A Model for the Limit Order Book in Heavy Traffic

Christopher Almost
Department of Mathematical Sciences

Model

Our LOB model follows Cont et al. [1]:
- Discrete price levels.
- Orders of equal size.
- Arrivals are independent and Markovian.
- Rates depend on LOB state only via current bid and ask prices.

We investigate a sequence of such models:
- Order arrival rates are scaled by \(n \)
- Order size is scaled by \(1/\sqrt{n} \).
- Simplifying assumptions for this investigation:
 - Combined market/limit order rate is \(\lambda > 1 \), arriving at opposite best price.
 - Limit order rates of 1 at next two prices.
 - Interesting but tractable behavior.

Heuristic

Assume there are “large” queues of buy and sell orders between which the action takes place.
- Simulation suggests this is often the case.
- With simplified arrival rates, there are only two intermediate prices, \(p \) and \(q \).
- In this case the signed order quantities \(P \) and \(Q \) form a CTMC on \(\mathbb{Z}^2 \).

Theorem

If \(\lambda = (1 + \sqrt{5})/2 \) then \((\hat{P}_n, \hat{Q}_n) \Rightarrow (-B, B) \) in \(\mathbb{R}^2 \), where \(B \) is a one dimensional Brownian motion with variance parameter \(4\lambda^2 \). Here \(\hat{P}_n(t) := P(nt)/\sqrt{n} \) and \(\hat{Q}_n(t) := Q(nt)/\sqrt{n} \) are the diffusion scaled queue length processes.

Evidence

- Simulation of \((\hat{P}_n, \hat{Q}_n) \) with \(n = 100 \):
 - Black dots are final points of 1000 independent trials run for 2 scaled time units.
 - Coloured lines are independent paths 10 scaled time units long, sampled every 0.1 scaled time units.

- Simulation of \((\hat{P}_n, \hat{Q}_n) \) with \(n = 1000 \) (same legend):
 - Distance to “backwards L” is crushed because it behaves like the CTMC:

Sketch of Proof

- Transform coordinates to “straighten out” the problem.

References