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Definitions

Definition. A topological space is a pair (X, 7) where X is a set and  is a collection
of subsets of X that satisfies the following conditions

D 2,Xe7,
(ii) if {Uy}qen is a collection of sets from 7 then | J ., U, € 7, and
(i) ifU,ve T thenUNV e 7.

The sets in & are refered to as the open sets.

We need a concept that ties together the points in X with the open sets in 7.
The concept that will be used here is the idea of a neighbourhood.

Definition. Let x € X. A set N C X is a neighbourhood (or simply nhood) of x if
there is an open set U € & such that x € U C N.

Now of course, topologies can be described or defined in terms of nhoods.

Definition. Let x € X. A nhood base %, at x is a collection of nhoods of x such
that every nhood of x contains some nhood in 93,.. A base for the topology & on X
is a collection of open sets & such that 7 = { J, 5 | B’ S B}.

Definition. A topological space is

(i) first countable if every point has a countable nhood base,
(ii) second countable if it has a countable base,
(iii) separable if it has a countable dense subset, and
(iv) Lindeldf if every open cover has a countable subcover.



Implications

Second countability is a very strong property, and in fact it implies the other three.
The proof is an easy application of the definitions.

Proposition. Second countability implies first countability, separability, and the
Lindelof property.

Proor: Let 98 be a countable base for X.

For each x € X, let 8, = {B € 8 | x € B}. If U is an open set containing x,
then since % is a base for 7, U = | ., for some %’ C %. Hence x € B C U for
some B € %', so necessarily B € 9,. Therefore 23, is a countable nhood base for
X.

For each B € 4, let x5z € B. I claim that {x; | B € %} is dense in X. Indeed, for
any x € X and any open set U containing x, there is B € 9 such that x € B C U.
But x5 € B too, so {xz | B € %} is a countable dense set.

Let % be an open cover of X. For each U € % and x € U, there is some
B,y € $B such that x € B,y C U. But {B,y | U € %,x € U} € 2, so this
collection is countable. We may suppose

{BX,U | Ue @/,X € U} = {Bxl,Ulanz,UZa cee }:
so Uy, U,,... is a countable subcover of % . O

Unfortunately, these are the only implications between the four properties.

Counterexamples

Proposition. First countability does not imply second countability, separability, or
the Lindel6f property.

Proor: Consider the discrete topology on the real line. Each point x € R has an
nhood base consisting of just one set, namely {x}, so this space is first countable.
But clearly it is not second countable, separable, or Lindelof. O

Proposition. The Lindel6f property does not imply second countability or separa-
bility.

ProoF: Again consider the discrete topology on R. Adjoin a new point * and define
the nhoods of * to be of the form {*}UF, for finite sets F. The resulting space X* is
Lindelof (indeed, it is compact; X* is the one-point compactification of the discrete
topology on R), but it is not separable since all of the sets {x} remain open for
X # *. O

Proposition. Neither separability nor the Lindeldf property imply first countability.



Proor: This time consider the cofinite topology on the real line, call this space X,
where the open sets are exactly the ones with finite complement. It is separable
since the rationals are dense (in fact, every countable subset of R is dense). X is
Lindelof since if 2 is any open cover then there is some open set U € %, and the
complement of U is finite. Finitely many further sets from % cover the remaining
finite number of missed points, so % has a countable (actually finite) subcover.
Finally, X is not first countable. If 98 is any countable collection of nhoods of
0 then {0} U |, R\ B is countable, so there is some x in its complement. Then
R\ {x} is an open set containing zero that does not contain any element of % as a
subset, so % cannot be an nhood base of 0. O

We can summarize our results succinctly in diagrammatic form, where solid
lines indicate implication and dotted lines indicate lack of implication. We must
still investigate the implications of separability on first countability and the Lindelof

property.
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Moore Plane

Let B(x,r) denote the open ball centered at x of radius r (where the metric will
be clear from the discussion). The Moore plane T is the closed upper half plane
R x R, with the following topology. For points (x, y) with y > 0, take

{B((x,y);t)NT' | t > 0}
as an nhood base. For points of the form (x,0), take
{B((x, ); 1)U {(x,0)} | t > 0}

as an nhood base. To reiterate, the open upper half plane gets the induced topology
from R?, while nhood bases for the points z on the x-axis are given by circles
tangent to the x-axis at z.

The Moore plane is interesting in part because it is a separable space with a
nonseparable subspace. We exploit this fact in the proof of the following theorem.

Theorem. The Moore plane T is separable and first countable, but not Lindel6f or
second countable.

ProorF: Itis clear from the definition that the Moore plane is first countable. Points
with rational coordinates form a dense set, so I' is separable. To finish the proof



it suffices to prove that the Moore plane is not Lindeldf, since if I' were second
countable it would be Lindel6f. Consider

B =1{B((x,y);5) 1%,y €R,y > 0}U{B((x,1);1)U{x} | x €R},

an open cover of I'. None of the open sets around the points with postive y-
coordinate contain any point on the x-axis, and no set in 98 contains more than
point on the x-axis, so 9 cannot have a countable subcover. O

The complete diagram of implications is seen to be as follows, where solid lines
denote implication and dotted lines indicate lack of implication.
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