Financial Networks and Contagion
Elliot, Golub and Jackson (2013)

Camilo Botia

Carlos’s Networks @ Tepper
Network Integration and Diversification

- Integration (level of exposure of each organization to each other)

\[
\begin{align*}
1 & \quad 1 \\
1/2 & \quad 1/2 \\
1-c & \quad 1-c \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 1 \\
1/2 & \quad 1/2 \\
c & \quad c \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 1 \\
1/2 & \quad 1/2 \\
c & \quad c \\
\end{align*}
\]

\[
c = \text{Fraction of each organization held by others}
\]
Network Integration and Diversification

- Diversification (How spread out cross-holdings are)

\[d_i = \text{Number of organizations that hold the } i\text{th organization} \]

\[0.5/d_1 = \frac{1}{4} \]

\[d_1 = 2 \]
Network Integration and Diversification

- Diversification (How spread out cross-holdings are)

(a) Low diversification
(b) Medium diversification
(c) High diversification
Essential Ingredients of a Cascades

I. A First Failure: One organization must be susceptible enough to shocks in some assets that it fails.

II. Contagion: Some other organizations are sufficiently sensitive to the first organization’s failure that they also fail.

III. Interconnection: The network of cross-holdings is sufficiently connected so that the failures can continue to propagate.
Essential Ingredients of a Cascades

Increase in *Integration*

-> Less sensitive to its own investments but more sensitive to other organizations’ values

-> First failures can become less likely while contagion is more likely conditional on a failure

I. A First Failure is *less likely* the higher the integration.

II. Contagion is *more likely* the higher the integration.

III. Interconnection is not changed by changes in integration.
Essential Ingredients of a Cascades

Increase in *Diversification*

- Less dependence on a particular neighbor but the network becomes more connected
- Contagions are harder to start but the extent of a contagion broadens

I. A First Failure is not affected by diversification.

II. Contagion is *less likely* the higher the diversification.

III. Interconnection is *more likely* the higher the diversification.
Results

Diversification

When diversification is low any contagion is limited to a small component. As diversification increases, the interconnection increases and more cascades spread. However, after some point, contagion is harder to start and hence less organizations fail in a cascade.
Results

Integration

(b) Five levels of integration and the percentage of organizations failing as a function of expected degree ($\theta = 0.96, n = 100$).

Percentage of simulation with at least one organization failing as a function of diversification

Increasing integration makes shocks more likely to propagate to neighbors and increase contagion (II.). For high values of integration first failures become less likely.
Increasing integration makes shocks more likely to propagate to neighbors and increase contagion (II.). For high values of integration first failures become less likely.
Example

- There are 100 organizations.
- Cross-holdings from adjacency matrix \(G \) with entries in \(\{0,1\} \)
- A fraction \(c \) of each organization is held by other organizations, spread evenly among the \(d_i = \sum_j G_{ji} \) organizations that hold it.
- For \(i \neq j \)
 \[
 C_{ij} = \frac{c G_{ij}}{d_j},
 \]
 The remaining 1-c of the organization is held by external shareholders.

- Each organization has one asset.
- \(p_i = 1 \)
- \(\bar{v}_i = \theta v_i \) and \(\beta_i = \bar{v}_i \)
Example

The book value of organization i:

$$V_i = \sum_{j \neq i} C_{ij} V_j + \sum_k D_{ik} p_k - \beta_i I_{v_i < v_i}$$

Or in matrix notation:

$$V = (I - C)^{-1}(Dp - b(v)),$$

Equity value held by outside investors:

$$v = \hat{C}(I - C)^{-1}(Dp - b(v)) = A(Dp - b(v)).$$
Network Integration and Diversification

- Diversification (How spread out cross-holdings are)