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Abstract—As more devices gain Internet connectivity, more
information needs to be exchanged between them. For instance,
cloud servers might disseminate instructions to clients, or sensors
in the Internet of Things might send measurements to each other.
In such scenarios, information spreads faster when users have
an incentive to contribute data to others. While many works
have considered this problem in peer-to-peer scenarios, none have
rigorously theorized the performance of different design choices
for the incentive mechanisms. In particular, different designs
have different ways of “bootstrapping” new users (distributing
information to them) and preventing “free-riding” (receiving
information without uploading any in return). We classify
incentive mechanisms in terms of reciprocity-, altruism-, and
reputation-based algorithms, and then analyze the performance
of these three basic and three hybrid algorithms. We show
that the algorithms lie along a tradeoff between fairness and
efficiency, with altruism and reciprocity at the two extremes.
The three hybrids all leverage their component algorithms to
achieve similar efficiency. The reputation hybrids are the most
fair and can nearly match altruism’s bootstrapping speed, but
only the reciprocity/reputation hybrid can match reciprocity’s
zero-tolerance for free-riding. It therefore yields better fairness
and efficiency when free-riders are present. We validate these
comparisons with extensive experimental results.

I. INTRODUCTION

As more devices join the Internet of Things, more informa-
tion is being exchanged between users and devices embedded
in a network [1]. For example, a central server might dis-
tribute instructions among multiple devices, or devices could
exchange measurement data with each other. While a central
server can send this information to all users, it is more
efficient for users to participate as well: when a user receives
information, (s)he can pass it on to other users [2]. User
participation is particularly important when there are many
users and a large amount of information to be sent, e.g.,
distributing large software updates.

Operators of information exchange networks face a chal-
lenge in deciding how users should be incentivized to ex-
change information. Indeed, many works have proposed differ-
ent incentive mechanisms [3]–[8]. Yet these incentive mech-
anisms differ in their emphases on various desirable proper-
ties, e.g., some prioritize efficiency, or receiving information
quickly. Others emphasize fairness, or ensuring that users
receive as much information as they contribute [9], [10].1 Prior

1We take “contribute” to mean the amount of information that users send
to others, regardless of whether they originally collected this information.

works on information exchange have even shown that there are
fundamental tradeoffs between desirable mechanism properties
like fairness and efficiency [10]–[12]. Thus, in designing an
incentive mechanism for their users, operators often need to
prioritize possibly conflicting objectives, and then employ the
incentive mechanism that best satisfies their priorities.

Existing works on performance tradeoffs for incentive
mechanisms generally focus on the limits of possible per-
formance tradeoffs, instead of comparing the performance
of specific mechanisms in the design space [10]–[12]. Other
works have evaluated these mechanisms empirically [13]–[15],
but do not provide a rigorous analytical comparison. Our work
thus fills a gap in the literature by characterizing the design
space of incentive mechanisms and rigorously comparing
mechanisms within this design space. We therefore provide
a guide that operators can use to choose the incentive mecha-
nisms that achieve their desired performance tradeoffs in real
systems. To do so, we classify and compare six representative
incentive mechanisms across several performance metrics.

Two of the most important metrics that we consider are ef-
ficiency and fairness. While efficiency ensures that the system
in general performs well (i.e., information spreads quickly),
fairness incentivizes users to contribute to the system in the
first place: otherwise, users could passively receive data from
others without contributing any data to the system. Without a
well-designed incentive mechanism, the energy and processing
costs of contributing data give individuals an incentive to free-
ride [16]–[19], which can cause a system collapse if no users
contribute data to each other.

Strictly enforcing fairness, however, often reduces efficiency
and can also cause a system collapse [10]. In particular, new
users are often unable to initially contribute to the system since
they do not yet have information to send to others. In order
to “bootstrap” these users, many incentive mechanisms use a
form of altruism, or allowing newcomers to receive pieces of
data without requiring them to reciprocate these downloads.
Unsurprisingly, this bootstrapping can lead to free-riding and
a loss of fairness [12]. Thus, different incentive mechanisms
are generally designed to achieve different levels of fairness,
efficiency, bootstrapping speed, and free-riding susceptibility.

We rigorously quantify the performance of six specific
incentive mechanisms. We consider the metrics of fairness,
efficiency, bootstrapping, and free-riding; and prove that a few



fundamental classes of incentive mechanisms yield different
performance tradeoffs. Hybrid mechanisms can improve these
tradeoffs, but most hybrids inherit some free-riding susceptibil-
ity from their component algorithms. We make the following
contributions:
• In Section III, we classify different incentive mechanisms

based on three classes of exchange algorithms: altruism,
reciprocity, and reputation. We illustrate the classification
by describing three hybrid algorithms that combine ele-
ments of the basic classes.

• In Section IV, we model the performance of the three
basic and three hybrid exchange algorithms. We use our
model to compare and explain the algorithms’ expected
fairness, efficiency, bootstrapping, and free-riding. While
altruism is the most efficient, it is also less fair and
more susceptible to free-riding. At the other extreme,
direct reciprocity is fair and does not permit free-riding,
but also very inefficient. The hybrid algorithms leverage
their component algorithms to be both fair and efficient,
but only the reciprocity/reputation hybrid can match
reciprocity’s resilience to free-riding.

• We validate Section IV’s results with extensive experi-
ments in Section V. We show that the algorithms’ per-
formance matches our model’s predictions, and that free-
riding compromises fairness and efficiency for susceptible
algorithms. The reciprocity/reputation hybrid’s resilience
to free-riding allows it to maintain high fairness and
efficiency in the presence of free-riders.

We conclude the paper in Section VI.

II. RELATED WORK

Most works on incentive mechanisms for exchanging in-
formation consider either theoretical limits of performance
tradeoffs or propose specific exchange algorithms. We instead
classify, evaluate, and compare existing incentive mechanisms
at the limits of the incentive mechanism design space.

Metrics for information spread. Many works on informa-
tion dissemination focus on efficiency, i.e., the speed of prop-
agation through various network topologies [20] in different
contexts [21], [22]. The particular context of sensor networks
considers tradeoffs between energy usage, efficiency [23],
[24], and fairness, i.e., ensuring that nodes contribute equally
to the system [9]. Works on peer-to-peer (P2P) algorithms
consider tradeoffs between efficiency, as measured by file
download times, and fairness, or the amount of data that
users receive, relative to the amount they contribute [10],
[11]. Enforcing fairness incentivizes users to contribute to the
system [2], but can severely reduce efficiency due to the need
to bootstrap new users [12]. Bootstrapping, on the other hand,
often opens up an opportunity to free-ride [16]–[19].

Comparing incentive mechanisms. BitTorrent and
BitTorrent-like systems are compared empirically in [13]–
[15], but without a rigorous analysis of their expected
performance in general scenarios. Other works compare
a wider range of existing P2P algorithms, e.g., through
taxonomies and simulations [25], but again without an

Reciprocity 

Reputation 

Altruism 

BitTorrent 

T-Chain FairTorrent 

More fair More 
efficient 

Moderately fair 
and efficient 

Fig. 1: Classification and expected performance of incentive
mechanisms for exchanging information.

analytical performance comparison. A descriptive survey of
trust- or reputation-based P2P algorithms is presented in [26].

Designing incentive mechanisms. One of the most popu-
lar incentive mechanisms for exchanging information is Bit-
Torrent [3], whose performance has been well-studied both
theoretically [11], [27], [28] and empirically [13]–[15]. While
BitTorrent is generally fair and efficient, it suffers from free-
riding [18], [19]. Variants of BitTorrent, e.g., PropShare [5]
and BitTyrant [6], attempt to reduce this free-riding.

BitTorrent is based on reciprocity, i.e., users upload more
data to those users that have given them the most data. Thus,
BitTorrent enforces fairness: users receive approximately as
much as they have contributed. Many other P2P incentive
mechanisms take a more indirect approach to fairness. For
instance, in T-Chain, users employ encryption to ensure that
data uploads are reciprocated [8], allowing them to trust each
other’s good behavior. In reputation systems, history is used to
establish trust [4], [29]–[32], e.g., Give-to-Get allows users to
preferentially upload to those who have given them more data
in the past [29]. However, reputation-based mechanisms tend
to have difficulty bootstrapping new users. In the next section,
we introduce six representative incentive mechanisms, whose
performance we analyze in the rest of the paper.

III. ALGORITHMS COMPARED

We consider a network of users, each of which can upload
to or download from each other user. Each user wishes to
collect a full set of data from other users and a central “seeder,”
and this data is divided into discrete pieces. Users download
missing data from other users and upload data in return.
We focus in this paper on the algorithms that determine to
which user(s) each user sends data. These double as incentive
mechanisms that encourage users to contribute.

A. Algorithm Descriptions

We consider three classes of exchange algorithms:
reciprocity-, altruism-, and reputation-based [8]. Reciprocity
algorithms require that users reciprocate whenever they re-
ceive data; thus, they ensure that users upload exactly as
much data as they download, enforcing fairness. Altruism
requires users to upload to randomly selected users, with no
attempt at reciprocity. Finally, reputation algorithms indirectly
enforce reciprocity by requiring users to upload to those with
the highest reputations, based on past (global) behavior. We



interpret this preference probabilistically [4]: the probability
of uploading to another user is proportional to the total
number of pieces uploaded by that user to any other user.
Bootstrapping in the reputation algorithm, as in EigenTrust [4],
is accomplished by reserving a small fraction of bandwidth for
altruism. Figure 1 visualizes this classification and introduces
three hybrid algorithms that we describe below.

Reciprocity/altruism: We consider a hybrid of these algo-
rithms in which a fixed amount (e.g., 80%) of users’ upload
bandwidth is reserved for reciprocity, which is enforced in a
series of discrete timeslots. In each timeslot, this bandwidth is
used to upload data to a given number of users from which the
user has received the most data in the previous timeslot. The
remaining bandwidth is used for altruism, allowing existing
users to bootstrap newcomers. Once they receive pieces, new-
comers can begin to participate in direct reciprocity. BitTorrent
[3] is an example of this class of algorithm.

Reputation/altruism: In this hybrid algorithm, each user
maintains a deficit counter of the total number of pieces
uploaded to, less those received from, each other user. These
counters function as local reputation scores: users always
upload to the client with the smallest deficit counter, i.e.,
from whom they have received the most pieces without
reciprocation. However, if all deficit counters are nonnegative,
users upload to randomly chosen users with zero reputations,
including newcomers. Thus, the contributing users effectively
engage in altruism, uploading pieces with no expectation of
reciprocity. FairTorrent [7] is an example of such an algorithm.

Reciprocity/reputation: Users in this hybrid algorithm can
reciprocate uploads by uploading a piece to any user. If
the receiving user reciprocates to the uploading user, we
refer to the exchange as direct reciprocity; reciprocating to
another user is called indirect reciprocity. Through indirect
reciprocity, newcomers can receive a piece from one user
and reciprocate by uploading the received piece to another
user. T-Chain [8] uses this class of hybrid algorithm. T-Chain
users upload encrypted pieces to others to ensure that uploads
are reciprocated, and only release the decryption keys after
confirming that the receiving user has reciprocated.

B. Expected Algorithm Performance

We consider four different performance metrics: fairness,
efficiency, bootstrapping speed, and susceptibility to free-
riding. Figure 1 shows our qualitative expectations for the
different algorithms’ performance, which we explain below.
We analyze their performance in detail in Section IV.

Fairness and efficiency: A fair algorithm ensures that each
user receives as much as it contributes, while an efficient one
minimizes the average time required to finish downloading the
file. Efficiency will generally decrease as fairness increases
( [10], cf. Lemma 1). We thus expect that reciprocity will be
the most fair, though in practice it is so inefficient that fairness
cannot be defined (cf. Section IV-A). Altruism will likely
be the most efficient and least fair: altruistic uploads ensure
that each user receives a similar download rate regardless of
its upload capacity, decreasing fairness. Reputation systems

will likely lie between these extremes: users increase their
reputations by uploading more file pieces, making them more
likely to receive downloads from others. Fairness is thus
encouraged, though not enforced as strictly as in reciprocity.

Bootstrapping speed: Bootstrapping is another form of
efficiency: more efficient systems will distribute resources
to newcomers faster, allowing these newcomers to begin
exchanging pieces and contributing to the system sooner. Thus,
we expect that more efficient algorithms (altruism, followed
by reputation and reciprocity) will also bootstrap users faster.

Susceptibility to free-riding: More susceptible algorithms
allow free-riders to receive data from others without uploading
any themselves, i.e., they will likely be less fair. Free-riders
can either collect free resources from other users or collude
to trick legitimate users into uploading data to them. We
expect that altruism will be more vulnerable to non-collusive
free-riding, since altruistic uploads are given freely with no
reciprocity expectation. Reputation algorithms will likely be
more vulnerable to collusion, as colluders can falsely inflate
each others’ ratings to raise their reputations. Reciprocity
algorithms do not allow free-riding.

IV. PERFORMANCE ANALYSIS

We consider the algorithms’ fairness and efficiency in
Section IV-A, bootstrapping speed in Section IV-B, and sus-
ceptibility to free-riding in Section IV-C. We assume that there
are N users in total, each of which can upload to each other
user, and let Ui denote the upload bandwidth capacity of
the ith user, with U1 ≥ U2 ≥ . . . ≥ UN . We assume that
Ui ≤

∑
j 6=i Uj for all users i, so that no single user possesses

a disproportionate amount of the total capacity. This constraint
allows us to guarantee fairness for some of the algorithms.
We use ui ≤ Ui to denote the actual upload bandwidth of
the ith user with the different algorithms, and di to denote
the download rate (i.e., bandwidth); each user also receives
an expected bandwidth uS/N from a seeder(s). Note that the
total upload and download rates over all users must be equal:

uS +

N∑
i=1

ui =

N∑
i=1

di. (1)

A. Fairness and Efficiency

We first consider the fairness and efficiency of each algo-
rithm. We measure efficiency by the average download time
over all users, which we can approximate as

E =

N∑
i=1

1

Ndi
(2)

assuming that the download rates are in equilibrium over
time and normalizing to a unit file size.2 Fairness measures
the discrepancy between the numbers of pieces uploaded and
received by each user. Thus, we define the fairness for each

2While we could instead define “efficiency” in terms of the upload
bandwidths, i.e., E =

∑
i ui, doing so may not maximize the download

times (2). We show below that five of the six algorithms maximize the total
upload bandwidth, but yield suboptimal download times (Corollary 1).



TABLE I: Expected download rate for user i in equilibrium
with perfect piece availability and no free-riders. BitTorrent
and the reputation algorithm are respectively assumed to
allocate fractions αBT and αR of their bandwidth for altruism.

Algorithm Download utilization (di − us/N)

Reciprocity 0

T-Chain Ui

BitTorrent 1−αBT
nBT

mod(i,nBT )+nBT∑
j=bmod(i,nBT )c+1

Uj + αBT

∑N
k=1,k 6=i Uk

N − 1

FairTorrent Ui

Reputation Ui

N∑
j=1,j 6=i

(1− αR)Uj∑N
k=1,k 6=j Uk

+ αR

∑N
k=1,k 6=i Uk

N − 1

Altruism
∑N

k=1,k 6=i Uk

N−1

user i as fi = di/ui, i.e., the ratio of download to upload rates;
more fair algorithms have fi near 1. We define the system-wide
fairness as the average absolute values of the log (fi):

F =
1

N

N∑
i=1

∣∣∣∣log(diui
)∣∣∣∣ . (3)

The closer the di/ui are to 1 and F is to 0, the more fair
the system; F = 0 if and only if di = ui for all i. A
positive F indicates that some users are receiving or uploading
disproportionate amounts of bandwidth. We thus see that there
is a fundamental tradeoff between fairness and efficiency:

Lemma 1 (Optimal fairness and efficiency): To achieve
F = 0, we should have ui = di for each user i. However,
the maximum value of E subject to (1) is achieved when all
users upload with full capacity, ui = Ui, and have the same
download rates di =

∑
i Ui/N + uS/N .

We now analyze the algorithms’ fairness and efficiency in
two scenarios: first an idealized equilibrium in which all users
need pieces from each other (i.e., perfect piece availability),
and then a more realistic scenario that considers the probability
that a given user needs a piece from another user.

1) Idealized Equilibria: We first characterize the algorithms
in terms of their upload and download rates for each user and
then use these to compare the fairness and efficiency.

Lemma 2: All users upload with their full capacity Ui in
equilibrium with perfect piece availability, except for reci-
procity users, who do not upload anything.

We now use the results of Lemma 2 to find the equilibrium
download rates of each algorithm:

Proposition 1: Table I shows the download rates of each
user i in equilibrium with perfect piece availability, assuming
no free-riders.

To derive these results, we suppose that users’ reputa-
tions, which are determined by the numbers of pieces that
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Fig. 2: Fairness and efficiency ranking of the six algorithms
in the idealized scenario (Corollary 1).

they upload, are proportional to their upload bandwidth; this
assumption likely holds with perfect piece availability. We
also define nBT as the number of users to which BitTorrent
reciprocally uploads data at any given time, and we assume
that altruistic users are equally likely to upload to any other
user.

From Table I, we find that most algorithms emphasize
fairness in ideal conditions, though some put more emphasis
on efficiency. Reciprocity in particular emphasizes fairness to
such an extreme degree that users do not upload to each other
at all: no upload can be initiated because a reciprocal download
is not guaranteed. BitTorrent, altruism, and reputation are the
only algorithms that are not perfectly fair, but they are more
efficient. However, no algorithm is perfectly efficient:

Corollary 1 (Comparing fairness and efficiency): In equi-
librium with perfect piece availability, only T-Chain and
FairTorrent achieve the optimal fairness.

When all users’ upload rates are sufficiently similar, i.e.,∑N
j=1 Uj � Ui and Ui ≈ Ui+nBT

for any user i, altruism
achieves the highest (but still sub-optimal) efficiency. BitTor-
rent and the reputation algorithm are more efficient than T-
Chain or FairTorrent.

Figure 2 summarizes Corollary 1’s results. Comparing them
to Figure 1, we see that the results generally match our
predictions in Section III-B: altruism is the most efficient and
least fair algorithm, and reciprocity the least efficient. The
reputation and hybrid algorithms lie in between. Surprisingly,
BitTorrent is more efficient than FairTorrent, despite having
some elements of reciprocity, and FairTorrent is just as fair as
T-Chain, despite FairTorrent’s use of some altruism.

2) Piece Availability: Since perfect piece availability does
not occur in real systems, users’ actual download rates will
differ from those in Table I. Efficiency is particularly affected:
users’ download rates will suffer if they cannot find others with
the pieces they need. We model the piece availability with
two factors: the number of pieces held by each user and the
distribution of the pieces among the users (i.e., which pieces
are held by more users). We suppose that users are equally
likely to have a given piece, e.g., as achieved in local-rarest-
first piece selection [27]. We use pk to denote the probability
that a given user has exactly k pieces.

To evaluate the impact of piece availability on the different
algorithms, we find the probability that a user j can upload
a piece to user i under each algorithm. A lower probability



that two users will exchange data generally implies a lower
efficiency, as defined in (2): even if all users utilize their total
upload capacity, users that are less able to exchange data with
each other will experience lower overall download rates.3 We
consider the effect of these constraints on the reciprocity and
altruism algorithms, as well as their hybrids, before showing
that the reputation algorithm can achieve poor fairness and
efficiency when piece availability is considered.

We first consider the reciprocity algorithm. With reciprocity
alone, user j cannot upload to user i, as neither can initiate
an exchange (cf. Proposition 1’s proof in the Appendix).

Users can initiate piece exchanges in the reciprocity algo-
rithm’s hybrids, BitTorrent and T-Chain. If such an exchange
has been initiated, user j continues to upload to user i with
direct reciprocity only if both users each need at least one of
the other’s pieces. Letting mj and mi denote the numbers of
pieces that users j and i have respectively, the probability that
j and i can exchange pieces with direct reciprocation is

πDR(j, i) = q(i, j)q(j, i) = 1−

( M−min(mi,mj)
max(mi,mj)−min(mi,mj)

)(
M

max(mi,mj)

) ,

(4)
where M denotes the total number of pieces and q(i, j) the
probability that user i needs at least one piece from user j:

q(i, j) =


1 ifmi < mj

1−
(M−mj
mi−mj

)

(M
mj
)

ifmi ≥ mj

(5)

If many users arrive simultaneously in a flash crowd, most
users will have few pieces and reciprocity may perform poorly.
In the extreme case of mi or mj = 0, πDR(j, i) = 1 −
1/
(

M
max(mi,mj)

)
= 0: users cannot exchange pieces unless

each has at least one piece. We elaborate on this restriction in
Section IV-B’s discussion of bootstrapping newcomers.

T-Chain and BitTorrent supplement the probability of direct
reciprocity occurring with options for indirect reciprocity and
altruism respectively, leading us to conclude the following:

Proposition 2 (Piece exchange probabilities): The probabil-
ities that user j can upload to user i for T-Chain and BitTorrent
are respectively

πTC(j, i) = q(i, j)q(j, i) + q(i, j)(1− q(j, i))

×

1−

(
1−

M∑
l=1

plq(j, l) (1− q(l, j))

)N−2 (6)

πBT (j, i) = q(i, j) ((1− αBT )q(j, i) + αBT ) (7)

where αBT denotes the fraction of BitTorrent’s bandwidth
allocated for optimistic unchoking. Also, πTC ≥ πBT if

αBT ≤ 1−

(
1−

M∑
l=1

plq(j, l) (1− q(l, j))

)N−2

. (8)

3This quantification of piece availability is inspired by the quantification of
file sharing effectiveness in [27].
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Fig. 3: Efficiency comparison with piece availability.

Note that these probabilities do not necessarily represent the
probability that user j will upload to user i; they represent the
feasibility of doing so, upload capacity permitting. We see that
as N increases, πTC ≥ πBT for sufficiently large αBT . Thus,
BitTorrent has the lowest probability of piece exchange:

Corollary 2: Altruism has the highest probability of piece
exchange between given users j and k. As N →∞, T-Chain
has the same probability of piece exchange as altruism.

FairTorrent suffers less from piece availability since it does
not explicitly require reciprocation. Thus, any user j can, piece
deficits permitting, upload to user i if i needs a piece from j.

Effect on efficiency: Figure 3 shows our efficiency pre-
dictions in this scenario. Given the exchange probabilities
in Corollary 2, we expect altruism to be the most efficient
algorithm, followed closely by T-Chain. Indeed, since piece
availability is the only restriction on users exchanging pieces
in T-Chain, we expect that it will be nearly as efficient as
altruism for a large number of users. FairTorrent is similarly
unconstrained by piece availability, but FairTorrent users are
required to upload to users with the lowest piece deficits; thus,
we expect FairTorrent to be less efficient than T-Chain.

Comparing Figures 2 and 3, we see that T-Chain’s, FairTor-
rent’s, and BitTorrent’s efficiencies have reversed compared
to the ideal scenario. Since real systems likely reflect a mix
of both scenarios, we expect these three hybrid algorithms
to attain comparable efficiencies in practice. Section V’s
experiments validate this prediction.

Effect on fairness: Since FairTorrent and T-Chain are the
least constrained by piece availability (Corollary 2) and the
most fair in the idealized case (Figure 2), we expect that
they will continue to be the most fair algorithms with piece
availability constraints. We expect BitTorrent to be the next
most fair, with altruism remaining the least fair.

Reputation algorithm: The download rate of each user
with the reputation algorithm depends on its reputation score.
While we would expect that users with higher bandwidth
would have higher reputation scores, they may have lower
reputation scores due to receiving few pieces in the initial
stages. The system fairness and efficiency can then suffer:

Proposition 3: Let ri denote each user i’s reputation, with∑N
k=1 rk � ri. Once the system reaches an equilibrium with

perfect piece availability, its fairness and efficiency are

F =
1

N

N∑
i=1

∣∣∣∣log(diui
)∣∣∣∣ = N∑

i=1

∣∣∣∣∣log
(

ri
∑N

k=1 Uk

NUi

∑N
k=1 rk

)∣∣∣∣∣
E =

N∑
i=1

∑N
k=1 rk
Nri

. (9)



For instance, if one user has very low reputation but
moderate upload bandwidth, its efficiency and fairness will
both suffer. Thus, in contrast to our prediction in Figure 1 and
analysis for the idealized scenario, reputation algorithms can
in practice achieve poor fairness and efficiency. We empirically
demonstrate this result for realistic scenarios in Section V.

B. Bootstrapping Speed

Since more efficient algorithms tend to bootstrap users
faster, we expect the algorithms’ relative bootstrapping speeds
to be similar to their efficiency. We define the bootstrapping
time TB(P ) as the time for P newcomers who arrive in a flash
crowd to each receive at least one file piece, assuming no free-
riders in the system.4 We assume that there is one seeder, and
we let z(t) denote the number of bootstrapped users at time
t. We consider a series of discrete timeslots t = 1, 2, . . ., and
let K denote the average number of pieces that each user can
upload within a single timeslot.

To compare the algorithms’ bootstrapping times, we first
note that TB(P ) is a function of the bootstrapping probability:

Lemma 3: The expected amount of time until P users are
bootstrapped is

E [TB(P )] =

∞∑
n=1

1−

(
1−

n∏
t=1

(1− pB(t))

)P
 , (10)

where pB(t) denotes the probability that a single newcomer
is bootstrapped at time t.

Since (10) decreases as each pB(t) increases, algorithms
with a higher probability of bootstrapping yield lower boot-
strapping times. Instead of comparing the algorithm bootstrap-
ping times, we thus compare the bootstrapping probabilities.
Table II gives this probability for each algorithm, which we
derive below.

To derive Table II, we first note that all probabilities have the
form 1−(N−nS)x/N , where x is the probability that a given
user i is not bootstrapped by any other user, and (N −nS)/N
is the probability that a user is not bootstrapped by the seeder
(we assume the seeder bootstraps nS users per timeslot). It
therefore suffices to find x for each of the six algorithms.

For reciprocity, we have x = xR = 1, since users never
send data to each other. For T-Chain, we find that x = xTC is(
πDR + (1− πDR)

N − 2

N − 1

)Kz(t)

=

(
N − 2 + πDR

N − 1

)Kz(t)

,

(11)
i.e., the probability πDR that a user j engages in direct
reciprocity with another user i, plus the probability that j
engages in indirect reciprocity with a user k 6= i. We assume
that j can always find a user who needs one of its pieces, i.e.,
that indirect reciprocity can always occur. Note that πDR will
change as the pieces become more dispersed among users.

4While flash crowds are an extreme scenario, they can occur, e.g., if a cloud
server acts as a seeder to distribute urgent instructions to a network of clients.

To derive BitTorrent’s probability x = xBT , we assume that
user j uploads to nBT users with reciprocity and altruistically
uploads to one other user in each timeslot. Thus, user j does
not bootstrap user i with probability (N − nBT − 2)/(N −
nBT − 1), yielding

xBT =

(
N − nBT − 2

N − nBT − 1

)z(t)

,

as in Table II.
To derive FairTorrent’s bootstrap probabilities, we note that

a user j will only bootstrap another user i if all of j’s deficits
with other users are ≥ 0. We use ω to denote the probability
that this does not happen (users have a negative deficit with at
least one other user) and suppose that the user has a zero deficit
with at least K users (e.g., newcomers). Then the probability
that a user i will not be bootstrapped is

xFT =

(
ω + (1− ω)nFT −K − 1

nFT − 1

)z(t)

, (12)

where nFT denotes the number of users with zero deficits and
we suppose that the user randomly chooses among the users
with zero deficits. The probability ω is related to πDR, which
we used to analyze T-Chain’s bootstrapping speed: if users
can directly reciprocate to each other, their piece deficits for
each other will flip back and forth from 0 to ±1. However,
we expect that πDR ≤ ω: ω measures the probability that a
user has a negative deficit with at least one of the K users
with which it exchanges pieces, which is likely to happen if
it receives pieces from multiple users.

Users of a reputation algorithm generally will not bootstrap
newcomers, as these users have zero reputation. Thus, new-
comers can only be bootstrapped by altruism. We suppose that
half of the users altruistically upload to one other user in each
timeslot, as suggested by [4].

Finally, when users upload only altruistically, each boot-
strapped user uploads K pieces to users chosen uniformly
at random. Thus, the probability that a given user i is not
bootstrapped is

xA =

(
1− 1

N − 1

)Kz(t)

. (13)

We can compare the bootstrapping probabilities as follows:

Proposition 4 (Comparing bootstrapping speeds): Altruism
has the largest bootstrapping probability when K ≥ 2, N �
K, and ω is large enough so that

(1− ω) N − 1

nFT − 1
≤
(
1− 1

N − 1

)K−1

. (14)

T-Chain and FairTorrent bootstrap as fast as altruism when
πDR = ω = 0. If N and nFT � nBT and πDR and ω
are sufficiently small, T-Chain and FairTorrent bootstrap faster
than BitTorrent, while reputation is slower than BitTorrent.

As K increases, the conditions on πDR and ω for which
T-Chain and FairTorrent bootstrap faster than BitTorrent be-
come less strict; for instance, if K = 2, it is sufficient for



TABLE II: Bootstrap probabilities for each algorithm when
a flash crowd arrives. Sample probabilities assume that N =
1000, nS = 1, K = 5, z(t) = 500, πDR = 0.5, nBT = 4,
ω = 0.75, nFT = 500.

Algorithm Probability of Bootstrapping Example

Reciprocity nS
N

0.1%

T-Chain 1− N−nS
N

(
N−2
N−1

+ πDR
N−1

)Kz(t)
71.4%

BitTorrent 1− N−nS
N

(
N−nBT−2
N−nBT−1

)z(t)
39.6%

FairTorrent 1− N−nS
N

(
ω + (1− ω)nFT−K−1

nFT−1

)z(t)
71.4%

Reputation 1− N−nS
N

(
N−2
N−1

)z(t)/2
22.2%

Altruism 1− N−nS
N

(
N−2
N−1

)Kz(t)
91.8%

πDR, ω ≤ 1/2. Proposition 4 holds for the example scenario
in Table II, where we assume that 500 of 1000 users have been
bootstrapped; thus, the probability of direct reciprocity in T-
Chain, πDR, is at most 0.5, and even smaller if fewer users are
bootstrapped soon after the flash crowd arrives. The probability
ω will be similarly small when users initially arrive, but will
grow as users exchange pieces with more users.

Comparing Proposition 4’s and Table II’s results with our
efficiency predictions in Figure 3, we see that more efficient
algorithms generally bootstrap faster. Surprisingly, FairTorrent
bootstraps just as fast as T-Chain, though it is slightly less
efficient due to users’ requirement to upload to those with
the lowest piece deficits. When a flash crowd arrives, most
users have similar piece deficits, so FairTorrent is relatively
unconstrained. Thus, combining our results here with those
for fairness and efficiency in the previous section, we would
expect T-Chain and FairTorrent to outperform BitTorrent in
real systems, though all three achieve comparable efficiency.
Section V’s results verify these expectations.

C. Susceptibility to Free-Riding

We finally examine the algorithms’ susceptibility to free-
riding. Though the altruism hybrids are less susceptible than
altruism alone, which makes all upload bandwidth available
to free-riders, they still inherit some susceptibility. However,
while we would expect more fair algorithms to be less sus-
ceptible to free-riding, we show that this is not always the
case. We show in Section V that free-riding affects both the
fairness and efficiency of the different incentive mechanisms,
compared to the results of [10], which do not consider free-
riding.

We can roughly quantify the potential for free-riding
through two metrics: the amount of available “free” resources
and the potential for acquiring resources through collusion or
Sybil attacks. Attacks such as exploiting altruism [6], cheating
[33], the large-view-exploit [18], [19], and whitewashing [4],
[34] all take advantage of freely available resources, while col-
lusion enables users to obtain resources by falsely convincing
other users that they are behaving legitimately [8], [16].

TABLE III: Resources available for free-riding.

Algorithm Exploitable resources Collusion probability

Reciprocity 0 none

T-Chain 0 πIR
(m−1)m
(N−1)N

� 1

BitTorrent αBT
∑N
i=1 Ui none

FairTorrent (1− ω)
∑N
i=1 Ui none

Reputation αR
∑N
i=1 Ui 1

Altruism
∑N
i=1 Ui n/a

Non-collusive free-riding: Table III gives the amount of
resources directly exploitable by free-riders in the absence
of collusive attacks. We use the same notation as in Sec-
tion IV-A’s fairness-efficiency analysis; thus, the total sys-
tem resources are

∑N
i=1 Ui, or the total upload bandwidth.

Reciprocity and T-Chain are less susceptible than the other
algorithms; this conclusion is consistent with Section III-B’s
observation that reciprocity algorithms more strictly enforce
fairness, making it difficult to free-ride. BitTorrent also has
elements of reciprocity, but its use of altruism makes αBT of
its upload resources available for free-riders. The reputation
algorithm similarly makes αR of its upload capacity available.

Free-riders in FairTorrent can receive pieces from a user
i only when user i has nonnegative piece deficits from all
other users. Thus, the amount of exploitable resources is (1−
ω)
∑

i Ui, where ω, as in Section IV-B, is the probability that
a user has a negative deficit with at least one other user. In
the most favorable scenario when ω = 0, m free-riders could
obtain m/N expected pieces per timeslot. From [7], users have
a deficit of at most O(logN) pieces over time, which bounds
the total number of pieces a free-rider can receive.5 This bound
applies even if users employ a whitewashing attack [4], [34],
i.e., continually creating new user IDs so that they do not
accumulate positive piece deficits.

Free-rider collusion: Collusive attacks are more effective
than individual free-riding when user transactions involve third
parties. For instance, T-Chain is vulnerable to some collusion
when indirect reciprocity occurs: if a user S uploads to a free-
rider R and asks R to reciprocate to a colluding free-rider
P, then P may falsely report receipt of a piece from R, thus
triggering S to send the decryption key to R and allowing R
to receive a piece for free. However, the probability of indirect
reciprocity πIR is

q(i, j)(1−q(j, i))

1−

(
1−

M∑
l=1

plq(j, l) (1− q(l, j))

)N−2 ,

which is generally quite low (cf. Proposition 2), so collusions
rarely occur [8]. The reputation algorithm is very vulnerable
to collusion since free-riders can use false praise to artificially
raise each others’ reputations and receive more uploads.6

5Usually, ω > 0: most users have a negative deficit with some other user.
6More sophisticated reputation schemes that consider users’ trustworthiness

[4] can circumvent such false praise to some extent; however, if legitimate
users collude with many free-riders, then users can still game the system.



Non-reputation and local reputation algorithms like FairTor-
rent do not suffer from collusion. However, since they are
vulnerable to other attacks, we expect T-Chain to perform
better than the other hybrid algorithms in the presence of free-
riders, as opposed to comparable performance with no free-
riders. Our experiments in Section V validate this prediction.

V. EXPERIMENTAL RESULTS

We evaluate the six information exchange algorithms using
an event-driven simulator adapted from the simulator used
for TBeT [33]. We compare the algorithms’ fairness, effi-
ciency, bootstrapping speed, and susceptibility to free-riding,
as in Section IV. We define free-riding susceptibility as the
fraction of upload bandwidth received by the free-riders. For
convenience, we use the average fairness, (

∑
i ui/di) /N , to

measure the system fairness in our experiments, instead of the
statistic F defined in (3).

A. Simulation Setup

We initiate each experimental run with one seeder. One
thousand users arrive in a flash crowd within the first 10
seconds, as considered in the previous section’s performance
analysis, and start downloading a data file of size 128 MB from
other users and the seeder. Users exit the swarm immediately
after finishing the download.

For the reciprocity algorithm, we assume that users upload
only to the neighbor that has contributed the most to them.
With altruism, users instead upload to random neighbors at
their full upload capacity. With BitTorrent, users upload to
random neighbors with a 20% probability, and otherwise to
neighbors with the highest contributions. For the reputation
algorithm, we assume that all users know the amount of data
that each user uploads to all other users; users’ reputations
are proportional to this amount of data. We run the simula-
tions without and with different types of free-riding attacks,
which are chosen to maximize each algorithm’s vulnerability.
We then add the large-view exploit attack [18], [19] to all
algorithms and evaluate its effect on the system performance.

B. Algorithm Comparisons

1) No Free-Riding: Figure 4 compares the algorithm per-
formance when all users are compliant (no free-riding). As
predicted in Figures 2 and 3, altruism is the most efficient,
i.e., it has the shortest download completion times in Fig-
ure 4a. Reciprocity is the least efficient; no user completes
the download at all. T-Chain, BitTorrent, and FairTorrent show
comparable efficiency, which is in between the results of the
idealized (Figure 2) and piece availability (Figure 3) scenarios
in Section IV-A: in the first, idealized, scenario, we would
expect both T-Chain and FairTorrent to be slower than Bit-
Torrent, but in the second we would expect T-Chain to be the
most efficient. Thus, we conjecture that the idealized scenario
can model the middle of the simulation, when pieces are well-
distributed among users, but that we need to account for piece
availability at the beginning and end of the simulation.

The fairness in Figure 4b also matches our predictions in
Figure 2: as the system stabilizes, T-Chain’s and FairTorrent’s
fairness values approach 1, with BitTorrent’s nearly at 1.
Altruism and reputation are much less fair, as predicted by
Proposition 3’s reputation analysis. The reputation algorithm’s
fairness drops after 300 seconds due to users with higher
upload capacities (and thus, higher reputations) completing
their downloads and leaving the system.

The bootstrapping speeds in Figure 4c are consistent with
Section IV-B’s analysis. Altruism and FairTorrent are the
fastest, as expected from Proposition 4, while T-Chain can
nearly equal altruism’s bootstrapping speed. Reciprocity, rep-
utation, and BitTorrent are respectively the slowest to third-
slowest algorithms, as expected from the proposition and the
example probabilities given in Table II.

2) Effect of Free-Riding: Figure 5 compares the algorithm
performance when 20% of the users free-ride.7 We assume
that free-riders use the most effective attack for each algorithm,
i.e., simple, non-collusive free-riding for most algorithms, with
additional collusion for T-Chain [8], [16] and whitewashing for
FairTorrent [4], [34] as discussed in Section IV-C.

Figure 5a shows the susceptibility of each algorithm. Reci-
procity’s and T-Chain’s susceptibility values are almost zero,
since they have no exploitable resources, as in Table III.
BitTorrent and the reputation algorithm are more susceptible,
as predicted in the table, and altruism is the most susceptible.
FairTorrent is the second-most susceptible algorithm. As dis-
cussed in Section IV-C, FairTorrent is susceptible to free-riders
if users have nonnegative piece deficits with their legitimate
neighbors; they will then upload to new free-riders with zero
deficits. We would expect this scenario to occur at equilibrium
(Table I) and right after a flash crowd arrives.

Free-riding also affects the algorithms’ efficiency (Fig-
ure 5b) and fairness (Figure 5c). Compared to Figure 4a’s
results without free-riding, most algorithms’ efficiency de-
creases: free-riders now receive some of the upload bandwidth.
T-Chain and BitTorrent, which are less efficient than altruism
without free-riders, are now more efficient as they are less
susceptible to free-riding. They are also the most fair; while
FairTorrent achieved comparable fairness without free-riding,
its fairness is more affected by free-riding.

We finally add another free-riding attack, the large-view ex-
ploit [18], [19], in which free-riders connect to, and therefore
receive free resources from, more neighbors than before. The
results are shown in Figure 6. All algorithms’ susceptibility
approximately doubles compared to without the large-view
exploit, as shown in Figure 6a. Thus, the algorithms become
less efficient and less fair, as can be seen by comparing
Figure 6b’s efficiency and Figure 6c’s fairness results with
Figures 5b and 5c. T-Chain is now visibly more efficient
and more fair than BitTorrent, as free-riders receive 10% of
BitTorrent’s upload capacity but less than 1% of T-Chain’s.

7We omit the bootstrapping results due to space, but they are similar to
those in the compliant scenario (Figure 4c).
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Fig. 4: Performance results when all users are compliant. The results are consistent with our analysis in Section IV.
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Fig. 5: Performance results for compliant users when 20% of users are free-riders. Free-riding attacks target each algorithm’s
vulnerabilities, as specified in Section V-B2.
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Fig. 6: Performance results for compliant users when 20% of users are free-riders. We add the large-view exploit to the attacks
used for Figure 5.

VI. CONCLUSION

In this work, we classify information exchange algorithms
in terms of three fundamental classes. We rigorously compare
the three basic and three hybrid algorithms, modeling their
efficiency, fairness, bootstrapping speed, and susceptibility to
free-riding. We find that the three basic algorithms lie at dif-
ferent points along a fairness-efficiency tradeoff, with altruism
the least fair and reciprocity the least efficient. However, T-
Chain, a hybrid of the reciprocity and reputation algorithms,
can exceed the fairness and efficiency of both the reputation
and reciprocity algorithms, while nearly matching reciprocity’s
zero-tolerance for free-riding and altruism’s bootstrapping
speed. The other hybrids are also fair and efficient, but more
susceptible to free-riding.

We validate our results with extensive experiments on an
event-driven simulator. The experimental results match with
our model’s predictions for the algorithms’ relative fairness,
efficiency, bootstrapping speed, and susceptibility to free-
riding. When free-riders are present and target each algo-
rithm’s vulnerabilities, the fairness and efficiency of all but the
least susceptible algorithms suffer. Since T-Chain is the least
susceptible algorithm and exhibits good efficiency and fairness
even without free-riders, it performs especially well when
free-riders are present. Thus, our work formally classifies
and then explains the differences in performance observed
for different incentive mechanisms. We intend it to guide
practitioners in using these incentive mechanisms to achieve
different performance tradeoffs in real systems.
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APPENDIX

A. Proof of Lemma 1

Proof: The download rates di should minimize∑
i 1/(Ndi)k, i.e., the average download time (2), or equiv-

alently
∑

i 1/di, subject to the (linear) feasibility constraint
(1). Since this is a convex optimization problem, we use λ to
denote the Lagrange multiplier for the feasibility constraint
and derive the KKT optimality conditions λ = 1/d2i , i.e.,
di =

√
λ−1. We then have

∑
i

√
λ−1 =

∑
i Ui, i.e.,

λ =

(
N∑
i Ui

)2

, di =

N∑
i=1

Ui

N
, (15)

which no algorithm achieves.

B. Proof of Lemma 2

Proof: In the reciprocity algorithm, users can only re-
ciprocate pieces given to them; they cannot initiate piece
exchanges. Thus, no uploads take place, since users can never
initiate uploads.

T-Chain achieves full utilization as users can opportunis-
tically initiate as many exchanges as possible until their
upload capacity is saturated; this “opportunistic seeding” is
advantageous for users as their uploads are required to be
reciprocated.

BitTorrent, FairTorrent, and reputation systems all require
users to use their full upload capacity, even in non-equilibrium
scenarios. Similarly, fully altruistic users will always donate
their full upload bandwidth to other users.



C. Proof of Proposition 1

Proof: With perfect piece availability, T-Chain effectively
becomes the same as reciprocity: all users can always recip-
rocate to each other. Thus, we have di = ui = Ui.

The download rates for BitTorrent’s tit-for-tat algorithm,
used for 1−α fraction of the upload rate allocation, are taken
from [10]. The remaining α fraction comes from altruism.

We calculate the equilibrium download rates for FairTorrent
and the reputation system by defining u(j, k) to be the upload
rate from user j to user k. Then the download rate of user j
is
∑

k u(k, j), where we assume that u(j, j) = 0, i.e., no user
uploads to itself. FairTorrent requires that all users k contribut-
ing to a given user j have the same deficit, which we define
as αj . Then we have u(j, k) = αj +uk,j = αj +αk+u(j, k),
i.e., αj = −αk. Since this relation holds for all users j and
k, we have αj = 0 and u(j, k) = u(k, j). Thus, the download
rate

∑
k u(k, j) =

∑
k u(j, k) = Uj for all users j.

For our reputation-based system in equilibrium, the number
of pieces uploaded by each user is proportional to the user’s
upload capacity Ui; thus, we take the reputation of each user i
at user j to be Ui/

∑
k 6=j Uk. Our reputation system requires

that absent altruism,

u(j, i) = Uj

(
Ui∑N

k=1,k 6=j Uk

)
.

We then sum over all users j to find that
N∑

j=1,j 6=i

u(j, i) = Ui

N∑
j=1,j 6=i

Uj∑N
k=1,k 6=j Uk

≈ Ui,

absent altruism. Since users devote the remainder of their
bandwidth to altruism their expected download bandwidth
from others can be calculated from the fact that each user
j uses a fraction α of its bandwidth for altruism.

When all pieces are perfectly available, it is reasonable to
assume that altruistic users randomly choose the users to which
they upload, with each user having the same chance of being
chosen by another user. Thus, the download rate of each user
i is simply the average upload rates of all users except for
user i.

D. Proof of Corollary 1

Proof: We can see immediately that T-Chain and Fair-
Torrent all achieve the optimal fairness, since their download
and upload rates are equal. To see that no algorithm achieves
the optimal efficiency, we use the download rates found from
Lemma 1,

d?i =

N∑
i=1

Ui

N
(16)

for each user i, which no algorithm achieves.
To show that altruism achieves the highest efficiency, we

first note that the aggregate download rate
∑

i di =
∑

i Ui is
the same for all algorithms. Thus, since the download time
(2) is simply α-fairness with α = 2, it suffices to show
that the download rates from all other algorithms can be

transformed into those for altruism by a series of Robin-
Hood operations [35]. It is therefore sufficient to show that
the largest download rate over all users with altruism is
smaller than the largest download rate for any other algorithm
over all users. We show the result for the algorithms with
Ui = Di; the proof for BitTorrent is analogous. The proof
for reputation systems is similar, since under the assumption∑N

j=1,j 6=k Uj ≈
∑N

j=1,j 6=k Uj , users’ download rates are equal
to their upload rates.

We must show that

U1 ≥
∑N−1

k=1 Uk

N − 1
,

i.e., that NU1+UN ≥
∑

k Uk+U1. Subtracting Un from both
sides, we find that NU1 ≥ U1+

∑N−1
k=1 Uk, which holds since

U1 ≥ Uk for all k > 1.
To show that BitTorrent is more efficient than T-Chain or

FairTorrent when Ui ≈ Ui+nBT
, we note that this implies

that
mod(i,nBT )+nBT∑
j=bmod(i,nBT )c+1

Uj ≈ Ui, and thus that BitTorrent

achieves download rates ≈ (1 − αR)Ui + αR

∑N
k=1,k 6=i Uk

N−1 .
Thus, the vector of the download rates for all users is a
convex combination of the download rates for altruism and
T-Chain/FairTorrent. Since the average download time is a
concave function of the download rates, we therefore find
that BitTorrent’s efficiency is between that of altruism and
T-Chain/FairTorrent. The proof for the reputation algorithm is
analogous.

E. Proof of Proposition 2

Proof: For any algorithm, user j can only upload to
user k if user k requires a piece from user j, which occurs
with probability q(k, j). With T-Chain, two possibilities can
occur under which user j can upload to user k. First, direct
reciprocity can occur between the two users, which only occurs
if user j requires a piece from user k, i.e., with probability
q(j, k). Second, if user j does not require a piece from user k,
indirect reciprocity can occur. For indirect reciprocity to occur,
we must have a user l for which user l requires a piece from
user j but user j does not require one from user l; user l thus
redirects user j to reciprocate to user k. The probability that
at least one user l exists satisfying these conditions is exactly
the second summand in (6).

User j will only upload to user k through tit-for-tat with
BitTorrent if user j also requires at least one piece from user
k, which occurs with probability q(j, k); however, any user
k that requires a piece from user j can receive one with
altruism. Thus, interpreting αBT as the probability of altruism,
we obtain (7). The condition on αBT for which πTC ≥ πBT

follows directly from (6–7).

F. Proof of Corollary 2

Proof: From the proof of Prop. 2, altruism has a higher
probability πA(j, k) = q(k, j) of piece exchange than does



BitTorrent and PropShare. It thus suffices to show that
q(k, j) ≥ πTC(j, k), which follows from the fact that

0 ≤ 1−

(
1−

M∑
l=1

plq(j, l) (1− q(l, j))

)N−2

≤ 1

in (6). As N → ∞, we see that πTC(j, i) → πA(j, i) as
desired.

G. Proof of Proposition 3

Proof: We suppose that all users request pieces from all
other users; thus, we have u(i, j) = Uirj/

∑N
k=1 rk, and for

each user j,
dj
Uj

=
rj
∑N

k=1 Uk

Uj

∑N
k=1 rk

;

adding across all users gives the desired result. To find the
efficiency, we have

1

di
=

∑N
k=1 rk

rj
∑N

k=1 Uk

.

H. Proof of Lemma 3

Proof: We first note that the probability that a single user
will be bootstrapped within n periods is 1−

∏n
t=1 (1− pB(t)).

Moreover, each user’s bootstrapping occurs independently, i.e.,
the probability of being bootstrapped at a given time does not
depend on whether other users are bootstrapped at that time.
We see that this is true by noting that both indirect reciprocity
and altruism occur randomly: any user can be chosen to receive
pieces, possibly multiple pieces from the same user in the same
timeslot, and bootstrapping occurs if the chosen user happens
to not have any pieces. Thus,

P [TB(P ) ≤ n] =
∞∑

n=1

(
1−

n∏
t=1

(1− pB(t))

)P

,

and (10) follows by using the fact that E [TB(P )] =∑∞
n=1 P [TB(P ) ≥ n].

I. Proof of Proposition 4

Proof: We first show that altruism has a faster bootstrap-
ping speed than T-Chain by writing

πDR + (1− πDR)
N − 2

N − 1
=
N − 2

N − 1
+

πDR

N − 1
≥ N − 2

N − 1
,

so

1− N − 1

N

(
πDR + (1− πDR)

N − 2

N − 1

)Kz(t)

≤ 1− N − 1

N

(
N − 2

N − 1

)Kz(t)

.

Substituting πDR = 0 into T-Chain’s bootstrapping probability
immediately yields the same bootstrap probability as altruism.

We can similarly show the result for FairTorrent, with ω
replacing πDR.

When ω = 1 for FairTorrent and πDR = 1 for T-Chain, both
FairTorrent and T-Chain have a 1/N bootstrapping probability;
they then have the slowest bootstrapping speeds.

To show that altruism is faster than BItTorrent, it suffices
to show that (

N − 2

N − 1

)K

≤ N − nBT − 2

N − nBT − 1
,

which is equivalent to (N − kPS − 1)
(
(N − 1)K − (N − 2)K

)
≥

(N − 1)K . Dividing both sids by (N − 1)K , we see that it
suffices to prove this relation for K = 2. We then find the
equivalent condition (2N − 3)(N − nBT − 1) ≥ (N − 1)2,
which holds for N >> K ≥ nBT .

To show that altruism is faster than FairTorrent, it suffices
to show that

nFT −K − 1

nFT − 1
+

ωK

nFT − 1
≥
(
N − 2

N − 1

)K

.

We thus simplify to find the equivalent condition

1− K

nFT − 1
≥
(
1− 1

N − 1

)K

.

We therefore need to show that 1 − Kβα ≥ (1 − α)K for
α ∈ [0, 1], where β = (N − 1)/(nFT − 1). Since the two
sides of the inequality are equal when α = 0, it suffices to
show that the slope of the LHS is less negative than that of the
RHS, i.e., K(1−ω)β ≤ K(1−α)K−1, yielding the condition
(14).

To show that altruism is faster than the reputation system, it
suffices to note that (N−2)/(N−1) < 1 and Kz(t) > z(t)/2.

To show that BitTorrent is slower than T-Chain, we must
show that(

N − 2 + πDR

N − 1

)Kz(t)

≤
(
N − nBT − 2

N − nBT − 1

)z(t)

for K ≥ 2, so it suffices to show the result for K = 2. We
find the equivalent condition(

N2 + (2πDR − 4)N + (πDR − 2)2
)
(N − nBT − 1)

≤
(
N2 − 2N + 1

)
(N − nBT − 2) ,

which after gathering terms becomes

(N − nBT )
(
(2πDR − 2)N + (πDR − 2)

2 − 1
)

≤ −N2 + 2πDRN + (πDR − 2)2 − 2,

or

(2πDR − 1)N2 +
(
π2
DR − 6πDR + 3− 2πDRnBT + 2nBT

)
N

+ nBT + 2− (nBT + 1)(πDR − 2)2 ≤ 0.

This relationship clearly holds if N is sufficiently large and
πDR ≤ 1/2. Note that for larger K, we can have a larger
threshold for πDR.

To show that BItTorrent is slower than FairTorrent, we must
show that

N − nBT − 2

N − nBT − 1
≥ nFT −K − 1 + ωK

nFT − 1
,



which holds if nFT ≥ N − nBT and (1 − ω)K ≥ 1, i.e.,
ω ≤ 1− 1/K.

To show that the reputation system is slower than BitTorrent,
we must show that

N − 2

N − 1
≥
(
N − nBT − 2

N − nBT − 1

)2

,

which can be readily seen upon cross-multiplying and cancel-
ing summation terms.


