Financial Contagion
Allen and Gale (JPE, 2000)

Discussed by Jessie Wang

February 25, 2013
Financial Networks at Tepper
Financial crisis
- Contagion must be driven by real shocks and real linkages between agents.

Why financial sector is so susceptible to shocks?
- Financial contagion: shocks to a few institutions spread by contagion to the rest of the sector
- Micro foundation in terms of market completeness
- Accidents that arise from the very nature of what financial intermediaries do
Model Overview

- Interbank market with Diamond and Dybvig (1983) banks
 - $t = 0, 1, 2$
 - complete information
 - deposit \rightarrow (cash, assets), liquidity shocks
 - difference of liquidity shocks across banks

- Enough aggregate liquidity
 - Cross-holdings of deposit as risk-sharing tools

- Excess aggregate liquidity demand
 - financial linkage \rightarrow contagion
 - degree: network completeness
Liquidity Shocks

- $t = 0$, A, B, C, D are identical and decide y cash, x assets (R at $t = 2$), $x + y = 1$

- $t = 1$, idiosyncratic shocks to liquidity demand (c_1, c_2), e.g. A at S_1, $c_1 * w_H$ at $t = 1$, $c_2 * (1 - w_H)$ at $t = 2$.

<table>
<thead>
<tr>
<th>Regional Liquidity Shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>S_1</td>
</tr>
<tr>
<td>S_2</td>
</tr>
</tbody>
</table>

- Optimal allocation

\[
y = \frac{1}{2} (w_H + w_L) c_1
\]
\[
R_x = \left(1 - \frac{w_H + w_L}{2}\right) c_2
\]
Interbank Market

- \(t = 0 \), exchange deposits \(z \). \(t = 1 \), A, C have high liquidity need.

Complete market

- Deposit \(z = \frac{w_H - w_L}{2} \)

 \(
 A, C : (w_H + z)c_1 = y + 3 \times z c_1
 \)

 \(
 B, D : (w_L + 2 \times z)c_1 = y
 \)

Incomplete market

- Deposit \(z = (w_H - w_L) \)

 \(
 A, C : w_H c_1 = y + z c_1
 \)

 \(
 B, D : w_L c_1 = y - z c_1
 \)
Financial Fragility

- Excess liquidity shock: “perturb” the model $P(\bar{S}) = 0$

Regional Liquidity Shocks with Perturbation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>ω_H</td>
<td>ω_L</td>
<td>ω_H</td>
<td>ω_L</td>
</tr>
<tr>
<td>S_2</td>
<td>ω_L</td>
<td>ω_H</td>
<td>ω_L</td>
<td>ω_H</td>
</tr>
<tr>
<td>\bar{S}</td>
<td>$\gamma + \epsilon$</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
</tr>
</tbody>
</table>

- All banks withdraw their deposits, A has to liquidate assets
- Shock ϵ is large enough \rightarrow not enough left for consumers in $t = 2$ \rightarrow bankrun \rightarrow bankrupt \rightarrow value of deposits at A q^A falls
- Someone other than A has to get into trouble, the question is how many?
Incomplete market

- D: deposit loss $z(c_1 - q^A)$
 - liquidate large enough
 - D bankrupt
 - C, B bankrupt, domino effect.

Complete market

- B, C, D: deposit loss $\frac{z(c_1 - q^A)}{2}$
 - liquidate a little
 - all distressed but not bankrupt
Freixas, Parigi, and Rochet (2000): “coordination failure” causes gridlock equilibrium and payment system breaks down.

Leiner (2005): return links, optimal financial network as tradeoff from risk-sharing and system collapse

Acemoglu Ozdaglar Tahbaz-Salehi (2012): nonmonotonic effect of market completeness on systemic risk

Zawadowski (2013): OTC contracts, negative externality of not hedging counterparty risk results network inefficiency