Financial Networks
Contagion, Commitment, and Private Sector Bailouts

Yaron Leitner JF2005

presented by
Ronghuo Zheng
Tepper School of Business, Carnegie Mellon University

April 15th, 2013
1. Introduction
 - Motivation
 - Main Result

2. Model
 - Sequence of Events
 - Model Overview
 - Implementation

3. Results
 - Unlinked versus Fully Linked
 - Optimal Network

4. Discussion and Summary
 - Discussion and Summary
Motivation

- **Previous Literature**: negative aspects of contagion.
 - Allen and Gale (2000)
 - Lagunoff and Schreft (2001), etc.

- **Problem**: Should we worry about the linkages among agents in financial markets? Is there optimal network design?
Main Result

- **Positive Role of Contagion**: linkages may be optimal ex ante because linkages not only spread contagion, but also induce private sector bailouts.

- **Optimal Networks**: whether and how agents should be linked to one another.
Sequence of Events

Sequence of Events:
- \(t = 0 \): A financial network is chosen.
- \(t = 1 \):
 1. Endowments \(e \) are realized.
 2. Transfers are made with allocation \(x \).
 3. Investments \(I \) are made.
- \(t = 2 \): Project cash flows are realized.

Key Assumptions: Agents cannot commit to
- 1. pay out of their initial endowments.
- 2. pay out of their projects' cash flows.
- 3. invest in their projects.
risk-neutral agents: $N = 1, \ldots, n$, identical ex ante
- expected utility $E(c_1 + c_2)$
- i.i.d. endowment \tilde{e}_i
- financial network: K_i - agents linked to agent i
- project requires 1 investment and yields $R > 1(0)$ if succeeds, $p_i(I) = 1$ (fails, $p_i(I) = 0$).
- complementarity: project succeeds iff all agents linked to agent i also invest
Implementation

- agent i's utility $U_i(x, I) = x_i - I_i + p_i(I)R$.

- **optimal investment rule:**
 - $I_i(x)$: invest iff everyone connected also invests.
 - $V_i(x) = x_i - (R - 1)I_i(x)$

- **optimal allocation rule:**
 - budget constraint
 - interim participation constraint: prefer allocation to autarky

Implementation:
1. central planner proposes allocation and investments rule
2. agents decide agree or not sequentially
3. allocation achieved if agreed by all, and autarky otherwise
Unlinked versus Fully Linked

- **Unlinked**: autarky allocation and invest iff endowment is higher than 1

- **Fully Linked**: all agents are connected
 - amount of cash agent i willing to give is $\min(e_i, R)$
 - aggregate investment is n if $\sum_{i=1}^{n} \min(e_i, R) \geq n$, and 0 otherwise

Comparison:
- If $\Pr(\sum_{i=1}^{n} \min(\tilde{e}_i, R) \geq n) \geq \Pr(\tilde{e}_i \geq 1)$, a fully linked network ex ante Pareto dominates an unlinked network.
- *vice versa.*
Optimal Network

- **network**: partition N_1, N_2, \ldots, N_k, agents only connected inside group N_j

- **expected per capita investment** in a group of ν agents:

 $$f(\nu) = \Pr(\sum_{i=1}^{\nu} \min(\tilde{e}_i, R) \geq \nu)$$

- **optimal size** of group: $n^* = \arg \max_{\nu \in N} f(\nu)$
 1. $n^* = 1$: unlinked
 2. $n^* = n$: fully linked
 3. otherwise, may be partially linked
whether to add an agent: tradeoff b.w. better risk sharing & "weakest link"
- risk sharing: \(n \) agents fail, but adding an agent succeeds
- "weakest link": \(n \) agents succeed, but adding an agent fails

large economies:
- LLN: \(\lim_{n \to \infty} f(n) = 1 \), if \(E[\min(\tilde{e}_i, R)] > 1 \), and 0 otherwise.
- If \(E[\min(\tilde{e}_i, R)] > 1 \), fully linked Pareto dominates unlinked, and *vice versa*.
Discussion and Summary

- **Main Point**: linkages may be optimal because contagion can motivate agents to help others, even without commitment.

- **Applications**: Payment Systems, Joint Liability Arrangements

- **Assumptions**: limited commitment, central planner

- **Comments**: complementarity, network formation