
18-742 Term project

Group aware cache coherence

Chingyi Lin

ABSTRACT
The number of processor increases in current comput-
ing server. However, the typical MSI and MESI proto-
col only describe the global state for each cacheline. In
this project, we augmented MSI protocol by adding a
G- flag in its state. Furthermore, we modified the inter-
connection to leverage this new coherence protocol. In
the end, we reduce 22% of scalibility cost of cache miss
latency in PARSEC3.0’s blackscholes program.

1. INTRODUCTION
With the emergence of multicore system, data move-

ment becomes crucial and important. Programmers
wrote various parallel programs to leverage the numer-
ous cores in their calculation, but don’t want to suffer
from parallelization cost from cache coherence and data
movement.

Cost of data movement becomes more and more ex-
pensive ss increased number of cores in current super
computing server. Vast works focus on the interconnec-
tion between each cores. The general purpose of these
works try to reduce the latency in data sharing or re-
quest sending.

These tricks lower the latency in cache coherence, but
most of them do not solve the original question, pre-
venting traffic on unwanted bus. Even some intercon-
nection structure reduce the average transmission time,
those requests still need to be transmitted to the cen-
tral directory through the buses. This paper focuses on
group aware cache coherence, which gives a hint of the
information about data sharing.

The following are our main contribution.

1. Propose a extended MSI protocol to describe the
coherence state in more detail.

2. Design an interconnection which leverage G-MSI.

3. We evaluate G-MSI on gem5 simulation and get
20% improvement in scalibility cost.

2. GROUP FLAG IN G-MSI

2.1 Group Flag
Group flag is a prefix of a MSI state. With ”G-”

flag, the state is changed from normal state to group
state, which means that the cache coherence only need
to be held inside the group only. Once the cacheline
with group state send a cache coherence request to the
directory, it contains the hint that the coherence behav-
ior only needs to be perform inside this group.

2.2 Group states
We have two group states in this protocol, Group-

Invalid (GI) and Group-Shared (GS). Group-Invalid sug-
gests that the cacheline is invalid, but if there is a valid
data, it must inside the group. Or simply to say, any
cacheline of this address is invalid outside this group.
Same as GS state, which guarantees that the cacheline
is shared only if its processor is inside this group.

Figure 1: Example for states

In the figure 1, each two adjacent cores are a group.
The first cases shows the example of typical shared-
state cacheline. Because the data is shared among all
the processors on the system, core #0 has responsibility
to maintain the cache coherence and inform the others
while updating this cacheline.

The second case shows the benefit of the group states.
Though the cacheline is shared to other cores, these
cores are a neighbor inside core #0’s group. This case
is common with a program only uses a subset of cores on

the system. Its allocated local data is seldom accessed
by other program in other core. With G-flag here, core
#0 doesn’t need to send request to cores outside its
group. This trick saves both time and bandwidth on
maintaining cache coherence.

2.2.1 No group-modified state
Group-Modified doesn’t exist in this protocol. In typ-

ical MSI protocol, M state is unique among all the pro-
cessor, which implies all the other processors are invalid.
Based on this implication, G- prefix is a trivial flag for
M state.

2.2.2 Group state is a proper subset of normal state
Each group state is a subset of its normal state. If a

cacheline can be classified as GI or GS state, it’s also
valid to label them as I or S state. The G- flag con-
tains the information outside the group. The lack of
G- flag will make the transmission of requests/response
more inefficient due to the conservative behavior from
directory, but the result is still correct.

2.2.3 Group flag is a group-wise status
Instead of individual state in MSI protocol, group flag

is applied on a whole group in G-MSI, which means that
a cacheline with a group flag implies this cacheline is on
group state in other cores in this group.

2.3 Special cases
With some extreme setting, group cache coherence

protocol can be treated as other popular protocol.

2.3.1 All processors are a group
Assume all of the processors are in a single group.

This protocol will be equivalent to typical MSI protocol.
Since we don’t have processors outside the group, there
is no concept of ”group” here. In other words, the G-
prefix here is trivial. Under this setting, GS is same as
S state, also GI can be seen as I here. After these state
merge, we only left three state, M, S and I. Furthermore,
the transition is same as MSI protocol.

2.3.2 Each process is a group
Another special case is in opposite. We take ev-

ery processor as a group, which means that each ac-
tion should be taken to a processor outside the group.
This case is similar to the MESI protocol. Because the
GS state here claims that only the processors inside its
group might have the data. Under this group structure,
this claim is equivalent to ”This cache is the unique pro-
cessor with this cacheline”, which is similar with the
definition of ”Exclusive state” in MESI protocol. (But
the behavior are different.)

2.4 State transition
As we have more states in G-MSI, the behavior of

these states should be well-defined.
Intuitively, G-flag should not affect any behavior in

MSI. In figure 2, all the behavior of these group state
are same with its normal state. GI can be promoted

to GS with issued load, and GS is changed to M with
issued store.

2.4.1 Defining invalidated modified-state cacheline
The only exception happens on the invalidation of M

state. To prevent ambiguity, M cannot switch to both
I and GI on the same event. In here, we define the
invalidated cacheline goes to I state. This definition
is not precise enough, because everyone will be invalid
once the M-state cacheline is invalidated, implying that
cacheline should be in GI state. But for simpler imple-
mentation, we define these invalidated cachelines into I
state. This modification is valid based on the property
in 2.2.2.

2.4.2 Reduction/Expansion
Once a cacheline is owned by a group only, states in

this group will be ”reduced”, or in other words, given
G-flag. This situation comes from two event

1. Cache asks a data and get from memory.

2. Someone outside the group is invalidated and no
one outside the group has the data.

In opposite, when the data is shared to another core
outside the group, its state will be ”expanded” into nor-
mal state. It will only happen on someone outside the
group requiring shared or modified state for the cache-
line.

Figure 2: State transition

2

3. EXTENDED INTERCONNECTION
To leverage this protocol, we also proposed an inter-

connection to improve the efficiency of G-MSI.

3.1 Baseline interconnection
The baseline interconnection consists of simple, global

cache coherence bus, which connects directory and all
the L1 cache on the system. Even the detailed state is
known, the reduced requests/responses still need to be
transmitted on the global bus.

3.2 Group bus
To distinguish the transmission of reduced requests

and the normal, an external local bus is necessary. In
G-MSI, we augmented ”group buses”

The group buses are a set of buses, in which each
of them connects the directory and all processors of a
group. Due to the less number of components it con-
nects to, the transmission time of these buses will be
shorter than global bus. This bus has the following
properties

3.2.1 Uni-directional from directory
Though the group buses connect directory to the cores

inside the group, preventing unfair comparison, cores
cannot send a request to the directory through this
faster bus.

3.2.2 Communication between cores inside the group
A core only needs to send its request to its neighbor

inside the group, if the cacheline is with G-flag. Internal
buses can accelerate this smaller domain transaction.
But once a receiver is outside the group, its request still
needs to go through the global bus.

Figure 3: Interconnection for G-MSI

3.3 Transmission time assumption
To benefit from internal bus, we make an assump-

tion for transmission time. Generally, the number of
component connected to bus is positively correlating to
the transmission time. To make it simple, we take the
transmission time function t(x)=kx, where x is the num-
ber of component on the bus, and k is a constant. In
short, the transmission time is linearly proportional to
the number of component.

4. EVALUATION

4.1 Experiment setup

4.1.1 Benchmark
The parallel program can be categorized into two

main kind. One is using the fixed number of thread. To
get balance between the performance of program and
resource utilization, we usually specify a fixed number
of thread. But in some high performance cases, they
will fully utilize every processor on the system.

For parallel program benchmark, we use Blackscholes
in PARSEC3.0, which tries to solve Black-Scholes Par-
tial Differential Equation.

4.1.2 Parameter
To configure the system, we have the following pa-

rameters.

1. nCore: Number of core in the whole system.

2. nIntras: Number of core in a group.

3. nThread: Number of thread used in the program

There are two major kind of methodology in grouping
processors. Fix-number grouping doesn’t change the
number as nCore increases. But in dynamic grouping,
nIntra is proportional to nCore, which implies that the
number of group is fixed.

For transmission time modeling, only two parameters
should be determined.

1. cyclePerCore: The ratio between transmission cy-
cle and nIntra, which should be a constant based
on our assumption.

2. memLatency: The latency for memory access. It
should be larger than the longest transmission path.
In short, memLatency > nCore * cyclePerCore

4.2 Fix-threaded program
We evaluate the program using two and four threads

separately. Each of them are running on 25 and 20
many-core system with different configuration respec-
tively. The configuration includes

• nCore: From 21 to 25, excluding the nCore greater
than nThread due to resource insufficiency.

• nIntra: With fix-number grouping (1,2,4) and dy-
namic grouping (1

2nCore, nCore)

3

4.2.1 Execution time

nCore nIntra=1 nIntra=2 half-MSI MSI
2 1678.027 1678.027 1678.027 1678.027
4 1710.398 1710.398 1710.398 1710.398
8 1770.688 1770.688 1770.688 1770.688
16 1892.475 1892.475 1892.475 1892.475
32 2136.828 2136.826 2136.828 2136.828

Table 1: Execution time of 2-threaded program
(unit:ms)

nCore nIntra=1 nIntra=2 half-MSI MSI
4 799.244 799.244 799.244 799.244
8 831.780 831.794 831.697 831.730
16 896.650 896.692 896.667 896.672
32 1026.723 1026.741 1026.721 1026.753

Table 2: Execution time of 4-threaded program
(unit:ms)

From the table 1 and 2, the scale-up of system slow
down the program greatly. It means the increased co-
herence transmission time degrades the performance.

Though the execution time is affected by nCore, each
setting of nIntra seems to have little difference. In 2-
threaded, even with 32-core system, the maximum dif-
ference is only 2 microseconds in a 2-sec program. The
4-threaded has 30 microseconds but still too small.

We cannot see the great benefit of G-MSI from the
execution cycle result. In section 4.2.2, we will compare
the other statistical data in these simulation.

4.2.2 Cache miss penalty
G-MSI is targeted on the request transmission. This

transmission occurs only on cache miss in any core.
Thus, cache miss penalty should decrease with the pres-
ence of G-MSI. Figure 4 and 5 show the cache miss
penalty of all the systems. The steep slope suggests the
miss penalty is sensitive to the scale of system. It turns
out that when nIntra is equal to nThread, the system
will get the minimum cache miss penalty. This makes
sense because larger nIntra waste time on transmission
of group buses, and the smaller nIntra might use some
time-consuming global transmission between cores.

Figure 4: Cache miss penalty for 2-threaded pro-
gram

Figure 5: Cache miss penalty for 4-threaded pro-
gram

4.2.3 Scalability cost
Scalability cost is used to evaluate the additional cost

with the scale-up of the system. The scalability cost
from m-core system to n-core system with configuration
A is defined as

scal costconfigA(m,n) =
cost(n)− cost(m)

n−m

From the simulation, we can assume the scalability cost
is independent to m,n. The definition can be simplified
into

scal costconfigA = scal costconfigA(m,n)

=
cost(n)− cost(m)

n−m
,∀m,n

Under this definition, we know that G-MSI saves 22%
in scalibility cost of cache miss latency.

4

4.3 Full-threaded program
Full-threaded program evaluates the full performance

of the system. Each program will use all the cores on
its system.

4.3.1 Execution time
Same as section 4.2.1, the execution time doesn’t

improve much. But here, we can see an interesting
point. The 32-core program is slower than 16-core,
which implies that adding core or parallelism doesn’t
always work.

nCore nIntra=1 nIntra=2 half-MSI MSI
2 1678.027 1678.027 1678.027 1678.027
4 799.244 799.244 799.244 799.244
8 558.789 558.811 558.809 558.797
16 495.988 495.967 495.975 495.955
32 519.868 519.876 519.894 519.880

Table 3: Execution time of full-threaded pro-
gram (unit:ms)

4.3.2 Cache miss penalty
In cache miss penalty, everyone is greater than MSI.

But unlike fix-threaded program, there’s no one config-
uration dominates every cases.

Figure 6: Cache miss penalty for full-threaded
program

5. DISCUSSION

5.1 The un-improved execution time
From the section 4, the execution time is not im-

proved much compared to the miss latency. After we
dig into the statistic, we found that the blackscholes
testbench has little data sharing rate. Each blacksc-
holes program has about 1.8 million misses, but even
there are 32 cores, only three thousand misses come
from other caches.

Less data exchange and intensive data reuse is awe-
some as a programmer because data sharing is one of the
most expensive part in a parallel program. However, G-
MSI cannot get a huge benefit on these low-sharing-rate
program. In next section, we wrote a ”bad” program
with lots of data exchange to help our evaluation.

5.2 Self-written intensive data sharing program
To see the advantage in G-MSI, we wrote another pro-

gram by ourselves. In this program, data is intensively
shared between cores. This program is simple.

void thread(int *c, int tid, int threads){
for(int j=0; j<N; j++){

for(int i=tid; i<N; i+=threads){
c[i]++;

}
}

}

This function is forked into every thread, which incre-
ment an element of an array. Since the interleaving ac-
cess makes the array shared to all cores, each cacheline
will be shared and switched among cores repeatedly.

5.2.1 Analysis
Data sharing rate is a good metric to measure how in-

tensively the data shares between cores. Here, we define
the data sharing rate as the ratio of getting data from
other caches to getting data from directories on miss.
In other words, data sharing rate is the probability that
the data will come from other caches on miss.

2 4 8 16 32
blackscholes 8.5e-6 6.1e-5 2.0e-4 6.3e-4 2.2e-3

canneal 5.3e-4 2.3e-3
self-written 0 0.48 0.44 0.47 0.46

Table 4: Data sharing rate for some programs

Table 4 shows the data sharing rate of some program.
It turns out that this self-written program has a rela-
tively large data sharing rate. With this intensive data
sharing, this program is suitable as a test program for
our G-MSI.

5

5.2.2 Execution time

Figure 7: Execution time for 4-threaded self-
written program

Figure 7 shows the execution time of our self-written
program, in 48-core system, we can save 8% to 10% of
scalibility cost, but to be noticed is, a poor grouping
will worsen the performance. For example, nIntra=2
takes longer than original MSI protocol here. So, a
good grouping strategy is a necessity in G-MSI.

5.2.3 Cache miss penalty

Figure 8: Cache miss penaltyfor 4-threaded self-
written program

Same as section 4, the nIntra=4 still get the lowest
cache miss penalty. Furthermore, it saves more than
30% scalability cost

6. CONCLUSION
G-MSI extended the original MSI protocol with more

detailed data sharing information. With the modified
interconnection, it can transmit the request in a more
efficient way. Due to the lower data sharing rate of
blackscholes benchmark, though G-MSI saves 22% of
scalibility cost, it doesn’t improve the execution time
greatly. But from the experiment in discussion, we
found that with a higher data sharing rate, G-MSI can
save the scalibility cost in exection time from the aware-
ness of the group.

6

	Introduction
	Group Flag in G-MSI
	Group Flag
	Group states
	No group-modified state
	Group state is a proper subset of normal state
	Group flag is a group-wise status

	Special cases
	All processors are a group
	Each process is a group

	State transition
	Defining invalidated modified-state cacheline
	Reduction/Expansion

	Extended interconnection
	Baseline interconnection
	Group bus
	Uni-directional from directory
	Communication between cores inside the group

	Transmission time assumption

	Evaluation
	Experiment setup
	Benchmark
	Parameter

	Fix-threaded program
	Execution time
	Cache miss penalty
	Scalability cost

	Full-threaded program
	Execution time
	Cache miss penalty

	Discussion
	The un-improved execution time
	Self-written intensive data sharing program
	Analysis
	Execution time
	Cache miss penalty

	Conclusion

