HybriD³ Database for Hybrid Organic-Inorganic Perovskites
Connor Clayton¹, Xiaochen Du², Svenja M. Janke², Chi Liu³, Matti Ropo⁴, Volker Blum²

[¹] Department of Materials Science and Engineering, Carnegie Mellon University, [²] Department of Mechanical Engineering and Materials Science, Duke University, [³] Department of Chemistry, Duke University, [⁴] Department of Physics and Astronomy, University of Turku, Finland

Motivation
Hybrid organic-inorganic perovskites (HOIPs) have been at the center of a large wave of developments in photovoltaic (PV) devices in recent years. Since their viability in such devices was first demonstrated in 2009 [1], the efficiency of these cells has soared to over 21% in 2018 [2]. This success has sparked an immense surge of research into HOIPs, especially on methylammonium-lead-iodide, or MAPbI3, which is the prototypical example for HOIP-based solar cell absorber materials [3].

Rise of Perovskite Solar Cells

HOIPs hold an enormous number of structural possibilities, especially when considering also lower dimensional HOIPs that allow for larger organic cations. This opens up a large material space with tunable electronic properties (e.g. band gap or level alignment between organic and inorganic) [4], and investigation into this space is producing a large amount of data, while simultaneously generating interest in having easy access to this data (e.g. for data science applications). We create a database that is designed to store the bulk of modern HOIP knowledge in a central location and to make it easily accessible, with the goal of facilitating research into next-generation materials.

 Throughout this REU project, MAPbI3 has served as an example for studying the nature of the data available on these materials to better understand how to organize its storage and how to best present it to the user.

Framework

HybriD³ is built using Django [6], a python-web based framework that employs a Model-Template-View (MTV) architecture.

Models: explain the organization of data and are used in conjunction with the database itself to write SQL statements that dictate its structure, including all fields and connections to other models.

URL dispatcher: responsible for calling the appropriate view based on user actions.

Template: contains the HTML and CSS that is rendered and presented to the user.

View: retrieves necessary data from the model, then performs a GET request that calls the appropriate template and supplies it with this data. Then, info from the template is returned via a POST request, which tells the model to modify data as necessary.

Data Accessibility

Band structures and band gap data available and downloadable independently

Data Storage

The HybriD³ hierarchical database structure allows for storage of a complex network of information, as well as accessibility of data via multiple searchable keywords. For example, relevant system data can be found and accessed from an author and vice versa.

Reuse of publication and author information minimizes server-side storage and improves lookup speeds. These entities share a many-to-many relationship, i.e. one publication can have many authors, and one author can write many publications.

Conclusion

Considerable progress was made during this phase of the HybriD³ database project. Major improvements in data traceability were made, notably added support for variable numbers of authors and improved reference information display. The usability of the website has also been enhanced, allowing easy inclusion of author information, convenient options to edit existing data, a more robust layout describing synthesis methodology, support for band gap information, and the ability to search by author and alternative compound names.

In the future, the database will be extended to include more key properties relevant for prospective new HOIP materials (e.g. conductivity, stability to environmental conditions, excition energy) while its user-friendliness will be further increased. Possible future directions include the construction of an API (application programming interface) for connection to related projects. We optimize that the database will inspire extenive flow of data and prove a useful tool for the hybrid organic-inorganic perovskite community.

References


Acknowledgements

This work was financially supported by the NSF under award number DMR-1728921. We thank Dr. Raul Laaser and Prof. Dr. David Mitzi for fruitful discussions and assistance with the REU for Measuring the Grand Challenges for the opportunity to conduct this research. Svenja Janke gratefully acknowledges funding by the German Research Foundation (DFG) Jo 268/1-1.