
Cipher-Block-Chaining Triple-DES Optimization on a Multi-thread Processor

Chingyi Lin1

Abstract— Triple DES is one of the most famous decryption
algorithm. With OpenSSL, a open source decryption library,
it has a great performance in some processor. However, in our
target processor, Intel i7-5600U, we can design a kernel which
fits the parameter of the target processor. In the end, we can
obtain 10% improvement in overall performance.

I. ALGORITHM DESCRIPTION

Fig. 1. CBC block diagram

Cipher-block-chaining Triple Data Encryption Standard
(CBC-3DES) is a block cipher algorithm. Illustrated in figure
1, a plaintext is divided into chunks and encrypted by yellow
block 3DES in sequence. Each input of 3DES is the XOR
of last block output and a chunk of plaintext.

Digging into block 3DES in figrure 1, a typical 3DES core
consists of three sequential DES blocks. Each DES block
contains 2 permutations and 16 Feistel functional blocks
connected sequentially. That is, the input of each block is
the output of the previous block. The more detail of these
functional blocks will be discussed in the following sections.

II. BASELINE IMPLEMENTATION

A 3DES block is mainly composed of two operations,
permutation and Feistel functional blocks. In this section,
we will explain their behavior and implementation in our
baseline library, OpenSSL.

A. Permutation

Permutation reorders all the bits in the input plaintext.
OpenSSL implements the permutations in the terms of
permutation operation, called PERM OP. A PERM OP can
swap some specific bits between two number. In 3DES,
Initial permutation (IP) and final permutation (FP) are im-
plemented by five PERM OPs in OpenSSL.

1Chingyi Lin is PhD student of Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA 15213 chingyil@andrew.cmu.edu

B. Feistal function

Original Feistal function has four steps: expansion, key
mixing, substitution and permutation. It takes a 32-bit half-
plaintext and generates a 32-bit half-ciphertext. OpenSSL
makes some modification along these four steps.

1) Bit reordering in expansion and key mixing: Figure 2
shows the data flow in expansion and key mixing, in which
expansion repeats some bits and increases data size into
48 bits (For example, bit 23 are used by both [28:23] and
[24:19]), and key mixing XORs this 48-bit data with a 48-bit
pre-defined sub-key.

Fig. 2. Original expansion and key binding

Due to the 32-bit granularity of x86 processors, OpenSSL
modifies the bit order of those operands and save the number
of operation in the following calculation (substitution and
permutation). Illustrated in figure 3, you will see that lower
part (blue) and higher part (green) of a 48-bit sub-key is
interleaved in key-binding. Furthermore, the 32-bit yellow
input are duplicated and distributed into the two 32-bit word,
and its order is aligned with the bits of this pre-defined order.

Fig. 3. OpenSSL expansion and key binding

2) Merge substitution and permutation into a single look-
up table: Substitution maps eight 6-bit chunks to 4-bit, and
the following permutation simply change the bit order of this
cascaded 4-bit results in a 32-bit scope.

With the associativity of look-up table, these two op-
erations can be merged simply. Substitution inherently is
a look-up table from 6-bit index to a 4-bit value. The
permutation can be seen as another look-up table, which



maps a 4-bit index to a 32-bit value with only four 1s inside,
specifically, each value in permutation look-up table is 4-
weighted 32-bit. That is, the substitution and permutation
can be equivalently combined into a single look-up table,
called SPtrans in OpenSSL, mapping 6-bit index to a 32-bit,
4-weight word. The final result of Feistel function can be
obtained by OR/XORing these words from eight different
SPtrans table.

Fig. 4. OpenSSL substitution and permutation

3) Compensating FP with next IP in adjacent DES: A
function can be compensated with its inverse intuitively.
In DES, initial permutation operation is inverse of final
permutation. There are three cascade DES with IP following
by last-round FP. So instead of three IP and FP in a 3DES,
we just only need to use an IP before three sequentail DES
block and a FP in the end of them.

III. BENCHMARK

Based on the implementation and optimization in the last
section, a 3DES consists of 10 PERM OP, 12 bitwise-shift
and 48 D ENCRYPT. We will detail and evaluate them in
this section.

A. Permutation kernel – PERM OP

PERM OP is the core of permutations in 3DES. It uses a
tricky way to implement permutation under 32-bit granular-
ity. The source code is

The definition of OpenSSL is as following

# define PERM_OP(a,b,t,n,m)\
((t)=((((a)$\gg$(n))ˆ(b))&(m)),\
(b)ˆ=(t),\
(a)ˆ=((t)$\ll$(n)))

1) Construction: These PERM OPs achieve a permuta-
tion with shift, XOR and bitwise-AND only. With this macro
definition, b can swap half of its bits with a. For example,
assuming 32-bit a and b can be expressed in the form of
(a31, a30, ...a0) and (b31, b30, ...b0) respectively, a statement

PERM_OP(r,l,tt,2,0x33333333L)

can have a result b = (a1, a0, b29, b28, a29, ..., b1, b0) and a =
(a31, a30, b27, b26, a27, ..., b31, b30).

2) Evalutation and theoretical peak: There are no mem-
ory effect in this operation. So the measured theoretical peak
is same as its execution time, 4.4 cycle.

For calculated theoretical peak, figure 5 shows the data
flow in permutation operation kernel. The critical path con-
sists of two shift, two XOR and an AND. From Anger’s
table [1], the total latency is 5 cycles, which is close to our
measurement.

Fig. 5. OpenSSL’s permutation kernel

B. Feistel function kernel – D ENCRYPT

D ENCRYPT is the core of Feistel function. It does XOR
for key binding first, and take the XORed value as the index
of the look-up table, DES SPtrans, which is equivalent to
substitution and permutation. The source code is like
# define D_ENCRYPT(LL,R,S) {
u=Rˆs[S ];
t=Rˆs[S+1];
t=ROTATE(t,4);
LLˆ=

DES_SPtrans[0][(u$\gg$ 2L)&0x3f]ˆ
DES_SPtrans[2][(u$\gg$10L)&0x3f]ˆ
DES_SPtrans[4][(u$\gg$18L)&0x3f]ˆ
DES_SPtrans[6][(u$\gg$26L)&0x3f]ˆ
DES_SPtrans[1][(t$\gg$ 2L)&0x3f]ˆ
DES_SPtrans[3][(t$\gg$10L)&0x3f]ˆ
DES_SPtrans[5][(t$\gg$18L)&0x3f]ˆ
DES_SPtrans[7][(t$\gg$26L)&0x3f]; }

1) Construction: A D ENCRYPT can be divided into
two blocks (ignoring low-overhead ROTATE). The first one
is two independent 32-bit XOR followed by two memory
load, which read two pre-calculated keys on a consecutive
memory space. The second one is eight independent shift-
then-mask as the index, and these index randomly access
eight individual table. The output of this kernel is a 32-bit
word, which is the summation of the loaded results from
these eight tables.



2) Evaluation and theoretical peak: There are two parts
involved with memory in D ENCRYPT, key loading and
SPtrans table. We measure the original timing and remove
the load of these two load respectively. The result is as
table I. In this table, the theoretical peak is obtained from
the measurement without key load and SPtrans. Shortly, 10
cycles.

With key load Without key load
With SPtrans 27.3 20.5

Without SPtrans 16.9 10.0

TABLE I
D ENCRYPT TIMING RESULT

The 10-cycle theoretical peak is reasonable. Figure 6
shows one of the schedule in Broadwell, our target processor.
With four logic operation functional unit in this processor,
there are total 31 operations in each Feistel function. Re-
gardless of data dependency, the minimum cycle is still 8
cycles.

Fig. 6. Theoretical peak of Feistel kernel

From Agner’s table[1], each operation is not supported
by all the functional unit in Broadwell. This limit is the
bottleneck of the theoretical peak. The legend in figure 6
shows the functional unit which can help our Feistel function.
The AND and XOR can be handled by four functional unit.
However, the shift operation can only be served by port 0
and 5. Considering these constraint and data dependency, the
calculated theoretical peak is 10 cycle.

C. Overall performance

Like figure 7, adding all the blocks together, the sum-
mation is 1336 cycles, which is close to the measured
performance, 1250-cycle. From our block-wise evaluation, a
permutation takes 20 cycles and a 16-D ENCRYPT chain
costs 400 cycles. The 20-cycle permutation makes sense
because it is close to the sum of five dependent 4.4-latency
PERM OPs.

Fig. 7. Overall performance

IV. OPTIMIZATION

A. Merging two SPtrans table into a bigger table

In each D ENCRYPT, there are eight random access to
eight separate 64-element table. We can reduce the number
of memory access with the expense of increased table size.
Shown in figure 8, two 6-bit index can be cascaded as a
longer 12-bit index. Sacrificing the memory space, we store
the pre-computed results and accelerate the execution. So
that we can obtain the value with only one memory access.
It’s a trade-off between execution time and memory space.

Fig. 8. Table merge



Table contents need to be changed as this modification.
The two outputs from each table are originally XORed
together. So the merged table is a composite function, in
which

T (x1, x2) = T1(x1) + T2(x2)

, where T1, T2 are two original table and x1, x2 are their
inputs.

Table size increases due to the above modification. With
6-bit index, the original tables both have 26 elements, but
merged table contains 212 elements inside. To store all
the SPtrans, we need 4(tables) ∗ 212(element/table) ∗
4(byte/element) = 64KB of storage. This number exceeds
the size of L1 cache, suggesting that all of the entry cannot
keep in L1 cache.

The measurement is listed on table II, the second and third
DES has a lower execution time compared to the OpenSSL
implementation. Though the first DES somehow takes longer
time than the original, the total time saves about 10% in the
end.

DES-1 DES-2 DES-3
OpenSSL 410 404 402
Optimized 421 332 326

TABLE II
RESULT OF TABLE MERGE

This result shows that the two L1 cache access and the
following XOR is slower than a single L2 cache access. From
LZMA benchmark, L1 cache access spends 4 cycle, and L2
12 cycles. We can have some basic calculation of the average
access time.

Because 3-DES is random accessing these tables, each
access is independent to other. The OpenSSL’s case is simple,
all the tables are stored in L1 cache. The total cost, or more
specific, latency, of the 32 bits in figure 8 is 2 ∗ memL1 +
latXOR = 2 ∗ 4 + 1 = 9cycles.

For the merged table, we still have chance to get a data
from L1 cache, though we cannot fit all the tables into L1
cache. With 32KB L1 cache in our target processor, the
64KB table can have 32KB

64KB = 50% partition in L1 cache.
Hence, the total cost is 32KB

64KB ∗ memL1 + 64KB−32KB
64KB ∗

memL2 = 0.5 ∗ 4 + 0.5 ∗ 12 = 8 cycles.
The above calculation implies the theoretical improvement

1 − 8
9 = 11% of this trick, which matches the result in our

evaluation. In table II, the improvement is 1− 421+332+326
410+404+402 =

10.5%. Though we don’t consider the second LOAD unit in
our target processor, the effect of this additional unit is just
a scalar, which will not greatly affect the ratio between the
comparison.

V. FAIL OPTIMIZATION (IMPLEMENTED BUT NOT
IMPROVE PERFORMANCE)

A. Create parallel operation from permutation kernel

With multiple functional unit in our target processor,
increasing the number of operation might not degrade the
performance. The general idea is, we need to make the
operation be processed in parallel.

The original kernel has dependency between t to a and b.
Furthermore, all of the operation producing a are sequential.
That is, the a in next iteration is generated by shift, XOR,
AND, shift and XOR in order. These operation are all
dependent, implying that we can not take the advantage of
multiple functional units in our target processors.

In the figure 9, the optimized block has same functionality
with the OpenSSL’s. Though it has more functional units, the
critical path is only with three blocks, which is less than five
blocks from the baseline. The derivation of this block is in
the appendix.

Fig. 9. Merged single permutation kernel

B. Merge two permutation kernel to a bigger one

Besides of optimization on one block, cross-blocks can
find the opportunity to reuse the data in a broader scope.
Figure 10 is two cascade permutation kernels. There are
four ANDs in each kernel. Due to the associativity and
commutativity of AND and XOR, we might merge those
AND-mask together and save some time.

Fig. 10. Two cascade permutation kernels

With some reordering and merge, these two kernels can
be combined to a bigger one, like figure 11. The detail
will be discussed in appendix. In this merged kernel, two
ANDs in different kernel is merged to a single one. Though
total number of ANDs is same after this merge, these eight
ANDs are parallel in the new kernel and are able to leverage
multiple logic functional units in the target processor.



Fig. 11. Merged double permutation kernel

C. Split reduce in D ENCRYPT

There are eight sequential XOR to reduce the lookup value
in D ENCRYPT. To fully utilize the functional units in our
processor, we can separate them into two independent stream
and sum them up in the end. Illustrated in figure 12, this trick
can shrink the critical path of reduce path.

Fig. 12. Split reduce in D ENCRYPT

VI. EVALUATION

IF DES-1 DES-2 DES-3 FP Total
Theoretical peak 20 160 160 160 20 520

OpenSSL 20 410 404 402 20 1256
Optimized 20 421 332 326 20 1119

TABLE III
RESULT OF TABLE MERGE

In the end, we mitigate the execution time from 1256
to 1119. This 10% improvement is mainly because of the
merge table, which successfully sacrifices the storage but
gets speed-up.

REFERENCES

[1] Agner Fog: Intruction tables. https://www.agner.org/optimize/-
instruction tables.pdf

APPENDIX I – MERGED SINGLE PERMUTATION KERNEL

Before we start modify this kernel, there are x things to
be notified.

1) The second operand of AND, shift are called ANDer
and shifter in this appendix. Every ANDer and shifter
in each kernel is pre-defined but different. For simplic-
ity, we won’t label these operands in the following.

2) Some of the bit-wise can swap without changing the
result. For example, the XOR and AND can swap their
order.

The OpenSSL’s implementation is shown in figure 13.
To leverage multiple functional units, the first step of our
optimization is to decompose those operation and remove
data dependency.

Fig. 13. OpenSSL’s permutation kernel

The simplest way of decomposition is duplication. We
duplicate the functional unit before t. Furthermore, we swap
the order of XOR and AND. After the decomposition, the
result can be obtained from the input in parallel, which is
shown in 14.

Fig. 14. After decomposition



Here we come the first operation merge

(A⊗B) � n = (A � n)⊗ (B � n)

This equation means we can bypass the shift after an XOR.
This trick is useful because this bypassed shift can be
merged with others. In this case, the bypassed shift can be
compensate with another shift.

Fig. 15. The chance to compensate shift operator

After bypassing the shift and merge, we shrink the critical
path in this kernel. Here, the ”�&” means that the operand
of AND is pre-shifted. In permutation kernel, all the ANDer’s
is pre-defined. So the pre-shifted can be automatically done
by compiler or manually, without any cost in runtime.

[(A � n)&(m)] � n = [(A � n) � n]&[m � n] = A&(m � n)

Fig. 16. Compensated shift operator

From the commutativity of XOR, the operand of serial
XOR can be swapped. Hence, figure 17 expresses each
output as the sum of two single-input functions after the
reordering. For example, b = f(a) + g(b), where f(a) =
(a � n)&m, g(b) = b⊗(b&m). Then the final step is finding
a simpler or cheaper operation to replace f and g.

Fig. 17. Operation reordering

The final operation merge is not intuitive, but we can
observe that there are similar structure in the diagram, X ⊗
(X&Y). Both XOR and AND are bit-independent operation,
implying that a single-bit truth table can list all the possible
result.

y=0 y=1
x=0 0 0
x=1 1 0

TABLE IV
TRUTH TABLE OF X ⊗ (X&Y)

From the truth table, it turns out that x ⊗ (x&y) is equal to
x&( y). Though it doesn’t save the number of operation, the
bitwise-NOT here applied on the key can be pre-calculated
and shrink the critical path.

Fig. 18. Operation merge

Figure 18 shows the general merged result. The above
tricks can be applied to any case with pre-defined ANDer or
shifter.

Fortunately, we have some properties in permutation ker-
nel. We have two input in a kernel, m(32-bit mask) and n(bit
length). All of the input follows some rules.

1) m is a 16-weight word. In other words, there are
equivalent 0s and 1s in each m.

2) Each m consists of several 2n-bit windows, in which
one half is n bits with all 0s, and the other half is all
1s.

3) m�n = m = m�n. Because a shift is a swap of all
the n-window

From these property, there are some equivalent blocks in
this diagram. Simply, ”∼�&” = ”�∼&” = ”&” = ”�∼&”
= ”∼�&”. Then we can derive our final kernel.

Fig. 19. The optimized permutation kernel



APPENDIX II – MERGED DOUBLE PERMUTATION KERNEL

Besides operation merge in the single kernel, multiple
kernels also have some opportunity to combine operation
together.

Simply duplicate our kernel to two, shown in figure 20.
The input order will swap after each PERM OP, so the a of
the first kernel is b in the second kernel.

Fig. 20. Two cascade permutation kernels

The first step is always decompose the operations into
parallel. Preventing to be too complicated, we decompose
the upper part only in this stage.

The basic of decomposition is break the data sharing.
Here, the input b in the second kernel is generated by
(a&m1)⊗[(b�n1)&( m1)]. The figure 21 duplicates it to
two identical functional units chain. After this separation,
operation in second kernel can be bypassed independently.

Fig. 21. After decomposition

Bypassing ANDs is the most important trick in this sec-
tion. The purpose in this section is put as much operation into
pre-defined mask as possible. Merging the masks together is
a great solution for us.

ANDs in different kernel are painted into two different
color. Thanks for the commutativity of AND, with the
bypassing, two different ANDs can be merged into one, in
which the mask is the AND result of two predefined masks.
Figure 22 shows the result after merge.

Fig. 22. Partial AND merge

Same tricks can be applied to the lower-part of this bigger
kernel. In figure 23, there are total eight parallel ANDs.
Although the number of total ANDs is not decreasing, this
trick gives it more parallelism in our target processor.

Fig. 23. AND merge in double kernel

Each output is the sum of four 32-bit masked result, except
for some annoying shift. The last step is reorder those XOR
and bypass the shift in the second kernel. To be tedious,
we want the output be the pure summation of a single-input
functions.

The figure is the final output of this merged double kernel,
each output can be exp

Fig. 24. The optimized double permutation kernel


