
On the Viability of a Cloud Virtual Service Provider

Liang Zheng∗ Carlee Joe-Wong∗ Christopher G. Brinton∗
Chee Wei Tan† Sangtae Ha§ Mung Chiang∗

∗Princeton University †City University of Hong Kong §University of Colorado
{liangz, cjoe, cbrinton, chiangm}@princeton.edu cheewtan@cityu.edu.hk sangtae.ha@colorado.edu

ABSTRACT
Cloud service providers (CSPs) often face highly dynamic
user demands for their resources, which can make it difficult
for them to maintain consistent quality-of-service. Some
CSPs try to stabilize user demands by offering sustained-
use discounts to jobs that consume more instance-hours per
month. These discounts present an opportunity for users
to pool their usage together into a single “job.” In this pa-
per, we examine the viability of a middleman, the cloud
virtual service provider (CVSP), that rents cloud resources
from a CSP and then resells them to users. We show that
the CVSP’s business model is only viable if the average
job runtimes and thresholds for sustained-use discounts are
sufficiently small; otherwise, the CVSP cannot simultane-
ously maintain low job waiting times while qualifying for
a sustained-use discount. We quantify these viability con-
ditions by modeling the CVSP’s job scheduling and then
use this model to derive users’ utility-maximizing demands
and the CVSP’s profit-maximizing price, as well as the op-
timal number of instances that the CVSP should rent from
the CSP. We verify our results on a one-month trace from
Google’s production compute cluster, through which we first
validate our assumptions on the job arrival and runtime dis-
tributions, and then show that the CVSP is viable under
these workload traces. Indeed, the CVSP can earn a pos-
itive profit without significantly impacting the CSP’s rev-
enue, indicating that the CSP and CVSP can coexist in the
cloud market.

1. INTRODUCTION
Cloud computing is forecasted to grow to a market size of

$112 billion in 2018 [11], in large part due to its Infrastructure-
as-a-Service (IaaS) offerings. IaaS attracts customers from
individuals and organizations of all sizes, who can benefit
from pay-as-you-go pricing that allows users to rent com-
puting resources by the hour, eliminating setup and main-
tenance costs. Yet as more cloud service providers (CSPs)
offer these services, the IaaS market has become increas-
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ingly competitive, with CSPs competing to offer ever-lower
prices to users [1, 8, 30]. Compounding this difficulty, the
number and variety of tasks that users submit to the cloud
create a highly dynamic environment with many jobs that
require different amounts of resources arriving and depart-
ing at different times. CSPs do take advantage of this job
heterogeneity to optimize their capacity provisioning, but
their pay-as-you-go pricing means that they cannot com-
pletely prevent localized instances of high demand and high
user waiting times [21,26,27,38]. Thus, many providers are
turning to different pricing plans to match their IaaS prices
to real-time user demands.

1.1 Existing Cloud Pricing
IaaS resources are generally virtualized in units of in-

stances. Each instance consists of a remote virtual machine
(VM) with specified amounts of CPU, memory, storage, and
other attributes. Users submit jobs by requesting the use of
their desired types of instances. Each job consists of one or
multiple parallel or dependent tasks, with each task run on
a single instance and charged collectively with other tasks
in the job. Users pay for the execution of their jobs per
instance per hour. Most CSPs offer three types of instance
pricing: usage-based, auction-based, and volume-discount
pricing, as summarized in Table 1.

Usage-based pricing, also known as pay-as-you-go, is the
simplest pricing scheme, charging users at a fixed unit (per-
instance, per-hour) price [30, 40]. Auction-based pricing,
such as Amazon’s Elastic Compute Cloud (EC2) spot pric-
ing [4] and Google’s preemptible VMs [15], introduces more
freedom to respond to real-time market demand: users bid
for instances and the CSP sets dynamic thresholds for suc-
cessful bids. While several works have shown that user cost
can be reduced by such bidding, jobs run under this scheme
may be interrupted prior to completion [22,24,39].

Volume-discount pricing offers another way for CSPs to
stabilize user demand, without auction pricing’s potential
for interruptions. Under this scheme, users are charged a
lower unit price if their usage exceeds a given threshold, e.g.,
25% of a one-month billing cycle for Google Cloud Platform
[14]. Amazon EC2 allows users to rent reserved instances
for 1 or 3 years at a reduced rate [3]. In our work, we follow
Google’s terminology and use sustained-use discount to refer
to the discount afforded to longer-lasting jobs. We focus on
this type of pricing in the paper.

1.2 The Cloud Virtual Service Provider
Sustained-use discounts appear to only benefit users with

longer-lasting jobs. However, if users with shorter jobs could



Table 1: Different types of cloud pricing.

Scheme Job Runtime Unit Price Typical Job Types

Usage-based Short-term Highest Scientific computing, backend batch processing

Auction-based Interruptible; no guaranteed deadline Lowest Word counting, multimedia processing

Volume-discount Long-term Discounted Real-time web service, remote monitoring

pool their jobs together, they could jointly create a virtual-
ized longer “job” to take advantage of the sustained-use dis-
count.1 This creates an opening for cloud virtual service
providers (CVSPs) to rent long-term instances from CSPs
offering these discounts. The CVSP can then attract users
with shorter jobs by selling them this rented capacity at a
small markup: users still pay lower per-instance, per-hour
prices than they would by buying directly from the CSP,
and the CVSP can also make a profit. Figure 1 illustrates
this pooling scheme: individual users consume relatively lit-
tle resources, but when pooled together they take up most
of the VM time. In the remainder of the paper, we use CSP
to denote the cloud service provider from which the CVSP
rents instances to resell to users.

This type of user pooling to resell resources has been prac-
ticed in a variety of other contexts, e.g., mobile virtual net-
work operators (MVNOs) in the U.S. often offer cheaper mo-
bile data plans to their users than the four major network
operators [23]. Many cloud storage companies, like Drop-
box, sell a version of virtualized cloud resources in which
they store user data on rented VMs and add services like
file sharing on top of the storage resources [12]. No work
has yet studied virtual cloud services in which VMs are only
resold to users without significant additional services.

While their business model seems generally reasonable,
more careful consideration reveals some uncertainty as to
whether CVSPs can viably support their users’ demands.
In particular, CVSPs need to balance offering lower prices
to users with providing acceptable quality-of-service (QoS)
to them. On the one hand, if the CVSPs do not attract
enough users to their platform, they will not achieve the
high usage volumes necessary to receive the CSP’s sustained-
use discounts, and must charge users higher prices. On the
other hand, attracting too many users could cause conges-
tion, forcing users to wait long amounts of time before their
jobs complete. Indeed, in a worst-case scenario, users’ wait-
ing times may grow to infinity as congestion builds up at
the CVSP. Users may then decide to move their jobs to the
CSP, even if it is more expensive. It is therefore unclear
whether virtual CSPs can viably exist in the IaaS market.
We establish conditions for CVSPs’ viability in this paper.

1.3 Research Challenges and Contributions
The viability of a CVSP’s business model depends on

users’ demands for its services: while the CVSP must at-
tract enough users to qualify for the sustained-use discounts,
it must also keep their demands low enough to provide ac-
ceptable QoS in order to compete with the CSP. We take
QoS to be determined by users’ waiting times in this paper

1If a CVSP attracts too many users, the CSP may refuse to
rent VMs to the CVSP to avoid cannibalizing its business.
Full consideration of the CSP’s actions is beyond the scope
of this paper, but we show numerically that the CVSP does
not completely take over the CSP’s business, allowing both
to exist in the market (Section 5).
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Figure 1: A simple one-instance example of a CVSP
that pools usage from three users, reselling them
VMs from CSPs. Shaded regions indicate when jobs
are running for each user, while the grid-shaded re-
gion indicates that user 2 has to wait until user 3
finishes. Blank regions indicate idle time.

and define a CVSP’s viability as its ability to qualify for
sustained-use discounts while providing finite waiting times
for some fixed, nonzero level of user demand.

In reality, users’ demands are not fixed; they are influ-
enced by the CVSP’s decisions. CVSPs that charge users
very low prices, for instance, will attract many users to their
platform. However, these high demand levels may force
users to wait long amounts of time for their jobs to run.
Even if the CVSP is viable at a given demand level, if users’
waiting times are finite but long, then they may not submit
their future jobs to the CVSP. Yet this effect also depends
on the number of VMs rented by the CVSP: if the CVSP has
rented enough VMs, then user jobs could be run simultane-
ously, possibly compensating for the congestion induced by
lower CVSP prices. Complicating matters is the sustained-
use discount offered by the CSP that may increase with the
CVSP’s usage time on an instance, further increasing the
CVSP’s profit at high user demands. Thus, it is unclear
what prices the CVSP should charge its users or how many
VM instances it should rent from the CSP.

In order to model these CVSP decisions, we first develop
a model for users’ received QoS, given their demand levels,
and use it to assess the CVSP’s viability. We then eval-
uate users’ strategically optimal demands and the CVSP’s
corresponding optimal economic strategy. We finally ver-
ify our results with evaluations on a one-month dataset of
cloud workload traces. After a brief review of related work
in Section 2, this paper establishes the following:
CVSPs’ operational viability (Section 3): To determine
the CVSP’s viability, we first evaluate users’ received QoS,
given their demand levels. As such, we develop a model to
characterize the system under Poisson-distributed user ar-
rivals [29, 36, 37] and Pareto-distributed job running times
[10, 25]. We then find the expected user waiting time and
conditions under which it remains bounded. On relating
these conditions to the expected system idle time, we show
that the CVSP faces a tradeoff between lowering the user
waiting time and lowering the system idle time to qualify
for sustained-use discounts. We find that if users’ average



job runtimes are sufficiently small, then the CVSP can en-
sure finite waiting times and qualify for the discounts si-
multaneously: though shorter jobs consume fewer resources,
sufficiently many short jobs will both consume enough re-
sources to qualify for sustained-use discounts and allow for
shorter user waiting times. However, if the threshold for the
sustained-use discounts is too high, then the CVSP is not
viable for any job runtimes: users’ waiting times will grow
to infinity at usage levels compatible with these discounts.
The optimal CVSP strategy (Section 4): We use our
system characterization to formulate the CVSP’s optimal
(profit-maximizing) strategy, i.e., its optimal prices and num-
ber of VMs. We first introduce a model of user demand, in
which we suppose that users choose the frequency of job
submissions and the number of jobs that they submit to the
CVSP depending on the CVSP’s QoS and price provided to
users. We therefore observe a dependence among different
users’ actions: each user’s demand affects the average wait-
ing time in the system, which in turn affects other users’
optimal demands. We find the equilibrium job arrival rate
given this dependence, and then use the viability conditions
derived in Section 3 to find the CVSP’s profit-maximizing
price and number of VMs to rent.
Experiments on a real-world data trace (Section 5):
We finally simulate our model on a real-world user trace
that contains the scheduling events of more than 600,000
jobs and 25 million tasks over one month. We first verify
that users’ job arrival rates follow a Poisson distribution
and that the job runtimes follow a Pareto distribution. We
then simulate the market dynamics, using these to verify
that by choosing the right price to charge users and number
of VMs to rent from the CSP, the CVSP can (i) obtain a
sustained-use discount while maintaining a tolerable waiting
time for users; and (ii) make a positive profit. Moreover, we
show that the CVSP’s market share is limited, giving the
CSP more incentive to allow the CVSP to exist: the CVSP
rents only a portion of the CSP’s total capacity, stabilizing
demand for this portion of the CSP’s capacity and leaving
the rest for the CSP to market directly to users.

2. RELATED WORK
Cloud and datacenter workloads have been extensively

studied. User requests are often modeled as Poisson pro-
cesses for analytic convenience [2, 35], though a number of
early studies showed that the workload interarrival times
experienced by traditional datacenters were not exponen-
tially distributed [17]. However, as datacenter services be-
come more popular and users become more experienced in
scaling and managing their workloads, these traffic dynam-
ics are changing. Recent measurements on different traces
have suggested that job arrivals are in fact Poisson dis-
tributed [29,36,37], consistent with our own findings in this
work. Furthermore, other works have used the Pareto dis-
tribution to model job service times [10, 25], as we do here,
while still others have characterized cloud workloads with-
out leveraging user behavior [21,31].

Other works have considered cloud resource provisioning
and dynamic scheduling from a purely operational perspec-
tive [2, 5, 6, 16, 26, 38]. Power usage is a particularly impor-
tant concern for CSPs, e.g., the authors of [26, 38] used the
heterogeneity of VM resources and workloads to minimize
power consumption and scheduling delay, while [5,6] consid-
ered the tradeoffs between power consumption and schedul-

Table 2: Key terms and symbols.

Symbol Definition

L Number of users who subscribe to the CVSP.

M Number of instances that the CVSP rents from the
CSP.

N Expected number of tasks within one job.

λl Poisson distribution parameter for the lth user’s
arrival rate.

Λ Poisson distribution parameter for the system ar-

rival rate, where Λ =
∑L
l=1 λl.

Λ̃ Instance arrival rate, where Λ̃ = NΛ/M .

t Time duration of two adjacent job arrivals.

τ, τ Job runtime and the minimum runtime.

α Pareto distribution parameter for job runtime.

ϕ Expected waiting time.

T A month’s time.

θ The expected idle-to-runtime ratio of an instance’s
usage

ε Fraction of an instance’s usage of the total time in
a billing cycle.

p Unit price that users pay the CVSP.

π Full unit price without sustained usage that the
CSPs charge.

ω Fraction of full price that the CVSP pays.

ing. Furthermore, authors in [13] derived equilibrium algo-
rithms for cloud resource scheduling. While the CVSP does
need to schedule user jobs on its rented instances, it does not
need to provision resources or consider energy costs, leaving
these to the CSP.

Some works have treated cloud pricing as a game between
CSPs and the users to reach an equilibrium [7,9,33]. As an
alternative, others have used auctions for distributed cloud
resource allocation [18,32,39]. Given that user demands are
crucial to datacenter efficiency, the authors in [19] designed a
prediction-based pricing scheme for demand response in data
centers. We instead propose using the CVSP as a middle-
man to mitigate uncertainty in user demand, thus reducing
user cost and increasing operational efficiency for CSPs.

3. CVSP VIABILITY
In this section, we consider the CVSP’s ability to balance

user QoS with qualifying for sustained-use discounts. To do
so, we analyze a simple job scheduler for the CVSP that
allows us to find users’ expected job waiting times and the
expected system idle time. We suppose that users’ jobs are
all run on the same type of VM instances and that they
have equal priorities: each job request is fulfilled as soon as
enough CVSP instances are available.2 We first formalize
the user arrival distribution (Section 3.1), and then derive
the job waiting time and the system idle time, using these
to establish CVSP viability in Section 3.2.

3.1 System Model
We consider a system of L users, each of whom is expected

2While the scheduler does not consider all nuances of user
jobs, e.g., dependencies between job tasks, we expect that its
qualitative results will hold in practice, and we numerically
validate our assumptions in Section 5.



to submit jobs consisting of N tasks at a time.3 Each task
is required to run on a separate instance, i.e., they cannot
simultaneously share resources on the same instance. We
suppose that the CVSP has rented M (M ≥ N) instances
to allocate to its users. Without loss of generality, we as-
sume that the lth user’s job arrival rate follows a Poisson
distribution with mean λl, l = 1, 2, . . . , L [29, 36, 37]. Thus,
the arrival rate from the point of view of the system (our fo-

cus in this section) is denoted by Λ =
∑L
l=1 λl, and the time

t between two job arrivals is exponentially distributed. As
a heavy-tailed distribution is often used to model job run-
times [10,25], we assume that the time τ for which each job
will run in the system follows a Pareto distribution with pa-
rameter α > 1 and a minimum runtime τ .4 We suppose that
each task within a given job must run for the same amount
of time, which has the expected value ατ

α−1
. All times in this

paper are assumed to be given in hours. We summarize our
notation in Table 2.

We assume that users request resources from the CVSP
independently over a continuous time interval. After re-
ceiving a job request of N tasks from a user, the CVSP
randomly allocates the tasks to N instances. Since we do
not distinguish between different instances, each instance
has the same probability of being available at any given
time, and thus of being assigned a task. The probability
that an instance will be chosen for a given job request is
then 1−

(
M−1
N

)
/
(
M
N

)
= N

M
, where

(
M
N

)
is the binomial coef-

ficient representing the number of combinations of selecting
N items from a set of M items. Now, it can be established
that the task arrival rate for each instance also has a Poisson
distribution:

Lemma 1. If (i) job arrivals follow a Poisson distribution
with parameter Λ, (ii) each submitted job requires N tasks,
and (iii) the CVSP can run the jobs on M instances, then the
task arrival rate for each of the instances follows a Poisson
distribution with parameter N

M
Λ.

Proof. Suppose that for a given instance, t is the time
interval between the starting times of two adjacent requests.
We can derive the probability density function of t:

f(t) =

∞∑
j=1

(
N

M

)(
1− N

M

)j−1
Λjtj−1e−Λt

(j − 1)!

=
N

M
Λe−Λt

∞∑
j=1

(
(1− N

M
)t
)j−1

(j − 1)!
=
N

M
Λe−

N
M

Λt.

To understand the above derivations, we note that Λjtj−1e−Λt

(j−1)!

is the probability of the jth Poisson arrival in time t accord-

ing to the Erlang distribution,
(
1− N

M

)j−1
is the probability

that the first j − 1 users’ jobs are all assigned to the other
instances, and one of the jth user’s jobs is assigned to this

instance with probability N
M

. Since f(t) = N
M

Λe−
N
M

Λt is the
probability density function of an exponential distribution
with parameter N

M
Λ, the job arrival rate for this instance

follows the Poisson distribution with parameter N
M

Λ.

Henceforth, we refer to Λ and N
M

Λ as the system arrival

3Our results remain the same if N instead represents the
expected number of tasks per job; we assume in this section
that each job has N tasks for simplicity.
4On Google’s Cloud Platform, all jobs run for a minimum
of 10 minutes, or τ = 1/6 of an hour.
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Figure 2: Waiting time and idle time between two
consecutive task arrivals. A new task must wait if it
arrives before all previous tasks have finished run-
ning. On the other hand, there will be idle time for
the system if the next task has not arrived by the
time the previous task has finished running.

rate and the instance arrival rate, respectively. For ease of
notation, Λ̃ = N

M
Λ will denote the instance arrival rate.

Although the result in Lemma 1 is not qualitatively sur-
prising, it allows us to quantify the expected time between
two task arrivals at an instance as Λ̃−1 = M

NΛ
. Thus, if the

next task is expected to arrive before the current task fin-
ishes running, i.e., Λ̃−1 < ατ

α−1
(recall ατ

α−1
is the expected

task runtime), we would expect to observe larger waiting
times that could diverge to infinity. Conversely, if the ex-
pected task runtime is shorter than the expected time be-
tween adjacent task arrivals, i.e., Λ̃−1 ≥ ατ

α−1
, the system

may experience idle time between jobs. We formalize this
intuition in the next section.

3.2 Balancing QoS with System Idle Time
We now evaluate the CVSP’s viability using the above sys-

tem model by first finding the conditions for finite job wait-
ing times and then the conditions under which the CVSP’s
system idle time is low enough to qualify for sustained-use
discounts.

3.2.1 User Waiting Time
We assume that each instance runs its assigned tasks in a

first-come-first-served manner: a new arrival to an instance
will only begin to run as soon as all of the tasks that arrived
before it have completed. We let ϕk denote the waiting
time of the kth arrival, as illustrated in Figure 2: the kth
task first waits for time ϕk and then spends time τ to run.
Two possibilities can then happen to the (k + 1)st task:
either it arrives before the kth task has finished (Figure 2(a);
t < ϕk + τ) and has to wait for time ϕk+1 = ϕk + τ − t
before it is launched, or it arrives after the kth task finishes
(Figure 2(b); t ≥ ϕk + τ) and does not wait (ϕk+1 = 0).

Taking these two possibilities into consideration, the ex-
pected waiting time of the next task arrival can be written
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Figure 3: An illustration that the expected waiting
time increases with the system arrival rate Λ.

in terms of the waiting time of the previous task: ϕk+1 =∫∞
τ

( ∫ ϕk+τ

0
(ϕk + τ − t)Λ̃e−Λ̃tdt

)
ατα

τα+1 dτ , where we have

abused on notation and use ϕk+1 to refer to the expected
waiting time of the (k+ 1)st task instead of the actual wait-
ing time. This expression can be further simplified to

ϕk+1 = ϕk−
1

Λ̃
+

α

α− 1
τ+

α

Λ̃

(
Λ̃τ
)α

e−Λ̃ϕkΓ
(
−α, Λ̃τ

)
, (1)

where Γ(s, z) ≡
∫∞
z
xs−1e−xdx is the upper incomplete gamma

function.
Note that (1) is a fixed-point function for the expected

task waiting times, and, in particular, is a recursion ϕk+1 =
g(ϕk) for the implied function g. If the CVSP does not
rent enough instances, i.e., if M is too small, it is possible
that ϕk+1 will diverge to infinity. In such cases, the CVSP
would not be viable, since users would eventually have to
wait forever. To ensure finite waiting times, we derive a
lower bound on M for which the waiting time converges to
a fixed point:

Proposition 1. If the number of instances rented by the
CVSP satisfies

M ≥
⌈
αN

α− 1
Λτ

⌉
, (2)

then asymptotically as k →∞, all of the tasks have a finite
expected waiting time

ϕ =
1

Λ̃
log

α
(

Λ̃τ
)α

Γ
(
− α, Λ̃τ

)
1− ατ

α−1
Λ̃

 , (3)

where log denotes the natural logarithm.

Proof. We show that the fixed-point iteration (1) con-
verges if and only if (2) holds. For ease of notation, we first

rewrite (1) by replacing a = 1

Λ̃
− α
α−1

τ and b = α

Λ̃

(
Λ̃τ
)α

Γ
(
−

α, Λ̃τ
)

and obtain:

g(ϕk) = ϕk − a+ be−Λ̃ϕk .

To show that (2) is a necessary condition, we note that (2)
is equivalent to a ≥ 0. If a < 0, then since b > 0, we have
g(ϕk) ≥ ϕk − a = ϕ0 − ka→∞ as k →∞, so the iteration
cannot converge.

To show that (2) is a sufficient condition, we use Banach’s
fixed-point theorem. We first show that g(ϕk) maps [0, R]

to itself for some R > 0, and then that g′(ϕk) ∈ (−1, 1) for
all ϕ, i.e., that g is a contraction mapping on [0, R]. Since
ϕ0 = 0, i.e., the first waiting time is 0 (since there are no
preceding tasks), this is sufficient to show convergence.

We first show that if ϕk ∈ [0, R], then g(ϕk) ≥ 0. Since
g(ϕk) is convex with respect to ϕk, by letting its first-order

derivative g′(ϕk) = 1− bΛ̃e−Λ̃ϕk = 0, we have

min
ϕk

ϕk+1 = gmin(ϕk) = g
( 1

Λ̃
(log b+ log Λ̃)

)
=

1

Λ̃
(log b+ log Λ̃)− a+

1

Λ̃

=
1

Λ̃
(log b+ log Λ̃) +

α

α− 1
τ ≥ 0.

We now verify that for some R > 0, if ϕk ∈ [0, R], then
g(ϕk) ≤ R. Since g is a convex function, we have g(ϕk) ≤
max

{
R− a+ be−Λ̃R, b− a

}
. Thus, we require that R ≥

max
{
R− a+ be−Λ̃R, b− a

}
, i.e., that R ≥ b− a and that

a ≥ be−Λ̃R ⇐⇒ log
(a
b

)
≥ −Λ̃R,

so that R ≥ − log(a/b)

Λ̃
. For R ≥ max

{
b− a, − log(a/b)

Λ̃

}
, g

maps [0, R] to itself.

We now show that |g′(ϕk)| < 1. Since b > 0 and Λ̃ > 0,

we see that g′(ϕk) = 1− bΛ̃e−Λ̃ϕk < 1 for ϕk ≥ 0. To show
that g′(ϕk) > −1, we note that min g′(ϕk) = g′(minϕk) due
to the monotonic increase of g′(ϕk). We thus deduce that

1− bΛ̃e−Λ̃(minϕk) > −1 ⇐⇒ −α
α− 1

N

M
Λτ < log 2,

which always holds since α > 1. Thus, the recursion (1)
converges to an equilibrium. Furthermore, by setting ϕk =
ϕk+1 in (1), the result in (3) can be obtained.

Note that a finite task waiting time ϕ necessarily implies
a finite waiting time for the job as a whole. As a remark,
we observe that the condition in (2) is equivalent to Λ̃−1 ≥
ατ/ (α− 1), i.e., the expected time between task arrivals
should be larger than the expected runtime, and this neces-
sarily means that the denominator in (3) is positive.

Intuitively, to ensure a finite waiting time, the next task
should on average arrive after the previous task has finished
running. Proposition 1 implies that finite waiting times are
more likely to occur when jobs have a shorter runtime (α is
larger) and arrive less often (Λ is smaller). These conditions
imply that jobs require fewer resources, allowing the CVSP
to rent fewer VMs while still maintaining an upper bound
on users’ expected waiting times. We can mathematically
verify this intuition in the following corollary:

Corollary 1. The waiting time ϕ, as defined in (3), in-

creases with the instance arrival rate Λ̃.

Proof. Although Corollary 1 is intuitively true, its proof
is not straightforward. To show the monotonic increase of
ϕ(Λ̃), we prove that, for any z ≥ 1, ϕ

(
1
z
Λ̃
)

decreases with z.
Similar to the proof of Proposition 1, we further rewrite ϕ(z)

by replacing a(z) = z

Λ̃
− ατ
α−1

and b(z) = αz

Λ̃
( 1
z
Λ̃τ)αΓ(−α, 1

z
Λ̃τ)

and obtain ϕ(z) = 1

Λ̃
log
(
b(z)a(z)−1

)z
. Due to the mono-

tonic increase of the logarithm function, ϕ(z) monotonically
decreases if g(z) =

(
b(z)a(z)−1

)z
monotonically decreases.



By taking the first-order derivative of g(z) with respect to
z, we have

∂g(z)

∂z

=

(
log

b(z)

a(z)

)(
b(z)

a(z)

)z
a(z)2

(
∂b(z)

∂z
a(z)− b(z)∂a(z)

∂z

)
,

where ∂b(z)
∂z

a(z) ≤ b(z) ∂a(z)
∂z

is equivalent to

τ

(
z − α

α− 1
Λ̃τ

)
τ−α−1e−

1
z

Λ̃τ

≤ α(z − Λ̃τ)

∫ ∞
τ

τ−α−1e−
1
z

Λ̃τdτ.

By leveraging the condition in (2), α
α−1

1
z
Λ̃τ ≤ log 2 leads to

τ
(
z − α

α−1
Λ̃τ
)
≤ α(z − Λ̃τ). Combing with the fact that

τ−α−1e−
1
z

Λ̃τ ≤
∫∞
τ
τ−α−1e−

1
z

Λ̃τdτ , we find that ∂b(z)
∂z

a(z) ≤
b(z) ∂a(z)

∂z
always holds.

To illustrate Corollary 1, Figure 3 shows the joint effects
of the number of instances M that the CVSP rents and the
expected number of instances N that each user will request
on the waiting time ϕ. As expected, the waiting time de-
creases with the number of rented instances (as shown by
the solid curves with grey markers). Also, the instance ar-

rival rate Λ̃ ≡ NΛ/M decreases as the number of instances
M increases. However, the waiting time increases with N ,
as does Λ̃ (as shown by the dashed curves with blue mark-
ers). As Λ approaches the upper bound in (2), we see that
the waiting time increases rapidly, eventually approaching
infinity as predicted by Proposition 1.

3.2.2 System Idle Time and CVSP Viability
The second requirement for the CVSP’s viability is to en-

sure that its expected idle time falls below the threshold
required to qualify for a sustained-use discount. Intuitively,
less idle time occurs when users submit jobs more frequently
and fewer instances have been rented by the CVSP, i.e., the
opposite conditions as required for a finite waiting time in
Proposition 1. We now find conditions under which both
objectives can hold.

We define the idle-to-runtime ratio of the system to be
the expected ratio of each instance’s idle time to the time
for which jobs run on the instance. To derive this ratio,
we take an integral over the range τ ≤ t, and arrive at the
following proposition:

Proposition 2. The expected idle-to-runtime ratio is

θ = α
(

Λ̃τ
)α

Γ
(
− α− 1, Λ̃τ

)
. (4)

Proof. When τ ≤ t, the idle time is t − τ after a job
finishes running and before the next job arrives. So the idle-
to-runtime ratio for the system is given by t−τ

τ
. Since τ and t

follow the Pareto and exponential distributions respectively,
the expected idle-to-runtime ratio is integrated over τ ≤ t
and τ ≥ τ . The proof is readily obtained by evaluating∫ ∞

τ

(∫ t

τ

1

τ
(t− τ)

ατα

τα+1
dτ

)
Λ̃e−Λ̃tdt

=

∫ ∞
τ

(
1

α+ 1
ταt−α +

α

α+ 1
τ−1t− 1

)
Λ̃e−Λ̃tdt

=
α

α+ 1

(
Λ̃τ
)−1

e−Λ̃τ − α

α+ 1

(
Λ̃τ
)α

Γ
(
−α, Λ̃τ

)
.

Using integration by parts, i.e., Γ(−α, Λ̃τ) = (−α−1)Γ(−α−
1, Λ̃τ)+(Λ̃τ)−α−1e−Λ̃τ , the above integral can be further re-

duced to α(Λ̃τ)αΓ(−α− 1, Λ̃τ).

The CVSP qualifies for a sustained-use discount if the idle-
to-runtime ratio is sufficiently low. Suppose that the CSP
offers sustained-use discounts once the overall usage of each
CVSP’s instance exceeds a fraction ε ∈ (0, 1] of the total
time in an instance billing cycle. Equivalently, the CVSP
must satisfy 1

θ+1
≥ ε, where 1

θ+1
is the fraction of time used

to run tasks when the instance is either idle or running a
task. This condition holds for higher instance arrival rates
(larger Λ̃):

Corollary 2. The idle-to-runtime ratio θ given in (4)

decreases as the instance arrival rate Λ̃ increases. Further-
more, the CVSP qualifies for a sustained-use discount if the
number of instances that it rents satisfies

M ≤
⌊(

1

α
+ 1

)(
1

ε
− 1

)
NΛτ

⌋
. (5)

Proof. By taking the first-order derivative of θ with re-
spect to Λ̃, we have

∂θ

∂Λ̃
= ατ(Λ̃τ)α−1

(
αΓ(−α− 1, Λ̃τ)− (Λ̃τ)−α−1e−Λ̃τ

)
(a)
= − ατ

α+ 1
(Λ̃τ)α−1

(
e−Λ̃τ

(Λ̃τ)α+1
+ αΓ(−α, Λ̃τ)

)
≤ 0,

where (a) is due to Γ(−α, Λ̃τ) = (−α − 1)Γ(−α − 1, Λ̃τ) +

(Λ̃τ)−α−1e−Λ̃τ . Since θ decreases with Λ̃, we then need to

prove θ ≤ 1
ε
− 1 at Λ̃ = 0. By substituting limΛ̃→0 Γ(−α −

1, Λ̃τ) = 1
α+1

(Λ̃τ)−α−1 and combining with θ ≤ 1
ε
− 1, we

have θ ≤ α
α+1

(
N
M

Λτ
)−1 ≤ 1

ε
− 1, which leads to (5).

We thus find that the CVSP is viable if the conditions in
Proposition 1 and Corollary 2 are simultaneously satisfied:⌈

αN

α− 1
Λτ

⌉
≤M ≤

⌊(
1

α
+ 1

)(
1

ε
− 1

)
NΛτ

⌋
, (6)

so that users experience finite waiting times and the CVSP
qualifies for a sustained-use discount. Indeed, we find that

(6) has a solution when α
α−1
≤ (α+1)(1−ε)

αε
, leading to

Corollary 3. There exists an instance arrival rate Λ̃
for which (6) is satisfied, i.e., the CVSP is viable, if

α ≥
√

1− ε
1− 2ε

, (7)

which has a positive solution α only if ε < 1
2

.

Since the expected runtime decreases as α increases, we con-
clude that jobs with shorter runtimes are more suitable for
the CVSP. Intuitively, if the majority of users’ job runtimes
are sufficiently small, then even if many jobs are submit-
ted to the system, each job will not have to wait for very
long. Thus, the CVSP can maintain low waiting times and
low idle-to-runtime ratios, thus qualifying for a sustained-use
discount, by attracting smaller jobs. Indeed, these smaller
jobs are exactly those that ought to be attracted to the
CVSP; jobs with longer runtimes naturally qualify for a



CVSP 

Strategy 
System 

Characteristics 

User 

Demand 

Λ  

QoS 

φ 
Resource 

M 

Price 

p 

Proposition 1 

Proposition 2 

Proposition 3 

CVSP 

Profit 

Usage 

 

 

Proposition 3 

Proposition 2 

Proposition 1 

Figure 4: Tradeoffs between different parameters,
showing their economic and behavioral impacts.

sustained-use discount at the CSP and need not make use
of the CVSP.

However, if the sustained-use threshold ε is too large,
shorter average runtimes are not enough to ensure finite job
waiting times. As ε grows, the CVSP must attract more
and more jobs to lower the system idle time; after a certain
point, jobs will need to wait for too many preceding jobs to
finish, and the waiting time will grow to infinity despite the
short job runtimes. While we do not expect the threshold
of ε = 0.5 in Corollary 3 to hold exactly, this result indi-
cates that even relatively generous thresholds, like ε = 75%
utilization, may not allow for CVSP viability.

4. THE OPTIMAL CVSP STRATEGY
By leveraging the characteristics of the CVSP workload

derived in Section 3, we can now derive the users’ and the
CVSP’s optimal strategies. Both must trade off between
possibly conflicting objectives: users would like both low
waiting times and low instance prices, while the CVSP de-
sires as little idle time as possible in order to qualify for a
larger sustained-use discount. The user and CVSP decisions
can be broken down as follows:

• User demand (job arrival rates): Users’ demands are
dictated by their job arrival rates λl, l = 1, ..., L, which
determine the frequency of job submission. Intuitively,
users’ demands increase as their waiting times ϕ de-
crease and the CVSP’s price p drops. We assume that
users adjust their demands to maximize their expected
utilities, which are a function of these factors.

• Waiting time (user QoS): Though each user’s demand
λl is expected to decrease as the waiting time ϕ in-
creases, ϕ increases with the system arrival rate Λ
(Corollary 1), which paradoxically corresponds to a
higher demand λl from user l. Moreover, each user’s
demand depends on the other users’ demands via the
waiting time ϕ. Given this dependence, we find an
equilibrium system arrival rate at which all of the users
can simultaneously maximize their utilities. Since ϕ
also depends on M , the number of instances rented by
the CVSP, this equilibrium demand indirectly depends
on M .

• CVSP profit (idle-to-runtime ratio): We suppose that
the CVSP’s objective is to maximize its profit, which
depends on the idle-to-runtime ratio θ: a lower θ (less
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Figure 5: Example of the utility-maximizing de-
mand Λ decreasing with price p for a single user.

idle time) leads to the CVSP obtaining a higher sustained-
use discount from the CSP. The CVSP can influence
θ through two decision variables: the price p that it
charges users, which in turn influences users’ demands
Λ, and the number of instances M that it rents from
the CSPs. Intuitively, a smaller M can lead to a lower
θ, but may also lead to a longer waiting time and thus
lower user demand. Therefore, different values of M
and p can lead to lower or higher profit.

Figure 4 visualizes the above discussion (Proposition 3 is
given in Section 4.1).

In the rest of this section, we first derive a relationship
between the user demand, the CVSP price, and the expected
waiting time (Section 4.1). We then formulate the CVSP’s
profit maximization problem (Section 4.2), which the CVSP
solves to determine the optimal M and p.

4.1 User Demands
We first derive users’ optimal demands by considering

their utilities. We define an overall utilization rate for each
user as the ratio of his or her expected job runtime to the
expected waiting time, multiplied by the user’s job arrival
rate and the number of tasks per job, i.e., rl = λl

ατN
(α−1)ϕ

.

User utility generally increases with this rate, but with di-
minishing returns (i.e., only increasing modestly when the
runtime is already much larger than the waiting time). As
such, we model this using the standard concave utility func-
tion log(1 + rl) [20,39], with the lth user’s utility given by:

U(λl | p) = γl log

(
1 + λl

ατN

(α− 1)ϕ

)
− pλl

ατN

α− 1
. (8)

Here, pλl
ατN
α−1

is the expected amount that user l pays to

the CVSP given its expected job runtime ατ
(α−1)

, and γl > 0

is a normalization constant that encodes the user’s relative
utilities from its waiting time and payment to the CVSP.

Note that the waiting time ϕ depends on all users’ job
arrival rates. Thus, due to λl’s contribution to the waiting
time, the utility in (8) for user l may not be concave in user
l’s demand λl. However, we see in Figure 5 that user l’s util-
ity does first increase and then decrease in λl. For instance,
given a price p = $0.1, the user’s maximum utility occurs
at λl = 4.2, corresponding to a waiting time of 0.046 hours.
Higher arrival rates decrease user utility due to (i) higher



costs and (ii) longer expected waiting times. User utility
can therefore be maximized by setting ∂U(λl | p)/∂λl = 0.

We now derive the system’s job arrival rate Λ =
∑L
l=1 λl

assuming that all users maximize their own utilities, i.e.,
∂U(λl | p)/∂λl = 0 for all l = 1, . . . , L. We find that each
user’s utility-maximizing arrival rate satisfies γlϕ − pϕ2 =
λl(γl

∂ϕ
∂Λ

+ p ατ
α−1

Nϕ), leading to the following equilibrium
system arrival rate:

Proposition 3. If all users choose the job arrival rates
that maximize their utilities, then the system arrival rate
satisfies

Λ =

L∑
l=1

γlϕ− pϕ2

γl
∂ϕ
∂Λ

+ p ατ
α−1

Nϕ
. (9)

We thus find that Λ decreases for higher prices: if the CVSP
charges users a higher price p, they are less willing to endure
larger job waiting times, leading to a lower demand. We
illustrate in Figure 5 that the utility-maximizing Λ decreases
with p, as shown in the bolded black arrow curve.

4.2 Profit Maximization
We now characterize the CVSP’s sustained-use discount

in terms of the idle-to-runtime ratio θ. Letting π denote
the CSP’s full unit price without discounts, we expect the
discount to increase as θ decreases, i.e., the unit price should
be cheaper when the CVSP has less idle time. Letting 1−ω
denote the discount, i.e., ω is the fraction of the full price
that the user must pay, we define ω as a linear function of
the idle-to-runtime ratio θ:

ω(θ) = δ1θ + δ2, (10)

where δ1 > 0 and δ2 > 0 are two small fractions, satisfying
ω(θ) ∈ (0, 1] for any θ ≤ 1−ε

ε
. This threshold corresponds to

ε ≤ 1
1+θ

, i.e., the fraction of time during which some tasks
are running should be larger than ε. In Appendix A, we give
a real-world example of (10) for Google Cloud Platform.

The CVSP’s objective in choosing how many instances to
rent and how much to charge is to maximize its own profit.
The monthly payment to CSPs and the revenue received
from users are ω(θ)π T

θ+1
and p T

θ+1
respectively, where T

represents a month’s time, and T
1+θ

corresponds to the ex-
pected amount of time that a job is running on each instance.
The CVSP thus solves the following optimization problem
to maximize its profit:

maximize M
(
p− ω(θ)π

) T

θ + 1
(11a)

subject to ω(θ)π ≤ p ≤ π (11b)

ω(θ) = δ1θ + δ2 (11c)⌈ αN

α− 1
Λτ
⌉
≤M ≤

⌊α+ 1

α

1− ε
ε

NΛτ
⌋

(11d)

variable: M ∈ Z+, p ∈ R+, (11e)

where (11b) ensures that the price is lower than the full
price and higher than the price with sustained-use discount,
so that users are motivated to use the CVSP in the first place
and the CVSP can have positive profit. The left-hand side
of (11d) ensures a finite waiting time as in Proposition 1,
and the right-hand side ensures a usage larger than ε as
stated in Corollary 2. The waiting time ϕ, idle-to-runtime
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Figure 6: Numbers of jobs in different priority
groups for our dataset.

ratio θ, and equilibrium system demand Λ used in (11) are
respectively given in (3), (4), and (9).

If a joint solution to (3), (4), and (9) can be found subject
to the constraints (11b–11d), then the profit maximization
(11) has a solution. We expect that such a solution does ex-
ist, since these three equations can be reduced to one nonlin-
ear equation in p and M . Although (11) is a discontinuous,
mixed integer, nonlinear programming problem, it can be
numerically solved by exhaustively considering all possible
values of M and doing a line search for the optimal p.5 In
the next section, we analyze how the CVSP profits from
different combinations of M and p. This not only provides
insights into the interactions between the CVSP’s strategy
and user behavior, but also demonstrates that there is a fea-
sible set for (11), i.e., that the CVSP can make money in
the IaaS market.

5. DATA-DRIVEN EVALUATION
To verify our models and results, we employ a trace from

Google’s production compute cluster, spanning 672,003 jobs
over roughly a month-long period in May 2011 [34]. We
begin in Section 5.1 by analyzing the job arrival and run-
time distributions, showing that they match our assump-
tions within a tolerable margin of error. Then, in Section
5.2, we use simulations to validate the system characteriza-
tion and profit maximization derived in Sections 3 and 4,
respectively. Overall, we illustrate that all three parties –
CSPs, CVSP, and users – can benefit from an optimal cloud
resource reselling mechanism.

5.1 Model Validation
Data trace. The user trace contains timestamp records

of machine events, job events, and task events; as the re-
source utilization of different jobs was studied in [26,38], we
do not consider these parameters in our analysis. When a
job is submitted, the user can specify its priority as one of
12 integer groups from 0 to 11. In general, a higher num-
bered group will be used for a more urgent job, while lower-
prioritized jobs may be, e.g., remote monitoring products or
backend batch processing. Since jobs’ priorities will affect
their waiting times and runtimes, e.g., due to higher-priority

5Since the value of M is at most 1000 for all practical pur-
pose, (11) can be solved in a reasonable amount of time.



(a) Priority group 0 (Λ = 200,
p-value = 0.0015).

(b) Priority group 1 (Λ =
150, p-value = 0.1998).

(c) Priority group 4 (Λ = 195,
p-value = 0.001).

(d) Priority group 6 (Λ =
110, p-value = 0.001).

(e) Priority group 8 (Λ =
160, p-value = 0.001).

(f) Priority group 9 (Λ = 66,
p-value = 0.0625).

Figure 7: Comparison between the empirical and
fitted exponential CDFs of the duration between job
submissions for different priority groups. The curves
qualitatively match in each case, and the priority
groups 0, 1 and 9 have non-rejected p-values.

jobs being allocated more resources faster, we consider the
priority groups separately.

Figure 6 shows the number of jobs in each priority group.6

For brevity, we show only the results for the most used
groups in the body of the paper. Overall, we find that the
job arrival and runtime distributions are comparable to the
Poisson and Pareto distributions assumed in Section 3.

Poisson-distributed arrival rates. We validate our as-
sumption of Poisson arrivals by examining the distributions
of job interarrival times for the priority groups with sub-
stantial sample sizes, as shown in Figure 7. In all of the
plots, the black dotted line gives the empirical cumulative
density function (CDF), and the blue dashed line represents
the best-fit CDF from an exponential distribution. Visually,
the curves are qualitatively similar in each case. To investi-
gate these fits statistically, we use the Lilliefors test on the
null hypothesis that the waiting times come from an expo-
nential distribution, at the significance level of 0.1% (i.e., if
the test returns a p-value ≤ 0.001, it rejects the hypothesis
of an exponential distribution). The resulting p-values are
given in the captions; the Lilliefors test does not reject the

6We exclude jobs submitted before the beginning of the trace
as we do not know their runtimes or arrival times.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3
x 10

4

Priority group

N
u
m

b
e
r 

o
f 
jo

b
s

 

 

11.11

17.34

1.83

3.57

1.50

0.00 6.88 0.00

4.45 42.42

90.47 0.00

0.0167<τ<0.25

0.25<τ<0.5

0.5<τ<2

2<τ<24

24<τ<700

Figure 8: Distribution of the job runtime in each
priority group. The number on each bar indicates
the average runtime in the priority group.

(a) Priority group 0
(α = 0.71, ξ = 2.14,
σ = 21187.83, µ = 27.98).

(b) Priority group 4
(α = 1.01, ξ = 524.18,
σ = 5037.03, µ = 0.96).

Figure 9: Comparison of the empirical and
piecewise-fitted CDFs of the job runtime distribu-
tions. Qualitatively, the CDFs appear to be very
similar for both groups. The R-squared fit statistics
are R2 = 0.997, 0.872 for the Pareto and Generalized
Pareto (GPD) fits respectively for priority group 0;
R2 = 0.9913, 0.9319 for the Pareto and GPD fits re-
spectively for priority group 4.

hypothesis for the jobs in priority groups 0, 1, and 9, though
it does for the jobs in priority groups 4, 6, and 8. The CDFs
for priority groups 4, 6, and 8 in Figure 7(c), 7(d), and 7(e)
have a small kink around a 20-second interarrival time, sug-
gesting that Google may impose a small minimum delay on
jobs whose tasks are not scheduled simultaneously. The kink
is likely the reason that the p-value for this group does not
reject the null hypothesis.

Pareto-distributed job runtimes. Figure 8 depicts
the number of jobs with various runtimes in each priority
group, identified by the stacked color bars.7 We notice that
the longest running jobs, i.e., those running for more than
one day, as shown in the red bars with solid outlines, are
mostly in either the highest or lowest priority groups. Jobs
with lower priority may be long-running computational jobs,
which are not latency-sensitive, while higher priority jobs
may be real-time, long-term applications that cannot toler-
ate interruptions.

As with the arrival rates, we choose to examine only the

7The total number of jobs in Figure 8 is less than that shown
Figure 6 because we additionally exclude the jobs that were
unable to finish within the trace period; we cannot determine
the total runtimes of those jobs.
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Figure 10: Number of jobs comprising different
numbers of tasks in different ranges of job runtimes.
Those with shorter runtimes (10(a)) have more tasks
than those with longer runtimes (10(b)).

runtimes of priority groups 0 and 4, which have the most
jobs in Figure 8. In each plot of Figure 9, the empirical
CDF, denoted by the dotted black lines, evinces a power-
law distribution at the beginning with a more complex tail.
To incorporate the dual nature of the distribution in fitting
the CDF, we use the following piecewise probability density
function that makes the first segment a Pareto distribution
and the tail a generalized Pareto distribution (similar to the
process used for job stragglers in [28]):

f(τ) =


ατα

τα+1
, if τ ≤ τ ≤ τ̂ ,

1

σ

(
1 + ξ

τ − µ
σ

)−(
1
ξ

+1
)
, if τ ≥ τ̂ ,

where the CDF is F (τ) = 1 − (τ/τ)α for τ ≤ τ ≤ τ̂ and

F (τ) = 1 − (τ/τ̂)α +
(
1 + ξ τ̂−µ

σ

)− 1
ξ −

(
1 + ξ τ−µ

σ

)− 1
ξ for

τ ≥ τ̂ . Setting the domain boundary at τ̂ = 24 hours, we fit
the parameter α for the Pareto distribution (the dashed blue
curves in Figure 8) and the parameters σ, ξ, and µ for the
generalized Pareto distribution (the dash-dot green lines).
We observe that the fitted CDF fits the empirical data well
visually, and quantitatively, all of the R-squared fit statistics
are above R2 = 0.87. Although α in Figure 9(a) is less than
1, implying an infinite expected runtime in theory, it is close
to 1; since all runtimes are in practice finite, we assign a
value to α that is slightly larger than 1 to simulate the job
runtimes in Section 5.2.

Expected number of tasks. Another important prop-
erty of the jobs is the number of tasks; as in Section 3, N can
affect the instance arrival rate (cf. Lemma 1), and hence-
forth the expected waiting time (cf. Proposition 1) and the
idle-to-runtime ratio (cf. Proposition 2). Moreover, jobs
that require more tasks than the CVSP’s number of rented
instances M will not be able to run on the CVSP. The av-
erage number of tasks for all jobs recorded in the trace is
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Figure 11: The number of jobs in the priority groups
that have comprise numbers of tasks in given ranges.
A larger circle implies that more jobs in that priority
group have that number of tasks, with the size of
dots in logarithmic scale. Most jobs have fewer than
100 tasks.

190, though a large majority of jobs comprise fewer than 100
tasks.

In Figure 10, we show the histograms for the number of
tasks per job, over jobs of all priorities. Since Google of-
fers sustained-use discounts when the job usage exceeds one
quarter of a month (cf. Appendix A), we consider jobs above
and below this usage threshold separately. As expected, jobs
with shorter runtimes (in Figure 10(a)) have more tasks than
the jobs with longer runtimes (in Figure 10(b)): jobs that
can be divided into more tasks are more likely to have lower
per-task runtimes. Thus, some jobs with short runtimes may
wish to use the CVSP in order to receive a sustained-use dis-
count, but will not be eligible to do so if the CVSP does not
have enough instances. We show in the next section that it
is optimal for the CVSP to rent only a limited number of
instances, forcing these jobs to use services from the CSP
instead and allowing both the CVSP and CSP to coexist in
the IaaS market.

Figure 11 shows the numbers of tasks for jobs in each of
the priority groups. We observe that, as we would expect
from Figure 10, most jobs have fewer than 100 tasks. There
is little visual consistency between the numbers of tasks for
jobs with different priorities, but priority groups 0 and 4
clearly have the most jobs of all the priority groups, as is
consistent with Figure 8. Interestingly, both of these priority
groups appear to have somewhat more jobs that require a
large number of tasks. We conjecture that priority groups
with more jobs are more likely to include relatively rare jobs
that have large numbers of tasks.

5.2 Trace-based Simulations
We use jobs from the trace that belong to priority group

0 to simulate the behavior of the CSPs, CVSP, and users.
We first consider the CSP’s revenue from these jobs with
sustained-use discounts, before the CVSP enters the mar-
ket. We then consider the CVSP’s revenue and user utility
after the CVSP enters the market. This trace was taken be-
fore Google introduced sustained-use discounts, so we can-
not fully measure the effect of the sustained-use discounts
in practice, but the job workload data still allow us to ap-
proximate its anticipated effects.



Usage

(0 0.25] (0.25 0.5] (0.5 0.75] (0.75 1]

N
u
m

b
e
r 

o
f 
jo

b
s

10
2

10
3

10
4

10
5

27209

176 177
220

(a) Number of jobs.

Usage

(0 0.25] (0.25 0.5] (0.5 0.75] (0.75 1]

T
o
ta

l 
ti
m

e
 (

H
o
u
rs

)

×10
6

0

5

10

15 14662172.12

8024884.44

1794120.15

3146281.01

(b) Total time.

Usage

(0 0.25] (0.25 0.5] (0.5 0.75] (0.75 1]

A
v
e
ra

g
e
 d

is
c
o
u
n
t

0

0.2

0.4

0.6

0.8

1
1.00

0.96
0.87

0.76

(c) Average fraction paid.

Usage
(0 0.25] (0.25 0.5] (0.5 0.75] (0.75 1]

R
e
v
e
n
u
e
 (

$
)

×106

0

0.5

1

1.5

2

2.5
2509311.66

1315351.90

267829.52
409052.43

(d) Revenue.

Figure 12: The number of jobs, the total time for which users need to pay, the average fraction paid after
the sustained-use discount, and the revenue for the CSP before the CVSP enters the market. All quantities
are broken out for jobs whose usage is in a different range of runtimes.

5.2.1 CSP Revenue without the CVSP
We take the full price offered by the CSP to be p =

$0.17, which is in between the current prices that Google
charges for different instance types [14]. Assuming that the
users of the CSP acted so as to maximize their utilities,
we can then use the workload trace to reverse-engineer the
users’ utility parameters. From (8), we write U(λl | p) =

γ log
(

1 + λl
ατN

(α−1)ϕ

)
− pλl

ατ
α−1

N , assuming that all users

have the same γ parameter for simplicity. As in Proposi-
tion 3, we can solve for the system arrival rate as

Λ =
L(γ − pϕ)

p ατ
α−1

N
. (12)

We take the system arrival rate to be Λ = 200, as discovered
in Figure 7(a). We also find from the workload trace that
the expected number of tasks per job is N = 138, with
L = 306 unique users submitting jobs. Furthermore, the
jobs experience an average delay of ϕ = 6.85 × 10−3 hours
between the time when they are submitted and the time
they begin to run. We can then use (12) to find that γ = 9.

Given these user utilities, we now calculate the CSP’s rev-
enue under the sustained-use discounts, assuming no change
in user demand (i.e., the CVSP has not yet entered the mar-
ket). We suppose that the CSP follows the pricing discounts
specified in Appendix A. In Figure 12(a), we count the num-
ber of jobs that fall into each runtime range of the piece-
wise discount function, e.g., jobs falling into the (0, 0.25]
range run for less than one-quarter of the month discov-
ered in the dataset. We can then obtain the total instance
hours consumed by the jobs in each range by calculating∑
i=∈{All jobs}Niτi, as shown in Figure 12(b). Though there

are about the same numbers of jobs in the ranges (0.25, 0.5],
(0.5, 0.75], and (0.75, 1], those in the range (0.25, 0.5] have a
much larger number of instance hours, suggesting that these
jobs have a larger average number of tasks. In Figure 12(c),
we show the average sustained-use discount for all jobs in
different usage ranges, and we finally obtain the revenue of
the CSP from jobs in each range in Figure 12(d). Jobs in the
range (0, 0.25] each run for less than a quarter of the month,
so we expect them to have relatively low per-job revenue.
However, there are enough jobs in this range for them to
dominate the CSP’s total revenue.

This result raises the question of whether the CSP would
allow the CVSP to exist in the market: given that the CSP
makes most of its revenue from shorter jobs, it might be re-
luctant to allow these jobs migrate to the CVSP. However,
the CVSP will not be able to handle all of these jobs: it

can only admit jobs whose number of tasks N does not ex-
ceed M , the number of instances rented by the CVSP. Thus,
by limiting the CVSP’s number of instances, the CSP can
limit its revenue loss. Indeed, the CVSP itself has an incen-
tive to keep its number of instances limited, since a larger
value of M will increase the idle time on each instance, de-
creasing the sustained-use discount that the CVSP receives
(cf. the bounds in (6)). We show in the next section that
it is optimal for the CVSP to rent only a few hundred in-
stances. Losing this limited number of jobs can in fact in-
crease the CSP’s profit, reducing its per-job account tracking
and billing costs, as verified later in Figure 14. The CVSP’s
lower unit price might even attract more user job submis-
sions than the CSP could attract on its own, increasing the
CSP revenue overall due to higher user demand.

5.2.2 CVSP Profit and Impact on CSP Revenue
We now show that the CVSP makes a positive profit. We

assume that users will offload jobs to the CVSP as long as (i)
the price offered by the CVSP is cheaper than what the users
can obtain from their CSPs and (ii) the CVSP has enough
instances to accommodate the job’s tasks. Thus, the num-
ber of jobs that the CSPs will lose depends on the CVSP’s
price p and the number of instances M . While in reality
user demand may increase due to the CVSP’s lower prices,
we consider a conservative scenario in which jobs merely de-
fect from the CSP, so the overall demand does not increase.
Indeed, we show in the next section that user utilities do not
change significantly when the price changes: users’ utilities
are much more sensitive to the waiting time and number of
instances M than they are to the price.

Table 3 summarizes the number of users L who have at
least one job that defects to the CVSP as well as their av-
erage number of tasks per job N and the resulting system
arrival rate of the CVSP Λ. We see that Λ increases as the
number of rented instances M increases and as the price p
decreases: more instances allows the CVSP to support jobs
with more tasks, and a lower price means more jobs can
lower their costs by defecting to the CVSP. As we would ex-
pect, the average number of tasks per job N also increases
with the number of rented instances, but it decreases as
the price p decreases. As p decreases, jobs with longer run-
times can lower their costs by defecting to the CVSP, as the
lower price p at the CVSP becomes even lower than their
sustained-use discounts from the CSP. These jobs are likely
to have fewer tasks (cf. Figure 10).

In Figure 13, we plot the idle-to-runtime ratio and CVSP
profit as the CVSP’s decision points M and p are varied.



Table 3: Variation of user behavior with price incentive p and rented instances M .

M
p = 0.160 p = 0.145 p = 0.130

L N Λ L N Λ L N Λ

100 257 1.0550 40.77 260 1.0547 41.36 261 1.0545 41.65

200 260 1.0737 41.28 264 1.0733 41.87 265 1.0731 42.16

300 260 1.0983 41.79 264 1.0981 42.39 265 1.0979 42.69

400 261 1.1048 41.83 265 1.1045 42.44 266 1.1043 42.74

500 266 1.1382 42.07 270 1.1377 42.68 271 1.1376 42.98
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Figure 13: Idle-to-runtime ratio and profit as the
CSVP varies its price p and the number of rented in-
stances M . As p and M increase, the idle-to-runtime
ratio increases monotonically. The profit is non-
monotonic, necessitating a numerical search for the
optimal p and M that solve (11).

The minimum price, p = $0.12, represents the maximum
sustained-use discount offered by the CSP; the CVSP will
not offer a price lower than $0.12 as in that case its revenue
would be negative. We observe in Figure 13(a) that the sys-
tem has less idle time with a smaller number of instances and
a lower price: as the price p decreases, Λ increases, yielding
fewer available resources and less idle time. In all cases, the
idle-to-runtime ratio θ is≤ 3, indicating that 1

1+θ
≥ 0.25 and

the CVSP can qualify for a sustained-use discount, earning
a positive profit.

We confirm this reasoning in Figure 13(b). The CVSP’s
profit, however, is not monotonic: Figure 13(b) shows that
if relatively few instances are available (M < 300), then a
higher price p can yield higher CVSP profit as in (11). For
a small number of instances, the CVSP cannot support as
many jobs without increasing users’ expected waiting time,
making a lower demand (as driven by higher price) desir-
able. However, even though less idle time can increase the
CVSP’s sustained-use discount from the CSP, the lower ar-
rival rate caused by the fewer available resources can drive
the profit down. Numerically, we find that the CVSP’s max-
imum profit is roughly $8,000, for M = 350 and p = $0.12.
Thus, the CVSP limits itself to only a few hundred instances;
we show in the next section that this represents only a lim-
ited number of user jobs, indicating that the CSP loses rel-
atively little revenue. The CSP thus has little incentive to
drive the CVSP out of the market.

Figure 14 compares the CSP revenue before and after the
CVSP enters the market, for selected values of p and M .
Though the CSP loses some revenue, it retains more than
85% of its original revenue, as represented by the dashed
black line. The CSP could easily compensate for this small
revenue loss. For instance, offloading shorter jobs to the
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Figure 14: CSP revenue after jobs defect to the
CVSP. The dashed line represents its revenue be-
fore the CVSP enters the market.
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Figure 15: Jobs defecting to the CVSP for differ-
ent usage ranges, price p, and number of rented in-
stances M . The left, center, and right bars in each
group corresponds to M = 100, 300, 500 respectively.
A larger M and lower p lead to more jobs defecting.

CVSP reduces the CSP’s cost of tracking those user accounts
and billing users for those jobs. The CSP may also benefit
from an increase in user demand at the CVSP, due to users
taking advantage of lower CVSP prices and submitting more
jobs than they would otherwise have submitted to the CSP.

5.2.3 User Utility at the CVSP
We now analyze users’ utilities at the CVSP after the

CVSP enters the market. As in Table 3, we again assume
that users will offload jobs to the CVSP as long as the price
offered is cheaper than what the users can obtain from their
CSPs and the CVSP has enough instances to accommodate
the job’s tasks.

Figure 15 shows the number of jobs that defect from the
CSP to the CVSP for different prices p and numbers of
instances M . We observe that only a limited number of
jobs defect to the CSP. When the price is relatively high, at
p = $0.16, longer-running jobs do not defect to the CVSP,
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Figure 16: User waiting time ϕ and utility U for
different prices p and rented instances M . Both are
relatively flat with respect to price, but ϕ decreases
and U increases with the number of instances M .

as they can qualify for the sustained use discounts on their
own. Even some jobs with shorter running times, i.e., usage
in the range (0, 0.25], do not defect, as they have more tasks
than the CVSP has instances. More jobs defect when the
price is cheaper and when the CVSP rents more instances,
since under these conditions more jobs can save money at
the CVSP and are eligible (i.e., have few enough tasks) to
run at the CVSP, respectively.

Figure 16 shows the average waiting time and utility for
users at the CVSP, given the defected jobs as calculated in
Figure 15. We observe that neither the waiting time nor util-
ity changes very much with price. This result suggests that
user utility, and thus user demand, is largely determined by
the waiting time. This finding is consistent with the rela-
tively large weight γ = 9 that we derived from (12) for the
waiting time component of user utility. Figure 16(a) also
illustrates that more rented instances M intuitively yield a
shorter waiting time (Corollary 1). Consequently, user util-
ity increases with the number of rented instances, as shown
in Figure 16(b).

6. CONCLUSION
CVSPs can take advantage of sustained-use IaaS discounts

to reduce cloud computing costs for users with short-term
jobs, without a significant decrease in CSP revenue. In this
work, we give conditions under which the CVSP’s business
model is viable: we show that sustained-use discount thresh-
olds that are too large, as well as job runtimes that are
too long, result in job waiting times growing to infinity at
the CVSP. We use our characterization of the CVSP’s job
scheduling to find users’ optimal demands at the CVSP in
order to maximize a utility function of the job waiting times,
the CVSP price, and the user demand. This determines the
CVSP’s optimal profit-maximizing price, as well as the op-
timal number of instances that it should rent from the CSP.
We verify our job workload assumptions with a month-long
Google datacenter trace and show that it is optimal for the
CVSP to rent only a limited number of instances from the
CSP. Thus, we obtain a win-win situation: the CVSP can
earn a positive profit, and users can save money, without
significantly impacting the CSP revenue.

As a first investigation into the viability of CVSPs, our
work does not incorporate all practical features of the IaaS
market. In particular, we do not explicitly model the CSP’s
optimal behavior, i.e., the sustained-use discounts it should
offer so as to maximize its own profit. Since multiple CSPs

may offer different sustained-use discounts in order to at-
tract jobs from their competitors, this results in the variety
in formulating CVSP strategy depending on the deal with
each CSP. We expect that including this CSP competition
can lead to a more in-depth understanding of the CVSP’s
role in the IaaS market. We also plan to investigate the ro-
bustness of our findings to our assumptions of Poisson job
arrivals and Pareto runtime distributions.
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APPENDIX
A. SUSTAINED-USE DISCOUNTS

Users can get a better deal from their CSPs for long-term
commitments. Google Cloud Platform offers no discount
for the first quarter of usage, and then 20%, 40%, and 60%
off for the second, third and fourth quarter of the monthly
usage respectively [14]. For instance, at the third quarter of
the usage, the discount is calculated as

(
0.25 × 1 + 0.25 ×

0.8 + ( 1
θ+1
− 0.5) × 0.6

)
/ 1
θ+1

for 0.5 < 1
θ+1
≤ 0.75. Thus,

we have the following sustained-use discount expression to
model the Google Cloud Platform:

ω(θ) =


1, θ ≥ 3
0.05θ + 0.85, 1 ≤ θ < 3
0.15θ + 0.75, 1

3
≤ θ < 1

0.3θ + 0.7, 0 ≤ θ < 1
3
.

which is consistent with the formulation in (10). However,
in this case, the sustained-use discount is piecewise linear.
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