which can cause severe
underutilization of the overall radio resources.

C. FLARE: A Fog Computing Approach to HAS

We implement FLARE as a light-weight client-side plu-
gin (e.g., using Javascript) that can be easily embedded in
video service providers’ HAS players. FLARE coordinates
with OneAPI [4] to obtain network information. Given client
information from FLARE’s client-side UE (user equipment)
plugin, the OneAPI server can choose a desired bitrate for each
video flow based on information obtained from the network
BSs, UEs, and the network’s Policy, Charging, and Rules
Function (PCRF). The PCRF manages and monitors all flows
in the network; thus, it can provide the OneAPI server with all
relevant network information, such as the number of non-video
flows, for assigning network bitrates. Since the OneAPI server
is provided by the network operator, it can easily interface with
both our UE plugins and the PCRF.

We divide the bitrate selection and enforcement between the
UE plugins and OneAPI network server, guaranteeing their
coordination. While the OneAPI server can easily allocate
bandwidth between video and non-video flows, it does not
directly control the actual bandwidth allocations. Thus, we
use the FLARE plugin to enforce the bitrates chosen by the
OneAPI server, avoiding convergence inefficiencies due to
mis-coordination between the UE and the network. We limit
the information exchanged between the OneAPI server and
the plugin to the minimum needed to decide the bitrates,
protecting clients’ privacy; they can individually choose to
disclose additional information to the OneAPI server.

FLARE introduces three fundamental improvements to ex-
isting HAS systems. Not only are bitrates chosen based on
both the network and client information, but FLARE unifies
the resource allocation of video and data flows into a single
framework. Thus, FLARE optimizes the total utility of all
clients, avoiding AVIS’s occasional inefficiencies in resource
utilization caused by static resource partitioning between video
and data flows. Finally, FLARE ensures a stable video quality
by taking a stateful approach to the rate selection and ensuring
that UEs always utilize the bitrates assigned by the HAS
network entity. Thus, we avoid fluctuations in the selected
rates as well as instabilities caused by a mismatch between the

UE’s requested and assigned bitrates. We demonstrate these
improvements through the following contributions:

We propose FLARE, a coordinated rate adaptation ap-
proach that uses a fog computing architecture for selecting
client bitrates in cellular networks. FLARE incorporates both
client- and network-side information and guarantees coordi-
nation between network- and client-side bitrate selection. For
ease of deployment, FLARE requires minimal modifications to
run on existing HAS video players. We introduce and develop
a plugin-style module that can be easily embedded on video
players, can communicate with the network entity without
causing privacy issues, and can work with cryptographic
protocols such as Secure Sockets Layer (SSL).

We develop FLARE on a commodity LTE femtocell BS,
implementing its functionalities in the MAC layer. We then
evaluate FLARE’s performance in the testbed and show that it
outperforms existing HAS players. Our extensive simulation
study demonstrates that FLARE significantly improves on
both client- and network-side algorithms in various settings
in terms of the average video bitrate (up to a 69% and 66%
improvement compared to AVIS [15] and FESTIVE [13],
respectively), stability of video quality (up to 85% and 95%
improvement compared to AVIS and FESTIVE, respectively),
and balance of resources allocated to video and data flows.

We document the benefits of a fog computing approach
to HAS by comparing purely client- and network-based ap-
proaches to FLARE. We find that client-side HAS algorithms
suffer from (i) throughput imbalances between data and video
flows [13], (ii) unstable video selection due to a lack of
network-side information [13], [19], and (iii) frequent re-
buffering and drastic bitrate changes due to aggressive rate
selection [19] (Figures 4 and 5). Network-side HAS solutions,
on the other hand, suffer from (i) instability in the selected
bitrates due to indirect rate enforcement [15], [16] and (ii)
suboptimal flow utilities over time due to static resource
allocation among video and data flows [15] (Figures 6 and 7).

We describe FLARE’s design principles and rate adaptation
algorithms in Section II before discussing FLARE’s operations
and LTE femtocell testbed implementation in Section III. We
then evaluate FLARE compared to other HAS solutions in
Section IV. We finally discuss some of FLARE’s deployment
challenges before concluding in Section V.

II. FLARE DESIGN

We first discuss the design principles used in our coordinated
HAS system, FLARE, in Section II-A, and then present our
rate adaptation algorithm in Section II-B.

A. Design Considerations

We design FLARE’s client- and network-side components
and their interactions by following four main principles.

Compatibility with existing systems: Most major video
service providers (e.g., YouTube) have adopted cryptographic
protocols to deliver their videos safely. It is therefore difficult
to detect HAS video flows and enforce their bitrates in the
middle of the end-to-end path as proposed by [15], [16].

Media Server

Mobile

Users

400 Kbps

200 Kbps

PCRF

Video, bitrate, capability,

preference information

FLARE

plug-in

Base Station

OneAPI server

600 Kbps

Policy

information

GBR

setting

RB/throughput

information

Internet

PGW/PCEF

Fig. 1. FLARE’s main entities in an LTE network are the OneAPI server and
UE plugins (circled), which decide the UE bitrates depending on information
like their link conditions, utility, and user/device status.

To handle this challenge, we adopt an existing standard,
OneAPI [4], to coordinate between the network and clients.
Clients can indicate which flows contain video traffic by
communicating with OneAPI. We implement FLARE as a
light-weight client-side plugin using a Javascript file, which
can be easily embedded in existing video services.

Minimal modification: To ensure that our system is deploy-
able, we minimize the changes required in the current cellular
network core. Instead, we create a control overlay on top of
existing infrastructure.

Privacy protection: While individual client information
such as video clickstream logs can help FLARE assign clients
the optimal bitrates, clients may not wish to reveal this
information due to privacy concerns. We thus minimize the
information required from each client, though clients may
reveal more information at their discretion.

Scalability: Optimizing the bitrate selections for all clients
in a cell requires a significant amount of computational power:
since there are a finite number of possible bitrates for each
video segment, the optimization problem is a discrete, NP-
hard problem (cf. Section II-B). We propose a continuous op-
timization framework to reduce the computational complexity
in order to accommodate a large number of clients.

Figure 1 shows FLARE’s architecture. The FLARE plugin
at each UE decides which client information to send to the
OneAPI server. The OneAPI server, which has access to
the current network state from the BS, then decides clients’
bitrates with a scalable, continuous optimization framework,
enforcing these decisions through the network PCRF (policy,
charging, and rules function), PCEF (policy, charging, and
enforcement function), and the FLARE UE plugin. A single
OneAPI server can manage multiple BSs, though the bitrates
are calculated independently for each network cell. We next
describe the details of the OneAPI server’s bitrate optimization
before outlining FLARE’s operations in Section III.

B. FLARE Coordination

We now explain how the network and client coordinate to
decide the optimal bitrates. We assume that all video flows
follow HAS, all data flows use TCP, and the OneAPI server

Algorithm 1: Algorithm for calculating the video bitrates
and allocating resources for video and data flows.

for i > 1 do
Gather client information;
Find

{
bi−1
u , ni−1

u , Li−1
u ∗ |u ∈ U

}
from BAI i− 1;

Solve (3–4) or its relaxation for r∗, Riu
∗, adding constraints from

client information as necessary;
Liu

∗
= maxk

{
k ∈ Z+|ru(k) ≤ Riu

∗};

if Liu
∗
, Li−1
u

∗
, . . . , L

i−δ(Li−1
u)

u

∗
= Li−1

u + 1 then
Liu = Li−1

u + 1;
else

Liu = min
{
Li−1
u , Liu

∗
}

;

Riu = ru
(
Liu
)

for each u ∈ U ;

knows the number of data flows in each network cell through
its connection with the PCRF (cf. Figure 1).

We suppose that the OneAPI server runs a bitrate optimiza-
tion algorithm once per bitrate assignment interval (BAI). In
each BAI, FLARE attempts to maximize the total utility of
video and data flows, which we define as∑

u∈U
βu

(
1− θu

Riu

)
+ α

∑
u∈D

log
T iu
θu
, (1)

following [16], [20], subject to capacity and stability con-
straints. Here U denotes the set of video flows, D the set
of data flows, and Riu and T iu the bitrate and throughput
respectively of client, or flow, u for BAI i. The client-specific
parameters βu and θu represent the importance of video traffic
to client u and the screen size (a larger screen requires a higher
bitrate for good resolution) respectively. We use a logarithmic
utility function for the data flows to account for the fact that
larger throughputs yield smaller marginal increases in utility.
Video bitrates similarly exhibit decreasing marginal utility as
they increase, but we constrain the maximum utility achieved
to 1 in order to model the fact that, once the bitrate can support
the device resolution, users notice very little difference in the
video streaming. The parameter α controls the importance of
data relative to video flows. We can simplify (1) by defining r,
the fraction of resource blocks (RBs) allocated to video flows:

Lemma 1: Suppose that the sum of the throughputs of all
data flows is proportional to 1−r, the portion of RBs allocated
to the data flows, and that each data flow receives a fixed
fraction of the total data throughput throughout its lifetime.
Then optimizing (1) is equivalent to optimizing∑

u∈U
βu

(
1− θu

Riu

)
+ nα log (1− r) . (2)

Proof: We find from our assumptions that∑
u∈D

log
T iu
θu

=
∑
u∈D

(
log
(
Xi
u (1− r)

)
− log (θu)

)
= n log (1− r) +

∑
u∈D

(
log
(
Xi
u

)
− log (θu)

)

where Xu
i is flow u’s throughput with no video flows (r = 0)

and n is the total number of data flows. Since Xi
u and θu are

constants, we can neglect their sums when maximizing (1),
instead choosing r and the Riu to maximize (2).

We now formulate FLARE’s network capacity and bitrate
stability constraints. We let ru = {ru(1), ru(2), . . . , ru(Mu)}
denote the bitrates available for the video on flow u, with
ru(k) ≤ ru(k+1) for all k, and choose Riu ∈ ru. We use Liu
to denote the index of the chosen Riu, i.e., Riu = ru

(
Liu
)
.

We constrain the total allocated RBs for video flows
to be no more than the total available for video flows:∑
u∈U

BRi
u

bi−1
u

ni−1u ≤ rN , where N is the total number of RBs,
B is the length of the BAI, and niu and biu are respectively the
numbers of RBs assigned and bytes transmitted to client u in
BAI i. Note that our constraint incorporates knowledge from
the previous BAI, i − 1, to estimate the flow’s required RBs
in BAI i. We also leverage this past information to introduce
a stability constraint that prevents large increases in flows’
bitrates in consecutive time intervals: Riu ≤ ru

(
Li−1u + 1

)
,

for i > 1. We do, however, permit large drops in the flow’s
bitrate if necessary to maximize (2), e.g., several new clients
enter the system. The main idea is then to solve

max
r∈[0,1],Ri

u∈ru

∑
u∈U

βu

(
1− θu

Riu

)
+ nα log (1− r) (3)

s.t.
∑
u∈U

BRiu
bi−1u

ni−1u ≤ rN, Riu ≤ ru
(
Li−1u + 1

)
(4)

Since (3–4) is a mixed integer optimization problem that may
include many flows, it is difficult to solve efficiently. A full
examination of solution algorithms for (3–4) is beyond the
scope of this work, which focuses on building FLARE, but we
propose one possible solution: using a continuous relaxation
in order to make the problem tractable.

Proposition 1: The continuous relaxation of (3–4), in which
we replace Riu ∈ ru with the constraint ru(1) ≤ Riu ≤
ru(Mu), is a convex optimization problem.

Proof: We note that the constraints (4) are linear in the
optimization variables r and Riu; thus, it suffices to show that
(3) is a concave function of r and Riu. Omitting the detailed
calculations, concavity follows from the fact that log x and
−x−1 are both concave functions of x.
We can use a standard convex optimization solver to solve
our relaxation. Given a solution r∗, Riu

∗, we discretize each
Riu
∗ by rounding it down to the nearest available bitrate,

which we denote as ru
(
Liu
∗).1 Algorithm 1 formalizes this

method of calculating the bitrate. Note that it can well-
approximate the optimum if there are a large number of
available bitrates. We add two extra steps beyond solving (3–
4): gathering information from the client in order to formulate

1We can accommodate client-side bandwidth limitations that can occur in
wired networks by rounding Riu

∗ to the minimum of ru
(
Liu

∗) and xu,
where xu is client u’s maximum bandwidth for HTTP video streaming.

our optimization problem, and an additional constraint on the
chosen bitrate to ensure stability.

Enhancing stability: Since frequent bitrate changes can
adversely affect video users’ experience [21], [22], the last step
of Algorithm 1 ensures that the bitrate does not increase from
the previous BAI unless the increase has been recommended
(i.e., Liu

∗
= Li−1u + 1) for the previous δ

(
Li−1u + 1

)
BAIs.

Here δ is a parameter that controls the frequency of bitrate
increases, with a slower increase for higher bitrates [13]. While
this limiting can lead to less efficient resource utilization, it
ensures a fair rate allocation by preventing any single client
from suddenly hogging system resources through receiving a
higher bitrate.

Incorporating client information: Since we allow each
client to choose which information to send to the OneAPI
server (cf. Section II-A’s design principles), we do not ex-
plicitly specify how the server uses this information. Clients
can choose to send information like their buffer memory and
computation capability, or to send specific bitrate preferences.
For example, if the current amount of buffered video (in the
client) is relatively small or the client wishes to limit its
mobile data costs, the client can specify an upper bound on
its bitrate to quickly fill the buffer or limit the amount of
data transferred. On the other hand, if a client decides to
send its video clickstream data without specific preferences
to the OneAPI server, the server might detect that the client is
skimming the video (e.g., frequent clicks of forward/backward
buttons) and select the minimum bitrate. Since we use an
optimization framework to choose the bitrates, we can easily
incorporate these client preferences as additional constraints.

III. FLARE OPERATIONS AND IMPLEMENTATION

We now present our realization of Section II’s design princi-
ples and rate adaptation algorithm. We first discuss FLARE’s
operations before describing our implementation.

A. FLARE Operations

Figure 1 shows the overall architecture on which FLARE’s
operations take place. FLARE’s video streaming begins when
a UE sends an HTTP GET Request message to request a Media
Presentation Description (MPD) file and the media server
sends the MPD file to the UE. The MPD is parsed to extract
the available bitrates for each video flow, and the FLARE
plugin at the UE client sends these bitrates to the OneAPI
server, after removing any information that can be used to
identify the video. The plugin can also send information on
the clients’ preferences or device/buffer status.

In each BAI, the OneAPI server runs Algorithm 1 to select
each client’s bitrate based on the client information, as well
as the number of resource blocks available, RB assignment
history, selected bitrate history, available video bitrates for
clients’ videos, video traffic policy, and user/buffer/device
information. Each selected video bitrate is transferred to the
FLARE plugin at the corresponding UE, and the video player
uses the bitrates for selecting the next video segment. When

eNB

Protocol Stack

PDCP

RLC

MAC

PHY

Data Plane Management Plane

Scheduler

Module

RB & Rate

Trace Module

iTbs Override

Module

Continuous GBR

Updater

Statistics

Reporter

Communication

Module

Fig. 3. New modules implemented in the LTE eNodeB.

transmitting the video bitrates, the OneAPI server commu-
nicates with the PCEF to set the GBR of each video flow
according to its selected bitrate, thus providing stable service
to the UE. Note that these message exchange procedures can
be standardized by extending related existing standards for
telecommunications APIs such as [23]; the detailed design of
these protocols, however, is out of the scope of this paper.

B. LTE Femtocell Testbed Implementation

Our testbed setup is illustrated in Figure 2. It consists of four
entities: UEs, an LTE femtocell eNodeB, a OneAPI server, and
a media server. We modify the MPEG-DASH/Media Source
demo player [19] to implement FESTIVE [13] and FLARE
players. We develop an LTE base station using a commercial
LTE femtocell eNodeB (eNB), JL-620 [24]. It supports 10
Mhz-bandwidth FDD operations on E-UTRA Band 7 [25] with
20 dBm transmission power, and 50 RBs are available per
transmission time interval (TTI), which is 1 ms. We add the
following modules in the medium access control (MAC) layer
of the eNB, as illustrated in Figure 3:

• The Scheduler Module performs GBR-based per-TTI
scheduling for video traffic in two phases. In Phase I,
the scheduling algorithm uses GBR-based scheduling for
video flows, and in Phase 2, the remaining RBs are
allocated to both video and data flows with a legacy
proportional fair scheduling algorithm.

• The RB & Rate Trace Module traces the RB and rate
records for each video flow. The RB records are updated
by the Scheduler Module. We use the rate records to
calculate the transmitted bytes for FLARE operations.

• The iTbs Override Module allows us to emulate time-
varying link bandwidth by changing the index of the
Transport Block Size (iTBS). Each TBS index (iTbs)
defines its own modulation and coding scheme [26], and
hence this allows us to set the transmission rate.

• The Continuous GBR Updater dynamically changes the
GBR, which is normally [27] assigned only when the
traffic bearer is set up.

• The Statistics Reporter collects the RB and rate records
of video flows from the RB & Rate Trace Module and
sends them to the Communication Module.

• The Communication Module is located in the eNodeB
and enforces GBR rates received from the OneAPI Server.
It also sends a periodic statistics report (on the per-client
RB utilization and throughput) to the OneAPI Server.

(a) Our FLARE testbed. (b) Testbed architecture.

Fig. 2. Our FLARE testbed consists of UEs, an LTE femtocell base station, a OneAPI server, and a media server.

The OneAPI server receives the per-client RB utilization
and throughput information from the eNB’s communication
module and the video information (e.g., video rate, duration)
from the FLARE UE plugin when each video begins stream-
ing. Based on the received information, it decides the bitrate
(or GBR) for each video client using Algorithm 1 and sends
the chosen bitrates to the eNodeB and FLARE plugin for
enforcement in each BAI. We use KNITRO [28], a well-known
solver for nonlinear optimization, to implement the bitrate
calculation in the OneAPI server.

IV. EVALUATION

We evaluate FLARE on the LTE femtocell testbed described
in Section III-B before presenting simulation results that
evaluate our bitrate selection algorithm in various environ-
ments. Our testbed evaluation (Section IV-A) compares our
FLARE implementation to two client-side approaches, in both
a static scenario and a dynamic scenario in which the network
conditions change over time. Since the testbed considers only
one network cell and thus cannot fully emulate UE mobility,
we then use the ns-3 simulator [29] to compare FLARE’s
bitrate adaptation algorithm to both client- and network-side
algorithms in mobile scenarios (Section IV-B). This simulation
setup also allows us to investigate FLARE’s bitrate adaptation
algorithm in more detail. We find that, in both the testbed and
simulation scenarios, FLARE yields higher average bitrates
with fewer bitrate changes than the algorithms we compare
against. Moreover, FLARE can efficiently calculate near-
optimal bitrates, and its algorithm parameters can flexibly
balance the relative priorities of data and video flows.

A. Testbed Performance Evaluation

Experiment setup. We compare FLARE with two client-
side rate control algorithms: the MPEG-DASH/Media Source
demo player, which we call GOOGLE [19], and FES-
TIVE [13]. We modify the MPEG-DASH/Media Source demo
player to implement the FESTIVE and FLARE players. We
implement tracing functions on the HAS player to log the
segment transmissions, selected bitrates, and buffer status.
GOOGLE makes two link bandwidth estimates, bl and bs,
based respectively on the long- and short-term histories of
recently received segments and selects the highest available
video rate that is ≤ 0.85min

{
bl, bs

}
. Unless otherwise stated,

we solve the exact bitrate optimization problem (3–4).
For our experiments, we encode a video into 200, 310, 450,

790, 1100, 1320, 2280, and 2750 Kbps. We generate one video

TABLE I
SUMMARY OF THE STATIC SCENARIO RESULTS.

FESTIVE GOOGLE FLARE

Average video rate (Kbps) 638 1151 726

Average time that the
buffer is underflowed (sec) 0 185.3 0

Average number of
bitrate changes 20.3 9.7 1

Jain’s fairness index
of average video rates 0.998 0.990 0.999

Average throughput of
data flow (Kbps) 2512 1140 1800

flow each on three devices by running the HAS players, and
one data flow on a device by running Iperf [30]. We consider
a static scenario in which the Modulation and Coding Scheme
(MCS) of each device does not change, and a dynamic scenario
in which the MCS changes over time. For the static scenario,
we set the iTbs value to 2. For the dynamic scenario, we
change the MCS by gradually increasing the iTbs from 1 to
12 for the first 2 minutes, decreasing it back to 1 for the next
2 minutes, and repeating this cycle for 10 minutes. To model
UE heterogeneity, each UE starts the cycle with a different
offset. We use a commercial EPC emulator [31] to emulate
signaling (e.g., bearer setup) with the core network entities.

Stable rate selection in the static scenario. We first
show the performance of FESTIVE, GOOGLE, and FLARE
in the static scenario in terms of the video rates, buffer
sizes of the video flows, and throughput of the data flow
in Figure 4. FESTIVE selects the video rate conservatively,
resulting in slow convergence to a stable state, and hence
achieves a relatively large throughput for the data flow. Due
to its unawareness of the overall radio status, video flows’
bitrates change frequently. On the other hand, GOOGLE se-
lects the video rate aggressively, causing frequent re-buffering
interruptions whenever the amount of buffered video data falls
below 1 second. GOOGLE assigns the fewest radio resources
to the data flow, yielding lower overall data flow throughput.

Unlike FESTIVE and GOOGLE, FLARE, as shown in
Figure 4c, selects the video rates in a stable manner. FLARE
initially increases the video bitrate conservatively, and then
consistently chooses a video rate of 790 Kbps while main-
taining stable buffer sizes during the measurement period. The
data flow also receives a stable, moderately high throughput.
Table I summarizes the static scenario’s results. While FLARE
achieves a slightly lower throughput for the data flow, it dra-
matically reduces the number of bitrate variations and buffer

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(a) The video rates in FESTIVE

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(b) The video rates in GOOGLE

0

200

400

600

800

1000

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(c) The video rates in FLARE

0

1000

2000

3000

4000

5000

0

10

20

30

40

50

60

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(d) Video flows’ buffers and data flow’s
throughput in FESTIVE

0

500

1000

1500

2000

2500

3000

3500

4000

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(e) Video flows’ buffers and data flow’s
throughput in GOOGLE

0

1000

2000

3000

4000

5000

0

10

20

30

40

50

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(f) Video flows’ buffers and data flow’s
throughput in FLARE

Fig. 4. FESTIVE, GOOGLE, and FLARE are compared in terms of the video rates, buffered amounts of the video flows, and throughput of the data flow
in the static scenario. FLARE selects the bitrate very stably, and maintains a larger buffer, compared to FESTIVE and GOOGLE.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(a) The video rates in FESTIVE

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(b) The video rates in GOOGLE

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

V
id

e
o

 r
a

te
 (

K
b

p
s)

Time (Seconds)

User 1 User 2 User 3

(c) The video rates in FLARE

0

2000

4000

6000

8000

10000

0

10

20

30

40

50

60

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(d) Video flows’ buffers and data flow’s
throughput in FESTIVE

0

2000

4000

6000

8000

10000

0

10

20

30

40

50

60

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(e) Video flows’ buffers and data flow’s
throughput in GOOGLE

0

2000

4000

6000

8000

10000

0

10

20

30

40

50

60

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

B
u

ff
e

r
a

m
o

u
n

t
(S

e
co

n
d

s)

Time (Seconds)

User 1 User 2 User 3 Data user

(f) Video flows’ buffers and data flow’s
throughput in FLARE

Fig. 5. FESTIVE, GOOGLE, and FLARE are compared in terms of the video rates, buffered amounts of the video flows, and throughput of the data flow
in the dynamic scenario. FLARE selects bitrates similar to the link capacity, with less fluctuation, compared to FESTIVE and GOOGLE.

TABLE II
SUMMARY OF THE DYNAMIC SCENARIO RESULTS.

FESTIVE GOOGLE FLARE

Average video rate (Kbps) 839 1297 1025

Average time that the
buffer is underflowed (sec) 0 10.7 0

Average number of
bitrate changes 22.7 14 11.3

Jain’s fairness index
of average video rates 0.998 0.997 0.998

Average throughput of
data flow (Kbps) 3870 1870 2300

underflows compared to FESTIVE and GOOGLE respectively.
Fast bitrate adaptation in the dynamic scenario. We next

compare FESTIVE, GOOGLE, and FLARE in the dynamic
scenario, as shown in Figure 5. FESTIVE shows a similar
pattern to that of the static scenario: the video bitrates oscillate
frequently and with little visual correlation with the two-

minute MCS cycles, while the data flow throughput also
changes frequently but is high on average (Figures 5a and 5d).
GOOGLE shows less bitrate oscillation, but more frequent
rebuffering, as in the static scenario (Table I). Indeed, these
results incorporate changes that we have made to reduce
GOOGLE’s frequent rebuffering: we send an HTTP GET
request for the next segment when the remaining buffered
video length reaches 40 seconds instead of the static scenario’s
15 seconds. FLARE, however, does not require rebuffering and
rapidly adapts its bitrates to the network conditions. As shown
in Figure 5c, the changes in bitrates for FLARE are similar to
the MCS change pattern configured for the dynamic scenario.
Table II summarizes the results in the dynamic scenario; only
GOOGLE suffers from rebuffering, while FESTIVE yields the
highest data throughput but more bitrate changes than FLARE.

Even though FLARE does not directly consider the buffered
amounts of video when selecting the bitrates, it never causes

TABLE III
SIMULATION SETTINGS.

Simulator ns-3 3.18.1

Simulation time 1200 seconds

Territory 2000m x 2000m

Number of video UEs
8 (32 to 128 for the experiments in

Figure 9)

Placement of UEs random

Fading model trace based model
Video segment
duration = B

10 seconds

Video bitrates

100, 250, 500, 1000, 2000, 3000 Kbps

(100, 200, . . . , 1200 Kbps

for the experiments in Figures

8 to 10)

TCP Westwood

Scheduler Priority Set Scheduler [32]

TABLE IV
DEFAULT PARAMETER VALUES FOR FLARE, FESTIVE, AND AVIS (α
AND δ ARE TAKEN FROM FIGURES 11 AND 12, θu AND βu FROM [16],

AND FESTIVE AND AVIS PARAMETERS FROM [13], [15]).

FLARE FESTIVE AVIS

α δ θu βu k p α α W
1.0 4 0.2 Mbps 10 4 0.85 12 0.01 150

a buffer underflow, even in the worst channel condition (cf.
Table II). We believe that this is due to two reasons. First,
FLARE considers the channel status of each UE in its opti-
mization framework; thus, it is less likely to request segments
whose bitrates are larger than the available bandwidth. Second,
while video segments are serviced with the GBR, the data traf-
fic is serviced with non-GBR in FLARE. Thus, the Scheduler
Module can opportunistically use the RBs of data traffic for
video flows when the OneAPI server’s bitrate optimization
algorithm cannot keep pace with wireless link dynamics.

B. Simulation of Bitrate Adaptations

Simulation setup. We finally conduct an extensive sim-
ulation study on our proposed solution, FLARE, using ns-
3 [29] with the LTE module. The simulator will allow us
to explore FLARE’s bitrate adaptation algorithm for richer
mobility settings and different video and data flow require-
ments, compared to our femtocell testbed. For comparison,
we also evaluate a client-side algorithm (FESTIVE [13]) and
a network-side algorithm (AVIS [15]). For AVIS, we run a
simple rate adaptation algorithm on a UE that requests the
highest possible rate based on the estimated throughput, and
set the GBR/MBR using the scheduler in the BS instead of
resource slicing techniques.

Table III summarizes our simulation settings. We modify the
Priority Set Scheduler module in ns-3 to add the MBR assign-
ment and to retrieve information about each client’s assigned
RBs and transmitted bytes. We set the parameters for each
scheme as shown in Table IV. In most cases, there are 8 clients
in each run, and we carry out 20 runs for each plot. Since HAS
operates on top of TCP, we do not use traditional performance
metrics like the Peak Signal-to-Noise Ratio (PSNR), which is

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 800 1200 1600 2000

C
D

F

Average bitrate (Kbps)

FLARE
AVIS

FESTIVE

(a) Average client bitrate values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Number of bitrate changes

FLARE
AVIS

FESTIVE

(b) Rate changes per client.

Fig. 6. Performance CDFs in static scenarios over 160 clients. FLARE shows
higher average bitrates and better stability than AVIS or FESTIVE.

mostly useful in lossy environments with UDP. Instead, we
use the average bitrate, number of bitrate changes, and Jain’s
fairness index (for actually transmitted bitrates), which more
accurately reflect users’ qualities-of-experience in HAS.

Stable, high bitrates in static scenarios. We first compare
our ns-3 results to the testbed implementation by considering a
static scenario with stationary UEs. Figures 6a and 6b show the
CDFs (cumulative distribution functions) of the average bitrate
values and numbers of bitrate changes over 160 clients for
each scheme. FLARE’s average bitrates respectively exceed
those of AVIS and FESTIVE by 24% and 39%, with 26% and
66% fewer bitrate changes than AVIS and FESTIVE, which is
consistent with the testbed’s static scenario results in Table I.

In AVIS, the network sets only the GBR/MBR, while the
rate controller in the UE selects the actual video bitrate,
resulting in frequent mismatches between the bitrates set by
the network and the ones selected by the UEs. FESTIVE
performs worse than the others due to its unawareness of the
link conditions in a cell. FLARE’s fog computing approach
eliminates both of these shortcomings. The average Jain’s
fairness index is comparably high at 0.989, 0.989, and 0.986
for FLARE, AVIS, and FESTIVE, respectively, meaning that
all three schemes are very fair across time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 600 800 1000 1200

C
D

F

Average bitrate (Kbps)

FLARE
AVIS

FESTIVE

(a) Average client bitrate values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

Number of bitrate changes

FLARE
AVIS

FESTIVE

(b) Rate changes per client.

Fig. 7. Performance CDFs in the mobile scenarios over 160 clients. The
stability performance difference between FLARE and the other schemes is
larger than that of the static scenario (Figure 6b).

Stable bitrate selection in mobile scenarios. We next
consider mobile scenarios where the UE operates in vehi-
cles. FLARE’s advantages are even more pronounced in this
scenario compared to the static one, as shown in Figures
7a and 7b. FLARE shows a 53% and 47% improvement in
the average bitrate compared to AVIS and FESTIVE, and
the average numbers of rate changes decrease by 85% and

 0

 0.2

 0.4

 0.6

 0.8

 1

 700 800 900 1000

C
D

F

Average bitrate (Kbps)

static
vehicular

(a) CDF of the average bitrate val-
ues over 160 clients.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
D

F

Number of bitrate changes

static
vehicular

(b) CDF of the numbers of rate
changes over 160 clients.

Fig. 8. FLARE with continuous bitrate optimization. The average bitrate is
reduced by less than 15% for the two scenarios, and the stability is retained.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Computation Time (msec)

32 video users
64 video users

128 video users

Fig. 9. CDFs of computation times for the bitrate selection with 32, 64, and
128 video clients in a cell. The computation time increases with the number
of video clients, but remains much smaller than a segment duration.

95% compared to those of AVIS and FESTIVE, respectively.
FLARE’s bitrate stability constraints in Algorithm 1 ensure
that rate increases occur less frequently (than FESTIVE and
AVIS) in the presence of the mobile scenarios’ highly varying
link bandwidths, which results in conservative use of the
wireless resources compared to the static scenario (Figure 6).
The average fairness indices, however, show a similar pattern
to the static case: 0.999, 0.988, and 0.993 for FLARE, AVIS,
and FESTIVE, respectively.

Scalable bitrate selection. We now evaluate the optimality
and scalability of FLARE’s bitrate selection. Figures 8a and
8b show the bitrates chosen when we use the continuous
relaxation approximation to solve (3–4) in Algorithm 1. The
average throughput is 14% and 6% less for the static and
mobile scenarios compared to those in the original FLARE
algorithm. The stability varies but is generally retained: the
number of bitrate changes decreases by 80% in the static
scenario, but increases by 48% in the mobile scenario (while
remaining under 6). The average Jain’s fairness indices are
0.999 and 0.997 for the static and mobile scenarios, respec-
tively. The computation time for each bitrate assignment is less
than 4 ms for most cases (7135 out of 7140). Only 5 cases
took around 4 ms, which is negligible compared to a segment
duration on order of seconds.

As the number of video clients increases, we find that the
computation times for the bitrate selection algorithm remain
low. We plot the CDFs of the computation times with 32, 64,
and 128 video clients in a cell, respectively, in Figure 9. Due
to coarse-grained measurement, some computation times are
plotted as zero. The computation time increases as the number

of video clients increases, but remains much smaller (up to
12 ms) than a segment duration (1-10 seconds).

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 700 800 900 1000 1100 1200

C
D

F

Average throughput (Kbps)

Data flows
Video flows

(a) CDF of the throughput of video
and data flows in FLARE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

C
D

F

Number of bitrate changes

(b) CDF of the numbers of bitrate
changes for video flows in FLARE.

Fig. 10. When video and data flows coexist, FLARE balances the throughput
of video and data flows while maintaining bitrate and throughput stability.

Flexibility to different video and data flow requirements.
We finally investigate the throughput balance between video
and data flows with FLARE. We simulate 8 video and 8
data clients and show the resulting bitrates and throughputs
in Figure 10a. There is no noticeable difference in the number
of video bitrate changes compared with our previous experi-
ments, as shown in Figure 10b. FLARE consistently prioritizes
video flows over data flows.

FLARE can adjust to different data and video flow priorities
by changing the value of α, which balances the throughput of
data flows compared to video flows (cf. (3) in Section II-B).
As α increases from 0.25 to 4, Figure 11 shows the average
throughput and standard deviation for each type of flow. We
observe that the average throughput of the data flows smoothly
increases and that of the video flows decreases as α increases.

We finally examine the effect of the parameter δ on the
relative priorities of achieving a higher bitrate versus bitrate
stability. Recall that in Algorithm 1, recommended bitrate
increases are not used until the next higher bitrate index is
selected for δ(Li−1u + 1) BAIs. To see the impact of different
values of δ in practice, we increment δ from 1 to 12 in our
experiments. Figure 12 shows the average bitrate and number
of bitrate changes as δ varies. Overall, the average bitrate
decreases as δ increases, since a higher δ means that the rate is
increased more conservatively. Likewise, the stability increases
as δ increases, indicating that FLARE can successfully adjust
to different bitrate selection criteria.

V. CONCLUSIONS

In this paper, we propose a new HAS technique called
FLARE that uses a fog computing approach to address existing
HAS techniques’ lack of coordination between clients and
networks. In FLARE, a network entity and clients cooperate
to decide the bitrate of a video flow. FLARE takes advantage
of existing telecommunications APIs to minimize its required
modifications at the network core, while minimizing changes
at the client by embedding a plugin module on the HAS video
player. FLARE optimizes the total utility of video and data
flows in a cell, while stable in the video quality. Experimental
evaluations with ns-3 and an LTE femtocell implementation
demonstrate that FLARE significantly enhances the average

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 1 2 3 4

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Alpha

Data flows
Video flows

Fig. 11. Average flow throughputs with different α values, showing the
tradeoff between data flows’ throughputs and video flows’ bitrates.

� = 1

� = 2

� = 3

Fig. 12. Average client bitrate with different δ values. The average bitrate
decreases as δ increases, i.e., the bitrate becomes more stable.

throughput (or bitrate) and stability of video quality compared
to state-of-the-art client-side and network-side solutions (FES-
TIVE and AVIS), while flexibly balancing video and data flows
according to their relative priorities.

In a practical deployment, FLARE can coexist with conven-
tional HAS players by servicing their traffic like other data
traffic without any bitrate guarantees; traffic from these HAS
players would then not interfere with FLARE. Users would
then have an incentive to adopt FLARE in order to receive
GBR video rates. Moreover, FLARE can be easily extended
to uplink video streaming with minor modifications. Thus, it
represents a practical HAS techniques that not only improves
on existing HAS techniques, but also demonstrates the feasi-
bility of fog computing approaches to network applications.

ACKNOWLEDGMENTS

This work was partly supported by NSF grant CNS-
1525435, an Institute for Information & Communications
Technology Promotion (IITP) grant funded by the Korean
government (MSIP) (B0190-16-2013, Development of Access
Technology Agnostic Next-Generation Networking Technol-
ogy for Wired-Wireless Converged Networks), and the re-
search fund of Hanyang University (HY-2017-N). The snu-
samsung smart campus research center at Seoul National
University provides research facilities for this study.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. PP, no. 99, 2016.

[2] “Openfog architecture overview,” White Paper, OpenFog
Consortium Architecture Working Group, Feb. 2016,
https://www.openfogconsortium.org/wp-content/uploads/
OpenFog-Architecture-Overview-WP-2-2016.pdf.

[3] “Making Money Through API Exposure,” http://www.oracle.com/us/
industries/communications/comm-making-money-wp-1696335.pdf.

[4] “OMA OneAPI Profile of RESTful Network APIs V4.0,”
http://technical.openmobilealliance.org/Technical/technical-information/
release-program/current-releases/oneapiprofilerest-v4-0.

[5] “MPEG DASH standard.” http://dashif.org/mpeg-dash.
[6] “Adobe HTTP Dynamic Streaming.” http://www.adobe.com/products/

hds-dynamic-streaming.html.
[7] “Apple HTTP Live Streaming.” https://developer.apple.com/streaming.
[8] “Microsoft Smooth Streaming.” http://www.iis.net/downloads/microsoft/

smooth-streaming.
[9] R. Hackett, “Most Internet traffic will be encrypted by year

end. Here’s why.” Fortune, 2015, http://fortune.com/2015/04/30/
netflix-internet-traffic-encrypted/.

[10] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran,
“Probe and adapt: Rate adaptation for HTTP video streaming at scale,”
IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp.
719–733, 2014.

[11] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” ACM SIG-
COMM Computer Communication Review, vol. 45, no. 4, pp. 325–338,
2015.

[12] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer
informed adaptive video streaming over lte,” in ACM MOBICOM.
ACM, 2015, pp. 413–425.

[13] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” in ACM
CoNEXT, 2012.

[14] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in
dynamic HTTP streaming,” in ACM CoNEXT, 2012.

[15] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chi-
ang, “A scheduling framework for adaptive video delivery over cellular
networks,” in ACM MOBICOM, 2013.

[16] D. De Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, G. Li,
and R. Miller, “Optimization of HTTP adaptive streaming over mobile
cellular networks,” in IEEE INFOCOM, 2013.

[17] S. Cicalo, N. Changuel, R. Miller, B. Sayadi, and V. Tralli, “Quality-
fair http adaptive streaming over lte network,” in IEEE ICASSP. IEEE,
2014, pp. 714–718.

[18] W. Pu, Z. Zou, and C. W. Chen, “Video adaptation proxy for wireless
dynamic adaptive streaming over http,” in 2012 19th International Packet
Video Workshop (PV). IEEE, 2012, pp. 65–70.

[19] “MPEG-DASH / Media Source demo.” http://dash-mse-test.appspot.
com/.

[20] M. Uchida and J. Kurose, “An Information-Theoretic Characterization
of Weighted alpha-Proportional Fairness,” in IEEE INFOCOM, 2009.

[21] N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video
quality,” International Journal of Human-Computer Studies, vol. 64,
no. 8, pp. 637–647, 2006.

[22] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“A quest for an internet video quality-of-experience metric,” in ACM
HotNets, 2012.

[23] “OMA RESTful Network API for Quality of Service
V1.0,” http://technical.openmobilealliance.org/Technical/
technical-information/release-program/current-releases/
oma-restful-network-api-for-quality-of-service-v1-0.

[24] “JL-620 LTE Enterprise Indoor Small Cell,” http://www.juniglobal.com/
products/products lte jl620 d.asp.

[25] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); User
Equipment (UE) radio transmission and reception,” Sep. 2009, Rel-9
v9.1.0. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/
36101.htm

[26] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures,” Sep. 2009, Rel-8 v8.8.0. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/36213.htm

[27] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Overall description; Stage 2,” Sep. 2009, Rel-9 v9.1.0. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/36300.htm

[28] “KNITRO,” http://www.ziena.com/knitro.html.
[29] “ns-3.” http://www.nsnam.org/.
[30] “Iperf,” http://sourceforge.net/projects/iperf/.
[31] “Accelerate Development of LTE Evolved Packet Core Products with

Aricent Solutions.” http://www.aricent.com/pdf/Aricent Solution Brief
LTE EPC.pdf.

[32] G. Monghal, K. I. Pedersen, I. Z. Kovacs, and P. E. Mogensen, “QoS
oriented time and frequency domain packet schedulers for the UTRAN
long term evolution,” in IEEE VTC, 2008.

