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Abstract
As more businesses use the cloud for their computing needs, datacenter operators are increasingly

pressed to perform effective and fair allocation in this multi-resource, multi-tenant setting. The presence
of multiple resources allows an operator to offer different types of pricing strategies (e.g., bundled vs. un-
bundled) that can have different effects on its revenue. Pricing also affects the demand and resource allo-
cation decisions across clients who typically require different ratios of each resource (e.g., CPUs, memory,
bandwidth) to process their jobs, which results in a complex trade-off between fairness and revenue maxi-
mization. We develop an analytical framework to investigate the fairness and revenue tradeoffs that arise in a
datacenter’s multi-resource setting and the impact of different pricing plans on the operator’s objective. We
derive analytical bounds on the operator’s fairness-revenue tradeoff and compare tradeoff points for different
pricing strategies on a data trace taken from a Google cluster.

1 Introduction
Today’s network technologies increasingly allow for better control and sharing of resources across
multiple clients, resulting in a distinct trend in the creation of large centralized datacenter facilities.
Investment in such datacenters is growing rapidly; in the second quarter of 2013 alone, Google and
Microsoft spent $3.4 billion on improving their cloud infrastructure [4]. Recent studies found
that businesses realize an average of 22% savings due to cloud computing, with benefits of up
to 48% in areas like innovation [2]. By 2020, 40% of digital business information are predicted
to use cloud facilities [6]. While some IS studies have compared cloud pricing plans offered by
specific operators [9] and client preferences for cloud services [8], there is a need to address several
business and economic challenges, in particular on how to allocate and price datacenter resources.

These questions are difficult to answer due to unique characteristics of the cloud computing
setting. The cloud has (a) multiple resources: data centers need to allocate multiple types of re-
sources (e.g., CPU cycles, memory, bandwidth) to process each job from its clients in a centralized
facility with finite capacity, (b) multiple tenants: data centers cater to clients whose jobs are het-
erogeneous in the ratio of each type of resources required, which introduces a complex trade-off
between fairness in multi-resource allocation and the provider’s objective of efficient utilization
of these finite resources for revenue maximization; and (c) multiple pricing schemes: the choice
of pricing plan used (e.g., individual resource pricing vs. bundled pricing), the price points, and
volume discounts offered, will not only affect client demand, but also the fairness, resource utiliza-
tion, and revenues resulting from the optimal allocation of these multiple types of resource across
clients. Therefore, it is important to develop a systematic approach to study the interplay between
pricing, fairness of multi-resource allocation, and revenue of cloud operators.

As an initial step in exploring these issues, we consider an Infrastructure-as-a-Service (IaaS)
view of the cloud with non-substitutable computing resources such as CPU time, memory, and
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bandwidth, that are shared by multiple clients (tenants) with different ratios of resources required
for their jobs. We also consider that the datacenter operator wishes to maximize its revenue while
accounting for fairness (i.e., equitability in the number of jobs processed for each client) to avoid
incurring client dissatisfaction and churn in this competitive market [5]. Our framework allows
operators to balance their revenue and fairness through setting prices in two popular schemes:

Bundled pricing: Bundled pricing assumes that operators sell groups of heterogeneous re-
sources as bundles to clients. For instance, Google’s Compute Engine sells virtual machines
(VMs), each with a fixed CPU and memory capacity and charges at a unit rate per VM. Depending
on the nature of the job (e.g., computationally-intensive versus memory-intensive), clients may or
may not be able to make use of all or part of each type of VM resource sold in that bundle.

Resource pricing: Under resource pricing, an operator charges clients separate unit prices for
each resource that they use. Many operators, such as Google and Microsoft’s Windows Azure,
charge such prices for egress bandwidth. Dimension Data, a smaller cloud operator, goes further,
charging separate unit prices for client-specified amounts of CPU, RAM, storage, and bandwidth.

Other pricing measures such as dynamic auction are also sometimes offered (e.g., Amazon
EC2’s spot pricing) but they have been shown to be less effective in practice [10], and are hence
not considered in this initial work.

Some datacenters like Amazon’s EC2 take advantage of their economies of scale by introducing
volume discounts into a pricing policy, charging a lower unit rate for clients who purchase a large
quantity of resources. While some works have investigated the effects of volume discounts, e.g.,
for contract clients [3], none have done so in a datacenter’s multi-resource context. In this work, we
compare bundled and resource pricing with volume discounts in a mathematical framework that
takes into account client demand, operator revenue, and fairness across clients. While tradeoffs
between fairness and efficiency have recently been considered in the general context of resource
sharing [1], these works do not explicitly generalize to the setting of multiple, non-substitutable
resources. Works that do consider multi-resource fairness, on the other hand, have not considered
the pricing aspects [7]. Our work is unique in developing a generic model for a multi-resource,
multi-tenant setting under different pricing schemes.

We begin developing our framework in Section 2 by examining client choices of how many
jobs to submit, given a set of offered prices. Section 3 then discusses the operator objectives of
revenue and fairness and tradeoffs between these two functions. We compare the fairness and
revenue achieved by bundled and resource pricing in Section 4. Finally, in Section 5 we perform
simulations on a dataset from a Google cluster to compare the achieved fairness and efficiency for
different pricing plans and a range of volume discounts. We conclude the paper in Section 6.

2 Client Optimization
A datacenter operator has multiple (heterogeneous) clients, each of whom submits jobs, each re-
quiring a certain amount of the different types of non-substitutable datacenter resources (CPU time,
memory, and bandwidth). We index the resources with the variable i, and denote the amount of
resource i required for each job by Ri j, where j indexes the client type. We fix the number of types
as n and the number of resources as m.

When deciding how many jobs to submit, clients take into account the prices set by the datacen-
ter operator, which yield a fixed cost per job r j for each client j. We consider two ways to structure
this pricing plan: bundled and resource pricing. In both cases, r j accounts for both the resource
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prices and the volume discounts, which are parameterized with a constant γ ∈ (0,1]. If a client
requires Ri jx j amount of resource i, where x j denotes the number of jobs submitted by client j,
then under resource pricing she is charged for Rγ

i jx
γ

j amount of resource i. Under bundled pricing,
we have a similar expression with bundles treated as one resource. Thus, a larger γ corresponds
to a smaller volume discount, and γ = 1 corresponds to no volume discount. Since the amount of
resources required is an affine function of the client’s demand, we let r j denote the per-job cost
with the volume discount and separately account for the discounted xγ

j term.
Clients derive utility from the number of jobs that the datacenter processes and pay for the cost

of jobs.1 We use x j to denote the number of jobs processed for each client j and U j(x j) to denote
the utility from these jobs. We assume that U j is a strictly increasing, concave function expressed
in units of dollars, e.g., the often-used isoelastic functions

U j(x) =

{
c j(1−α j)

−1x1−α j − r jx?j
γ , α j ∈ (0,1)

c j log(x+1)− r jx?j
γ

α j = 1
(1)

where α j parameterizes the concavity of the utility function (i.e., the degree of diminishing marginal
utility) and the constant c j > 0 scales the utility level. As α j increases, the client becomes more
price-sensitive since the cost term r jx?j

γ term becomes more dominant. We assume that the client
receives zero utility if no jobs are processed, i.e., U j(0) = 0.

Each client j maximizes its utility (1). For simplicity, we assume that U j is continuously
differentiable for x j > 0. We suppose that the clients have no explicit budget constraints and pay
for any number of jobs x j, so long as U j > 0; for instance, enterprise clients would meet this
requirement. Clients will submit as many jobs as required to maximize U j for a given set of prices.
The operator chooses a value of γ such that there exists x∗j maximizing U j(x j); for instance, the
isoelastic utility functions satisfy this condition if γ > 1−α j. Each client’s utility at the optimum
then equals the amount paid r jx?j

γ , multiplied by a price-independent constant. Given a set of prices

p, we have U j =
(
γ/(1−α j)−1

)
r jx?j(p)γ =

(
γ/c j

)γ/(1−α j−γ) (
γ/(1−α j)−1

)
r(1−α j)/(1−α j−γ)

j
where U j denotes the client’s utility at the utility-maximizing prices.

3 Fairness and Revenue Tradeoffs
Using the notation of Section 2, the operator’s revenue may be expressed as ρ(p) = ∑

n
j=1 r jx∗j

γ (p)
for a set of bundled or resource prices p. Since clients are heterogeneous in the amount of different
resources needed by their jobs, a simple profit maximization by an operator could inadvertently
favor one client over another, possibly introducing client dissatisfaction. For instance, suppose that
one client k requires a relatively large amount of one resource l (e.g., this client runs a processor-
intensive task like video encoding). Under resource pricing, the operator might increase the price
pl of this resource significantly, in order to offer much lower prices for the other resources. But
client k would then have a higher per-job cost ∑

m
i=1 Rγ

ik pi than other clients, which would keep
demand for each resource under capacity but yield lower utility Uk for client k. To avoid this
scenario, the operator can consider the fairness of client utilities.

Since the operator’s choice of prices results in resources being allocated to each client, this
decision can be modeled in the multi-resource allocation framework of [7]. We modify this

1We assume throughout that the operator sets prices so that all submitted jobs can be processed with the resources
available. “Submitted” and “processed” can thus be used interchangeably.
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approach in our framework to measure the fairness of the surplus U j = U j

(
x?j
)

received by
each client j. Following the fairness measures proposed in [7], we choose the fairness functions
Fβ (p) = 1

1−β
∑

n
j=1U1−β

j , where β > 0 parameterizes the type of fairness. This fairness function
corresponds to the well-known α-fairness function with α = β ; we thus observe that as β grows,
Fβ becomes “more fair” [7].

In order to optimize both revenue and fairness, we suppose that operators consider a weighted
sum νρ(p)+Fβ (p) of the revenue ρ and fairness Fβ , where ν > 0 parameterizes the operator’s
relative emphasis on revenue over fairness.2 We next examine the range of the tradeoff between
fairness and revenue for bundled and resource pricing. For bundled pricing, there is no tradeoff:

Proposition 1. Under bundled pricing, there is no tradeoff between fairness and revenue.

Proof. Bundled pricing may be viewed as a single-resource scenario: under bundled pricing, one
bundle of resources at fixed ratios may be regarded as the only “resource” offered to clients. The
resource capacity C is then the number of bundles, and each client’s resource requirement R j is
the number of bundles required to complete one job. We thus prove the proposition when only
one resource is offered. The lowest feasible price for this resource is the price for which the
resource constraint ∑

n
j=1 R jx∗j ≤C is tight, where the left hand side equals the amount of resource

demanded by all clients. Since the demands x?j are decreasing in the resource price, a unique price
exists satisfying this property. If clients have isoelastic utilities, then we can differentiate both the
fairness and revenue expressions with respect to the price to show that the lowest feasible price
maximizes both fairness and revenue. There is then no tradeoff between fairness and revenue.

Under resource pricing, a tradeoff exists, though we can lower-bound the worst-case outcome:

Proposition 2. At any set of per-job prices r j, achieved fairness can be lower-bounded by achieved
revenue and vice versa. If β > 1, the revenue ρ can be lower-bounded in terms of fairness:

ρ(p)≥
(
Fβ (p)(1−β )

) 1
1−β

n

∑
j=1

1−α j

γ +α j−1
.

If β < 1, then the fairness Fβ (p) may be lower-bounded in terms of the achieved revenue:

Fβ (p)≥
ρ (p)1−β

1−β

(
γ

1−αk
−1
)1−β

, αk = max
j

α j.

Proof. Suppose that β < 1. We first introduce the notation φ j =
γ+α j−1

1−α j
= γ

1−α j
−1, and find that

the fairness function may be written as

1
1−β

n

∑
j=1

φ
1−β

j

(
γ

c j

) γ(1−β )
1−α j−γ

r
(1−α j)(1−β )

1−α j−γ

j ≥
min j φ

1−β

j

1−β

(
n

∑
j=1

(
γ

c j

) γ

1−α j−γ

r
1−α j

1−α j−γ

j

)1−β

=
ρ (p)1−β

1−β

(
γ

1−αk
−1
)1−β

.

2In some cases, maximizing νρ(p)+Fβ (p) is particularly easy numerically; we can differentiate νρ +Fβ to show
that, when the revenue weight ν is sufficiently small, maximizing this objective is a convex optimization that can be
solved with standard algorithms.
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The first inequality uses the sub-additivity of the function f (x) = x1−β , and we let k = argmax jα j.

We now take β > 1 and find that for each client j, φ
1−β

j
(
γ/c j

) γ(1−β )
1−α j−γ r

(1−α j)(1−β )

1−α j−γ

j ≤ Fβ (p)(1−

β ), which is equivalent to
(
γ/c j

) γ

1−α j−γ r
1−α j

1−α j−γ

j ≥ φ
−1
j
(
Fβ (p)(1− β )

) 1
1−β . Adding these lower

bounds and using the definition of ν j, we see that ρ(p)≥
(
Fβ (p)(1−β )

) 1
1−β ∑

n
j=1

1−α j
γ+α j−1 .

In Section 5, we numerically investigate the fairness-revenue tradeoff for different volume
discounts and distributions of users. We found that for a wide range of parameter values, resource
pricing yields only a limited tradeoff; the achieved fairness (revenue) when revenue (fairness) is
maximized is not far from the maximum fairness (revenue) under resource pricing.

In addition to this fairness-revenue tradeoff, the operator’s pricing plan will affect the achieved
fairness and revenue. We turn to this topic in the next section.

4 Pricing Datacenter Jobs
We first discuss bundled and resource pricing in Section 4.1 and then compare the optimal prices
and resulting revenue and fairness in Section 4.2.

4.1 Pricing Strategies
We first consider bundled pricing, in which the operator groups different resources in a fixed
ratio–for instance, 1 CPU and 2 GB of RAM might be grouped together as a bundled resource.
We consider a single bundle option, and personalized bundles can be mapped to a resource pric-
ing case. The operator then charges a unit price per bundle of resources required for a client’s
jobs. We let bi denote the amount of each resource i = 1, . . . ,m in each bundle, and let p de-
note the per-bundle price. Using the notation from Section 2, we find that each client j requires
µ j = maxi

(
Ri j/bi

)
bundles in order to complete one job. We incorporate the volume discount

to find the per-job cost r j = µ
γ

j p. Moreover, the number of bundles available is miniCi/bi,
where Ci denotes the capacity of resource i. Thus, the operator faces the resource constraint

∑
n
j=1 maxi

(
Ri j/bi

)
x?j
(

µ
γ

j p
)
≤mini (Ci/bi), where x?j

(
µ

γ

j p
)

denotes the client’s demand for jobs
at price p, given the bundle (b1, . . . ,bm). The resulting revenue under bundled pricing, ρb, may be

expressed as ρb = p∑
n
j=1

(
µ jx?j

(
µ

γ

j p
))γ

.

Since ρb, like any function of the per-job prices r j = µ
γ

j p, is a non-differentiable function of the
amounts bi of resource i in the bundle, the operator may find it computationally difficult to optimize
over the bi. Instead, it can fix bi, the amount of resource i in each bundle, and optimize over the
unit price p. For instance, the bi might be chosen proportional to the resource capacities Ci, i.e.,
bi = bCi for all i and a constant b. In this case, the client’s bundle requirement µ j is proportional
to her dominant share, defined as the maximum share of any resource allocated to the client.3

To avoid forcing clients to purchase resources they may not need, an operator could instead
offer resource pricing, in which a unit price is charged for each resource and clients may purchase
exactly as much of each resource as they require. We let pi denote the unit price of each resource

3Thus, if a client receives Ri jx?j amount of each resource i, her dominant share is maxi Ri jx?j/bi, i.e., the bundle
requirement µ j divided by b.

5



i, so that each client j’s per-job cost is r j = ∑
m
i=1 piR

γ

i j. Thus, the operator’s total revenue is

ρr = ∑
m
i=1 pi ∑

n
j=1

(
Ri jx?j

(
∑

m
l=1 plRl j

))γ

. The resource constraints, which require that the operator
be able to meet all clients’ resource requirements, are then ∑

n
j=1 Ri jx?j ≤Ci for each resource i.

4.2 Comparing Pricing Plans
In this section, we compare the operator’s revenue and/or fairness under bundled and resource pric-
ing. We suppose that the operator chooses the prices so as to optimize a given objective function of
clients’ per-job costs and demands, e.g., the weighted sum νρ(p)+Fβ (p) of fairness and revenue.
We use f (r) to denote this function, and f ∗b and f ∗r to denote its maximum value under bundled
and resource pricing respectively.

It is not obvious whether bundled or resource pricing will yield a higher value of f . One might
expect that resource pricing would yield a higher value of f

(
f ∗r ≥ f ∗b

)
, since with bundled pricing,

the operator can choose only one price p while it chooses m≥ 1 resource prices pi under resource
pricing. However, with bundled pricing the operator can effectively force clients to purchase excess
resources, which may lead to larger revenue.

To compare f ∗b and f ∗r , we first define a client’s dominant resource as the resource k which
maximizes Ri j/Ci over all resources i. We then find sufficient conditions under which bundled
pricing does not perform better than resource pricing, i.e., f ∗b ≤ f ∗r :

Lemma 1. If the ratio of resources in each bundle is equal to the ratio of resource capacities,
the maximum value of f under resource pricing may be at least as large as that under bundled
pricing. Let µγb denote the (column) vector of clients’ dominant shares raised to the bundled
pricing volume discount γb, and let Rγr denote the resource matrix with (i, j) entries Rγr

i j . If

Rγr T
(

RγrRγr T
)−1

Rγr µγb = µγb and
(

RγrRγr T
)−1

Rγr µγb ≥ 0, then f ∗b ≤ f ∗r . These conditions
are sufficient but not necessary.

Proof. Let p? be the optimal bundled price and consider resource prices p= p?
(

RγrRγr T
)−1

Rγr µγb

so that Rγr T p = p?µγb , i.e., each client’s per-job price r j is the same under resource or bundled
pricing. Each client’s demand x j is a function of r j, so each client demands the same amount of
jobs with and without bundling, satisfying the resource constraints. Since f can be written entirely
in terms of clients’ per-job costs r j, the objective function value is also unchanged.

To show that this condition is not necessary, consider an example with three clients and two
resources (n = 3, m = 2). Suppose that there is no volume discount (γ = 1), and that f =
∑

n
j=1 r jx?j

(
r j
)
, i.e., revenue. Let the demands x?j be determined by the isoelastic functions (1) with

c j = 1 for j = 1,2,3; α1 = α3 = 0.5, α2 = 0.9. We take the resource matrix and capacities to be

R=

[
2 1 1

0.5 2 0.9

]
; C1 =C2 = 10, so that clients’ dominant shares are µ1 = µ2 = 0.2 and µ3 = 0.1.

Computing R
(
RT R

)−1 RT µ =
[
0.191 0.189 0.130

]T , we see that R
(
RT R

)−1 RT µ 6= µ . How-
ever, the optimal revenue under resource pricing is f ∗r = 4.570, which exceeds f ∗b = 4.413.

For instance, Lemma 1’s conditions are satisfied if each client has the same dominant re-
source and γr = γb. In this case µγ is simply a (transposed) scalar multiple of a row of Rγ , and
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RγT
(

RγRγ T
)−1

Rγ µγ = µγ . We can then find necessary and sufficient conditions under which

bundled pricing is strictly worse than resource pricing
(

f ∗b < f ∗r
)
:

Proposition 3. Suppose that all clients have the same dominant resource. Then the objective
function value under resource pricing equals that under bundled pricing if the dominant resource
yields the largest ratio of derivatives of the objective function and constraints. Let resource k be the
dominant resource for all clients, let f be concave, and let the capacity constraints ∑

n
j=1 Ri jx?j (r)≤

Ci be convex, where r j is client j’s optimal price under bundled pricing. If, for each resource i 6= k,(
n

∑
j=1

∂ f
∂ r j

Rγ

i j

)/(
n

∑
j=1

Rk j
∂x?j
∂ r j

Rγ

i j

)
<

(
n

∑
j=1

∂ f
∂ r j

Rγ

k j

)/(
n

∑
j=1

Rk j
∂x?j
∂ r j

Rγ

k j

)
, (2)

then f ∗b = f ∗r . Conversely, if (2) does not hold, then f ∗b < f ∗r .

Proof. Under bundled pricing, each client j pays a per-job price r j = µ
γ

j p?, where µ j is client j’s
dominant share Rk j/Ck, γ is the volume discount, and p? is chosen optimally. From the Karush-
Kuhn-Tucker (KKT) necessary conditions for a local maximum, at the optimal bundled prices r,

d f
d p
−λ

n

∑
j=1

µ j
dx?j
d p

=
n

∑
j=1

∂ f
∂ r j

µ
γ

j −λ

n

∑
j=1

µ j
dx?j
dr j

µ
γ

j = 0 (3)

for a positive scalar λ that represents the multiplier of the bundled capacity constraint. We now
consider resource pricing. From Lemma 1, we see that taking the resource prices pk = p?/Ck,
pi = 0 for i 6= k results in the same per-job prices r j as under bundled pricing. Since we assume
that the objective function f is concave and the capacity constraints convex, the KKT conditions
are both necessary and sufficient for optimality in the resource pricing case. We next show that
these are satisfied at the resource prices pi = 0 for i 6= k, pk = p?/Ck, i.e., that there exist multipliers
λi ≥ 0 for the capacity constraint of each resource i and νi ≥ 0 for the positivity constraint pi ≥ 0
that satisfy the KKT first-order optimality conditions.

We use λ/Ck as the multiplier for resource k’s capacity constraint. Thus, the KKT condition for
the price pk is satisfied if the multiplier of each resource i 6= k’s capacity constraint ∑

m
j=1 Ri jx?j ≤Ci

equals zero. In fact, this must be the case, since these constraints are not tight (by assumption, re-
source k is the dominant resource of each client). Thus, it suffices to show that when we take λ/Ck
to be the multiplier of resource k’s capacity constraint and all other capacity constraint multipliers
zero, we can find a positive scalar νi for each resource i 6= k such that

∂ f
∂ pi
− λ

Ck

n

∑
j=1

∂x?j
∂ pi

+νi =
n

∑
j=1

∂ f
∂ r j

Rγ

i j−
(

λ

Ck

) n

∑
j=1

Rk j
dx?j
dr j

Rγ

i j +νi = 0.

With λ defined by (3), we multiply by ∑
n
j=1 Rk j

dx?j
dr j

Rγ

k j to see that the constraint νi ≥ 0 is (2).
We prove the necessity of (2) by noting that from Lemma 1, taking pk = p?/Ck and pi = 0 for

all i 6= k is a feasible solution to the resource pricing problem. Moreover, should this point be a
local maximum, the multiplier νk of the inequality pk ≥ 0 must be zero, since pk > 0. Thus, in
order to satisfy the first-order KKT condition for pk, we must have λ as in (3). But then if (2) is
not satisfied, the KKT conditions are not satisfied and we do not have a local maximum. Thus,
there must exist a set of feasible prices yielding higher revenue than these, and f ∗r > f ∗b .
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When clients do not share the same dominant resource, we derive sufficient conditions under
which bundled pricing performs strictly worse than resource pricing:

Proposition 4. Suppose that clients do not share the same dominant resource, i.e., for each re-
source i there exists a client j such that Ri j/Ci < µ j. Then if the conditions in Lemma 1 are
satisfied and f does not have a local maximum at its optimal bundled price pb, then f ∗b < f ∗r .

Proof. Let p∗ denote the optimal bundled price. From the proof of Lemma 1, there exists a price
vector p such that for each client j, p∗µγb

j = ∑
m
i=1 Rγr

i j pi, i.e., clients have the same per-job prices
(and therefore the same demands x?j(p)) under bundled and resource pricing. However, since f
does not have a local maximum at p∗, the constraint under bundled pricing, ∑

n
j=1 µ jx?j ≤ 1, is tight

at p∗. But clients do not all share the same dominant resource, so none of the resource constraints
∑

n
j=1 Ri jx?j ≤Ci are tight for any resource i. By continuity of f and x?j , one can then find resource

prices that increase the value of f without violating the resource constraints.

We therefore show that under most, but not necessarily all, conditions, resource pricing per-
forms at least as well as bundled pricing

(
f ∗r ≥ f ∗b

)
.

5 Numerical Illustrations
In this section, we use a six-hour workload trace from a Google datacenter cluster to illustrate
the effects on fairness and revenue of parameters not considered in Sections 3 and 4: the clients’
resource requirements and volume discounts. In particular, we find that the heterogeneity of the
clients’ resource requirements strongly influences the tradeoff in fairness and revenue, and that
increasing the volume discount allows an increase in revenue at the expense of decreased fairness.

5.1 Our Dataset
Our workload trace includes 9218 jobs divided into 176580 tasks; each task runs on a single
machine within the cluster. The amount of memory (RAM) and fractional number of CPU cores
taken up by each active task was recorded at five-minute intervals over 6 hours and scaled by a
constant factor. For this reason, we omit units in our discussion here.

To simplify our simulations, we exclude jobs whose total usage of either CPU or memory lies
more than one standard deviation away from the mean. We then use k-means clustering to group
jobs into three different clusters or types by their CPU and memory usage and take the centroid
points as the resource requirements: type 1 jobs require 0.4 CPUs and 2.7 units of memory, type
2 jobs require only 0.01 units of CPU and 0.02 units of memory, and type 3 jobs require 0.6 units
of CPU and 0.5 units of memory. We associate a client type with each type of job and assume that
these clients have isoelastic utility functions (1), with parameters c j = 1 and α j = 0.4,0.7,0.5 for
j = 1,2,3 respectively. Taking the capacity of each resource to be 6 units, the operator solves:

max
p

νρ(p)+Fβ (p) s.t. {0.4x?1 +0.01x?2 +0.6x?3, 2.7x?1 +0.02x?2 +0.5x?3} ≤ 6. (4)

5.2 Empirical Fairness-Revenue Tradeoffs
We first consider the effects of client heterogeneity on the operator’s revenue and fairness and
then consider the effects of volume discounts. Throughout our discussion, we take the fairness
parameter β in (4) to be relatively large, at β = 20; this choice of β allows us to approximate max-
min fairness, i.e., maximizing the minimum utility value. Larger values of β impose a stricter
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Figure 1: Achieved fairness and revenue for a range of revenue weights ν and (a) distribution of client types
for bundled pricing, (b) distribution of client types for resource pricing, and (c) volume discounts γ . On each
contour (individual contours not visible on the left and right), ν is fixed.

fairness requirement than lower ones, providing a fairness benchmark [7]. The units of fairness are
therefore the same as the units of utility, i.e., dollars. For the purpose of exposition, we suppose
that the datacenter can handle a total of 10 active clients in all numerical evaluations in this section.

We first examine the changes in fairness and revenue for different pricing plans when client
types are less heterogeneous. We vary the fraction of type 1 and type 2 clients from 10 to 90%
and fix the fraction of type 3 clients at 10%. Figure 1a shows the resulting fairness and revenue
under bundled pricing; as expected from Prop. 1, for a given distribution of clients there is no
fairness-revenue tradeoff. We see that there is a nearly linear relationship between fairness and
revenue as the fraction of type 1 clients increases and that of type 2 clients decreases. This is
because, as the fraction of type 1 clients increases, the revenue decreases and fairness increases:
type 1 clients require more resources than type 2 clients, so the operator receives more revenue
when its resources can be used to process type 2 clients’ jobs. Thus, an operator’s operating point
is significantly affected by the characteristics of its clients.

Figure 1b shows that under resource pricing, the operator experiences a limited tradeoff be-
tween fairness and revenue (Prop. 2). Moreover, it can achieve both higher fairness and slightly
higher revenue than under bundled pricing, as we would expect since Lemma 1’s conditions are
satisfied for these resource requirements. Increasing the weight ν in (4) yields a slight increase in
the revenue and a limited decrease in fairness, though the fairness always remains higher than that
for bundled pricing. As the fraction of type 1 clients increases, the revenue from both resource
and bundled pricing decreases due to the discrepancy in resource requirements between type 1 and
type 2 clients. Under bundled pricing (Figure 1a), the fairness increases with the fraction of type 1
clients: all type 1 clients receive the same (lower than type 2) utility values, so having more type
1 clients and fewer type 2 (high utility) clients increases the overall equitability, with only a few
clients having utilities much higher than the average. Under resource pricing (Figure 1b), how-
ever, fairness decreases with the fraction of type 1 clients. Resource pricing allows the operator
to allocate proportionally more resources to type 2 clients in order to increase its revenue. As the
fraction of type 1 clients increases, this imbalance of resources is exacerbated, and type 2 clients’
utility increases relative to type 1 clients’ utility.

We conclude by examining the effect of the volume discount γ . For these simulations, we
suppose that 80% of the clients are of type 2 and 10% each of types 1 and 3. Figure 1c shows
the fairness-revenue tradeoffs for a range of volume discounts γ . Again, bundled pricing shows
no tradeoff; moreover, there is almost no tradeoff even for resource pricing. Lemma 1’s result
that resource pricing yields a higher objective function value than bundled is demonstrated here
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by the fact that revenue is comparable for both pricing plans, but resource pricing yields higher
fairness. We also see that increasing γ , i.e., decreasing the volume discount, decreases revenue and
increases fairness for both types of pricing. Smaller volume discounts dampen demand and thus
revenue, especially from clients with large resource requirements, who experience proportionally
larger changes in the per-job price with increased volume discounts. As demand from these clients
decreases, proportionally more resources fall to clients with lower resource requirements, in this
case type 2 clients. Since 80% of clients are of type 2, the overall fairness increases: most clients
receive higher utility as the volume discount decreases (γ increases).

6 Conclusion and Future Work
In this work, we develop a framework for evaluating two cloud pricing strategies–bundled and re-
source pricing–in terms of their resulting fairness and revenue. We first characterize client demand
for resources as a function of the prices offered under these different pricing plans. After show-
ing some analytical bounds on the tradeoff between fairness and revenue, we compare achieved
fairness and revenue under the two pricing plans. We finally use data taken from a Google cluster
to numerically evaluate the impact of resource capacity and volume discounts on the operator’s
fairness-revenue tradeoff.

Future extensions of this work will consider an additional pricing scheme: differentiated pric-
ing, in which the operator can choose a per-job price for each client independent of the client’s
resource requirements. We do not consider such a pricing plan here since bundled and resource
pricing are more practically relevant; in practice clients are generally not charged different per-job
prices. One could also extend our work to take into account job completion deadlines, which im-
pose an additional constraint on the resources allocated at any given time. We also plan to consider
tradeoffs between revenue, fairness, and operational efficiency, e.g., through examining the total
amount of leftover resources.
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