Contents

0 Basics of Measure Theory 3
 0.1 Convergence theorems 3
 0.2 Uniqueness of measure 3
 0.3 Product measures 3
 0.4 L^p spaces 4
 0.5 Further results from elementary probability 4

1 Conditional Expectation 5
 1.1 The ‘discrete’ case 5
 1.2 Conditioning with respect to a σ-algebra 6
 1.3 Conditional convergence theorems 8
 1.4 Specific properties of conditional expectation 9
 1.5 Explicit computations of conditional expectation 10

2 Discrete-time Martingales 11
 2.1 General notions on random processes 11
 2.2 Optional stopping, part I 14
 2.3 Martingale Convergence Theorem 15
 2.4 Convergence in L^p for $p \in (1, \infty)$ 17
 2.5 Convergence in L^1 19
 2.6 Optional stopping, part II 19
 2.7 Backward martingales 20

3 Applications of Discrete Time Martingales 21
 3.1 Strong law of large numbers 21
 3.2 Radon-Nikodym theorem 22
 3.3 Kakutani’s theorem for product martingales 24
 3.4 Likelihood ratio 25
CONTENTS

4 Continuous-time Processes
4.1 Technical issues in dealing with continuous-time 27
4.2 Finite dimensional marginal distributions, Versions 27
4.3 Martingales in continuous-time 28
4.4 Convergence theorems for continuous-time 28
4.5 Kolmorgorov's continuity criterion 30

5 Weak Convergence
5.1 Weak convergence for probability measures 30
5.2 Convergence in distribution for random variables 32
5.3 Tightness .. 33
5.4 Levy's convergence theorem 34

6 Brownian Motion
6.1 Historical notes ... 35
6.2 First properties .. 38
6.3 Strong Markov property, Reflection principle 39
6.4 Martingales associated with Brownian motion 42
6.5 Recurrence and transience properties 43
6.6 Dirichlet problem .. 45
6.7 Donsker's invariance principle 47

7 Poisson Random Measures
7.1 Motivation .. 47
7.2 Integrating with respect to a Poisson measure 49
7.3 Poisson point processes .. 50
7.4 Lévy processes in \(\mathbb{R} \) .. 52

Index ... 55
0 Basics of Measure Theory

0.1 Convergence theorems

Let \((E, \mathcal{A}, \mu)\) be a measure space. If \(f : E \to \mathbb{R}_+\) is a measurable function then we let \(\mu(f)\) denote \(\int_E f \, d\mu\).

0.1.1 Theorem (Monotone Convergence Theorem).
Let \((f_n, n \geq 0)\) be non-negative measurable functions such that \(f_n \leq f_{n+1}\) a.s. for all \(n\). If \(f = \lim_{n \to \infty} f_n\) then \(\mu(f) = \lim_{n \to \infty} \mu(f_n)\).

0.1.2 Theorem (Fatou’s Lemma).
Let \((f_n, n \geq 0)\) be non-negative measurable functions. Then \(\mu(\lim inf_{n \to \infty} f_n) \leq \lim inf_{n \to \infty} \mu(f_n)\).

0.1.3 Theorem (Dominated Convergence Theorem).
Let \((f_n, n \geq 0)\) be measurable functions. Assume that \(|f_n| \leq g\) for all \(n\), for some measurable function \(g\) such that \(\mu(g) < \infty\), and \(f_n \to f\) a.s. Then \(\mu(f_n) \to \mu(f)\) and in fact \(\mu(|f_n - f|) \to 0\).

0.2 Uniqueness of measure

0.2.1 Definition. A \(\pi\)-system is a collection \(\Pi\) of sets such that \(A \cap B \in \Pi\) for all \(A, B \in \Pi\). A \(\delta\)-system is a collection \(\mathcal{D}\) of sets such that

(i) \(\Omega \in \mathcal{D}\);

(ii) if \(A \subseteq B\) then \(B \setminus A \in \mathcal{D}\) for all \(A, B \in \mathcal{D}\);

(iii) if \((A_n, n \in \mathbb{N})\) is an increasing sequence in \(\mathcal{D}\) then \(\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}\).

0.2.2 Theorem (Dynkin’s Lemma).
Let \(\Pi\) be a \(\pi\)-system and \(\mathcal{D}\) be a \(\delta\)-system containing \(\Pi\). Then \(\sigma(\Pi) \subseteq \mathcal{D}\).

0.2.3 Theorem. Let \((E, \mathcal{A})\) be a measurable space and \(\mu_1, \mu_2\) be two measures on \((E, \mathcal{A})\) such that \(\mu_1(E) = \mu_2(E) < \infty\). Let \(\Pi\) be a \(\pi\)-system such that \(\sigma(\Pi) = \mathcal{A}\). If \(\mu_1(A) = \mu_2(A)\) for all \(A \in \Pi\) then \(\mu_1 = \mu_2\) on \(\mathcal{A}\).

0.2.4 Example. Take \((E, \mathcal{A}) = (\mathbb{R}, \mathcal{B}_\mathbb{R})\). Then \(\Pi = \{(-\infty, a], a \in \mathbb{Q}\}\) is a \(\pi\)-system that generates \(\mathcal{B}_\mathbb{R}\). Thus, a finite measure on \((\mathbb{R}, \mathcal{B}_\mathbb{R})\) is entirely determined by its values on \((-\infty, a], a \in \mathbb{Q}\).

0.3 Product measures

Let \((E, \mathcal{A}, \mu)\) and \((F, \mathcal{B}, \nu)\) be finite measure spaces.

0.3.1 Definition. The product \(\sigma\)-algebra on \(E \times F\) is

\[\mathcal{A} \otimes \mathcal{B} = \sigma\{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}\].

0.3.2 Theorem. There is a unique measure (the product measure) \(\rho = \mu \otimes \nu\) on \((E \times F, \mathcal{A} \otimes \mathcal{B})\) such that \(\rho(A \times B) = \mu(A)\nu(B)\) for all \(A \in \mathcal{A}\) and \(B \in \mathcal{B}\).
0.3.3 Theorem (Fubini).
(i) Let $f : E \times F \to \mathbb{R}_+$ be measurable with respect to the product σ-algebra. Then for all $y, x \mapsto f(x, y)$ and for all $x, y \mapsto f(x, y)$ are measurable.
Let $\varphi_f^E = \int f(x, y) \mu(dx)$ and $\varphi_f^F = \int f(x, y) \nu(dy)$. These functions are measurable and
\[
\int f \, d(\mu \otimes \nu) = \int \varphi_f^E \nu(dy) = \int \varphi_f^F \mu(dx).
\]
(ii) If $f : E \times F \to \mathbb{R}$ is integrable with respect to $\mu \otimes \nu$ then the above results hold and φ_f^E and φ_f^F are integrable.

0.4 L^p spaces
Let (E, \mathcal{A}, μ) be a measure space and $p \in [1, \infty)$. Define
\[
L^p(E, \mathcal{A}, \mu) = \{ f \text{ measurable, } \int_E |f|^p d\mu < \infty \}
\]
and
\[
L^\infty(E, \mathcal{A}, \mu) = \{ f \text{ measurable, } \exists M \geq 0, \mu(|f| > M) = 0 \}.
\]
These are vector spaces and we let
\[
\|f\|_p = \left(\int_E |f|^p d\mu \right)^{\frac{1}{p}}
\]
and
\[
\|f\|_\infty = \text{esssup}|f| = \inf\{M, \mu(|f| > M) = 0\}.
\]
These are not norms on the L^p spaces, since $\|f\|_p = 0$ only implies that f is zero a.e. We let $f \equiv g$ if $f = g$ a.e. Let L^p be L^p modulo these equivalence classes.

0.4.1 Theorem. For all $p \in [1, \infty]$, L^p is a Banach space. Further, L^2 is a Hilbert space with inner product
\[
\langle f, g \rangle = \int_E f g d\mu
\]
One idea that we will need soon is that if $H \subseteq L^2$ is a closed vector subspace of then we can project orthogonally onto it.

0.4.2 Theorem. If $f \in L^2$ then there exists a unique $g \in H$ such that $\langle h, f - g \rangle = 0$ for all $h \in H$. In fact g is characterized as the unique $g \in H$ such that $\|f - g\|_2 = \inf_{h \in H} \|f - h\|_2$.

0.5 Further results from elementary probability
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

0.5.1 Theorem.
(i) Markov’s inequality: If $X \in L^1$ and $a > 0$ then
\[
\mathbb{P}(|X| \geq a) \leq \frac{1}{a} \mathbb{E}[|X|].
\]
(ii) Chebyshev’s inequality: If $X \in L^2$ and $a > 0$ then

$$
P(|X| \geq a) \leq \frac{1}{a^2} E[X^2].$$

0.5.2 Theorem (First Borel-Cantelli Lemma).
Let $(A_n, n \geq 1)$ be a sequence of events such that $\sum_{n \geq 1} P(A_n) < \infty$. Then $P(\limsup_n A_n) = P(A_n, i.o.) = 0$.

0.5.3 Theorem (Second Borel-Cantelli Lemma).
Let $(A_n, n \geq 1)$ be a sequence of independent events such that $\sum_{n \geq 1} P(A_n)$ diverges to infinity. Then $P(\limsup_n A_n) = P(A_n, i.o.) = 1$.

1 Conditional Expectation

1.1 The ‘discrete’ case

Let (Ω, \mathcal{F}, P) be a probability space.

1.1.1 Definition. Let $A, B \in \mathcal{F}$ and suppose that $P(B) > 0$. The conditional probability of A with respect to B is

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}.
$$

The conditional probability is interpreted as the probability of event A happening given that event B has happened.

1.1.2 Definition. More generally, if $X \in L^1(\Omega, \mathcal{F}, P)$ then the conditional expectation of X given B is

$$
E[X | B] = \frac{E(X 1_B)}{P(B)}.
$$

1.1.3 Definition. Let $(B_i, i \geq 1)$ be a partition of Ω such that $B_i \in \mathcal{F}$ for all i. Let $\mathcal{G} = \sigma(B_i, i \geq 1)$ and for $X \in L^1$ define the conditional expectation of X with respect to \mathcal{G} to be

$$
E[X | \mathcal{G}] = \sum_{i \geq 0} E[X | B_i] 1_{B_i},
$$

with the convention that $E[X | B_i] = 0$ if $P(B_i) = 0$.

1.1.4 Lemma. The conditional expectation with respect to \mathcal{G} satisfies

(i) $E[X | \mathcal{G}]$ is \mathcal{G}-measurable;

(ii) $E[X | \mathcal{G}] \in L^1(\Omega, \mathcal{G}, P)$; and

(iii) $E[X 1_A] = E[E[X | \mathcal{G}] 1_A]$ for every $A \in \mathcal{G}$.

Example. Let $X \in L^1$ and let Y be a r.v. taking values in some countable set E. Then $\Omega = \bigcup_{y \in E} \{Y = y\}$ is a partition of Ω which generates $\sigma(Y)$, and

$$E[X | Y] := E[X | \sigma(Y)] = \sum_{y \in E} E[X | \{Y = y\}] 1_{\{Y = y\}}.$$

Remember that r.v.’s and conditional expectations are only defined up to a set of measure zero.

1.2 Conditioning with respect to a σ-algebra

We now define the conditional expectation with respect to a sub-σ-algebra so that it satisfies the same properties as conditional expectation with respect to $\mathcal{G} = \sigma(B_i, i \geq 0)$. The following definition and theorem are due to Kolmogorov.

Theorem. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ be a sub-σ-algebra. Then there exists an integrable r.v. X' such that

(i) X' is \mathcal{G}-measurable;

(ii) $E[X 1_A] = E[X' 1_A]$ for all $A \in \mathcal{G}$.

Moreover, if X'' is another such r.v. then $X' = X''$ a.s.

Proof:

Uniqueness: Suppose X' and X'' both satisfy (i) and (ii). Let $A = \{X' > X''\} \in \mathcal{G}$. Then

$$E[X' 1_A] = E[X 1_A] = E[X'' 1_A],$$

so $E[(X' - X'') 1_{\{X' > X''\}}] = 0$, which implies that $X' \leq X''$ a.s. The same argument with the reverse inequality proves that $X' = X''$ a.s. \qed

Existence: First assume that $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$. Now $L^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed vector subspace of $L^2(\Omega, \mathcal{F}, \mathbb{P})$, so there is a unique r.v. X' such that $E[Z(X - X')] = 0$ for all $Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$, namely the orthogonal projection.

It follows that

$$E[\cdot | \mathcal{G}] : L^2(\Omega, \mathcal{F}, \mathbb{P}) \to L^2(\Omega, \mathcal{G}, \mathbb{P}) : X \mapsto E[X | \mathcal{G}]$$

is simply orthogonal projection, and $E[X | \mathcal{G}]$ is the \mathcal{G}-measurable r.v. that best approximates X for the L^2-norm (i.e. $E[|X - E[X | \mathcal{G}]|^2]$ is minimal over $\{E[|X - Z|^2] | Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})\}$).
Conditioning with respect to a \(\sigma\)-algebra

Note also that \(\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[X]\) (since \(1 \in L^2\)), and if \(X \geq 0\) then \(\mathbb{E}[X \mid \mathcal{G}] \geq 0\). Indeed,

\[
0 \geq \mathbb{E}[X \mid \mathcal{G}] 1_{\mathbb{E}[X \mid \mathcal{G}] < 0} = \mathbb{E}[X 1_{\mathbb{E}[X \mid \mathcal{G}] < 0}] \geq 0
\]

so \(\mathbb{E}[X \mid \mathcal{G}] \geq 0\) a.s.

Now assume that \(X\) is a non-negative r.v. (and not necessarily integrable). For all \(n \geq 1\), \(X \land n \in L^2\), and \(X \lor n \nearrow_{n \to \infty} X\) pointwise. Note that \((\mathbb{E}[X \land n \mid \mathcal{G}], n \geq 1)\) is an increasing sequence since

\[
X \land n \land (n - 1) \geq 0
\]

and \(\mathbb{E}[\cdot \mid \mathcal{G}]\) is linear on \(L^2\). Therefore let \(X' = \lim_{n \to \infty} \mathbb{E}[X \land n \mid \mathcal{G}]\), which is \(\mathcal{G}\)-measurable. For any \(A \in \mathcal{G}\), as \(n \to \infty\), by MCT,

\[
\mathbb{E}[1_A X \land n] \uparrow \mathbb{E}[1_A X]
\]

Therefore \(\mathbb{E}[X \mid \mathcal{G}]\) is \(X'\) by uniqueness. Taking \(A = \Omega\) shows that if \(X\) is integrable then so is \(\mathbb{E}[X \mid \mathcal{G}]\).

For any \(y \in L^1\), we may write \(X = X^+ - X^-\), where \(X^+ = X \lor 0\) and \(X^- = (-X) \lor 0\). Let

\[
X' = \mathbb{E}[X^+ \mid \mathcal{G}] - \mathbb{E}[X^- \mid \mathcal{G}]
\]

which is integrable and \(\mathcal{G}\)-measurable. Finally, for all \(A \in \mathcal{G}\),

\[
\mathbb{E}[1_A X'] = \mathbb{E}[1_A \mathbb{E}[X^+ \mid \mathcal{G}]] - \mathbb{E}[1_A \mathbb{E}[X^- \mid \mathcal{G}]] = \mathbb{E}[1_A (X^+ - X^-)] = \mathbb{E}[1_A X],
\]

so \(\mathbb{E}[X \mid \mathcal{G}]\) is \(X'\) by uniqueness.

We also proved that for all non-negative r.v.’s \(X\) there is a non-negative, \(\mathcal{G}\)-measurable r.v. \(X'\) such that \(\mathbb{E}[X 1_A] = \mathbb{E}[X' 1_A]\) for all \(A \in \mathcal{G}\).

1.2.2 Theorem. Let \(X\) be a non-negative r.v. and \(\mathcal{G} \subseteq \mathcal{F}\) be a sub-\(\sigma\)-algebra. Then there exists a non-negative r.v. \(X'\) such that

(i) \(X'\) is \(\mathcal{G}\)-measurable;

(ii) \(\mathbb{E}[X'Z] = \mathbb{E}[XZ]\) for every non-negative \(\mathcal{G}\)-measurable r.v. \(Z\).

Moreover, if \(X''\) is another such r.v. then \(X' = X''\) a.s.

We denote by \(\mathbb{E}[X \mid \mathcal{G}]\) the class of \(X'\) up to equality a.s.

Proof: Exercise.

1.2.3 Proposition.

(i) If \(X \geq 0\) then \(\mathbb{E}[X \mid \mathcal{G}] \geq 0\) a.s.

(ii) If \(X, Y \in L^1\) and \(a, b \in \mathbb{R}\) then \(\mathbb{E}[aX + bY \mid \mathcal{G}] = a \mathbb{E}[X \mid \mathcal{G}] + b \mathbb{E}[Y \mid \mathcal{G}]\).

(iii) If \(X \in L^1\) then \(\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[X]\).
(iv) If X is \mathcal{G}-measurable then $\mathbb{E}[X | \mathcal{G}] = X$.

(v) If $X \in L^1$ then $|\mathbb{E}[X | \mathcal{G}]| \leq \mathbb{E}[|X| | \mathcal{G}]$, which implies that $\mathbb{E}[|\mathbb{E}[X | \mathcal{G}]|] \leq \mathbb{E}[|X|]$.

(vi) If X is independent of \mathcal{G} then $\mathbb{E}[X | \mathcal{G}] = \mathbb{E}[X]$.

Proof: Exercise □

1.3 Conditional convergence theorems

Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub-σ-algebra.

1.3.1 Theorem (Conditional MCT).
Let $X_n \geq 0$ ($n \geq 0$) be such that $X_n \leq X_{n+1}$ for all n and let $X = \lim_{n \to \infty} X_n$ a.s. Then

$$\mathbb{E}[X_n | \mathcal{G}] \xrightarrow{n \to \infty} \mathbb{E}[X | \mathcal{G}] \quad \text{a.s.}$$

Proof: Note that if $0 \leq X \leq Y$ then $0 \leq \mathbb{E}[X | \mathcal{G}] \leq \mathbb{E}[Y | \mathcal{G}]$ (exercise). Let $X_n' = \mathbb{E}[X_n | \mathcal{G}]$. Then X_n' increases with n, so let $X' = \lim_{n \to \infty} X_n'$.

Let $A \in \mathcal{G}$. Then

$$\mathbb{E}[X_n 1_A] \xrightarrow{n \to \infty} \mathbb{E}[X 1_A]$$

by the MCT, so $\mathbb{E}[X' 1_A] = \mathbb{E}[X 1_A]$ for all $A \in \mathcal{G}$ and $X' = \mathbb{E}[X | \mathcal{G}]$ by uniqueness. □

1.3.2 Theorem (Conditional Fatou Lemma).
Let $X_n \geq 0$ ($n \geq 0$). Then

$$\mathbb{E}[\liminf_{n \to \infty} X_n | \mathcal{G}] \leq \liminf_{n \to \infty} \mathbb{E}[X_n | \mathcal{G}] \quad \text{a.s.}$$

Proof: Exercise (recall the proof of the usual Fatou’s Lemma). □

1.3.3 Theorem (Conditional DCT).
Let X_n ($n \geq 1$) $X = \lim_{n \to \infty} X_n$, a.s., and assume that $\sup_n |X_n| \leq Y$ for some integral r.v. Y. Then $\mathbb{E}[X | \mathcal{G}]$ is integrable and

$$\mathbb{E}[X_n | \mathcal{G}] \xrightarrow{n \to \infty} \mathbb{E}[X | \mathcal{G}] \quad \text{a.s.}$$

Proof: Consider $Y - X_n, Y + X_n \geq 0$. By (ii),

$$\mathbb{E}[Y - X | \mathcal{G}] \leq \liminf_{n \to \infty} (\mathbb{E}[Y | \mathcal{G}] - \mathbb{E}[X_n | \mathcal{G}])$$

and

$$\mathbb{E}[Y + X | \mathcal{G}] \leq \liminf_{n \to \infty} (\mathbb{E}[Y | \mathcal{G}] + \mathbb{E}[X_n | \mathcal{G}]).$$

Subtracting these we get

$$\liminf_{n \to \infty} \mathbb{E}[X_n | \mathcal{G}] \geq \mathbb{E}[X | \mathcal{G}] \geq \limsup_{n \to \infty} \mathbb{E}[X_n | \mathcal{G}].$$ □
Specific properties of conditional expectation

1.3.4 Proposition (Conditional Jensen inequality).
Let \(c : \mathbb{R} \to \mathbb{R} \) be a convex function, \(X \in L^1 \), and assume that \(c(X) \in L^1 \) or \(c \geq 0 \). Then \(c(\mathbb{E}[X \mid \mathcal{G}]) \leq \mathbb{E}[c(X) \mid \mathcal{G}] \).

Proof: Let \(E = \{(a, b) \mid ax + b \leq c(x) \text{ for all } x \in \mathbb{R} \} \). Then for all \(x \), \(c(x) = \sup_{(a, b) \in E} ax + b \), so
\[
\begin{aligned}
c(\mathbb{E}[X \mid \mathcal{G}]) &= \sup_{(a, b) \in E} a\mathbb{E}[X \mid \mathcal{G}] + b \\
&= \sup_{(a, b) \in E} \mathbb{E}[ax + b \mid \mathcal{G}] \\
&\leq \mathbb{E} \left[\sup_{(a, b) \in E} (ax + b) \mid \mathcal{G} \right] \\
&= \mathbb{E}[c(X) \mid \mathcal{G}]
\end{aligned}
\]
(Show \(\sup_{n \geq 1} \mathbb{E}[X_n] \leq \mathbb{E}[\sup_{n \geq 1} X_n] \) to complete the proof.)

1.3.5 Proposition. \(X \to \mathbb{E}[X \mid \mathcal{G}] \) is a continuous linear operator on \(L^p \) of (operator) norm at most one.

Proof: \(x \to |x|^p \) is non-negative and convex, so
\[
\| \mathbb{E}[X \mid \mathcal{G}] \|_p^p = \mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|^p] \leq \mathbb{E}[\mathbb{E}[|X|^p \mid \mathcal{G}]] = \mathbb{E}[|X|^p] = \|X\|_p^p.
\]

1.4 Specific properties of conditional expectation

1.4.1 Proposition. Let \(\mathcal{G} \subseteq \mathcal{F} \) be a sub-\(\sigma \)-algebra and let \(X \) and \(Y \) be r.v.’s, and assume that \(Y \) is \(\mathcal{G} \)-measurable, and either \(X,Y,XY \in L^1 \) or \(X,Y \geq 0 \). Then \(\mathbb{E}[XY \mid \mathcal{G}] = Y \mathbb{E}[X \mid \mathcal{G}] \)

This proposition is known as “taking out what is known” for obvious reasons.

Proof: Assume that \(X,Y \geq 0 \), and take \(A \in \mathcal{G} \). Then
\[
\mathbb{E}[1_A \mathbb{E}[XY \mid \mathcal{G}]] = \mathbb{E}[1_A XY] = \mathbb{E}[1_A Y \mathbb{E}[X \mid \mathcal{G}]],
\]
so \(\mathbb{E}[XY \mid \mathcal{G}] = Y \mathbb{E}[X \mid \mathcal{G}] \) by uniqueness. The \(L^1 \) case follows analogously.

1.4.2 Proposition (Tower property).
Let \(\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F} \) be sub-\(\sigma \)-algebras and \(X \in L^1 \). Then \(\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}] \).

Proof: Let \(A \in \mathcal{H} \). Then
\[
\mathbb{E}[1_A \mathbb{E}[X \mid \mathcal{H}]] = \mathbb{E}[1_A X] = \mathbb{E}[1_A \mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[1_A \mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}],
\]
so \(\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}] \) by uniqueness.

1.4.3 Proposition. Let \(\mathcal{G}, \mathcal{H} \subseteq \mathcal{F} \) be sub-\(\sigma \)-algebras and \(X \in L^1 \). Assume that \(\mathcal{H} \) is independent of \(\sigma(X) \vee \mathcal{G} \). Then \(\mathbb{E}[X \mid \mathcal{G} \vee \mathcal{H}] = \mathbb{E}[X \mid \mathcal{G}] \).
Proof: Let $A \in \mathcal{G}$ and $B \in \mathcal{H}$. Then

$$
\mathbb{E}[1_A 1_B \mathbb{E}[X \ | \mathcal{G} \vee \mathcal{H}]] = \mathbb{E}[1_A \mathbb{E}[1_B X \ | \mathcal{H}]] = \mathbb{P}(B) \mathbb{E}[1_A X \ | \mathcal{G}] = \mathbb{E}[1_A \mathbb{E}[X \ | \mathcal{G}]]
$$

Independence was used for the third and last equalities. We are done by the monotone class theorem, since \{A \cap B \mid A \in \mathcal{G}, B \in \mathcal{H}\} is a \pi-system that generates $\mathcal{G} \vee \mathcal{H}$ (see Williams).

1.4.4 Proposition. Let X and Y be r.v.’s and g be a non-negative measurable function. Let $G \subseteq \mathcal{F}$ be a sub-σ-algebra, and assume that Y is G-measurable and $\sigma(X)$ is independent of G. Then

$$
\mathbb{E}[g(X, Y) \ | \mathcal{G}] = \int P_X(dx)g(x, Y).
$$

Here $P_x = \mathscr{L}(X)$ is the law of X, i.e. $P_x(A) := \mathbb{P}(X \in A)$.

Proof: Let Z be \mathcal{G}-measurable. Then

$$
\mathbb{E}[Zg(X, Y)] = \int P_{(X,Y,Z)}(dx, dy, dz)g(x, y)
$$

But X is independent of (Z, Y), so

$$
P_{(X,Y,Z)}(dx, dy, dz) = P_x(dx) \otimes P_{(Y,Z)}(dy, dz).
$$

By Fubini's Theorem,

$$
\int P_{(X,Y,Z)}(dx, dy, dz)g(x, y) = \int P_x(dx) \int P_{(Y,Z)}(dy, dz)g(x, y) = \int P_x(dx) \mathbb{E}[Zg(x, Y)] = \mathbb{E}
[\int P_x(dx)g(x, Y)]
$$

Since $\int P_x(dx)g(x, Y)$ is \mathcal{G}-measurable, it is $\mathbb{E}[g(X, Y) \ | \mathcal{G}]$ by uniqueness.

1.5 Explicit computations of conditional expectation

1.5.1 Example (Conditional density functions). Let (X, Y) be a random vector in \mathbb{R}^2 such that

$$
P_{(X,Y)}(dx, dy) = f_{(X,Y)}(x, y)dx dy,
$$

where $dx dy$ is Lebesgue measure on \mathbb{R}^2. Let $h \geq 0$. We want to compute $\mathbb{E}[h(X) \ | \mathcal{Y}]$. To do this we must compute

$$
\mathbb{E}[h(X)g(Y)] = \int h(x)g(y)f_{(X,Y)}(x, y)dx dy
$$
Discrete-time Martingales

1.5.3 Exercise. What is the conditional distribution of g for ν and X will define a process. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space. Let $I \subseteq \mathbb{R}$ be the set of times on which we will define a process.

$1.5.2$ Example (Gaussian case). Let (X, Y) be a Gaussian random vector in \mathbb{R}^2 (so $\lambda X + \mu Y$ is Gaussian for all $\lambda, \mu \in \mathbb{R}$). What is $\mathbb{E}[X \mid Y]$? Let $X' = aY + b$, where a and b are chosen so that

(i) $\text{Cov}(X - X', Y) = 0$; and

(ii) $\mathbb{E}[X'] = \mathbb{E}[X]$.

In this case $X - X'$ and Y are independent (this is a property of Gaussian random vectors). Then

$$\mathbb{E}[(X - X') \mathbf{1}_A(Y)] = \mathbb{E}[X - X'] \mathbb{P}(Y \in A) = 0,$$

so $X' = \mathbb{E}[X \mid Y]$. Notice that $a = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)}$, so

$$\mathbb{E}[X \mid Y] = \mathbb{E}[X] + \frac{\text{Cov}(X, Y)}{\text{Var}(Y)} (Y - \mathbb{E}[Y]).$$

1.5.3 Exercise. What is the conditional distribution of X given Y? (Hint: $\mathbb{E}[h(X) \mid Y] = \mathbb{E}[h(X - \mathbb{E}[X \mid Y] + \mathbb{E}[X \mid Y]) \mid Y]$, and $X - \mathbb{E}[X \mid Y]$ and $\mathbb{E}[X \mid Y]$ are independent.)

2 Discrete-time Martingales

2.1 General notions on random processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $I \subseteq \mathbb{R}$ be the set of times on which we will define a process.
2.1.1 Definition. A stochastic process (or random process) X indexed by I is a family $(X_t, t \in I)$ of r.v.’s. If X_t is \mathbb{R}-valued then X is integrable if $X_t \in L^1$ for every $t \in I$.

2.1.2 Definition. A filtration is an increasing family of sub-σ-algebras of \mathcal{F} indexed by I, $(\mathcal{F}_t, t \in I)$, such that if $s \leq t$ then $\mathcal{F}_s \subseteq \mathcal{F}_t$.

We think of \mathcal{F}_t as “the information available at and before time t.” If $(\mathcal{F}_t, t \in I)$ is a filtration, we say that $(\Omega, \mathcal{F}, (\mathcal{F}_t, t \in I), \mathbb{P})$ is a filtered probability space (or f.p.s.).

2.1.3 Definition. A random process $(X_t, t \in I)$ is adapted to the filtration $(\mathcal{F}_t, t \in I)$ if X_t is \mathcal{F}_t-measurable for each $t \in I$.

2.1.4 Example. Let (X_t) be a process, and let $\mathcal{F}_t^X = \sigma\{X_s \mid s \leq t\}$. Then (\mathcal{F}_t^X) is the natural filtration of X. It is the smallest filtration with respect to which X is adapted.

For the remainder of these notes let $(\Omega, \mathcal{F}, (\mathcal{F}_t, t \in I), \mathbb{P})$ be an f.p.s.

2.1.5 Definition. Let X be an adapted real-valued integrable process. Then X is a

(i) martingale if $\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s$ for all $s \leq t \in I$;

(ii) super-martingale if $\mathbb{E}[X_t \mid \mathcal{F}_s] \leq X_s$ for all $s \leq t \in I$;

(iii) sub-martingale if $\mathbb{E}[X_t \mid \mathcal{F}_s] \geq X_s$ for all $s \leq t \in I$.

In particular, if X is a

(i) martingale then $\mathbb{E}[X_t] = \mathbb{E}[X_s]$ for all $s, t \in I$;

(ii) super-martingale then $\mathbb{E}[X_t] \leq \mathbb{E}[X_s]$ for all $s \leq t \in I$;

(iii) sub-martingale then $\mathbb{E}[X_t] \geq \mathbb{E}[X_s]$ for all $s \leq t \in I$.

2.1.6 Example. Let $I = \mathbb{Z}_+$ and X_1, X_2, \ldots be i.i.d. integrable r.v.’s. Take $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_m, m \leq n)$. Let $S_n = X_1 + \cdots + X_n$. Then S is a martingale if and only if $\mathbb{E}[X_1] = 0$, since for all n,

$$\mathbb{E}[S_{n+1} \mid \mathcal{F}_n] = S_n + \mathbb{E}[X_n] = S_n + \mathbb{E}[X_1].$$

Similarly, it is a super-martingale if $\mathbb{E}[X_1] \leq 0$ or a sub-martingale if $\mathbb{E}[X_1] \geq 0$.

2.1.7 Definition (Doob). Let $T : \Omega \to I \cup \{+\infty\}$ be a random variable. T is a stopping time with respect to the filtration $(\mathcal{F}_t, t \in I)$ if $\{T \leq t\} \in \mathcal{F}_t$ for all $t \in I$.

Note that constant r.v.’s $T \equiv t$ for some $t \in I$ are stopping times.

2.1.8 Example. Let $I = \mathbb{Z}_+$, $(X_n, n \geq 0)$ be a random process, and $(\mathcal{F}_n) = (\mathcal{F}_n^X)$. Let A be a Borel subset of \mathbb{R} and $T_A(\omega) = \inf\{n \geq 0 \mid X_n(\omega) \in A\}$. Then T_A is a stopping time since

$$\{T_A \leq n\} = \bigcup_{m \leq n} \{X_m \in A\}.$$

T_A is known as the first entrance time into A and is an important example of a stopping time. However, $L_A(\omega) = \sup\{N \geq 0 \mid X_N(\omega) \in A\}$ is not a stopping time in general.
Remark. If \(I \) is countable (for example, if \(I = \mathbb{Z}_+ \)) then \(T \) is a stopping time with respect to \((\mathcal{F}_t) \) if and only if \(\{T = t\} \in \mathcal{F}_t \) for all \(t \in I \). This is not true in general.

2.1.9 Proposition. Let \(S, T, \) and \((T_n, n \geq 0) \) all be stopping times. Then \(S \land T, S \lor T, \inf_{n \geq 0} T_n, \sup_{n \geq 0} T_n, \liminf_n T_n, \) and \(\limsup_n T_n \) are all stopping times as well.

Proof: Exercise.

2.1.10 Definition. Let \(T \) be a stopping time with respect to \((\mathcal{F}_t, t \in I) \), and

\[
\mathcal{F}_T = \{ A \in \mathcal{F} \mid A \cap \{ t \leq T \} \in \mathcal{F}_t \text{ for all } t \in I \}.
\]

This defines a \(\sigma \)-algebra, called the \(\sigma \)-algebra of measurable events before \(T \).

2.1.11 Exercises.

(i) If \(S \) and \(T \) are stopping times such that \(S \leq T \) then \(\mathcal{F}_S \subseteq \mathcal{F}_T \).

(ii) \(Y \) is an \(\mathcal{F}_T \)-measurable r.v. if and only if \(Y1_{[T \leq t]} \) is \(\mathcal{F}_T \)-measurable for all \(t \in I \). (Hint: begin with \(Y = \sum_{i=1}^n a_i 1_{A_i}, A_i \in \mathcal{F}_T \).)

2.1.12 Proposition. Let \(I \subseteq \mathbb{R} \) be countable. Let \((X_t, t \in I) \) be adapted, and let \(T \) be a stopping time. Define \(X_T \) by \(X_T(\omega) = X_{T(\omega)}(\omega) \) on the event \(\{ T \leq \infty \} \). Then

(i) \(X_T 1_{[T < \infty]} \) is \(\mathcal{F}_T \)-measurable; and

(ii) the stopped process at time \(T, X^T := (X_{t \land T}, t \in I) \) is adapted.

Proof: We have

\[
X_T 1_{[T < \infty]} 1_{[T \leq t]} = \sum_{s \leq t, \rho \in I} X_s 1_{[T = s]},
\]

which is \(\mathcal{F}_T \)-measurable since \(X_s 1_{[T = s]} \) is \(\mathcal{F}_T \)-measurable and the sum is countable. \(X^T \) is adapted because

\[
X^T_t = X_{T \land t} = X_t X_s 1_{[T > t]} + \sum_{s \leq t, \rho \in I} X_s 1_{[T = s]} X_{s \land t} 1_{[T = s]}
\]

for every \(t \in I \).

For the time being we consider only the case \(I = \mathbb{Z}_+ \) and the filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_n, n \geq 0), \mathbb{P}) \).

2.1.13 Proposition. Let \(X = (X_n, n \geq 0) \) be adapted and \(T \) a stopping time. If \(X \) is integrable then the stopped process \(X^T \) is also integrable.

Proof: We have

\[
X^T_n = X_n 1_{[T > n]} + \sum_{m \leq n} X_m 1_{[T = m]},
\]

which is a finite sum, so

\[
\mathbb{E}[|X^T_n|] \leq \mathbb{E}[|X_n|] + \sum_{m \leq n} \mathbb{E}[|X_m|] < \infty.
\]

Check that an adapted integrable process \((X_n, n \geq 0) \), is a \((\mathcal{F}_n) \)-martingale if \(\mathbb{E}[X_{n+1} | \mathcal{F}_n] = X_n \) for all \(n \). (Hint: use the tower property.) Similarly, we have a super- or sub-martingale when this relation holds with “\(\leq \)” or “\(\geq \)” respectively.
2.2 Optional stopping, part I

2.2.1 Definition. Let \((C_n, n \geq 1)\) and \((X_n, n \geq 0)\) be processes taking values in \(\mathbb{R}\). Define
\[
(C \cdot X)_n := \sum_{k=1}^{n} C_k(X_k - X_{k-1})
\]
for \(n \geq 1\), and \((C \cdot X)_0 = 0\). Then \(C \cdot X\) is sometimes called a discrete stochastic integral. We say that \(C = (C_n, n \geq 1)\) is previsible if \(C_n\) is \(\mathcal{F}_{n-1}\)-measurable for all \(n \geq 1\).

2.2.2 Proposition. Let \((X_n, n \geq 0)\) be a martingale (resp. super-martingale) and let \((C_n, n \geq 1)\) be a bounded, previsible process (resp. bounded, previsible, non-negative). Then the process \((\langle C \cdot X \rangle_n, n \geq 0)\) is a martingale (resp. super-martingale).

Proof: \(C \cdot X\) is adapted since \(\sum_{k=1}^{n} C_k(X_k - X_{k-1})\) is \(\mathcal{F}_n\)-measurable for every \(n\). Therefore it is integrable since the \(C_k\)'s are uniformly bounded and the \(X_k\)'s are integrable.

\[
\mathbb{E}[(C \cdot X)_{n+1} | \mathcal{F}_n] = \mathbb{E}[(C \cdot X)_n + C_{n+1}(X_{n+1} - X_n) | \mathcal{F}_n]
\]
\[
= (C \cdot X)_n + C_{n+1} \mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n]
\]
\[= (C \cdot X)_n
\]
by the martingale property. Check the result for super-martingales. \(\square\)

The above result shows that there is no way to make money out of super-martingales.

2.2.3 Theorem (Optional Stopping, discrete-time). Let \(T\) be a stopping time and let \((X_n, n \geq 0)\) be a martingale (resp. super-martingale). Then \(X^T\) is also a martingale (resp. super-martingale).

Proof: Let \(C_n = 1_{[n \leq T]}\) for \(n \geq 0\). Then \((C_n, n \geq 1)\) is previsible since \(\{n \leq T\} = \{T \leq n - 1\}^c \in \mathcal{F}_{n-1}\). It is also bounded, integrable, and non-negative, so by the previous proposition \(C \cdot X\) is a martingale (resp. super-martingale).

\[
(C \cdot X)_n = \sum_{k=1}^{n} 1_{[k \leq T]}(X_k - X_{k-1}) = \sum_{k=1}^{n \wedge T}(X_k - X_{k-1}) = X_{n \wedge T} - X_0 = X^T_n - X_0,
\]
so \(X^T\) is a martingale (resp. super-martingale). \(\square\)

2.2.4 Proposition (Optional Stopping, bounded times). Let \((X_n, n \geq 0)\) be a martingale and \(S\) and \(T\) be bounded stopping times such that \(S \leq T \leq K\), where \(K\) is a fixed constant. Then \(\mathbb{E}[X_T | \mathcal{F}_S] = X_S\). In particular, \(\mathbb{E}[X_T] = \mathbb{E}[X_S]\).

Warning: This is not true in general (for unbounded stopping times). Consider i.i.d. r.v.'s \(X_1, \ldots, X_n\) such that
\[
\mathbb{P}(X_n = 1) = \frac{1}{2} = \mathbb{P}(X_n = -1),
\]
and let $S_n = X_1 + \cdots + X_n$, which we have seen to be a martingale. Let $T = \inf\{n \geq 1 \mid S_n = 1\}$, a stopping time. It holds that $\mathbb{P}(T < \infty) = 1$, but $\mathbb{E}[S_T] = 1 > 0 = \mathbb{E}[S_0]$.

Proof: Let $A \in \mathcal{F}_S$, and consider $C_n = 1_A 1_{\{S \leq n \leq T\}}$. C is previsible since

$$C_n = 1_A 1_{\{S \leq n-1\}} 1_{\{n \leq T\}} = 1_{\mathcal{F}_S} 1_{\{S \leq n-1\}} 1_{\{n \leq T\}}$$

is \mathcal{F}_{S-1}-measurable. Then $((C \cdot X)_n, n \geq 0)$ is a martingale, and we have

$$(C \cdot X)_k = \sum_{k=s+1}^{T} 1_A(X_k - X_{k-1}) = 1_A(X_T - X_S).$$

Since $(C \cdot X)$ is a martingale, $\mathbb{E}[(C \cdot X)_k] = \mathbb{E}[(C \cdot X)_0] = 0$. This says that $\mathbb{E}[1_A X_T] = \mathbb{E}[1_A X_S]$ for all $A \in \mathcal{F}_S$, which is the very definition of $\mathbb{E}[X_T \mid \mathcal{F}_S] = \mathbb{E}[X_S]$. \square

2.2.5 **Exercise.** Check that for a super-martingale X and bounded stopping times $T \leq T$, we have $\mathbb{E}[X_T \mid \mathcal{F}_S] \leq X_S$ and $\mathbb{E}[X_T] \leq \mathbb{E}[X_S]$.

2.3 **Martingale Convergence Theorem**

2.3.1 **Theorem (Martingale convergence theorem).**

Let $(X_n, n \geq 0)$ be a super-martingale such that $\sup_n \mathbb{E}[|X_n|] < \infty$ (i.e. X is bounded in L^1). Then X_n converges a.s. to a finite limit X_∞ as $n \to \infty$.

2.3.2 **Corollary.** If $(X_n, n \geq 0)$ is a non-negative super-martingale then X_n converges a.s. to a finite limit X_∞ as $n \to \infty$.

Proof: $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = \mathbb{E}[X_0] < \infty$ for all n, so $(X_n, n \geq 0)$ is bounded in L^1. \square

2.3.3 **Definition.** Let $(x_n, n \geq 0)$ be a real sequence and $a < b \in \mathbb{R}$. Recursively define

(i) $S_1(x) := \inf\{n \geq 0 \mid x_n < a\} \in \mathbb{Z}_+ \cup \{\infty\}$;
(ii) $T_k(x) := \inf\{n \geq S_k(x) \mid x_n > b\} \quad \text{for } k \geq 1$;
(iii) $S_{k+1}(x) := \inf\{n \geq T_k(x) \mid x_n < a\} \quad \text{for } k \geq 1$;
(iv) $N_n(x, [a, b]) := \sup\{k \geq 1 \mid T_k(x) \leq n\}$;
(v) $N(x, [a, b]) := \sup\{k \geq 1 \mid T_k(x) \leq \infty\}$.

Notice that $N(x, [a, b]) = n \to \infty N_n(x, [a, b])$. A little explanation is in order. S_1 is the first time that the sequence drops below a, and T_1 is the first time after S_1 that the sequence exceeds b. T_1 is the time of the first up-crossing. Similarly, T_k is the time of the k^{th} up-crossing, and N_n is the number of up-crossings that have occurred before time n.

2.3.4 **Lemma.** A real sequence $(x_n, n \geq 0)$ converges in $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ if and only if $N(x, [a, b]) < \infty$ for every $a < b \in \mathbb{Q}$.

Proof: Exercise. \square
Observe that if \((X_n, n \geq 0)\) is an adapted process then \(S_k(X)\) and \(T_k(X)\) \((k \geq 1)\) are all stopping times.

2.3.5 Proposition (Doob’s Up-crossing Lemma).

Let \((X_n, n \geq 0)\) be a super-martingale. Then for all \(a < b\) and all \(n \geq 0\),

\[
(b - a) E[N_n(X, [a, b])] \leq E[(X_n - a)^-].
\]

Proof: For this proof we write \(S_k\), \(T_k\), and \(N_n\) for the r.v.’s \(S_k(X)\), \(T_k(X)\), and \(N_n(X, [a, b])\), respectively. Let \(C_n = \sum_{k \geq 1} 1_{\{S_k \leq T_k\}}\). Since \(S_1 < T_1 < S_2 < T_2 < \cdots\), \(C_n\) takes values in \([0, 1]\). Note that the process \((C_n, n \geq 1)\) is previsible (we have already seen that \(1_{\{S \leq T\}}\) is previsible when \(S\) \(\leq T\) are stopping times). Therefore \(((C \cdot X)_n, n \geq 0)\) is a super-martingale. Now

\[
(C \cdot X)_n = \sum_{r=1}^{n} C_r(X_r - X_{r-1})
\]

\[
= \sum_{r=1}^{n} \sum_{k \geq 1} 1_{\{S_k \leq T_k\}}(X_r - X_{r-1})
\]

\[
= \sum_{r=1}^{n} \sum_{k=1}^{N_k} 1_{\{S_k \leq T_k\}}(X_r - X_{r-1})
\]

\[
= \sum_{k=1}^{N_k} \sum_{r=1}^{n} 1_{\{S_k \leq T_k\}}(X_r - X_{r-1})
\]

\[
= 1_{\{S_{n+1} \leq n\}}(X_n - X_{S_{n+1}}) + \sum_{k=1}^{N_k} (X_T - X_S)
\]

\[
\geq 1_{\{S_{n+1} \leq n\}}(X_n - a) + (b - a)N_n
\]

Now either \(X_n \geq a\), in which case \(1_{\{S_{n+1} \leq n\}}(X_n - a) \geq 0\), or \(X_n < a\), in which case \(S_{n+1} \leq n\), so \(1_{\{S_{n+1} \leq n\}}(X_n - a) = (X_n - a)1_{\{X_n < a\}} = -(X_n - a)^-\). Hence

\[
(C \cdot X)_n \geq (b - a)N_n - (X_n - a)^-
\]

but

\[
0 = E[(C \cdot X)_0] \geq E[(C \cdot X)_n] \geq (b - a)E[N_n] - E[(X_n - a)^-]
\]

Proof (of martingale convergence theorem): Let \(a < b \in \mathbb{Q}\). By the Up-crossing Lemma

\[
E[N_n(X, [a, b])] \leq E[(X_n - a)^-] \leq E[(X_n - a)^+] + a \leq M < \infty
\]

for some constant \(M\), for all \(n\). By the Monotone Convergence Theorem

\[
E[N(X, [a, b])] \leq M,
\]

hence for every \(a < b \in \mathbb{Q}\), \(N(X, [a, b]) < \infty\) a.s. Therefore, by 2.3.4, \((X_n, n \geq 0)\) converges in \(\mathbb{E}\).

It remains to show that \(X_{\infty} = \lim_{n \to \infty} X_n\) is finite a.s. But \(E[|X_n|] \leq M < \infty\), so by Fatou’s Lemma

\[
E[|X_{\infty}|] \leq \liminf_{n \to \infty} E[|X_n|] \leq M < \infty
\]

Thus \(X_{\infty}\) is integrable and hence finite a.s. \(\square\)
2.3.6 Corollary. Let \((X_n, n \geq 0)\) be a non-negative super-martingale and let \(T\) be a stopping time. Then \(\mathbb{E}[X_T] \leq \mathbb{E}[X_0]\) (where \(X_T = X_\infty\) on the event \(\{T = \infty\}\)).

Warning: We can’t turn the “\(\leq\)" into an “\(=\)” even if \(X\) is a martingale. See the example following 2.2.4.

Proof: \(T \land n \not\nearrow T\) and \(\mathbb{E}[X_{T\land n}] \leq \mathbb{E}[X_0]\) since \(T \land n\) is bounded (by \(n\)). Apply Fatou’s Lemma and MCT to get

\[
\mathbb{E}[X_T] = \mathbb{E}[\lim inf_{n \to \infty} X_{T\land n}] \leq \lim inf_{n \to \infty} \mathbb{E}[X_{T\land n}] = \mathbb{E}[X_0].
\]

\(\square\)

2.4 **Convergence in \(L^p\) for \(p \in (1, \infty)\)**

We have seen that \(X_n \overset{a.s.}\to X_\infty\) if \(X\) is bounded in \(L^1\). When can we upgrade this to convergence in \(L^p\)?

2.4.1 Proposition (Doob’s Maximal Inequality).

Let \((X_n, n \geq 0)\) be a sub-martingale, and define \(\tilde{X}_n = \max_{0 \leq k \leq n} X_k\). Then for \(a > 0\),

\[
a \mathbb{P}(\tilde{X}_n > a) \leq \mathbb{E}[X_n 1_{[\tilde{X}_n > a]}].
\]

Proof: Let \(T = \inf\{n \geq 0 \mid X_n > a\}\), a stopping time. Notice that \(\{T \leq n\} = \{\tilde{X}_n > a\}\), and the stopped process \(X_T = (X_{T\land n}, n \geq 0)\) is a submartingale. Thus

\[
\mathbb{E}[X_{T\land n}] = \mathbb{E}[X_T 1_{[T \leq n]}] + \mathbb{E}[X_n 1_{[T > n]}].
\]

Moreover, since \(T \land n\) is bounded (by \(n\)) the OST implies that \(\mathbb{E}[X_{T\land n}] \leq \mathbb{E}[X_n]\). Thus

\[
\mathbb{E}[X_n] \geq \mathbb{E}[X_T 1_{[T \leq n]}] + \mathbb{E}[X_n 1_{[T > n]}].
\]

Rearranging, \(\mathbb{E}[X_n 1_{[T \leq n]}] \geq a \mathbb{P}(T \leq n)\). But \(\{T \leq n\} = \{\tilde{X}_n > a\}\), so we are done. \(\square\)

2.4.2 Proposition (Doob’s \(L^p\)-Inequality).

Let \(p \in (1, \infty)\) and \((X_n, n \geq 0)\) be a martingale. Define \(X_n^* = \max_{0 \leq k \leq n} |X_k|\). Then (recalling \(\|X\|_p = (\mathbb{E}[|X|^p])^{\frac{1}{p}}\))

\[
\|X_n^*\|_p \leq \frac{p}{p-1} \|X_n\|_p.
\]

Proof: For any random variable

\[
\mathbb{E}[Y^p] = \int_0^\infty x^{p-1} \mathbb{P}(Y > x) dx.
\]

\((|X_n|, n \geq 0)\) is a sub-martingale by the conditional Jensen inequality, so by Doob’s Maximal Inequality,

\[
\mathbb{P}(X_n^* > x) \leq \frac{1}{x} \mathbb{E}[|X_n| 1_{[X_n^* > x]}].
\]
Combining these and Hölder’s inequality, where \(\frac{1}{p} + \frac{1}{q} = 1 \),

\[
\mathbb{E}[(X^*_n)^p] = p \int_0^\infty x^{p-1} \mathbb{P}[X^*_n > x] \, dx
\]

\[
\leq \frac{p}{p-1} \int_0^\infty (p-1)x^{p-2} \mathbb{E}[|X_n| 1_{\{|X_n| > x\}}] \, dx
\]

\[
\leq \frac{p}{p-1} \mathbb{E}\left[\int_0^\infty (p-1)x^{p-2} 1_{\{|X_n^*_n| < x\}} \, dx \right]
\]

\[
= \frac{p}{p-1} \mathbb{E}[|X_n^*_n|^{p-1}]
\]

\[
\leq \frac{p}{p-1} \mathbb{E}[|X_n|^p]^{1/p} \mathbb{E}[(X^*_n)^{p-1}]^{1/(p-1)}.
\]

But \(p + q = pq \), so \(|X^*_n|^p \leq \frac{p}{p-1} |X_n|^p \).

\[\square\]

2.4.3 Definition. When \(X_n = \mathbb{E}[Z \mid \mathcal{F}_n] \) for all \(n \geq 0 \) for some \(Z \) then \((X_n, n \geq 0) \) is a martingale, and if \(Z \in L^p(\omega, \mathcal{F}, \mathbb{P}) \) then we say that \(X \) is closed in \(L^p \).

2.4.4 Theorem. Let \((X_n, n \geq 0) \) be a martingale. Then for \(p > 1 \) the following are equivalent.

(i) \((X_n) \) is bounded in \(L^p \) (i.e. \(\sup_n |X_n|^p < \infty \)).

(ii) \(X_n \to X_\infty \) a.s. and in \(L^p \).

(iii) \((X_n) \) is closed in \(L^p \).

Proof: (i) implies (ii): Bounded in \(L^p \) implies bounded in \(L^1 \), so by the martingale convergence theorem \(X_n \) converges a.s. to a finite limit \(X_\infty \). By Doob’s inequality,

\[
|X^*_n|^p \leq \frac{p}{p-1} \sup_m |X_m|^p < \infty,
\]

so \(X^*_n \to X_\infty \) in \(L^p \). By the MCT, \(|X^*_n|^p \to |X_\infty|^p \) for all \(n \), which implies \(|X_\infty|^p \leq X^*_\infty \), so \(X_\infty \in L^p \). Moreover, \(|X_n - X_\infty|^p \leq (2X_\infty)^p \), so by the DCT, \(\mathbb{E}[|X_n - X_\infty|^p] \to 0 \) as \(n \to \infty \), or equivalently \(X_n \to X_\infty \) in \(L^p \).

(ii) implies (iii): Suppose \(X_n \to X_\infty \) in \(L^p \). Since \(X_n = \mathbb{E}[X_{n+k} \mid \mathcal{F}_n] \to \mathbb{E}[X_\infty \mid \mathcal{F}_n] \) as \(k \to \infty \), because \(\mathbb{E}[\cdot \mid \mathcal{F}_n] \) is continuous, \(X_n \to \mathbb{E}[X_\infty \mid \mathcal{F}_n] \), so take \(Z = X_\infty \).

(iii) implies (i): Suppose \(X_n = \mathbb{E}[Z \mid \mathcal{F}_n] \) for some \(Z \in L^p \). By Jensen, \(|X_n|^p \leq \mathbb{E}[|Z|^p \mid \mathcal{F}_n] \), so \(\sup_{n \geq 0} \mathbb{E}[|X_n|^p] \leq \mathbb{E}[|Z|^p] < \infty \).

Suppose that we have that \(X_n = \mathbb{E}[Z \mid \mathcal{F}_n] \). Then \(\mathbb{E}[Z \mid \mathcal{F}_\infty] = X_\infty \), where

\[
\mathcal{F}_\infty = \bigvee_{n \geq 0} \mathcal{F}_n = \sigma\left(\bigcup_{n \geq 0} \mathcal{F}_n\right).
\]

Indeed, let \(A \in \bigcup_{n \geq 0} \mathcal{F}_n \), say \(A \in \mathcal{F}_m \). Then \(\mathbb{E}[Z 1_A] = \mathbb{E}[X_m 1_A] = \mathbb{E}[X_n 1_A] \) for any \(n \geq m \). Therefore as \(n \to \infty \), by \(L^p \) convergence, \(\mathbb{E}[Z 1_A] = \mathbb{E}[X_\infty 1_A] \). To conclude that this is true for every \(A \in \bigcap_{n \geq 0} \mathcal{F}_n \), note that \(\bigcap_{n \geq 0} \mathcal{F}_n \) is a \(\pi \)-system that spans \(\mathcal{F}_\infty \) and apply the monotone class theorem. Finally, note that \(X_\infty = \limsup_{n \to \infty} X_n \).
Convergence in L^1

is an \mathcal{F}_∞-measurable r.v. In particular, if $\mathcal{F} = \mathcal{F}_\infty$ then X_∞ is the only possible Z for which $X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$ for all n.

Yet otherwise said,

$$L^p(\Omega, \mathcal{F}_\infty, \mathbb{P}) \to \{L^p\text{-bounded martingales} \} : Z \mapsto (\mathbb{E}[Z \mid \mathcal{F}_n], n \geq 0)$$

is a bijection.

2.5 Convergence in L^1

2.5.1 Definition. A sequence $(X_n, n \geq 0)$ is uniformly integrable (or u.i.) if $\sup_{n \geq 0} \mathbb{E}[|X_n|1_{|X_n|>a}] \to 0$ as $a \to \infty$.

2.5.2 Lemma.

(i) If $X_n \to X_\infty$ a.s. then $X_n \to X_\infty$ in L^1 if and only if (X_n) is u.i.

(ii) If $(\mathcal{F}_n, n \geq 0)$ is a filtration and $Z \in L^1$ then $(\mathbb{E}[Z \mid \mathcal{F}_n], n \geq 0)$ is u.i.

Proof: Exercise (see example sheet).

2.5.3 Theorem. Let $(X_n, n \geq 0)$ be a martingale. The following are equivalent.

(i) (X_n) is uniformly integrable.

(ii) $X_n \to X_\infty$ a.s. and in L^1.

(iii) (X_n) is closed in L^1.

Proof: (i) implies (ii): From example sheet 0, u.i. implies bounded in L^1, so $X_n \to X_\infty$ a.s. by the martingale convergence theorem. By 2.5.2, this implies that $X_n \to X_\infty$ in L^1 since (X_n) is u.i.

(ii) implies (iii): As the proof of 2.4.4, we have $X_n = \mathbb{E}[X_{n+k} \mid \mathcal{F}_n]$, and let $k \to \infty$.

(iii) implies (i): The 2.5.2 implies that $(\mathbb{E}[Z \mid \mathcal{F}_n], n \geq 0)$ is u.i. for any $Z \in L^1$.

As before, $Z = X_\infty$ is the only \mathcal{F}_∞-measurable r.v. for which $X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$ for all n. Similarly,

$$L^1(\Omega, \mathcal{F}_\infty, \mathbb{P}) \to \{\text{u.i. martingales} \} : Z \mapsto (\mathbb{E}[Z \mid \mathcal{F}_n], n \geq 0)$$

is a bijection.

2.6 Optional stopping, part II

Recall that $\mathbb{E}[X_T \mid \mathcal{F}_S] = X_S$ when $S \leq T$ are bounded stopping times. It turns out that we may eliminate the boundedness of the stopping times when the martingale is u.i.

2.6.1 Theorem (Optional Stopping, u.i. martingale).

Let $(X_n, n \geq 0)$ be a uniformly integrable martingale and let S and T be stopping times with $S \leq T$. Then $\mathbb{E}[X_T \mid \mathcal{F}_S] = X_S$, where we take $X_T = X_T 1_{T<\infty} + X_\infty 1_{T=\infty}$. In particular, in this case $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.
2.7.1 Definition. to the filtration \((\mathcal{F}_n)\) for this section we let \(P\) be a backwards martingale. Then \(X_n\) converges a.s. and in \(L^1\) to a limit \(X_\infty\) as \(n \to -\infty\) and \(X_\infty = E[X_0 | \mathcal{F}_\infty]\), where \(\mathcal{F}_\infty = \bigcap_{n \leq 0} \mathcal{F}_n\).

Proof: \(X_T\) is integrable since

\[
X_T = X_\infty \mathbf{1}_{T=\infty} + \sum_{n \geq 0} X_n \mathbf{1}_{T=n} = X_\infty \mathbf{1}_{T=\infty} + \sum_{n \geq 0} E[X_\infty | \mathcal{F}_n] \mathbf{1}_{T=n}
\]

by uniform integrability. Therefore

\[
|X_T| \leq |X_\infty| \mathbf{1}_{T=\infty} + \sum_{n \geq 0} E[|X_\infty| \mathbf{1}_{T=n} | \mathcal{F}_n],
\]

so

\[
E[|X_T|] \leq \sum_{n=0}^{\infty} E[|X_\infty| \mathbf{1}_{T=n}] = E[|X_\infty|].
\]

Suppose that \(T = \infty\). Let \(A \in \mathcal{F}_S\). Then

\[
E[X_\infty \mathbf{1}_A] = \sum_{n=0}^{\infty} E[X_\infty \mathbf{1}_A \mathbf{1}_{S=n}]
\]

\[
= E[X_\infty \mathbf{1}_A \mathbf{1}_{S=\infty}] + \sum_{n \geq 0} E[E[X_\infty | \mathcal{F}_n] \mathbf{1}_A \mathbf{1}_{S=n}]
\]

\[
= \sum_{n=0}^{\infty} E[X_S \mathbf{1}_A \mathbf{1}_{S=n}]
\]

\[
= E[X_S \mathbf{1}_A].
\]

Thus \(E[X_\infty | \mathcal{F}_S] = X_S\). For general \(T\), \(E[X_T | \mathcal{F}_S] = E[E[X_\infty | \mathcal{F}_T] | \mathcal{F}_S] = X_S\). \(\square\)

2.6.2 Exercise. Let \((S_n)_{n \geq 0}\) be a simple random walk, \(S_n = X_1 + \cdots + X_n\), where \(\mathbb{P}(X_i = \pm 1) = \frac{1}{2}\). Let \(T_x = \inf\{n \geq 0 \mid S_n = x\}\), and \(T = T_0 \wedge T_{-b}\) for \(a, b \in N\). Compute \(\mathbb{P}(T_a < T_{-b}) = \mathbb{P}(S_T = a)\).

Solution: By the u.i. OST (though how do we show that \((S_n)\) is u.i.?) we have

\[
a \mathbf{1}_{T_x < T_{-a}} - b(1 - \mathbf{1}_{T_x < T_{-a}}) = E[S_T] = E[S_0] = 0.
\]

Whence \(\mathbb{P}(T_a < T_{-b}) = \frac{b}{a+b}\). \(\star\)

2.7 Backward martingales

For this section we let \(I = \mathbb{Z}_- = \{\ldots, -2, -1, 0\}\) and let \((\mathcal{F}_n, n \leq 0)\) be a filtration.

2.7.1 Definition. A backward martingale is a martingale \((X_n, n \leq 0)\) with respect to the filtration \((\mathcal{F}_n, n \leq 0)\).

Note that for all \(n \leq 0\), \(E[X_0 | \mathcal{F}_n] = X_n\), so a backwards martingale is always closed.

2.7.2 Theorem. Let \((X_n, n \leq 0)\) be a backwards martingale. Then \(X_n\) converges a.s. and in \(L^1\) to a limit \(X_\infty\) as \(n \to -\infty\) and \(X_\infty = E[X_0 | \mathcal{F}_\infty]\), where \(\mathcal{F}_\infty = \bigcap_{n \leq 0} \mathcal{F}_n\).
Therefore, for all \(a \), let \(N_n(a, [a, b]) \) be the number of upcrossings of \(X \) between times \(-n \) and \(0 \) from \(a \) to \(b \). Consider \((X_{-n+k}, 0 \leq k \leq n) \), a martingale with respect to the filtration \((\mathcal{F}_{-n+k}, 0 \leq k \leq n) \). Doob’s Up-crossing Lemma gives that

\[
(b - a) \mathbb{E}[N_n(X, [a, b])] \leq \mathbb{E}[(X_0 - a)^-] .
\]

Letting \(n \to \infty \), we obtain

\[
(b - a) \mathbb{E}[N(X, [a, b])] \leq \mathbb{E}[X_0] + a < \infty .
\]

Therefore, for all \(a < b \in \mathbb{Q} \), \(N(X, [a, b]) < \infty \) a.s., so \(X_n \to X_{-\infty} \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\} \) a.s. as \(n \to -\infty \). Again by Fatou’s Lemma, \(X_{-\infty} \in \mathbb{R} \) a.s. Since \(X_n = \mathbb{E}[X_0 | \mathcal{F}_n] \) for all \(n \), the family \((X_n, n \leq 0) \) is u.i. by 2.5.2. Therefore \(X_n \to X_{-\infty} \) in \(L^1 \). Finally, let \(A \in \mathcal{F}_{-\infty} \). Then

\[
\mathbb{E}[1_A X_0] = \mathbb{E}[1_A \mathbb{E}[X_0 | \mathcal{F}_n]] = \mathbb{E}[1_A X_n] \to \mathbb{E}[1_A X_{-\infty}]
\]

as \(n \to -\infty \) since \(X_n \to X_{-\infty} \) in \(L^1 \). Therefore \(X_{-\infty} = \mathbb{E}[X_0 | \mathcal{F}_{-\infty}] \) since it is \(\mathcal{F}_{-\infty} \)-measurable. \(\square \)

Remark. Sometimes backwards martingales are defined as a forwards process \((Y_n, n \geq 0)\) with respect to a backwards filtration \(\mathcal{G}_0 \supseteq \mathcal{G}_1 \supseteq \mathcal{G}_2 \supseteq \cdots \) such that \(Y_n \) is adapted and in \(L^1 \), and \(\mathbb{E}[Y_n | \mathcal{G}_{n+1}] = Y_{n+1} \). This is equivalent to our definition by taking \(Y_n = X_{-n} \) and \(\mathcal{G}_n = \mathcal{F}_{-n} \) for all \(n \geq 0 \).

3 Applications of Discrete Time Martingales

3.1 Strong law of large numbers

We begin with a classical result of Kolmogorov.

3.1.1 Theorem (Kolmogorov’s 0-1 law). Let \(X_0, X_1, X_2, \ldots \) be independent r.v.’s. Define

\[
\mathcal{G}_n = \sigma(X_n, X_{n+1}, \ldots) \quad \text{and} \quad \mathcal{G}_\infty = \bigcap_{n \geq 0} \mathcal{G}_n.
\]

Then \(\mathbb{P}(A) \in \{0, 1\} \) for all \(A \in \mathcal{G}_\infty \).

Proof: Let \(\mathcal{F}_n = \sigma(X_0, \ldots, X_n) \) and \(A \in \mathcal{G}_\infty \). By definition, \(\mathcal{G}_\infty \) is independent of \(\mathcal{F}_n \) since \(\mathcal{G}_\infty \supseteq \mathcal{G}_{n+1} \) and the \(X_i \)’s are independent. Thus \(\mathbb{E}[1_A | \mathcal{F}_n] = \mathbb{P}(A) \). On the other hand, \(\mathbb{E}[1_A | \mathcal{F}_n], n \geq 0 \) is a martingale with respect to the filtration \((\mathcal{F}_n, n \geq 0)\). Thus \(\mathbb{E}[1_A | \mathcal{F}_n] \to \mathbb{E}[1_A | \mathcal{F}_\infty] \) a.s. as \(n \to \infty \), where \(\mathcal{F}_\infty = \bigvee_{n \geq 0} \mathcal{F}_n \). But \(\mathcal{F}_\infty \supseteq \mathcal{G}_\infty \) since \(\mathcal{F}_\infty = \sigma(X_0, X_1, \ldots) \supseteq \mathcal{G}_\infty \) for all \(n \). Therefore \(1_A = \mathbb{E}[1_A | \mathcal{F}_\infty] = \mathbb{P}(A) \) a.s. \(\square \)

3.1.2 Theorem (Strong Law of Large Numbers). Let \(X_1, X_2, \ldots \) be i.i.d. r.v.’s with \(\mathbb{E}[|X_1|] < \infty \), and let \(S_n = X_1 + \cdots + X_n \). Then \(\frac{S_n}{n} \to \mathbb{E}[X_1] \) a.s. as \(n \to \infty \).
We claim that \((\frac{S_n}{n}, n \leq 0) \) is a backwards martingale with respect to \((\mathcal{G}_n, n \leq 0)\). Indeed, \[
E \left[\frac{S_n}{n} \mid \mathcal{G}_{n+1} \right] = E \left[\frac{S_{n+1} - X_{n+1}}{n} \mid \mathcal{G}_{n+1} \right] = \frac{S_{n+1}}{n} - \frac{1}{n} E[X_{n+1} \mid \mathcal{G}_{n+1}].
\]

But \[
E[X_{n+1} \mid \mathcal{G}_{n+1}] = E[X_{n+1} \mid S_{n+1}, X_{n+2}, X_{n+3}, \ldots] = E[X_{n+1} \mid S_{n+1}]
\]
by a property of conditional expectation, since the r.v.’s \(X_{n+2}, X_{n+3}, \ldots\) are independent of \(X_{n+1}\) and \(S_{n+1}\). Note that \(E[X_{n+1} \mid S_{n+1}] = E[X_k \mid \mathcal{F}_{n+1}]\) for all \(k \in \{0, 1, \ldots, n+1\}\) since \(E[X_{n+1} \mid (S_{n+1})] = E[X_k \mid (S_{n+1})]\) since \(S_{n+1}\) is a symmetric function of \(X_1, \ldots, X_{n+1}\). Therefore
\[
E[E[X_{n+1} \mid S_{n+1}]f(S_{n+1})] = E[E[X_k \mid S_{n+1}]f(S_{n+1})]
\]
so
\[
E[X_{n+1} \mid S_{n+1}] = \frac{\sum_{k=1}^{n+1} E[X_k \mid S_{n+1}]}{n+1} = \frac{E[\sum_{k=1}^{n+1} X_k \mid S_{n+1}]}{n+1} = \frac{S_{n+1}}{n+1}
\]
Finally, \[
E \left[\frac{S_n}{n} \mid \mathcal{G}_{n+1} \right] = \frac{S_{n+1}}{n} - \frac{S_{n+1}}{n(n+1)} = \frac{S_{n+1}}{n} \left(1 - \frac{1}{n+1}\right) = \frac{S_{n+1}}{n+1},
\]
and the claim is proved.

Therefore \(\frac{S_n}{n}\) converges to some finite limit \(L\) a.s. and in \(L^1\) as \(n \to \infty\). We must finally check that \(L = E[X_1]\). We have \(E[L] = E[\frac{S_n}{n}] = E[\frac{S_n}{n}] = E[X_1]\). Note that \(L\) is measurable with respect to the tail \(\sigma\)-algebra of \(X_1, X_2, \ldots\) (since \(\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{S_{n \cdot k}}{n \cdot k}\) for all \(k\), so \(L\) is \(\sigma(X_k, X_{k+1}, \ldots)\)-measurable for all \(k\)). By Kolmogorov’s 0-1 law, \(P(L = a) \in \{0, 1\}\) for all \(a\), implying that \(L\) is constant a.s. Therefore \(L = E[X_1]\). \(\square\)

3.2 Radon-Nikodym theorem

Let \((\Omega, \mathcal{F}, P)\) be a probability space. Let \(Q\) be a non-negative, finite measure on \((\Omega, \mathcal{F})\). We would like to find conditions under which there exists some non-negative r.v. \(X\) such that \(Q = X \cdot P\), in the sense that \(Q(A) = E^P[1_X A]\) for all \(A \in \mathcal{F}\).

In this case \(X\) is called a density or Radon-Nikodym derivative of \(Q\) with respect to \(P\), and we write \(X = \frac{dQ}{dP}\).

Let \((\mathcal{F}_n, n \geq 0)\) be a filtration on \((\Omega, \mathcal{F})\), with \(\mathcal{F}_\infty = \mathcal{F}\). Assume that \(Q \mid \mathcal{F}_n = X_n \cdot P \mid \mathcal{F}_n\), for some non-negative \(\mathcal{F}_n\)-measurable r.v. \(X_n\), for every \(n\). Write \(P_n = P \mid \mathcal{F}_n\) and \(Q_n = Q \mid \mathcal{F}_n\).

3.2.1 Lemma. With the scenario as described above, \((X_n, n \geq 0)\) is a \((\mathcal{F}_n)\)-martingale.

Proof: Indeed, let \(A \in \mathcal{F}_n\). Then
\[
E^P[X_{n+1} 1_A] = E^{P_n}[X_{n+1} 1_A] = Q_{n+1}(A) = Q_n(A) = E^P[X_{n+1} \mid \mathcal{F}_n]
\]
since \(A \in \mathcal{F}_n\). Therefore \(X_n = E[X_{n+1} \mid \mathcal{F}_n]\). \(\square\)
By the martingale convergence theorem, \(X_n \to X_\infty \geq 0 \) a.s. as \(n \to \infty \). Is it true that \(Q = X_\infty \cdot P \)?

3.2.2 Proposition. \(Q \) admits a density \(X \) with respect to \(P \) if and only if the martingale \((X_n, n \geq 0) \), defined above, is u.i. In this case \(X = X_\infty \).

Proof: Assume that \((X_n, n \geq 0) \) is u.i. Then \(X_n \to X_\infty \) a.s. and in \(L^1 \). Hence if \(A \in F_n \) then for \(n \geq m \),

\[
Q(A) = \mathbb{E}[X_m 1_A] = \mathbb{E}[X_n 1_A] \overset{n \to \infty}{\longrightarrow} \mathbb{E}[X_\infty 1_A]
\]

by \(L^1 \) convergence. Therefore, for all \(A \in \bigcup_{n \geq 0} F_n \), \(\mathbb{E}[X_\infty 1_A] = Q(A) \), and by the monotone class theorem this also holds for every \(A \in F_\infty = \sigma(\bigcup_{n \geq 0} F_n) \), so \(X_\infty \) is a density of \(Q \) with respect to \(P \).

Conversely, assume that \(Q = X \cdot P \) for some \(X \geq 0 \). Then \(Q(A) = \mathbb{E}[X 1_A] = \mathbb{E}[X | F_n] 1_A \) for all \(A \in F_n \). Thus \(Q_n = \mathbb{E}[X | F_n] \cdot P_n \). By uniqueness of the density, \(X_n := \frac{dQ_n}{dP_n} = \mathbb{E}[X | F_n] \). Now, \(\infty > Q(\omega) = \mathbb{E}[X] \), so \(X \in L^1 \). Since \((X_n, n \geq 0) \) is closed in \(L^1 \), it is u.i.

3.2.3 Theorem (Radon-Nikodym). Assume that \(\mathcal{F} \) is separable, i.e. that there are events \(F_1, F_2, \ldots \) such that \(\mathcal{F} = \sigma(F_1, F_2, \ldots) \). Let \(Q \) be a non-negative finite measure on \((\Omega, \mathcal{F})\) and \(P \) be a probability on \((\Omega, \mathcal{F})\). Then the following are equivalent.

(i) \(P(A) = 0 \) implies \(Q(A) = 0 \) for all \(A \in \mathcal{F} \) (in this case we say that \(Q \) is absolutely continuous with respect to \(P \), and write \(Q \ll P \)).

(ii) For all \(\epsilon > 0 \) there is \(\delta > 0 \) such that for all \(A \in \mathcal{F} \), \(P(A) < \delta \) implies \(Q(A) < \epsilon \).

(iii) There exists a r.v. \(X \) such that \(Q = X \cdot P \) (i.e. \(Q \) admits a density with respect to \(P \)).

Proof: (iii) implies (i): Trivial, since if \(Q(A) = \mathbb{E}^P[X 1_A] \) for some \(X \) then \(P(A) = 0 \) implies \(1_A = 0 \) a.s. under \(P \), so \(Q(A) = 0 \).

(i) implies (ii): Assume that (ii) does not hold. Then there is \(\epsilon > 0 \) such that for every \(\delta > 0 \) there is \(B \in \mathcal{F} \) such that \(P(B) < \delta \) and \(Q(B) \geq \epsilon \). By taking \(\delta = \frac{1}{2} \), we can find \((B_n, n \geq 0) \) such that \(P(B_n) < \frac{1}{2} \), but \(Q(B_n) \geq \epsilon > 0 \). Therefore \(\sum \mathbb{P}(B_n) < \infty \), so by the Borel-Cantelli Lemma, \(P(B_n \text{ happens infinitely often}) = 0 \). On the other hand,

\[
Q\left(\bigcap_{k \geq n} B_k\right) \geq Q(B_n) \geq \epsilon.
\]

The lefthand side converges to \(Q(\limsup_n B_n) \) as \(n \to \infty \), so

\[
P(B_n \text{ happens infinitely often}) \to 0
\]

and (i) does not hold.

(ii) implies (iii): Let \(\mathcal{F}_n = \sigma(F_1, \ldots, F_n) \). Then \(\mathcal{F}_n = \sigma(A', \epsilon \in [0, 1]^n) \), where \(A' = \bigcap_{i=1}^n F_i' \), \(F_i' = F_i \) and \(F_1' = \Omega \setminus F_i \). The \(A' \) partition \(\Omega \) and generate \(\mathcal{F}_n \). Consider \(Q_n = Q|_{\mathcal{F}_n} \) and \(P_n = P|_{\mathcal{F}_n} \), and let

\[
X_n = \sum_{\epsilon \in [0, 1]^n} \frac{Q(A')}{P(A')} 1_{A'}
\]
with the convention that \(\frac{0}{0} = 0 \).

Claim. \(X_n = \frac{dQ}{dP_n} \).

Indeed, if \(A = A' \) for some \(\epsilon \in \{0, 1\}^n \) then

\[
Q_n(A) = \frac{Q_n(A)}{P_n(A)} P_n(A) = \mathbb{E}^P \left[\frac{Q(A)}{P(A)} \mathbbm{1}_A \right] = \mathbb{E}^P \left[\mathbbm{1}_A \sum_{\epsilon \in \{0, 1\}^n} Q(A') \right].
\]

Therefore \(Q_n(A) = \mathbb{E}[X_n \mathbbm{1}_A] \). By linearity this holds for all \(A \in \mathcal{F}_n \).

By the previous proposition, it remains to show that \((X_n) \) is u.i. to obtain that \(Q = X_{\infty} \cdot P \). We must check that \(\sup_{n \geq 0} \mathbb{E}[X_n 1_{X_n > \lambda}] \to 0 \) as \(\lambda \to \infty \). But \(\mathbb{E}[X_n 1_{X_n > \lambda}] = Q(X_n > \lambda) \), and note that

\[
P(X_n > \lambda) \leq \frac{1}{\lambda} \mathbb{E}[X_n] = \frac{1}{\lambda} Q(\Omega).
\]

Need to show for all \(\epsilon > 0 \) there is \(\delta > 0 \) such that \(\sup_n P(X_n \geq \lambda) \leq \delta \) (take \(\lambda = \frac{Q(\Omega)}{\epsilon} \)). By (ii), fixing \(\epsilon > 0 \), there is \(\delta > 0 \) such that \(P(A) \leq \delta \) implies \(Q(A) < \epsilon \). By choosing \(\lambda \) as above, \(P(X_n > \lambda) \leq \delta \) implies \(Q(X_n > \lambda) \leq \epsilon \).

Therefore for all \(\epsilon > 0 \) there is \(\delta > 0 \) such that \(\sup_n \mathbb{E}[X_n 1_{X_n > \lambda}] \leq \epsilon \). Hence \((X_n \geq 0) \) is u.i., and \(Q = X_{\infty} \cdot P \). \(\square \)

3.3 Kakutani’s theorem for product martingales

3.3.1 Definition. A **product martingale** is a martingale of the form \(X_n = \prod_{i=1}^n Y_i \), where the \(Y_i \) are independent, non-negative r.v.’s such that \(\mathbb{E}[Y_i] = 1 \) for all \(i = 1, \ldots, n \).

A product martingale is indeed a martingale, since \(\mathbb{E}[X_n] = \prod_{i=1}^n \mathbb{E}[Y_i] = 1 \) by independence, and

\[
\mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{E}[Y_{n+1} X_n | \mathcal{F}_n] = X_n \mathbb{E}[Y_{n+1} | \mathcal{F}_n] = X_n \mathbb{E}[Y_{n+1}] = X_n,
\]

since \(Y_{n+1} \) is independent of \(\mathcal{F}_n \), where

\[
\mathcal{F}_n := \sigma(Y_n, \ldots, Y_n) = \sigma(Y_{n+1}, \ldots, Y_n).
\]

Now \(X_n \geq 0 \), so \(X_n \to X_{\infty} \geq 0 \) finite a.s. as \(n \to \infty \).

3.3.2 Theorem (Kakutani). With the notation as above, let \(a_n = \mathbb{E} [\sqrt{Y_n}] \). The following are equivalent.

(i) \((X_n, n \geq 0)\) is a u.i. martingale;

(ii) \(\mathbb{E}[X_{\infty}] = 1 \);

(iii) \(P(X_{\infty} > 0) > 0 \);

(iv) \(\prod_{n \geq 1} a_n > 0 \).

By the Cauchy-Schwartz inequality, \(\mathbb{E}[\sqrt{Y_n}]^2 \leq \mathbb{E}[Y_n] = 1 \), so \(a_n \leq 1 \) for all \(n \).

Recall that \(\prod_{n \geq 1} a_n \in [0, 1] \), and \(\prod_{n \geq 1} a_n > 0 \) if and only if \(\sum_{n \geq 1} (1 - a_n) < \infty \) (this is seen by taking logarithms).
3.4 Likelihood ratio

A very general statement of a basic problem in applied statistics is as follows. Let \((\mathbb{R}^N, \mathcal{B}(\mathbb{R})^\otimes N) \) be the measurable space of real sequences and

\[
X_n : \mathbb{R}^N \to \mathbb{R} : \omega = (\omega_i, i \geq 0) \mapsto \omega_n
\]

be the canonical projections. Let \((f_i, i \geq 0) \) and \((g_i, i \geq 0) \) be sequences of strictly positive p.d.f.'s. Let \(P \) and \(Q \) be the probability distributions under which \(X_i \) is a r.v. with distribution \(f_i(x)dx \) and \(g_i(x)dx \), respectively. Further suppose that the \(X_i \)'s are independent under \(P \) and \(Q \). When is \(Q \ll P \)?

3.4.1 Definition. The likelihood ratio is

\[
L_n = \prod_{i=1}^{n} \frac{g_i(X_i)}{f_i(X_i)}
\]

for \(n \geq 0 \) (taking \(L_0 = 1 \)).
Let $\mathcal{F}_n = \mathcal{F}_n^X = \sigma(X_1, \ldots, X_n)$.

3.4.2 Proposition. $(L_n, n \geq 0)$ is a (\mathcal{F}_n)-martingale in the probability space $(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N), P)$, and $Q|_{\mathcal{F}_n} = L_n \cdot P|_{\mathcal{F}_n}$.

Proof: Let A_1, \ldots, A_n be measurable Borel sets in \mathbb{R}. Compute

$$Q|_{\mathcal{F}_n}(X_1 \in A_1, \ldots, X_n \in A_n) = \int_{A_1 \times \cdots \times A_n} g_1(x_1) \cdots g_n(x_n) dx_1 \cdots dx_n$$

$$= \int_{A_1 \times \cdots \times A_n} \frac{g_1(x_1) \cdots g_n(x_n)}{f_1(x_1) \cdots f_n(x_n)} f_1(x_1) \cdots f_n(x_n) dx_1 \cdots dx_n$$

$$= \mathbb{E}^P\left[L_n \mathbf{1}_{\{X_1 \in A_1, \ldots, X_n \in A_n\}} \right] \quad \Box$$

Thus $Q = L_\infty \cdot P$ (or $L_\infty = \frac{dQ}{dP}$) if and only if $(L_n, n \geq 0)$ is a u.i. martingale. But $(L_n, n \geq 0)$ is a product martingale (under P) with $Y_n = \frac{g_n(X_1)}{f_n(X_1)}$ for all n. These are independent under P and have $\mathbb{E}[Y_n] = 1$ for all n, so L is u.i. if and only if

$$\prod_{n \geq 1} \mathbb{E}^P \left[\frac{g_n(X_n)}{f_n(X_n)} \right] > 0$$

by Kakutani’s theorem. But

$$\int_\mathbb{R} dx_n f_n(x_n) \sqrt{\frac{g_n(x_n)}{f_n(x_n)}} = \int_\mathbb{R} \sqrt{f_n g_n}.$$

Using the fact that $(\sqrt{f} - \sqrt{g})^2 = f + g - 2\sqrt{fg}$, it is easy to check that $\prod_{n \geq 1} \int \sqrt{f_n g_n} > 0$ if and only if $\sum_{n \geq 1} \int (\sqrt{f_n} - \sqrt{g_n})^2 < \infty$ (exercise).

3.4.3 Example. Assume that $f_n = f$ and $g_n = g$ for all n. Thus under P and Q, the X_i’s are i.i.d. r.v.’s, namely $f(x) dx$ and $g(x) dx$, respectively. Is it true that $Q \ll P$? It is true if and only if $\sum_{n \geq 1} \int (\sqrt{f} - \sqrt{g})^2 < \infty$, so $Q \ll P$ if and only if $\int (\sqrt{f} - \sqrt{g})^2 = 0$, or equivalently when $f = g$ a.s.

This has applications to statistical experiments. Suppose that X_1, \ldots, X_n are outcomes of an experiment, known to be i.i.d., either distributed according to $f(x) dx$ or $g(x) dx$. We will test hypotheses

$$H_0 : \text{Law}(X_1) = f(x) dx \quad \text{against} \quad H_1 : \text{Law}(X_1) = g(x) dx.$$

The test is as following. If $L_n = \prod_{i=1}^n \frac{f_i(X)}{g_i(X)} < 1$ then H_0 is validated, otherwise reject H_0. This test is consistent because if H_0 holds we showed that $L_n \to 0$ a.s. as $n \to \infty$, while if H_1 holds then $L_n \to \infty$ a.s.

4 Continuous-time Processes

For this chapter we typically take $I \subseteq \mathbb{R}$ to be an interval, and most of the time we take I to be the non-negative reals, $I = \mathbb{R}_+$.
4.1 Technical issues in dealing with continuous-time

Recall that a filtration is an increasing family \((\mathcal{F}_t, t \in I) \) of sub-\(\sigma \)-algebras of \(\mathcal{F} \), and a process \((X_t, t \in I) \) is a family of r.v.'s, and is said to be adapted if \(X_t \) is \(\mathcal{F}_t \)-measurable for all \(t \in I \). A stopping time is a r.v. \(T : \Omega \to I \cup \{\infty\} \) such that \(\{T \leq t\} \in \mathcal{F}_t \) for all \(t \in I \).

Now \(\omega \mapsto X_\omega(\omega) \) is measurable (with respect to \((\Omega, \mathcal{F}) \)) for all \(t \in I \), but what about the sample path \(t \mapsto X_t(\omega) \) given by \(\omega \in \Omega \) (with respect to \((I, \mathcal{A}(I)) \)) as a sub-\(\sigma \)-algebra of \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \)? Also, if \(T \) is a stopping time then \(X_T 1_{T<\infty} = \sum_{t \in \mathbb{Z}} X_t 1_{T=t} \) is not a r.v. in general. Worse, there are “few” stopping times. Typically, for a Borel subset \(A \) of \(\mathbb{R} \), \(T_A = \inf \{ t \geq 0 \mid X_t \in A \} \) has no reason to be a stopping time, since \(\{T_A \leq t\} = \bigcup_{s \leq t, s \in \mathbb{Z}} \{T_A = s\} \) is typically an uncountable union.

Let \((X_t, t \in I) \) be a process with values in some metric space \((E, d) \) (usually we will have \(E = \mathbb{R}^n \) for some \(n \)). \(C(I, E) \) denotes the set of continuous functions \(I \to E \) and \(D(I, E) \) denotes the set of càdlàg functions, those that are right-continuous and admit left-limits at every point (from the French). If \(f \) is càdlàg then, for all \(t \in I, f(t^+) = \lim_{s \to t^+} f(s) = f(t) \) and \(f(t^-) = \lim_{s \to t^-} f(s) \) exists.

4.1.1 Proposition.

(i) Let \((X_t, t \geq 0) \) be a continuous process (so that \(t \mapsto X_t(\omega) \in C(I, E) \) for all \(\omega \), and let \(A \subseteq E \) be closed. Then \(T_A = \inf \{ t \geq 0 \mid X_t \in A \} \) is a stopping time with respect to \(\mathcal{F}^X \).

(ii) If \(X \) is adapted to \((\mathcal{F}_t, t \geq 0) \) and \(T \) is a stopping time then \(X_T 1_{T<\infty} \) is an \(\mathcal{F}_T \)-measurable r.v. In particular, the process \(X^T = (X_{T_A}, t \geq 0) \) is adapted if \(X \) is adapted.

Proof: (i) If \(X \) is continuous with and \(X_t \in A \) for some \(s \in [0, t] \) then we can find a neighbourhood \(V \) of \(s \) in \([0, t]\) on which \(d(X_s, X_q) \leq \varepsilon \) for some fixed \(\varepsilon > 0 \) and all \(q \in V \). Therefore \(\{T_A \leq t\} = \inf_{q \in [0, t]}, q \in \mathbb{Q} \{d(X_q, A) = 0\} \subseteq \mathbb{Q} \) is clear, and \(\subseteq \) comes from compactness (prove this).

(ii) See notes.

If \(A \) is open then \(T_A \) is not an \(\mathcal{F}^X \)-stopping time in general. However, define \(\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_{s+t} \). If \((X_t, t \geq 0) \) is \((\mathcal{F}_t, t \geq 0) \)-adapted then it is \((\mathcal{F}_t, t \geq 0) \)-adapted and \(T_A \) is a stopping time with respect to \((\mathcal{F}_t, t \geq 0) \) for \(A \subseteq E \) open.

4.2 Finite dimensional marginal distributions, Versions

Let \((X_t, t \in I) \) be a process. We may consider \(X \) to be a random function in the following sense. Endow \(E^I \) with the product \(\sigma \)-algebra, i.e. the smallest \(\sigma \)-algebra such that \(\pi_t : f \mapsto f(t) \) is a measurable function for all \(t \in I \). By definition, \(X_t \) is a random element of \(E^I \) with the given \(\sigma \)-algebra.

4.2.1 Definition. For a finite subset \(J \) of \(I \), let \(\mu_j \) be the law of the finite sequence \((X_j, j \in J) \). Elements of the family \((\mu_j, J \subseteq I \text{ finite}) \) are called the finite marginal distributions of the process \(X \).

Note that if \(X \) and \(X' \) are two processes with the same finite marginal distributions then they define the same r.v. in \(E^I \) (i.e. they have the same distribution).
Indeed, the product σ-algebra on E^I is generated by finite rectangles of the form
$\{\pi_{t_1}^{-1}(A_1) \cap \cdots \cap \pi_{t_k}^{-1}(A_k)\}$, which is a σ-system. Yet otherwise said, the probability of events $\mu_j(A_1 \times \cdots \times A_k) = \mathbb{P}(\cap_{t \in \mathbb{R}} [A_t^j])$ suffice to determine the law of X.

4.2.2 Example. Consider $X_t = 0$ for all $t \in [0, 1]$ and $X'_t = 1_{[U]}(t)$ for $t \in [0, 1]$, where U is a uniform r.v. in $[0, 1]$. Then the finite marginal distribution of X is $\mu_j = \delta_{(0,0)}$ for all $J \subseteq [0, 1]$ finite. But the finite marginal distribution of X' is the same since the probability that $U \in \{I_1, \ldots, I_k\}$ is zero.

4.2.3 Definition. Let X and X' be two processes. We say that X' is a version of X if $\mathbb{P}(X_t = X'_t) = 1$ for every t.

Warning: In general this condition is weaker than $\mathbb{P}(X_t = X'_t) = 1$ for every t.

If X, X' are continuous and X' is a version of X then $X = X'$. (Indeed, $X_t = X'_t$ for all t rational).

4.3 Martingales in continuous-time

Fortunately, we can assume that martingales in continuous time are càdlàg, due to the following theorem.

4.3.1 Definition. Let $(\mathcal{F}_t, t \in I)$ be a filtration. If (\mathcal{F}_t) satisfies the two conditions below then it is said to satisfy the usual conditions.

(i) $\mathcal{F}_t = \mathcal{F}_{t+\varepsilon}$ for all $t \in I$; and

(ii) $N \in \mathcal{F}_t$ for all $N \in \mathcal{F}$ such that $\mathbb{P}(N) = 0$, for all t.

4.3.2 Theorem. Let $(\mathcal{F}_t, t \geq 0)$ satisfy the usual conditions, and let $(X_t, t \geq 0)$ be an adapted martingale. Then there exists a version of X which is a càdlàg (\mathcal{F}_t)-martingale.

4.4 Convergence theorems for continuous-time

From now on, all martingales $(X_t, t \geq 0)$ are assumed to be càdlàg, so $X_t = X_{t^+}$ and X_t exists for all t.

4.4.1 Theorem (Martingale convergence theorem).

Assume that $(X_t, t \geq 0)$ is a càdlàg martingale which is bounded in L^1. Then $X_t \to X_\infty$ a.s. as $n \to \infty$ for some finite X_∞.

Proof: Let $N(X,I,[a,b]) = \sup \{n \mid \exists s_1 < t_1 < s_2 < t_2 < \cdots < s_n < t_n \text{ in } I, \text{ such that } X_{s_i} < a < b < X_{t_i} \forall i\}$ = $\sup_{J \subseteq \text{finite}} N(X,J,[a,b])$. Since X is right-continuous, $N(X,\mathbb{R}_+, [a,b]) = N(X,\mathbb{Q}_+, [a,b])$. Indeed, if $s_1 < t_1 < s_2 < t_2 < \cdots < s_n < t_n < \mathbb{R}_+$ then we can find $s'_1 < t'_1 < t'_2 < \cdots < s'_n < t'_n < t'_n < t'_n$ such that $s'_1, t'_1 \in \mathbb{Q}_+$ and $X'_{s_i} < a < b < X'_{t_i}$, which implies “$\leq$” (the reverse inequality is trivial).

Let $J = \{t_1, \ldots, t_k\} \subseteq \mathbb{Q}_+$. Then $(X_{t_i}, 1 \leq i \leq k)$ is martingale with respect to $(\mathcal{F}_t, 1 \leq i \leq k)$. Therefore by Doob’s Up-crossings Lemma

$$(b - a) \mathbb{E}[N(X,J, [a,b])] \leq \mathbb{E}[(X_{t_k} - a)^-] \leq \mathbb{E}[|X_{t_k}|] + a \leq M < \infty$$
for every J, by boundedness in L^1. Taking the supremum over J,

$$(b - a)\mathbb{E}[N(X, \mathbb{Q}_+, [a, b])] \leq M < \infty$$

so for every $a < b$ rational, $N(X, \mathbb{R}_+, [a, b]) < \infty$ a.s. Since \mathbb{Q} is countable, a.s. $N(X, \mathbb{R}_+, [a, b]) < \infty$ for every $a < b$ rational. Thus $X_t \to X_\infty \in \mathbb{R}$. By the usual argument with Fatou's Lemma, X_∞ is finite a.s. \hfill \Box

4.4.2 Theorem (Doob's Inequalities).

Let $(X_t, t \geq 0)$ be a càdlàg martingale and $X_t^+ := \sup_{s \leq t} |X_s|$. For all $a \geq 0$,

$$a \mathbb{P}(X_t^+ \geq a) \leq \mathbb{E}[|X_t|]$$

and for $p > 1$,

$$||X_t^+||_p \leq \frac{p}{p - 1}||X_t||_p$$

for all t.

Proof: Observe that $X_t^+ = \max(X_t, \sup_{s \in [0, t]} |X_s|)$ by the càdlàg property. Therefore $X_t^+ = \sup_{J \subseteq \{1, \ldots, t\}} \max_{s \in J} |X_s|$. Apply Doob's inequality to $(X_s, s \in J) = (X_{t_i}, 1 \leq i \leq k)$, where $J = \{t_1, \ldots, t_k\}$. Hence

$$a \mathbb{P}(\max_{s \in J} |X_s| \geq a) \leq \mathbb{E}[|X_{t_k}|] \leq \mathbb{E}[|X_t|]$$

whenever $\sup J \leq t$ because $(|X_t|, t \geq 0)$ is a sub-martingale. Then pass to the supremum over J.

The L^p-inequality is proved in the same way (exercise). \hfill \Box

4.4.3 Theorem (L^p convergence criteria).

(i) For $p > 1$, X_t converges a.s. and in L^p if and only if X is bounded in L^p, and this if and only if $X_t = \mathbb{E}[Z | \mathcal{F}_t]$ for some $Z \in L^p$ (which may be taken to be X_∞).

(ii) For $p = 1$, X_t converges a.s. and in L^1 if and only if X is u.i., and this if and only if $X_t = \mathbb{E}[Z | \mathcal{F}_t]$ for all t for some $Z \in L^1$ (which may be taken to be X_∞).

Proof: As in the discrete case. \hfill \Box

4.4.4 Theorem (Optional stopping, càdlàg u.i.).

Let (X_t) be a u.i. càdlàg martingale and $S \leq T$ be two stopping times. Then

$$\mathbb{E}[X_T | \mathcal{F}_S] = X_S$$

Proof: Let $n \geq 1$ and let $T_n = 2^{-n}[2^n T]$. Then T_n is a stopping time such that $T_n \searrow \infty$. Moreover T_n takes its values in the set $D_n = \{k2^{-n} | k \in \mathbb{Z}_+ \cup \{\infty\}\}$. We want to compute

$$\mathbb{E}[X_\infty | \mathcal{F}_{T_n}] = \sum_{d \in D_n} 1_{T_n = d} \mathbb{E}[X_\infty | \mathcal{F}_{T_n}] = \sum_{d \in D_n} 1_{T_n = d} \mathbb{E}[X_\infty | \mathcal{F}_{d}]$$

(Indeed, we used that for T a stopping time and Z a r.v., $\mathbb{E}[Z | \mathcal{F}_T] 1_{T = t} = \mathbb{E}[Z | \mathcal{F}_t] 1_{T = t}$. But if $A \in \mathcal{F}_T$, $\mathbb{E}[1_A 1_{T = t} | Z] = \mathbb{E}[1_A 1_{T = t} | \mathbb{E}[Z | \mathcal{F}_T]] = \mathbb{E}[1_A 1_{T = t} | \mathbb{E}[Z | \mathcal{F}_T]] = \mathbb{E}[1_A 1_{T = t} | \mathbb{E}[Z | \mathcal{F}_T]] = \mathbb{E}[1_A 1_{T = t} | \mathbb{E}[Z | \mathcal{F}_T]]$.)
Finally, since $X_t \to X_\infty$ a.s. and in L^1 since X is u.i.,

$$E[X_\infty | \mathcal{F}_d] = \lim_{n \to \infty} E[X_t | \mathcal{F}_d]$$

implying that

$$E[X_\infty | \mathcal{F}_{T_n}] = \sum_{d \in D_n} 1_{T_n=d} X_d = X_{T_n} \to X_T$$

as $n \to \infty$. Note that $(E[X_\infty | \mathcal{F}_{T_n}], n \leq 0)$ is a backwards martingale with respect to $(\mathcal{F}_{T_n}, n \geq 0)$. As such, $E[X_\infty | \mathcal{F}_{T_n}] \to E[X_\infty | \bigcap_{n \geq 1} \mathcal{F}_{T_n}]$ a.s. as $n \to \infty$. Finally, $X_T = E[X_\infty | \bigcap_{n \geq 1} \mathcal{F}_{T_n}]$, so condition on \mathcal{F}_T and use the tower property to prove $X_T = E[X_\infty | \mathcal{F}_T]$. For general S, T, use $E[X_T | \mathcal{F}_S] = E[E[X_\infty | \mathcal{F}_T] | \mathcal{F}_S] = E[X_\infty | \mathcal{F}_S] = X_S$. □

When martingales are càdlàg they behave much like discrete parameter martingales.

4.5 Kolmogorov’s continuity criterion

4.5.1 Theorem. Let $(X_t, 0 \leq t \leq 1)$ be a stochastic process with values in \mathbb{R}^d. Assume that there exists $C, p, \varepsilon > 0$ such that for every $s, t \in [0, 1]$,

$$E[|X_t - X_s|^p] \leq C|t - s|^{1+\varepsilon}.$$

Then there exists a version of X which is continuous, and further, α-Hölder-continuous with index $\alpha \in (0, \frac{\varepsilon}{p})$.

Recall that $f : I \to \mathbb{R}^d$ is α-Hölder-continuous if there is $C > 0$ such that $|f(t) - f(s)| \leq C|t - s|^{\alpha}$ for all $s, t \in I$.

Proof: See the supplemental notes. □

Remark. Suppose we are given a process $(X_t, t \in D)$ and satisfying the hypothesis of Kolmogorov’s continuity criterion (only with $s, t \in D$ instead of $[0, 1]$). Then by the very same proof one may extend X to a continuous process $(X_t, t \in [0, 1])$.

5 Weak Convergence

5.1 Weak convergence for probability measures

We have a variety of notions of convergence for r.v.’s, including almost sure convergence, convergence in L^p, and convergence in probability. All these notions depend on the r.v.’s themselves. Weak convergence is a notion of convergence for (probability) measures. If $(\mu_n, n \geq 0)$ is a sequence of measures on (Ω, \mathcal{F}), we could say that $\mu_n \to \mu$ if $\mu_n(A) \to \mu(A)$ for all $A \in \mathcal{F}$, but this form of convergence (i.e. pointwise convergence) is very rigid. Instead we use the following definition.
Weak convergence for probability measures

5.1.1 Definition. Let \((M, d)\) be a metric space and endow it with its Borel \(\sigma\)-algebra. Let \((\mu_n, n \geq 1)\) be a sequence of probability measures defined on \((M, \mathcal{B}(M))\), and let \(\mu\) be another (probability) measure. We say that \((\mu_n)\) converges weakly to \(\mu\) if for every continuous bounded function \(f : M \to \mathbb{R}\), \(\mu_n(f) \to \mu(f)\) as \(n \to \infty\), and write \(\mu_n \overset{\text{w}}{\to} \mu\).

Notation. \(C_b(M)\) is the set of continuous bounded functions \(M \to \mathbb{R}\).

5.1.2 Examples.

(i) \(x_n \to x\) in \(\mathbb{R}\) if and only if \(\delta_{x_n} \overset{\text{w}}{\to} \delta_x\). Indeed, the latter is equivalent to requiring that \(f(x_n) \to f(x)\) for every continuous bounded function \(f\).

(ii) Let \(\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\frac{k}{n}}\) on \([0, 1]\). Then \(\mu_n \overset{\text{w}}{\to} dx\), Lebesgue measure on \([0, 1]\).

Indeed, \(\mu_n(f)\) is a Riemann sum of \(f\).

5.1.3 Theorem. Let \((\mu_n, n \geq 1)\) and \(\mu\) be probability measures on \(M\). The following are equivalent.

(i) \(\mu_n \to \mu\) weakly.

(ii) For every \(G \subseteq M\) open, \(\liminf_n \mu_n(G) \geq \mu(G)\).

(iii) For every \(F \subseteq M\) closed, \(\limsup_n \mu_n(F) \leq \mu(F)\).

(iv) For every \(A \subseteq M\) Borel such that \(\mu(\partial A) = 0\), \(\lim_n \mu_n(A) = \mu(A)\).

The idea is the mass can be “won or lost” only through the boundary.

Proof: (i) implies (ii): Let \(G\) be an open set and introduce the sequence of functions \(f_k(x) := 1 \wedge kd(x, G^c)\) (for \(x \in M\)). For each \(k \geq 1\), \(f_k\) is continuous and bounded (in fact, uniformly continuous), so \(\mu_n(f_k) \to \mu(f_k)\). As \(G\) is open, \(x \in G\) if and only if \(d(x, G^c) > 0\). Thus \(f_k \nrightarrow 1_G\) pointwise as \(k \to \infty\). For every \(n\), \(\mu_n(G) = \mu_n(1_G) \geq \mu_n(f_k)\), so \(\liminf_n \mu_n(G) \geq \mu_n(f_k)\) for all \(k\). By the MCT, taking \(k \to \infty\) we have \(\lim \mu_n(G) \geq \mu(G)\).

(ii) & (iii) imply (iv): Let \(A\) be a Borel set such that \(\mu(\partial A) = 0\). Then

\[
\limsup_n \mu_n(A) \leq \limsup_n \mu_n(\overline{A})
\]

\[
\leq \mu(\overline{A}) = \mu(A^c \cup \partial A) = \mu(A^c)
\]

\[
\leq \liminf_n \mu_n(A^c) \leq \liminf_n \mu_n(A).
\]

It follows that the limit exists is equals \(\mu(A)\).

(iv) implies (i): Let \(f \in C_b^+(M)\). We must show that \(\mu_n(f) \to \mu(f)\) as \(n \to \infty\).

Write \(K = \|f\|_{\infty}\), so

\[
\mu_n(f) = \int_0^\infty \mu_n(f \geq t) dt = \int_0^K \mu_n(f \geq t) dt.
\]
Note that the set \(\{ f \geq t \} = f^{-1}([t, \infty)) \) is closed, while the set \(\{ f > t \} \) is open, so \(\partial \{ f \geq t \} \subseteq \{ f = t \} \). The set \(A := \{ t \mid \mu(f = t) > 0 \} \) is countable since it is equal to \(\bigcup_{n \geq 1} \{ t \mid \mu(f > t) \geq n^{-1} \} \), and each set in the union is finite since \(\mu \) is a probability measure. Therefore

\[
\mu_n(f) = \int_{[0,K]\setminus A} \mu_n(f \geq t)dt \rightarrow \int_{[0,K]\setminus A} \mu(f \geq t)dt = \int_0^K dt \mu_n(f \geq t) = \mu(f)
\]

by DCT, since by (iv), \(\mu_n(f \geq t) \rightarrow \mu(f \geq t) \) for all \(t \notin A \). Finally, to check the definition of weak convergence, decompose elements of \(C_b(M) \) into positive and negative parts. \(\square \)

For a probability measure \(\mu \) on \(\mathbb{R} \), let \(F_\mu(x) := \mu((−\infty, x]) \) denote the distribution function of \(\mu \). Note that \(F_\mu \) is increasing, càdlàg and \(\lim_{x \to \pm\infty} F_\mu(x) = 0 \) and \(\lim_{x \to +\infty} F_\mu(x) = 1 \).

5.1.4 Corollary. Let \(\mu_n, \mu \) be probability measures on \(\mathbb{R} \). The following are equivalent.

(i) \(\mu_n \to \mu \) weakly.

(ii) \(F_\mu_n(x) \to F_\mu(x) \) for every \(x \in \mathbb{R} \) that is a continuity point of \(F_\mu \).

Proof: (i) implies (ii) is (iv) in the previous theorem. Indeed, \(\partial (−\infty, x] = \{ x \} \), so if \(F_\mu \) continuous at \(x \) then \(\mu([x]) = 0 \).

(ii) implies (i): Let \(G \) be open in \(\mathbb{R} \). We may write \(G = \bigcup_{k \geq 0} (a_k, b_k) \) for pairwise disjoint intervals \((a_k, b_k) \). Then \(\mu_n(G) = \sum_{k \geq 0} \mu_n(a_k, b_k) \). Now,

\[
\mu_n(a_k, b_k) = F_\mu_n(b_k) - F_\mu_n(a_k) \geq F_\mu(b_k) - F_\mu(a_k)
\]

for every \(a_k < a < b < b_k \). Choosing \(a \) and \(b \) to be continuity points of \(F_\mu \) (such points are dense in \(\mathbb{R} \)), we obtain \(\lim \inf \mu_n(a_k, b_k) \geq \lim F_\mu(b_k) - \lim F_\mu(a_k) \). Letting \(a \searrow a_k \) and \(b \nearrow b_k \) along continuity points of \(F_\mu \), we obtain

\[
\lim \inf \mu_n(a_k, b_k) \geq \lim F_\mu(b_k) - \lim F_\mu(a_k) = \mu(a_k, b_k).
\]

Finally,

\[
\lim \inf_n \mu_n(G) \geq \sum_{k \geq 0} \lim \inf_n \mu_n(a_k, b_k) \geq \sum_{k \geq 0} \mu(a_k, b_k) = \mu(G). \quad \square
\]

5.2 Convergence in distribution for random variables

5.2.1 Definition. Let \(X_n, n \geq 0 \), \(X \) be r.v.’s taking values \((M, d)\). We say that \(X_n \) converges in distribution to \(X \) as \(n \to \infty \) if \(\mathcal{L}(X_n) \xrightarrow{\text{w}} \mathcal{L}(X) \), and we write \(X_n \xrightarrow{\text{d}} X \).

By definition of weak convergence \(X_n \xrightarrow{\text{d}} X \) if and only if \(\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \) for all \(f \in C_b(M) \).
5.2.3 Examples.

\[\lim_{n \to \infty} \mathbb{P}(d(X_n, X) > \varepsilon) \to 0 \quad \text{for all } \varepsilon > 0 \]

then \(X_n \to X \) in distribution. If \(X_n \to c \) in distribution for some constant \(c \) then \(X_n \to c \) in probability.

Proof: Exercise (see example sheet 3).

\[\square \]

5.2.3 Examples.

(i) If \(X_n = x_n \) is constant and \(x_n \to x \) then \(X_n \overset{(w)}{\to} X \) since \(\delta_{x_n} \overset{(w)}{\to} \delta_x \).

(ii) Let \(U \) be a uniform r.v. in \([0, 1]\), and write \(X_n = n^{-1}[nU] \). Then \(X_n \to U \) a.s., so \(X_n \overset{(a)}{\to} U \). Indeed, \(\mathcal{L}(X_n) = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\frac{k}{n}} \to \mathcal{L}(U) \).

(iii) Central Limit Theorem. Let \(X_1, X_2, \ldots \) be i.i.d. r.v.'s in \(L^2(\mathbb{R}) \). If \(\mu := \mathbb{E}[X] \) and \(\sigma^2 := \text{Var}(X) = \mathbb{E}[X^2] \) then for all \(a < b \),

\[\mathbb{P} \left(a < \frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} < b \right) \to \int_a^b \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, dx \]

which is saying that \(\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \overset{(d)}{\to} N \) in distribution, where \(N \) is a Gaussian r.v. with mean 0 and variance 1.

5.3 Tightness

5.3.1 Definition. Let \((\mu_i)_{i \in I} \) be a family of probability measures on \((M, d)\). We say that \((\mu_i)_{i \in I} \) is tight if for all \(\varepsilon > 0 \) there is \(K_\varepsilon \subseteq M \) compact such that \(\sup_{i \in I} \mu_i(M \setminus K_\varepsilon) < \varepsilon \).

5.3.2 Theorem (Prokhorov). Let \((\mu_n, n \geq 0) \) be probability measures on \((M, d)\) such that \((\mu_n, n \geq 0) \) is tight. Then there is a subsequence \((\mu_{n_k}, k \geq 0) \) and a probability measure \(\mu \) such that \(\mu_{n_k} \overset{(w)}{\to} \mu \) as \(k \to \infty \).

To motivate this theorem, notice that for \((\delta_{x_n}) \), tightness is exactly the requirement that the \(x_n \) are contained in a compact set, so Prokhorov’s Theorem may (loosely) be seen as a generalization of the Bolzano-Weierstrass Theorem.

Proof: We prove the case \(M = \mathbb{R} \). Consider \((F_{\mu_n}(q), n \geq 0) \subseteq [0, 1] \) for \(q \) a rational number. There exists a subsequence \(n_k \) such that \(F_{\mu_{n_k}}(q) \to F(q) \) (i.e. the subsequence has a limit in \([0, 1]\)). Since \(\mathbb{Q} \) is countable, by a diagonal procedure we can find \((n_k, k \geq 0) \) such that \(F_{n_k}(q) \to F(q) \) for all \(q \in \mathbb{Q} \). Then \(F \) is non-decreasing on \(\mathbb{Q} \), so extend it to \(\mathbb{R} \) via \(F(t) = \lim_{q \searrow t, q \in \mathbb{Q}} F(q) \). Further, \(F \) is càdlàg.

Check that for every continuity point \(t \) of \(F \), \(F_{\mu_{n_k}}(t) \to F(t) \) as \(k \to \infty \). Let \(\varepsilon > 0 \), and pick \(\eta > 0 \) such that \(F(t + \eta) \leq F(t) + \varepsilon \) and \(t + \eta \in \mathbb{Q} \). Then \(F_{\mu_{n_k}}(t + \eta) \to F(t + \eta) \leq F(t) + \varepsilon \). Thus

\[\limsup_k F_{\mu_{n_k}}(t) \leq \limsup_k F_{\mu_{n_k}}(t + \eta) = F(t + \eta) \leq F(t) + \varepsilon, \]
so \(\limsup F_{\mu_n}(t) \leq F(t) \). Similarly we get that \(F(t) \) is less than the limit infimum.

We want to show that \(F = F_\mu \) for some probability measure \(\mu \). It is sufficient to check that \(F(t) \to 0, 1 \) as \(t \to -\infty, +\infty \). By tightness we can find \(K = [A,B] \) such that \(\mu_n((B, \infty)) < \epsilon + \mu_n((-\infty,A)) \) for all \(n \geq 0 \). But \(\epsilon > \mu_n((-\infty,A)) = 1 - F_n(B) \to 1 - F(B) \) and \(\epsilon > \mu_n((A,B)) = F_n(A) \to F(A) \). Therefore \(F = F_\mu \) for some probability \(\mu \) and \(F_{\mu_n} \to F_\mu \) at every continuity point of \(F_\mu \). Therefore \(\mu_{\mu_n} \to \mu \) weakly.

\[\square \]

5.4 Levy’s convergence theorem

5.4.1 Definition. Let \(X \) be a r.v. taking values in \(\mathbb{R}^d \). The characteristic function of \(X \) is \(\phi_X : \mathbb{R}^d \to \mathbb{C} : \xi \to \mathbb{E}[\exp(i\langle \xi, X \rangle)] \).

5.4.2 Theorem (Levy).

(i) Let \((X_n, n \geq 0) \) be r.v’s such that \(X_n \overset{\text{d}}{\to} X \). Then \(\phi_{X_n}(\xi) \to \phi_X(\xi) \) for all \(\xi \in \mathbb{R}^d \).

(ii) Let \((X_n, n \geq 0) \) be r.v’s such that \(\phi_{X_n}(\xi) \to \phi(\xi) \) for all \(\xi \in \mathbb{R}^d \) for some function \(\phi : \mathbb{R}^d \to \mathbb{C} \) that is continuous at 0. There is a r.v \(X \) such that \(\phi = \phi_X \) and \(X_n \overset{\text{d}}{\to} X \).

Proof:

(i) This is a consequence of the definition of convergence in distribution, since \(x \to \exp(i\langle \xi, X \rangle) \) is continuous and bounded for every \(\xi \). (Recall that \(X_n \to X \) in distribution if and only if \(\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \) for all \(f \in C_0(\mathbb{R}^d) \).)

(ii) We shall prove the case \(d = 1 \) (see the notes for the general proof). We must control quantities of the form \(\sup_n \mathbb{P}(|X_n| \geq K) \).

Claim. This is a universal constant \(C > 0 \) such that for every r.v \(X \) taking values in \(\mathbb{R} \),

\[
\mathbb{P}(|X| \geq K) \leq CK \int_0^{\frac{1}{K}} (1 - \Re \phi_X(u))du.
\]

Indeed, \(\Re \phi_X(u) = \mathbb{E}[\exp(\text{Re}(iuX))] = \mathbb{E}[\cos(uX)] \). By Fubini’s Theorem,

\[
K \int_0^{\frac{1}{K}} (1 - \Re \phi_X(u))du = \mathbb{E} \left[1 - K \int_0^{\frac{1}{K}} \cos(uX)du \right] = \mathbb{E} \left[1 - \frac{\sin \left(\frac{\pi}{K} \right)}{\frac{\pi}{K}} \right]
\]

Consider \(x \to 1 - \frac{\sin \pi}{\pi} \). There is \(C \) such that \(1_{|x| \geq 1} \leq C(1 - \frac{\sin \pi}{\pi}) \). We obtain

\[
CK \int_0^{\frac{1}{K}} (1 - \Re \phi_X(u))du = C \mathbb{E} \left[1 - \frac{\sin \left(\frac{\pi}{K} \right)}{\frac{\pi}{K}} \right] \geq \mathbb{E}[1_{|X| \geq 1}] = \mathbb{P}(|X| \geq K).
\]

Now,

\[
\mathbb{P}(|X_n| \geq K) \leq CK \int_0^{\frac{1}{K}} (1 - \Re \phi_X(u))du \to CK \int_0^{\frac{1}{K}} (1 - \Re \phi(u))du
\]
as $n \to \infty$, by the DCT, since $\phi_{X_n}(u) \to \phi(u)$. Since ϕ is continuous at zero and $\phi(0) = 1$, for any $\varepsilon > 0$ there is K large enough such that $|1 - \phi(u)| \leq \frac{\varepsilon}{2K}$ for any $u \in [0, \frac{1}{K}]$. Thus, for such K, $\lim_{n \to \infty} \mathbb{P}(|X_n| \geq K) \leq \frac{\varepsilon}{2}$. Thus there is N_ε such that for all $n > N_\varepsilon$, $\mathbb{P}(|X_n| \geq K) \leq \varepsilon$. Up to taking K even larger, we may assume that $\max_{1 \leq i \leq N_\varepsilon} \mathbb{P}(|X_n| \geq K) \leq \varepsilon$. Now for such K, $\sup_n \mathbb{P}(|X_n| \geq K) \leq \varepsilon$ if and only if $\sup_n \mu_n[(-K, K)^c] \leq \varepsilon$, where $\mu_n = \mathcal{L}(X_n)$. Therefore $(\mathcal{L}(X_n))_{n \geq 1}$ is a tight family of measures. By Prokhorov's Theorem, there is a subsequence such that $\mathcal{L}(X_{n_k}) \xrightarrow{w} \mu$, for some probability measure μ on \mathbb{R}. Hence $X_{n_k} \xrightarrow{d} X$ for some r.v. X. But by part (i), $\phi_{X_{n_k}} \to \phi_X$ pointwise, so $\phi = \phi_X$ is the characteristic function of a r.v. Let us assume that X_n does not converge in distribution to X. Then we could find $f \in C_b(\mathbb{R})$ such that $\mathbb{E}[f(X_n)]$ does not converge to $\mathbb{E}[f(X)]$. Thus we could find an extraction n_k and $\varepsilon > 0$ such that $|\mathbb{E}[f(X_{n_k})] - \mathbb{E}[f(X)]| \geq \varepsilon$. But $(\mathcal{L}(X_{n_k}), k \geq 1)$ is tight (since it is contained in a tight family), so we can further extract a subsequence such that $X_{n_{k'}} \to X'$ in distribution for some r.v. X'. Similarly, $\phi_X = \phi_{X'}$, so X and X' have the same distribution. This is a contradiction since $\mathbb{E}[f(X_{n_{k'}})] \to \mathbb{E}[f(X)]$.

6 Brownian Motion

6.1 Historical notes

Around 1827 Brown observed the erratic motion of pollen particles in water. Later, Langevin and Einstein realized that Brownian motion is an isotropic Gaussian process. The first mathematical construction of Brownian motion is due to Wiener in 1923, using Fourier Analysis. Lévy studied the sample path properties of Brownian motion, and Kakutani and Doob made the link with potential theory. Itô's calculus was developed in 1950.

As a first approximation, consider $S_n = X_1 + \cdots + X_n$, where the X_j are \mathbb{R}^d-valued i.i.d. r.v.s and $X_1 = \pm e_i$ with probability $\frac{1}{2d}$, where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$. By the CLT,

$$
\frac{S_n}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, I_d) \xrightarrow{w} \bar{N},
$$

where N_t are i.i.d. $\mathcal{N}(0, 1)$. Consider $B_t^{(n)} = \frac{S_{\lfloor nt \rfloor}}{\sqrt{nt}}$ for $t \geq 0$, so in particular $\mathcal{L}(B_t^{(n)}) \xrightarrow{w} \mathcal{N}(0, I_d)$. Brownian motion is a continuous process B such that $\{B_t^{(n)} \to B\}$ in distribution.

The finite dimensional marginal distributions $\mathcal{L}(B_{t_1}, \ldots, B_{t_k})$ for every k should be given by

$$
\lim_{n \to \infty} \mathcal{L} \left(B_{t_1}^{(n)}, \ldots, B_{t_k}^{(n)} \right),
$$

6.1.1 Proposition. For fixed $0 = t_0 < t_1 < \cdots < t_k$, $(B_t^{(n)} - B_{t_i}^{(n)}, 1 \leq i \leq n)$ converges in distribution to $(N_i, 1 \leq i \leq k)$, where the N_i’s are independent and $N_i \sim \mathcal{N}(0, (t_i - t_{i-1})I_d)$. In particular, $\mathcal{L}(B_t^{(n)}) \to \mathcal{N}(0, tI_d)$.

Brownian Motion
6.1.2 Definition. Let a standard Brownian motion is defined.

\[\text{Proof: (For } d = 1 \text{)} \] Using characteristic functions. Let \(\xi \in \mathbb{R}^k \).

\[
\mathbb{E} \left[\exp \left(i \sum_{j=1}^{k} \xi_j (B_{t_i}^{(n)} - B_{t_{i-1}}^{(n)}) \right) \right] = \prod_{j=1}^{k} \mathbb{E} \left[\exp \left(i \xi_j (B_{t_i}^{(n)} - B_{t_{i-1}}^{(n)}) \right) \right]
\]

\[
= \prod_{j=1}^{k} \mathbb{E} \left[\exp \left(i \xi_j \sum_{r=1}^{\lfloor nt_j \rfloor - \lfloor nt_{j-1} \rfloor} X_r \right) \right]
\]

\[
\xrightarrow{CLT} \prod_{j=1}^{k} \mathbb{E} \left[\exp(i \xi_j N_j) \right]
\]

\[
= \mathbb{E} \left[\exp \left(i \sum_{j=1}^{k} \xi_j N_j \right) \right]
\]

since \(B_{t_i}^{(n)} - B_{t_{i-1}}^{(n)} = \frac{1}{\sqrt{n}} \sum_{r=\lfloor nt_i \rfloor - \lfloor nt_{i-1} \rfloor + 1}^{\lfloor nt_i \rfloor} X_r \), so the \(\{B_{t_i}^{(n)} - B_{t_{i-1}}^{(n)} \} \) are \(k \) independent r.v.'s. And further

\[
B_{t_i}^{(n)} - B_{t_{i-1}}^{(n)} = \frac{1}{\sqrt{n}} \sum_{r=1}^{\lfloor nt_i \rfloor - \lfloor nt_{i-1} \rfloor} X_r.
\]

Conclude with Lévy’s Theorem. \(\Box \)

6.1.3 Theorem (Weiner, 1923). There exists a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) on which a standard Brownian motion is defined.
A dent on P of the definition. (We are doing the case $d = 1$ on the time interval $[0, 1].$) Let $(Z_d)_{d \in D}$ be a family of independent r.v.'s with distribution $\mathcal{N}(0, 1).$ We'll construct B_d such that for all $d, B_d \in \text{Vect}(Z_d, d' \in D) =: G.$ For $X_1, \ldots, X_k \in G,$ the (X_i)'s are independent if and only if they are pairwise orthogonal, i.e. $E[X_i X_j] = 0$ for all $i \neq j.$

The construction is by induction. For $n = 0$ take $B_0 = 0$ and $B_1 = Z_0.$ Suppose now that $(B_d)_{d \in D_n}$ satisfies properties (i), (ii), and (iii) of the definition, and that $(B_d)_{d \in D_n}$ is independent of $(Z_d)_{d \in D_n - 1}.$ Let $d \in D_n \setminus D_{n - 1},$ and defined $d_- = d - 2^{-n}$ and $d_+ = d + 2^{-n},$ so $d_-, d_+ \in D_{n - 1}.$ Let $B_d = \frac{1}{2}(B_{d_-} + B_{d_+}) + \frac{1}{2\sqrt{n}} Z_d.$

Now $B_d - B_{d_-}, B_d - B_{d_+}$ are independent $\mathcal{N}(0, \frac{1}{n^2})$ (since check that) if N_1, N_2 are $\mathcal{N}(0, \sigma^2)$ and independent then $N_1 + N_2$ and $N_1 - N_2$ are independent $\mathcal{N}(0, 2\sigma^2).$ Indeed, $\text{Cov}(N_1 + N_2, N_1 - N_2) = \text{Cov}(N_1, N_1) - \text{Cov}(N_2, N_2) = 0.$

Further, the same method (check this) proves that these increments are independent of all other $B_{d'} - B_{d''}$ for $d' \in D \setminus D_{n - 1},$ so the induction step is proved.

By induction we get $(B_d)_{d \in D_n}$ satisfying (i), (ii), (iii) of the definition.

For $s, t \in D, s < t,$ $E[|B_t - B_s|^p] = (t - s)^\frac{p}{2} E[N^p]$ for $p > 2,$ where $N \sim \mathcal{N}(0, 1),$ since $B_t - B_s \sim \mathcal{N}(0, |t - s|) \sim \sqrt{t - s} \mathcal{N}(0, 1).$ But this latter is $C_p |t - s|^{1 + \frac{p}{2}}$ for some $C_p > 0.$ By the Kolmogorov Criterion, there exists a.s. a continuous function $(B_d)_{d \in [0, 1]}$ that extends $(B_d)_{d \in D}.$ Let $\Omega_0 = \{ \omega \mid (B_d(\omega))_{d \in D} \}$ does not have a continuous extension to $[0, 1].$ On $\Omega_0,$ let $B_t(\omega) = 0$ for all $t \in [0, 1].$ (Notice that $\mathbb{P}(\Omega_0) = 0.$)

Let us check (i), (ii), (iii) for $(B_d)_{d \in [0, 1]}.$ (i) is trivial. Let $0 = \ell_0 < \ell_1 < \cdots < \ell_k,$ and consider $0 \leq t_0^\ell < \cdots < t_k^\ell$ such that $t_n^\ell \in D_n$ for all n and $t_n^\ell \to t_i$ as $n \to \infty.$ We know that $(B_{t_0^\ell} - B_{t_i^\ell}, 1 \leq i \leq k)$ are independent $\mathcal{N}(0, t_i^\ell - t_{i-1}^\ell)$ for all $n.$

Claim. If $(N_1^\ell, \ldots, N_k^\ell)$ are independent Gaussian $N_i \sim \mathcal{N}(0, \sigma_i^2),$ then if $\sigma_i^\ell \to \sigma_i$ then $(N_1^\ell, \ldots, N_k^\ell) \to (N_1, \ldots, N_k)$ in distribution, where N_i are independent $N_i \sim \mathcal{N}(0, \sigma_i^2).$

Indeed, use Lévy's convergence theorem.

By continuity of $B,$ $B_{t_0^\ell} - B_{t_i^\ell} \to B_{t_i^\ell} - B_{t_{i-1}^\ell}$ for every $\omega,$ so by the lemma we do have $(B_{t_0} - B_{t_{i-1}}, 1 \leq i \leq k)$ is independent $\mathcal{N}(0, t_i - t_{i-1}),$ so $(B_d)_{d \in [0, 1]}$ is a Brownian motion.

To get a Brownian motion $(B_t)_{t \geq 0},$ take Brownian motions $(B_t^n)_{d \in [0, 1]}$ independent on $[0, 1]$ for $n \geq 1$ and define $B_t = \sum_{d \in [0, 1]} B_t^n + B^n_{t-[t]}$ for $t \geq 0.$ In higher dimensions $d > 1$ take $B^{(1)}, \ldots, B^{(d)}$ independent Brownian motion in \mathbb{R}^d and set $B_t = (B_t^{(1)}, \ldots, B_t^{(d)}),$ $t \geq 0,$ which is a Brownian motion in \mathbb{R}^d (check).

6.1.4 Definition. Let $\Omega_W = C(\mathbb{R}_+, \mathbb{R}^d),$ the Weiner space. The Weiner measure $W_0(dw)$ is the law of the standard Brownian motion, the unique measure on Ω_W such that for every $A_1, \ldots, A_k \in \mathcal{B}(\mathbb{R}^d),$

$$W_0(\{w \in \Omega_W \mid w_t \in A_1, \ldots, w_t \in A_k\}) = \int_{A_1 \times \cdots \times A_k} \prod_{i=1}^k p_{t, t-i}(x_i - x_{i-1})dx_1 \cdots dx_k.$$
Here \(\Omega_w \) is endowed with the product \(\sigma \)-algebra, i.e. the smallest \(\sigma \)-algebra such that \(X_t : w \rightarrow w_t \) is measurable for all \(t \in \mathbb{R}_+ \). Under the probability space \((\Omega_w, P, W_0(dw))\), the process \((X_t, t \geq 0)\) (where \(X_t(w) = w_t \)) is a standard Brownian motion, called the canonical Brownian motion.

6.2 First properties

6.2.1 Proposition.

(i) Let \((B_t, t \geq 0)\) be a standard Brownian motion in \(\mathbb{R}^d \), and let \(U \in O(d) \) be an orthogonal matrix, then \((UB_t, t \geq 0)\) is a standard Brownian motion as well. In particular, \((-B_t, t \geq 0)\) is a standard Brownian motion.

(ii) (Scaling) Let \(\lambda > 0 \), then \(((\frac{1}{\sqrt{\lambda}}B_{\lambda t}, t \geq 0))\) is a standard Brownian motion.

(iii) (Simple Markov property) Let \(B^{(i)} := (B_{t+s} - B_t, s \geq 0) \), then \(B^{(i)} \) is a standard Brownian motion, independent of \(\mathcal{F}_t \), where \(\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \).

Proof:

(i) Use the fact that \(N \sim \mathcal{N}(0, \sigma^2 I_d) \) then \(UN \sim \mathcal{N}(0, \sigma^2 I_d) \).

(ii) Use \(\frac{1}{\sqrt{\lambda}}B_{\lambda t} \sim \frac{1}{\sqrt{\lambda}} \mathcal{N}(0, \lambda t) \sim \mathcal{N}(0, t) \) and apply this fact to the increments of \(\frac{1}{\sqrt{\lambda}}B_{\lambda t}, t \geq 0 \).

(iii) Let \(t_1, \ldots, t_k \leq t \leq s_1, \ldots, s_k \), and let \(F, G \geq 0 \) be measurable functions. Then \(\mathbb{E}[F(B_{t_1}, \ldots, B_{t_k})G(B_{s_1}, \ldots, B_{s_k})] \) is going to split because of the independent increment property of Brownian motion (since \(B^{(i)} - B^{(i-1)} = B_{t_i} - B_{t_{i-1}} \)).

6.2.2 Proposition (Blumenthal’s 0-1 law). Let \((B_t, t \geq 0)\) be a standard Brownian motion and let \((\mathcal{F}^B_t)\) be its natural filtration, and \(\mathcal{F}_0^B = \bigcap_{t \geq 0} \mathcal{F}_t^B \). Then for all \(A \in \mathcal{F}_0^B \), \(\mathbb{P}(A) \in \{0, 1\} \).

Proof: Let \(A \in \mathcal{F}_0^B \), so for all \(\epsilon > 0, A \in \mathcal{F}_t^B \). Let \(F \) be a continuous bounded function \((\mathbb{R}^d)^k \rightarrow \mathbb{R} \) and \(t_1, \ldots, t_k > 0 \). Then

\[
\mathbb{E}[\mathbb{1}_A F(B_{t_1}, \ldots, B_{t_k})] = \lim_{\epsilon \rightarrow 0} \mathbb{E}[\mathbb{1}_A F(B^{(\epsilon)}_{t_{1-\epsilon}}, \ldots, B^{(\epsilon)}_{t_{k-\epsilon}})] \\
= \lim_{\epsilon \rightarrow 0} \mathbb{P}(A) \mathbb{E}[F(B^{(\epsilon)}_{t_{1-\epsilon}}, \ldots, B^{(\epsilon)}_{t_{k-\epsilon}})] \\
= \mathbb{P}(A) \mathbb{E}[F(B_{t_1}, \ldots, B_{t_k})]
\]

This implies that \(A \) is independent of \(\sigma(B_t, 1 \leq i \leq k) \), for all \(t_1, \ldots, t_k > 0 \). Therefore \(A \) is independent of \(\sigma(B_s, s \geq 0) = \mathcal{F}_\infty^B \supseteq \mathcal{F}_0^B \), so \(\mathcal{F}_0^B \) is independent of itself. Thus for any \(A \in \mathcal{F}_0^B \), \(\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2 \), so \(\mathbb{P}(A) \in \{0, 1\} \).

6.2.3 Proposition. Let \((B_t, t \geq 0)\) be standard Brownian motion in dimension \(d = 1 \). Let \(S_t = \sup_{0 \leq s \leq t} B_s \) and \(I_t = \inf_{0 \leq s \leq t} B_s \). Then

(i) a.s. for all \(t > 0 \), \(S_t > 0 \) and \(I_t < 0 \);

(ii) a.s. \(S_\infty = \sup_{t \geq 0} B_t = +\infty \) and \(I_\infty = \inf_{t \geq 0} B_t = -\infty \);
(iii) In dimensions $d \geq 2$, let C be an open cone with origin at 0 and non-empty interior. Let $H_C = \inf\{ t > 0 \mid B_t \in C \}$. Then a.s. $H_C = 0$.

Proof:

(i) Let ε_k be a positive decreasing sequence with $\varepsilon_k \to 0$ as $k \to \infty$. Let $A_k = \{B_{\varepsilon_k} > 0\}$, so $\limsup_{k \to \infty} A_k = \{B_{\varepsilon_k} > 0 \text{ i.o.}\} \in \mathcal{F}_\varepsilon$ for any $\varepsilon > 0$. Therefore it is in $\mathcal{F}_0^\varepsilon$. By the reverse Fatou Lemma,

$$\mathbb{P}(\limsup_k A_k) \geq \limsup_k \mathbb{P}(A_k) = \limsup_k \mathbb{P}(B_{\varepsilon_k} > 0) = \frac{1}{2}.$$

On the other hand, by Blumenthal's Law, $\mathbb{P}(\limsup_k A_k) \in \{0, 1\}$, so it must be one. But $\limsup_k A_k \subseteq \{S_t > 0 \mid \forall \ t > 0\}$ we have the result. $(-B_t, t \geq 0)$ is a Brownian motion, so the result for I_t follows.

(ii) $S_\infty = \sup_{t \geq 0} B_t = \sup_{t \geq 0} B_{1,t}$ for any $\lambda > 0$. By the scaling property, $(B_{1,t}, t \geq 0) = (\sqrt{\lambda} B_{1,t}, t \geq 0)$. Therefore $S_\infty = \sqrt{\lambda} \sup_{t \geq 0} B_t = \sqrt{\lambda} S_\infty$ for all $\lambda > 0$, so $\mathbb{P}(S_\infty \in (\varepsilon, \varepsilon^{-1})) = \mathbb{P}(\lambda S_\infty \in (\varepsilon, \varepsilon^{-1})) \to 0$ as $\lambda \to \infty$. Therefore $S_\infty \in \{0, \infty\}$. But $S_\infty \geq S_1 > 0$ a.s. by (i). Same for I_t.

(iii) Copy the proof of (i), $A_k = \{B_{\varepsilon_k} \in C\}$, and note that since $\lambda C = C$ for all $\lambda > 0$, $\mathbb{P}(A_k) = \mathbb{P}(\mathcal{N}(0, I_d) \in C) > 0$ since C has non-empty interior (and the density is everywhere positive?).

Since $B_t - B_s \sim \mathcal{N}(0, (t-s)I_d)$ we have, for $p > 2$,

$$\mathbb{E}[|B_t - B_s|^p] \leq C_p |t-s|^{1+\left\lfloor \frac{\alpha}{2} \right\rfloor}.$$

By Kolmogorov’s continuity criterion, $(B_t, t \geq 0)$ is Hölder continuous with index $\alpha \in (0, \frac{1}{2} - \frac{1}{p})$ over any compact interval. Letting $p \to \infty$ we see that, a.s., $(B_t, t \geq 0)$ is α-Hölder continuous for $\alpha \in (0, \frac{1}{2})$ over any compact set.

6.2.4 Proposition. Almost surely, $(B_t, t \geq 0)$ is not $\frac{1}{2}$-Hölder continuous over any interval with non-empty interior.

6.2.5 Proposition. Let $(B_t, t \geq 0)$ be a standard Brownian motion in dimension $d = 1$.

(i) $\limsup_{t \to 0} \frac{B_t}{\sqrt{t}} = +\infty$ a.s., and $\liminf_{t \to 0} \frac{B_t}{\sqrt{t}} = -\infty$ a.s.

(ii) For all $t_0 \geq 0$, (B_t) is not differentiable at t_0, a.s.

(iii) (B_t) is not differentiable at $t = t_0$ for any t_0, a.s.

6.3 Strong Markov property, Reflection principle

We would like to consider starting a Brownian motion from a random initial value. A process $(B_t, t \geq 0)$ is a Brownian motion (starting at a random point B_0) if $(B_t - B_0, t \geq 0)$ is a standard Brownian motion that is independent of B_0.

6.3.1 Example. If \(B_0 = x \in \mathbb{R}^d \) a.s. then a Brownian motion started at \(x \) is just \((x + B_t, t \geq 0) \), where \((B_t, t \geq 0) \) is a standard Brownian motion. Its distribution is the measure \(W_x(dw) \) on \(\Omega_W \) (Weiner space) which is the image measure of \(W_0(dw) \) (Weiner measure) by the map

\[
\Omega_W \to \Omega_W : w \mapsto (x + w_t, t \geq 0) = x + w.
\]

The law of a Brownian motion started at a r.v. \(B_0 \) is determined by

\[
\mathbb{E}[F(B)] = \mathbb{E}[F((B_t - B_0, t \geq 0) + B_0)]
= \int P(B_0 \in dx) \int W_0(dw)F(w + x)
= \int P(B_0 \in dx)W_x(F)
= : \mathbb{E}[W_{B_0}(F)].
\]

Equivalently, the law of \(B_t \) given \(B_0 \) is \(W_{B_t} \).

6.3.2 Definition. Let \((\mathcal{F}_t, t \geq 0)\) be a filtration and \((B_t, t \geq 0)\) be a Brownian motion. We say that \((\mathcal{F}_t)\) is a Brownian filtration (or \((B_t)\) is an \((\mathcal{F}_t)\)-Brownian motion) if \(\mathcal{F}_t^B \subseteq \mathcal{F}_t \) for all \(t \) (so in particular \(B \) is adapted) and for all \(t \), \(B^{(t)} \) is a standard Brownian motion independent of \(\mathcal{F}_t \) (this is the simple Markov property).

6.3.3 Theorem (Strong Markov Property).
Let \((B_t)\) be an \((\mathcal{F}_t)\)-Brownian motion and let \(T \) be an \((\mathcal{F}_t)\)-stopping time. Then, conditionally on \(\{T < \infty\} \), the process

\[
B^{(T)} = \begin{cases}
(B_{T+t} - B_t, t \geq 0) & \text{on } \{T < \infty\}, \\
0 & \text{otherwise}
\end{cases}
\]

is a standard Brownian motion which is independent of \(\mathcal{F}_T \).

Equivalently, given \(\mathcal{F}_T \), the process \((B_{t+T}, t \geq 0) \) is an \((\mathcal{F}_{T+t}, t \geq 0)\)-Brownian motion.

Proof: Let \(T \) be such that \(\mathbb{P}(T < \infty) = 1 \). Let \(A \in \mathcal{F}_T \) and \(0 \leq t_1 \leq \cdots \leq t_k \) be fixed times. Let \(F : (\mathbb{R}^d)^k \to \mathbb{R} \) be a bounded continuous function. Assume first that \(T \) takes values in \(D \), the dyadic rationals. Then

\[
\mathbb{E}[1_A F(B^{(T)}_1, \ldots, B^{(T)}_k)] = \sum_{d \in D} \mathbb{E}[1_{A \cap \{T = d\}} F(B^{(T)}_1, \ldots, B^{(T)}_k)]
= \sum_{d \in D} \mathbb{P}(A, T = d) \mathbb{E}[F(B_{t_1}, \ldots, B_{t_k})] \quad \text{SM}
= \mathbb{P}(A) \mathbb{E}[F(B_{t_1}, \ldots, B_{t_k})]
\]

In general, let \(T_n = 2^{-n}[2^n T] \), so that \(T_n \downarrow_{n \to \infty} T \). \(\mathcal{F}_T \subseteq \mathcal{F}_{T_n} \) since \(T \leq T_n \), so \(A \in \mathcal{F}_{T_n} \), and by the previous argument,

\[
\mathbb{E}[1_A F(B^{(T_n)}_1, \ldots, B^{(T_n)}_k)] = \mathbb{P}(A) \mathbb{E}[F(B_{t_1}, \ldots, B_{t_k})].
\]
Since F is continuous and bounded and Brownian motion is continuous, by the DCT the left hand side goes to $\mathbb{E}[1_{F}(B_{t_{1}}^{(T)}, \ldots, B_{t_{i}}^{(T)})]$ as $n \to \infty$. For $A = \Omega$, we obtain that $B^{(T)}$ is a standard Brownian motion. By letting A vary in \mathcal{F}_T, we obtain that \mathcal{F}_T is independent of $\sigma(B_{t_{1}}^{(T)}, \ldots, B_{t_{i}}^{(T)})$, and is therefore independent of $B^{(T)}$. Finally, if $\mathbb{P}(T < \infty) < 1$ then use the same argument with $A \cap \{T < \infty\}$ instead of A, and divide both sides of the above equation by $\mathbb{P}(T < \infty)$. □

6.3.4 Theorem (Reflection Principle).
Let (B_t) be a standard (\mathcal{F}_t)-Brownian motion and let T be an (\mathcal{F}_T)-stopping time. Let
$$\bar{B}_t = B_t 1_{t \leq T} + (2B_t - B_{t^+}) 1_{t > T}$$
for $t \geq 0$. Then \bar{B} is a standard (\mathcal{F}_t)-Brownian motion as well.

Proof: We know by the Strong Markov Property that $(B_t, 0 \leq t \leq T)$ and $B^{(T)}$ are independent. We know also by invariance properties of Brownian motion, $-B^{(T)} \equiv B^{(T)}$. Therefore $((B_t, 0 \leq t \leq T), B^{(T)})$ has the same joint distribution as $((B_t, 0 \leq t \leq T), -B^{(T)})$. Hence for all $F \geq 0$ measurable, $\mathbb{E}[F(\bar{B})] = \mathbb{E}[F(\bar{B}^{(T)})]$. □

6.3.5 Corollary. Let $d = 1$ and $S_t = \sup_{0 \leq s \leq t} B_s$ for $t \geq 0$. For every $b > 0$ and for all $a \leq b$, $\mathbb{P}(S_t \geq b, B_t \leq a) = \mathbb{P}(B_t \geq 2b - a)$.

Proof: Introduce, for $x > 0$, $T_x = \inf\{t \geq 0 \mid B_t \geq x\}$, a stopping time since Brownian motion is continuous and $[x, \infty)$ is closed. The event $\{S_t \geq b, B_t \leq a\} = \{T_x \leq t, 2b - B_t \geq 2b - a\} = \{\bar{B}_t \geq 2b - a\}$ since $\bar{B}_t \geq 2b - a \geq b$ implies $T_b \leq t$. The result follows by the reflection principle for $T = T_x$. □

6.3.6 Corollary. For all $t \geq 0$, $S_t \overset{d}{=} |B_t|$.

Proof: For any $b \geq 0$,
$$\mathbb{P}(S_t \geq b) = \mathbb{P}(S_t \geq b, B_t \leq b) + \mathbb{P}(S_t \geq b, B_t \geq b) = \mathbb{P}(B_t \geq b) + \mathbb{P}(B_t \geq b) = 2\mathbb{P}(B_t \geq b) = \mathbb{P}(|B_t| \geq b).$$

by the symmetry of the Gaussian law. □

Warning: It is not true that S and B have the same distribution as processes, since (S_t) is monotone while $|B_t|$ is not.

6.3.7 Corollary. For all $x \geq 0$, the stopping time $T_x \overset{d}{=} \left(\frac{x}{|B|}\right)^2$.

Proof: Indeed,
$$\mathbb{P}(T_x \leq t) = \mathbb{P}(S_t \geq x) = \mathbb{P}(|B_t| \geq x) = \mathbb{P}(\sqrt{t}|B_t| \geq x) = \mathbb{P}(\left(\frac{x}{|B|}\right)^2 \leq t)$$

implying that they have the same probability distribution function. □
6.4 Martingales associated with Brownian motion

6.4.1 Proposition. Let \((B_t)\) be an \((\mathcal{F}_t)\)-Brownian motion.

(i) In \(d = 1\), \((B_t, t \geq 0)\) is an \((\mathcal{F}_t)\)-martingale when \(B_0 \in L^1\).

(ii) In \(d = 1\), \((B_t^2 - t, t \geq 0)\) is an \((\mathcal{F}_t)\)-martingale when \(B_0 \in L^2\).

(iii) For \(\xi \in \mathbb{R}^d\), \((\exp(i(\xi, B_t)) + \frac{1}{2} t|\xi|^2), t \geq 0)\) is an \((\mathcal{F}_t)\)-martingale.

Proof:
(i) \(\mathbb{E}[B_t - B_s \mid \mathcal{F}_s] = 0\) for all \(s < t\).

(ii) \(B_t^2 = (B_t - B_s + B_s)^2 = (B_t - B_s)^2 + 2B_s(B_t - B_s) + B_s^2\), so \(\mathbb{E}[B_t^2 \mid \mathcal{F}_s] = \mathbb{E}[(B_t - B_s)^2 \mid \mathcal{F}_s] + B_s^2 = t - s + B_s^2\).

(iii) \(\mathbb{E}[\exp(i(\xi, B_t - B_s) + i(\xi, B_s)) \mid \mathcal{F}_s] = \exp(i(\xi, B_s)) \exp(-\frac{1}{2}(t - s)|\xi|^2)\). \(\square\)

6.4.2 Proposition. Let \((B_t)\) be a standard Brownian motion and \(d = 1\), and for \(x \in \mathbb{R}\), \(T_x = \inf\{t \geq 0 \mid B_t = x\}\). Then for \(x, y > 0\), \(\mathbb{P}(T_x < T_{-y}) = \frac{y}{x+y}\) and \(\mathbb{E}[T_x \wedge T_{-y}] = xy\).

Proof: We use martingales stopped at \(T_x \wedge T_{-y}\).

\[0 = \mathbb{E}[B_{T_x \wedge T_{-y}}] = x \mathbb{P}(T_x < T_{-y}) - y(1 - \mathbb{P}(T_x < T_{-y})),\]

so \(\mathbb{P}(T_x < T_{-y}) = \frac{y}{x+y}\). Similarly,

\[\mathbb{E}[T_x \wedge T_{-y}] = \mathbb{E}[B_{T_x \wedge T_{-y}}^2] = x^2 \frac{y}{x+y} + y^2 \frac{x}{x+y} = xy.\] \(\square\)

6.4.3 Theorem. Let \(f : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{C}\) be continuously differentiable in the first coordinate (time) and twice continuously differentiable in the second coordinate (space), and be such that all partial derivatives are bounded. If \((B_t)\) is an \((\mathcal{F}_t)\)-Brownian motion then

\[f(t, B_t) - f(0, B_0) - \int_0^t \left(\frac{\partial}{\partial t} + \frac{\Delta}{2} \right) f(s, B_s) ds\]

is an \((\mathcal{F}_t)\)-martingale, where \(\Delta f(t, x) = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2} f(t, x)\) is the Laplaceian.

Proof: We prove the case where \(f(t, x) = f(x)\) does not depend on time. Let \(p_t(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{1}{2t}|x|^2)\) and let \(g\) be bounded and continuous. We claim that if \((B_t)\) is a standard Brownian motion then

\[\int_0^t \int_{\mathbb{R}^d} g(x) \frac{\partial}{\partial s} p_s(x) dx ds = \mathbb{E}[g(B_t)] - g(0).\]
Indeed,
\[
\int_0^t \int_{\mathbb{R}^d} g(x) \frac{\partial}{\partial x_i} p_s(x) \, dx \, ds = \lim_{\epsilon \to 0} \int_0^t \int_{\mathbb{R}^d} g(x) \frac{\partial}{\partial x_i} p_{s+\epsilon}(x) \, dx \, ds
\]
\[
= \lim_{\epsilon \to 0} \int_{\mathbb{R}^d} g(x)(p_{s+\epsilon}(x) - p_s(x)) \, dx
\]
\[
= \lim_{\epsilon \to 0} \mathbb{E}[g(B_{s+\epsilon})] - \mathbb{E}[g(B_s)]
\]
\[
= \mathbb{E}[g(B_t)] - g(0)
\]

by DCT since \(B_{s+\epsilon} \to 0 \) and \(g \) is bounded.

For \(s, t \geq 0 \),
\[
\mathbb{E} \left[f(B_{s+t}) - f(B_t) - \int_t^{s+t} \Delta f(B_u) \, du \mid \mathcal{F}_t \right] = \int_{\mathbb{R}^d} p_s(x) f(x + B_t) \, dx - f(B_t) - \mathbb{E} \left[\int_t^{s+t} \frac{\Delta}{2} f(B_u - B_t + B_t) \, du \mid \mathcal{F}_t \right].
\]

But
\[
(2) = \mathbb{E} \left[\int_0^s \frac{\Delta}{2} f(B_{t+u} - B_t + B_t) \, du \mid \mathcal{F}_t \right]
\]
\[
= \int_{\Omega^t} W_0(dw) \int_0^s \frac{\Delta}{2} f(w_u + B_t) \, du
\]
\[
= \int_0^s \int_{\Omega_w} W_0(dw) \frac{\Delta}{2} f(w_u + B_t)
\]
\[
= \int_0^s \int_{\mathbb{R}^d} p_u(x) \, dx \frac{\Delta}{2} f(x + B_t)
\]

By integrating by parts, this is equal to
\[
(2) = \int_0^s \int_{\mathbb{R}^d} \frac{\Delta}{2} p_s(x) f(x + B_t) \, dx.
\]

It can be checked that \(\frac{\Delta}{2} - \frac{\Delta}{2} p_t(x) = 0 \), i.e. the density of the Gaussian law is a solution to the heat equation. Therefore
\[
(2) = \int_0^s \int_{\mathbb{R}^d} \Delta p_s(x) f(x + B_t) \, dx = \int_{\mathbb{R}^d} p_s(x) f(x + B_t) \, dx - f(B_t) = (1)
\]

by the claim. \(\square \)

6.5 Recurrence and transience properties

Assume given \((\Omega, \mathcal{F}, (P_x)_{x \in \mathbb{R}^d})\) probability spaces such that \((B_t)_{t \geq 0}\) is under \(P_x\) a Brownian motion started at \(x \in \mathbb{R}^d\). (For example, \((\Omega_w, prod, (W_x)_{x \in \mathbb{R}^d}))\).
6.5.1 Theorem.

(i) In $d = 1$, a.s. under P_0, the sets $\{t \mid B_t = x\}$ are unbounded, i.e. Brownian motion in dimension one is “point recurrent.”

(ii) In $d = 2$, a.s. under P_x, $\{t \mid |B_t| \leq \varepsilon\}$ is unbounded for all $\varepsilon > 0$, i.e. Brownian motion in dimension two is “neighbourhood recurrent.” However, if $H_x = \inf\{t > 0 \mid B_t = x\}$ then $P_x(H_x < \infty) = 0$, i.e. “points are polar.”

(iii) In $d \geq 3$, (B_t) is “transient,” i.e. $|B_t| \to \infty$ as $t \to \infty$.

Proof:

(i) We already know that $\sup_{t \geq 0} B_t = -\inf_{t \geq 0} B_t = \infty$, so we have point recurrence by continuity.

(ii) Let $\varepsilon > 0$, $R > \varepsilon$, and $D_{\varepsilon,R} = \{x \in \mathbb{R}^2 \mid \varepsilon \leq |x| \leq R\}$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f : x \mapsto \log|x|$ on $D_{\varepsilon,R}$, f is bounded, is C^∞, and has bounded derivatives. Check that $\Delta \log |x| = 0$ on the interior of $D_{\varepsilon,R}$. Let $T_\varepsilon = \inf\{t \geq 0 \mid |B_t| \leq \varepsilon\}$ and $T_R = \inf\{t \geq 0 \mid |B_t| \geq R\}$. By the previous theorem,

$$f(B_t) - f(x) - \int_0^t \frac{\Delta f(B_s)}{2} ds$$

is a martingale. Therefore if $T = T_\varepsilon \wedge T_R$, then

$$f(B_{t\wedge T}) - f(x) - \int_0^{t\wedge T} \frac{\Delta f(B_s)}{2} ds = f(B_{t\wedge T}) - f(x)$$

(since $\Delta f = 0$ on $D_{\varepsilon,R}$) is a martingale, so $(f(B_{t\wedge T}), t \geq 0)$ is a bounded martingale. By optional stopping,

$$\log |x| = \mathbb{E}_x[f(B_T)] = (\log \varepsilon)P(T_\varepsilon < T_R) + (\log R)P_x(T_R < T_\varepsilon),$$

so

$$P_x(T_\varepsilon < T_R) = \frac{\log |x| - \log R}{\log \varepsilon - \log R}. \quad (1)$$

Letting $R \to \infty$ in (1), we see that $P_x(T_\varepsilon < \infty) = 1$. But

$$P_x(\exists t \geq n : |B_t| \leq \varepsilon) = P_x(\exists t \geq n : |B_t - B_n + B_n| \leq \varepsilon)$$

$$= P_x(\exists t \geq n : |B^{(a)}_t + B_n| \leq \varepsilon)$$

$$= \int P_x(B_n \in dy)P_y(\exists t \geq 0 : |B_t| \leq \varepsilon) \quad \text{SM}$$

$$= P_x(T_\varepsilon < \infty) = 1$$

so $\{t \mid |B_t| \leq \varepsilon\}$ is unbounded. On the other hand, letting $\varepsilon \to 0$ in (1) shows that $P_x(T_0 \leq T_\varepsilon) = 0$, and letting $R \to \infty$ gives $P_x(T_0 < \infty) = 0$ for all $x \neq 0$. For $x = 0$,

$$P_0(\exists t \geq a : B_t = 0) \xrightarrow{a \to 0} P_0(\exists t > 0 : B_t = 0)$$

$$= P_0(\exists t > 0 : B^{(a)}_t + B_a = 0)$$

$$= \int P_0(B_a \in dx)P_x(\exists t \geq 0 : B_t = 0) \quad \text{SM}$$

$$= 0$$
Remark. For 2-dimensional Brownian motion, since the law of B_0 under P_0 is a Gaussian law that does not charge $\{0\}$. Therefore for each $x, y \in \mathbb{R}^2$, $P_x(H_y < \infty) = 0$.

(iii) Since the first three components of Brownian motion in \mathbb{R}^d are a Brownian motion in \mathbb{R}^3, it suffices to prove the result for $d = 3$. Let f be a bounded C^∞ functions with all derivatives bounded such that $f(x) = \frac{1}{|x|}$ on $D_{e,R}$. Again, $\Delta f = 0$ on $D_{e,R}$, so $(f(B_{T^{(a)}_t}), t \geq 0)$ is a bounded martingale. Applying Optional Stopping, we have

$$P_x(T_\varepsilon < T_k) = \frac{1}{R} - \frac{1}{|x|}$$

for $x \in D_{e,R}$. Letting $R \to \infty$ in (2) shows that $P_x(T_\varepsilon < \infty) = \frac{1}{|x|}$. Fix $r > 0$ and define $S_1 = \inf\{t \geq 0 \mid |B_t| \leq r\}$, and for all $k \geq 1$ define $T_k = \inf\{t \geq S_k \mid |B_t| \geq 2r\}$ and $S_{k+1} = \inf\{t \geq T_k \mid |B_t| \leq r\}$. Now $\{S_k < \infty\} = \{T_k < \infty\}$ because $S_k < T_k$ (giving one inclusion) and Brownian motion is unbounded (giving the other inclusion).

$$P_x(S_{k+1} < \infty \mid S_k < \infty) = P_x(S_{k+1} < \infty \mid T_k < \infty)$$

$$= P_x(\exists t \geq T_k : |B_t| \leq r \mid T_k < \infty)$$

$$= P_x(\exists t \geq T_k : |B_t|^{(T_k)} + B_{T_k} \leq r \mid T_k < \infty)$$

$$= \int_{\mathbb{R}^2} P_x(B_{T_k} \in dy)P_y(\exists t \geq 0 : |B_t| \leq r)$$

by the Strong Markov property. But $|B_{T_k}| = 2r$, so a.s. under $P_x(B_{T_k} \in dy)$, $|y| = 2r$, hence $P_x(\exists t : |B_t| \leq r) = P_x(T_r < \infty) = \frac{1}{2}$. Therefore $P_x(S_{k+1} < \infty \mid S_k < \infty) = \frac{1}{2}$. It follows that $P_x(S_k < \infty) = \frac{1}{2^k}P_x(S_1 < \infty)$ given that $S_1 < \infty$. By the Borel-Cantelli Lemma, $\sup\{k \mid S_k < \infty\} < \infty$ a.s. for all r. Letting $r \to \infty$ along \mathbb{N}, this shows that eventually $|B_t| \geq r$ for any r, so $|B_t| \to \infty$ a.s.

Remark. For 2-dimensional Brownian motion, since $\{t \mid B_t \in B(x, \varepsilon)\}$ is unbounded for every $x \in \mathbb{R}^2$ and $\varepsilon > 0$ and \mathbb{R}^2 may be covered by a countable union of balls of a fixed radius, the trajectory of Brownian motion is dense in \mathbb{R}^2. On the other hand, a.s. for all $t > 0$, $B_t \notin \mathbb{Q}^2$.

6.6 Dirichlet problem

Let $D \subseteq \mathbb{R}^d$ ($d \geq 2$) be a connected open set (i.e. a domain), and let g be a measureable function on ∂D. $f \in C^2(D) \cap C(\overline{D})$ is said to satisfy the Dirichlet problem with boundary condition g if $\Delta f = 0$ on D and $f|_{\partial D} = g$. We will see that in many cases $f(x) := \mathbb{E}^D [g(B_T)]$ is the unique solution, where T is the first exit time of B from D. Recall that $(\frac{d}{dt} - \frac{\Delta}{2})p_t(x) = 0$. We restrict our attention to the case where $g \in C(\partial D, \mathbb{R})$ and D is such that $P_x(T < \infty) = 1$ for all $x \in D$, where $T = \inf\{t \geq 0 \mid B_t \notin D\}$.

6.6.1 Proposition. Let v be a bounded solution of the Dirichlet problem with boundry condition g. Then necessarily $v(x) = \mathbb{E}_x[g(B_T)]$ for all $x \in \overline{D}$.
6.6.2 Definition. A locally bounded measurable function $h : D \to \mathbb{R}$ is harmonic if for all $x \in D$ and $r > 0$ such that $B(x, r) \subseteq D$,

$$h(x) = \int_{S_{x,r}} h(y) d\sigma_{x,r}(y),$$

where $S_{x,r}$ is the sphere centered at x of radius r and $\sigma_{x,r}$ is the uniform distribution on $S_{x,r}$.

Remark. $\sigma_{x,r}$ is the unique probability measure on $S_{x,r}$ which is invariant under isometries fixing x.

6.6.3 Proposition. A harmonic function h is $C^\infty(D)$ and satisfies $\Delta h = 0$.

Proof: See lecture notes.

6.6.4 Proposition. For $g \in C_b(D)$, the function $u(x) = \mathbb{E}_x[g(B_T)]$ is harmonic on D.

Proof: See the lecture notes for a proof that u is bounded and measurable. Fix $x \in D$ and $r > 0$ such that $\overline{B(x, r)} \subseteq D$. Define $S = \inf\{t \geq 0 \mid |B_t - x| \geq r\}$, a stopping time such that $S \leq T < \infty$ a.s. under P_x. Then

$$u(x) = \mathbb{E}_x[g(B_T - B_S + B_S)]$$

$$= \mathbb{E}_x[g(B_T^{(S)} + B_S)]$$

$$T - S = \inf\{t \geq 0 \mid B_t \notin D\}$$

$$= \int P_x(B_S \in dy) \mathbb{E}_y[g(B_T)].$$

Now $B_S \in S_{x,r}$ a.s. and by the invariance of standard Brownian motion under the action of $O(d)$, the law of B_S under P_x is invariant under isometries preserving x. Therefore $P_x(B_S \in dy) = \sigma_{x,r}(dy)$, so $u(x) = \int_{S_{x,r}} \sigma_{x,r}(dy)u(y)$ and u is harmonic.

It is not true in general that $u(x) \to g(y)$ as $x \to y$ in D. For example, if $D = B(0, 1) \setminus \{0\}$ and $g = 1_{\{0\}}$ then $u(x) = 0$ for all $x \in D$. The problem can also arise with very complicated boundaries.
6.6.5 **Theorem.** Let D be a domain with smooth boundary (i.e. for all $y \in \partial D$ there is a neighbourhood V of y such that $\partial D \cap V$ is a smooth surface) and assume that $P_x(T < \infty) = 1$ for all $x \in D$. Then for all $g \in C_0(\partial D)$, $u(x) = E_x[g(B_T)]$ is the unique bounded solution to the Dirichlet problem.

6.6.6 **Lemma.** Let D be a domain with smooth boundary. Then for all $y \in D$, $P_x(T > \eta) \to 0$ as $x \to y$ in D for all $\eta > 0$.

Proof: Add me! \(\square \)

6.6.7 **Corollary.** If D is a bounded domain and $g \in C(\partial D)$ then the unique solution to the Dirichlet problem is $u(x) = E_x[g(B_T)]$.

6.7 Donsker’s invariance principle

Let X_1, X_2, \ldots be i.i.d. real-valued r.v.’s such that $E[X_1] = 0$ and $E[X_1^2] = 1$. Consider $S_n = X_1 + \cdots + X_n$, and define a continuous process from this but interpolating linearly between values (so $S_t = (1 - \{t\})S_{\lfloor t \rfloor} + \{t\}S_{\lfloor t \rfloor + 1}$ for all $t \in \mathbb{R}$).

6.7.1 **Theorem.** Let $S_t^{[N]} = \frac{S_n}{\sqrt{N}}$ for all $t \in [0, 1]$. Then $(S_t^{[N]}, 0 \leq t \leq 1) \to (B_t, 0 \leq t \leq 1)$ in distribution, where B is standard Brownian motion.

By $S_t^{[N]} \to B$ in distribution we mean that it converges in distribution in the space $(C([0, 1], \mathbb{R}), \| \cdot \|_{\infty})$ with the Borel σ-algebra. Using this theorem one can prove, for example, that $\frac{1}{\sqrt{N}} \sup_{0 \leq s \leq N} S_n \to \sup_{0 \leq t \leq 1} B_t$ in distribution at $N \to \infty$.

7 Poisson Random Measures

7.1 Motivation

The Poisson distribution $\mathcal{P}(\lambda)$ ($\lambda \geq 0$) is such that if N has distribution $\mathcal{P}(\lambda)$ then $P(N = n) = e^{-\lambda} \frac{\lambda^n}{n!}$ for $n \geq 0$. It is a “law of rare events,” in that $\text{Bin}(n, \frac{\lambda}{n}) \to \mathcal{P}(\lambda)$ weakly as $n \to \infty$.

Let (E, \mathcal{E}) be a measurable space. Define E^* to be the set of σ-finite measures on (E, \mathcal{E}) of the form $m = \sum_{i \in I} \delta_{x_i}$ for some countable set I and $x_i \in E$ for all $i \in I$. Let \mathcal{E}^* be the smallest σ-algebra for which X_A is measurable for all $A \in \mathcal{E}$, where $X_A : E^* \to \mathbb{R}_+ \cup \{\infty\} : m \mapsto m(A)$.

7.1.1 **Definition.** Let μ be a σ-finite on (E, \mathcal{E}). An E^*-valued r.v. M on \mathcal{E} is a Poisson random measure with intensity μ if for all $A_1, \ldots, A_k \in \mathcal{E}$ pairwise disjoint,

(i) $M(A_1), \ldots, M(A_k)$ are independent; and

(ii) for all $j \in \{1, \ldots, k\}$, $M(A_j) \sim \mathcal{P}(\mu(A_j))$ if $\mu(A_j) < \infty$.

7.1.2 **Lemma.** If M is a Poisson random measure with intensity μ (PRM(\mu)) then its law is uniquely determined.

Proof: Let $A_1, \ldots, A_k \in \mathcal{E}$ be pairwise disjoint and of finite μ-mass, and $i_1 \geq 0, \ldots, i_k \geq 0$. Consider $\{m \in E^* \mid m(A_1) = i_1, \ldots, m(A_k) = i_k\} = \{X_{A_1} = i_1, \ldots, X_{A_k} = i_k\}$
respect to the measure \(\mu \) are disjoint and of finite
as we wanted.

7.1.5 Corollary. \(P(A) \) are independent over \(n \)
Thus the probabilities \(\mathbb{P}(B) \) are determined by the definition of \(\text{PRM}(\mu) \) for all \(B \) in a \(\pi \)-system that generates \(\mathcal{E}^* \), so the definition determines the law of \(M \) uniquely. □

7.1.3 Lemma.
(i) If \(N_1, N_2 \sim \mathcal{P}(\lambda_1), \mathcal{P}(\lambda_2) \) then \(N_1 + N_2 \sim \mathcal{P}(\lambda_1 + \lambda_2) \).
(ii) Let \(N \sim \mathcal{P}(\lambda) \) and let \(Y_1, Y_2, \ldots \) be i.i.d. and taking values in \(\{1, \ldots, k\} \), independent of \(N \), and such that \(\mathbb{P}(Y_i = j) = p_j \) for some \(p_1, \ldots, p_k \) which sum to 1. If \(N_i = \sum_{j=1}^{k} \mathbf{1}_{[Y_i = j]} \). Then \(N_1, \ldots, N_k \) are independent and \(N_i \sim \mathcal{P}(p_i \lambda) \) for \(1 \leq i \leq k \).

Proof: Exercise. □

7.1.4 Proposition. There exists a \(\text{PRM}(\mu) \).

Proof: First assume that \(\mu(E) < \infty \). Let \(N \) be a \(\mathcal{P}(\mu(E)) \) r.v. Independently of \(N \), let \(X_1, X_2, \ldots \) be i.i.d. with law \(\frac{\mu(\cdot)}{\mu(E)} \). Set \(M = \sum_{i=1}^{N} \delta_{X_i} \). Then \(M \) is a \(\text{PRM}(\mu) \).

Indeed, let \(A_1, \ldots, A_k \) be pairwise disjoint, then \(M(A_j) = \sum_{i=1}^{N} \mathbf{1}_{X_i \in A_j} \). Setting \(Y_i = j \) if and only if \(X_i \in A_j \), the \(Y_i \)'s are independent and \(\mathbb{P}(Y_i = j) = \mathbb{P}(X_i \in A_j) = \frac{\mu(A_j)}{\mu(E)} \).

By the lemma, the \(M(A_j) \) are independent and follow a \(\mathcal{P}(\mu(E) \frac{\mu(A_j)}{\mu(E)}) = \mathcal{P}(\mu(A_j)) \), as we wanted.

If \(\mu(E) = \infty \) then we can find \(E_n \) (n ≥ 1) that partition \(E \) and \(\mu(E_n) < \infty \) for all \(n \). Let \(M_n, n \geq 1 \) be independent Poisson random measures with intensities \(\mu(\cdot \cap E_n) \), the restriction of \(\mu \) to \(E_n \). Then \(M = \sum_{n \geq 1} M_n \) is \(\text{PRM}(\mu) \). Indeed, if \(A_1, \ldots, A_k \) are disjoint and of finite \(\mu \)-mass then \(M(A_j) = \sum_{n \geq 1} M_n(A_j) = \sum_{n \geq 1} M_n(A_j \cap E_n) \) are independent over \(n \). Thus \(M(A_1), \ldots, M(A_k) \) are independent and \(M(A_j) \sim \mathcal{P}(\sum_{n \geq 1} \mu(A_j \cap E_n)) = \mathcal{P}(\mu(A_j)) \).

7.1.5 Corollary. If \(M \) is a \(\text{PRM}(\mu) \) and if \(A_1, \ldots, A_k \) are pairwise disjoint with finite \(\mu \)-mass then \(M|_{A_1}, \ldots, M|_{A_k} \) are independent, and moreover, \(M|_{A_k} \), given \(M(A_j) = n \), has the same distribution as \(\sum_{i=1}^{n} \delta_{X_i} \), where \(X_1, \ldots, X_n \) are i.i.d. with respect to the measure \(\frac{\mu(\cdot \cap A_j)}{\mu(A_j)} \) (=: \(\mu(\cdot | A_j) \)).

Note that \(\mathbb{E}[M(A)] = \mu(A) \). Indeed, \(\mathbb{E}[\mathcal{P}(\lambda)] = \lambda \).
7.2 Integrating with respect to a Poisson measure

7.2.1 Proposition. For $f : E \to \mathbb{R}_+$ measurable, $M(f) = \int_E f(x)M(dx)$ defines a positive r.v. with $\mathbb{E}[M(f)] = \mu(f)$, the first moment formula. Moreover,

$$\mathbb{E}[e^{-M(f)}] = \exp(\mu(e^{-f} - 1)),$$

the Laplace functional formula.

Proof: If $f = 1_A$ for some $A \in \mathcal{E}$ with $\mu(A) < \infty$ then $M(f) = M(A)$ is a r.v. By approximating f by simple functions (i.e. functions of form $\sum_{i \in J} \alpha_i 1_{A_i}$), the usual argument shows that $M(f)$ is a r.v. If the Laplace functional formula holds then replacing f by λf ($\lambda \geq 0$) and differentiating with respect λ at $\lambda = 0$, we directly obtain $\mathbb{E}[M(f)] = \int_E \mu(dx)f(x) = \mu(f)$.

Now assume that $\mu(E) < \infty$ and $M = \sum_{i=1}^{N} \delta_{X_i}$, where $N \sim \mathcal{P}(\mu(E))$ and $(X_i, i \geq 1)$ are i.i.d. and independent of N, with $\mathcal{L}(X_i) = \frac{\mu}{\mu(E)}$. Then

$$\mathbb{E}[e^{-M(f)}] = \mathbb{E} \left[e^{-\sum_{i=1}^{N} f(X_i)} \right]$$

$$= \sum_{n \geq 0} e^{-\mu(E)} \frac{\mu(E)^n}{n!} \mathbb{E} \left[e^{-\sum_{i=1}^{n} f(X_i)} \right]$$

$$= \sum_{n \geq 0} e^{-\mu(E)} \frac{\mu(E)^n}{n!} \left(\int_E \frac{\mu(dx)}{\mu(E)} e^{-f(x)} \right)^n$$

hence, since $\mu(E) = \int_E \mu(dx)$,

$$\mathbb{E}[e^{-M(f)}] = e^{-\mu(E)} \int_E \mu(dx) e^{\int_E f(x) dx} = \exp(\mu(e^{-f} - 1)).$$

If $\mu(E) = \infty$ then find E_n that partition E with $\mu(E_n) < \infty$ for all n. The measures $M|_{E_n}$ are independent, and $M(f 1_{E_n})$ are independent, so

$$\mathbb{E}[e^{-M(f 1_{E_n})}] = \exp \left(\int_{E_n} (e^{-f(x)} - 1) \mu(dx) \right).$$

Thus

$$\mathbb{E}[e^{-M(f)}] = \prod_{n \geq 0} \mathbb{E}[e^{-M(f 1_{E_n})}]$$

$$= \exp \left(\sum_{n \geq 0} \int_{E_n} (e^{-f(x)} - 1) \mu(dx) \right)$$

$$= \exp(\mu(e^{-f} - 1)). \quad \Box$$

7.2.2 Corollary. If $f \in L^1(\mu)$ then $f \in L^1(M)$ a.s.,

$$\mathbb{E}[e^{\lambda(f)}] = \exp \left(\int \mu(dx)(e^{\lambda f(x)} - 1) \right),$$

and $\mathbb{E}[M(f)] = \mu(f)$.

7.2.3 Proposition. Let \(M \) be a Poisson random measure on \((E, \mathcal{E})\), let \((F, \mathcal{F})\) be a measurable space, let \(f : E \to F \) be measurable, and let \(f_* \) denote the push-forward of \(f \). Then \(f_*M \) (i.e. \(\sum \delta_{f(x)} \) if \(M = \sum \delta_x \)) is a PRM\((f_*\mu)\) on \(F \).

(ii) (Marking property) Let \(M \) be a PRM\((\mu)\) written in the form \(M = \sum \delta_x \) and let \((Y_i, i \geq 1) \) be i.i.d. and independent of \(M \), with \(\mathcal{L}(Y_i) = \nu \) on some space \((F, \mathcal{F})\). Then \(M^* = \sum_{i \geq 1} \delta_{(X_i, Y_i)} \) is a PRM\((\mu \otimes \nu)\) on \(E \times F \).

Proof: Exercise (apparently it is obvious given the definitions).

7.3 Poisson point processes

7.3.1 Definition. Let \((E, \mathcal{E}, G)\) be a \(\sigma\)-finite measure space. A Poisson point process with intensity \(G \) (or \(PPP(G) \)) is a Poisson random measure on \(\mathbb{R}_+ \times E \) with intensity \(dt \otimes G(dx) \), where \(dt \) is Lebesgue measure on \(\mathbb{R}_+ \).

Such a process \(M \) can be written \(M(dt \, dx) = \sum_{i \in I} \delta_{(t_i, x_i)} \), where \(I \) is a countable index set. Since \(dt \) is diffuse (i.e. it has no atoms), with probability 1, for all \(t \), there is at most one \(i \in I \) such that \(t_i = t \). Therefore we can define a process \((e_t, t \geq 0)\) with values in \(E \sqcup \{\ast\} \) by

\[
e_t = \begin{cases} x_i & \text{if } t = t_i \text{ for some } i \in I \\ \ast & \text{otherwise} \end{cases}
\]

Then \((e_t, t \geq 0)\) is also called a Poisson point process with intensity \(G \).

7.3.2 Definition. Let \((X_t, t \geq 0)\) be a stochastic process with values in \(\mathbb{R} \). We say that \((X_t)\) is a Lévy process if

(i) For all \(s < t \), \(X_t - X_s \overset{\text{iid}}{=} X_{t-s} \) (increments are stationary);

(ii) For all \(0 = t_0 < t_1 < \cdots < t_k \), \((X_{t_i} - X_{t_{i-1}}, 1 \leq i \leq k) \) are independent.

7.3.3 Proposition. Let \(M(dt \, dx) \) (resp. \((e_t, t \geq 0)\)) be a \(PPP(G) \) on \(E \). Let \(f \in L^1(G) \) and define

\[
X^f_t := \int_{\{0,1\} \times E} f(x)M(ds \, dx)
\]

(resp. \(X^f_t := \sum I_{0 \leq s \leq t} f(e_s) \), where \(f(\ast) := 0 \)) for \(t \geq 0 \). Then \(X^f_t \) is a Lévy process, and moreover
Poisson point processes

(i) $M_t^f := X_t^f - t \int_E f(x)G(dx)$ defines a martingale; and

(ii) if $f \in L^2(G) \cap L^1(G)$ then $(M_t^f)^2 - t \int_E f^2(x)G(dx), t \geq 0$ is a martingale.

Proof: Let $M' : \mathbb{R}_+ \times E \to E$ denote the push-forward of M by projection on the second coordinate. Then $\int_{[0,t]} f(x)M(ds dt) = M(f) = M'(f)$ and it is easy to see that its intensity is equal to $tG(x)$. Since $G(f) < \infty$, we obtain that $(s,x) \mapsto f(x)$ is in $L^1(ds 1_{[0,1]} \times G(dx))$.

Check Lévy:

(i) Let $0 \leq s < t$. Then

$$X_t^f - X_s^f = \int_{(s,t] \times E} f(x)M(ds dt)$$

and notice $M'(f) = M(f 1_{(s,t)})$ and M' is a PRM($(t-s)G)$, whence $X_t^f - X_s^f$ has the same distribution as X_{t-s}^f.

(ii) Let $0 = t_0 < t_1 < \cdots < t_k$. Then

$$X_{t_i} - X_{t_{i-1}} = \int_{(t_{i-1},t_i] \times E} f(x)M(ds dt) = M_{|_{(t_{i-1},t_i] \times E}}(f)$$

which are independent since the bands $(t_i, t_{i-1}] \times E$ are pairwise disjoint.

Check martingale:

(i) Apply the formula for the first moment and note that the latter half of the right hand side of the first equation below is independent of \mathcal{F}_i.

$$\mathbb{E}[X_{t+s}^f | \mathcal{F}_i] = \mathbb{E}[\int_{[0,t]} f(x)M(ds dx) + \int_{[t,t+s]} f(x)M(ds dx) | \mathcal{F}_i]$$

$$= X_t^f + \mathbb{E}[\int_{[t,t+s]} f(x)M(ds dx)]$$

$$= X_t^f + \int_{[t,t+s]} f(x)G(dx)$$

$$= X_t^f + sG(f)$$

$$= M_t^f + (t+s)G(f)$$

(ii) Use the fact that $(M_t^f)^2 = (M_{t+s}^f - M_t^f)^2 - (M_t^f)^2 + 2M_t^f M_{t+s}^f$, and use the formula for the variance.

\[\square\]

73.4 Example (Poisson process). Taking $E = \{0\}$, $G = \theta \delta_0$, and $f(0) = 1$ gives the Poisson process which we have seen in its alternate form as a sum of i.i.d. exponential r.v.’s with parameter θ. Let $N_\theta^T = \sum_{k=1}^\infty 1_{T_i+\cdots+T_k \leq 1}$, the Poisson process with intensity θ.

7.4 Lévy processes in \(\mathbb{R} \)

Recall that \((X_t, t \geq 0) \) is a Lévy process if it has stationary independent increments. Notice that the law of the Lévy process \((X_t) \) is determined by the 1-dimensional marginals \(\mathcal{L}(X_t, t \geq 0) \), since

\[
\mathcal{L}(X_t, \ldots, X_{t+i}) = \mathcal{L}(F((X_{t+i} - X_{t+i-1})_{i \geq 1,i-t}))
\]

for some function \(F \), and each of the \(X_{t+i} - X_{t+i-1} \) are independent with law \(\mathcal{L}(X_{t+i} - X_{t+i-1}) \).

7.4.1 Definition. A triple \((a, q, \Pi)\) is a Lévy triple if

(i) \(a \in \mathbb{R} \);
(ii) \(q \geq 0 \); and
(iii) Π is a σ-finite measure on \mathbb{R} such that $\Pi(\{0\}) = 0$ and
\[
\int_{\mathbb{R}} \Pi(dx)(x^2 \wedge 1) < \infty.
\]

7.4.2 Theorem. There is a one-to-one correspondence between càdlàg Lévy processes $(X_t, t \geq 0)$ and Lévy triples (a, q, Π) in such a way that if $(X_t, t \geq 0)$ is the càdlàg Lévy process associated with (a, q, Π) then $\mathbb{E}[e^{i\lambda X_t}] = e^{i\gamma(\lambda)}$ where
\[
\Psi(\lambda) = ia\lambda - q - \frac{\lambda^2}{2} + \int_{\mathbb{R}} \Pi(dx)(e^{i\lambda x} - 1 - i\lambda x 1_{|x| \leq 1}).
\]
This is the Lévy-Khintchine formula.

7.4.3 Examples.
(i) If $q = 0$ and Π is the zero measure then $\mathbb{E}[e^{i\lambda X_t}] = e^{i\lambda at}$, so $X_t = at$ and X is just a (deterministic) linear function.

(ii) If $a = 0$ and Π is the zero measure then $\mathbb{E}[e^{i\lambda X_t}] = e^{-iqt^2}$, so X_t has distribution $N(0, qt)$ and hence $X_t = \sqrt{q} B_t$, where B is a standard Brownian motion.

(iii) If $q = 0$, $\Pi(dx)$ is a finite measure (i.e. $\int_{\mathbb{R}} |x| \Pi(dx) < \infty$), and if $a = \int_{\mathbb{R}} x \Pi(dx)$, then $\Psi(\lambda) = \int_{\mathbb{R}} \Pi(dx)(e^{i\lambda x} - 1)$, so X_t is a compound Poisson process with intensity Π.

In general, Lévy processes have jumps which are only square-summable over compact intervals and the term $i\lambda x 1_{|x| \leq 1}$ is a compensation for this.

How can we construct the Lévy process with triple (a, q, Π)? Let $(Y^n, n \geq 1)$ be independent compound Poisson processes with respective intensities equal to $\Pi_n := \Pi(\frac{\cdot - n}{n + 1})$. Then $\Pi_n(|x|) < \infty$ for all n, so $M^n_t = (Y^n_t - t \int_{\mathbb{R}} x \Pi_n(dx), t \geq 0)$ is a martingale. Let $M^n_t = \sum_{k=0}^{n} M^k_t$, and note that
\[
\mathbb{E}[e^{i\lambda M^n_t}] = \exp \left(t \int_{\mathbb{R}} \frac{1}{n+1} \Pi_n(dx)(e^{i\lambda x} - 1) \right).
\]

7.4.4 Theorem. For every $t \geq 0$, $M^n_t \to M^\infty_t$ in L^2, where $(M^\infty_t, t \geq 0)$ is an L^2-martingale with a càdlàg modification, which we will also denote by M^∞. If we are given

(i) a standard BM (B_t);

(ii) a CP process Y^0 with intensity $(\Pi)|_{(0, \infty)}$; and

(iii) the martingale M^∞;

then $X_t = at + \sqrt{q} B_t + Y^0_t + M^\infty_t$ is a càdlàg Lévy process with characteristic function given by the Lévy-Khintchine formula.
Proof: Let $n \geq m \geq 1$ and notice
\[\mathbb{E} \left[\sup_{0 \leq s \leq t} |M^n_s - M^m_s|^2 \right] \leq 4 \mathbb{E}[|M^n_t - M^m_t|^2] \]
by Doob's L^2-inequality. Now
\[\mathbb{E} \left[\left| \sum_{k=m+1}^{n} M^k_t \right|^2 \right] = t \int_{x=\frac{1}{n+1}}^{\frac{1}{m+1}} x^2 \Pi(dx) \]
by the second moment formula for PRM's since
\[mg \leftrightarrow PPP(\Pi(dx)|_{\frac{1}{n+1}, \frac{1}{m+1}}) \]
Thus, for all $\varepsilon > 0$ and for all n, m large, $\mathbb{E}[\sup_{0 \leq s \leq t} |M^n_s - M^m_s|^2] \leq \varepsilon$, so in particular $(M^n_t)_{n \geq 1}$ is an L^2-Cauchy sequence. Therefore $M^n_t \rightarrow M^\infty_t$ in L^2 as $n \rightarrow \infty$. By the Borel-Cantelli Lemma and the above we even get that $M^n_t \rightarrow M^\infty_t$ uniformly over compact intervals, up to extraction. A uniform limit of càdlàg processes is càdlàg, so M^∞ is a càdlàg martingale. \qed
Index

E*, 47
E[X | ∅], 6
π-system, 3

absolutely continuous, 23
adapted, 12

backward martingale, 20
bounded in L^1, 15
Brownian filtration, 40
Brownian motion, 39
càdlàg, 27
canonical Brownian motion, 38
characteristic function, 34
Chebyshev's inequality, 5
closed in L^p, 18
compound Poisson distribution, 52
compound Poisson process, 52
conditional density function, 11
conditional distribution, 11
conditional expectation, 5, 6
conditional probability, 5
converges in distribution, 32
converges weakly, 31
d-system, 3
density, 22
diffuse, 50
Dirichlet problem, 45
discrete stochastic integral, 14
distribution function, 32
domain, 45
f.p.s., 12
filtered probability space, 12
filtration, 12
finite marginal distributions, 27
first entrance time, 12
first moment formula, 49
Hölder-continuous, 30
harmonic, 46
integrable, 12
intensity, 47
Lévy process, 50
Lévy triple, 52
Lévy-Khintchine formula, 53
Laplace functional formula, 53
law of X, 10
likelihood ratio, 25
Markov's inequality, 4
martingale, 12
measurable events before, 13
natural filtration, 12
Poisson point process, 50
Poisson process, 51
Poisson random measure, 47
previsible, 14
product σ-algebra, 3
product martingale, 24
product measure, 3
push-forward, 50
Radon-Nikodym derivative, 22
random function, 27
random process, 12
sample path, 27
second moment formula, 50
separable, 23
simple Markov property, 40
standard Brownian motion, 36
stochastic process, 12
stopped process, 13
stopping time, 12
sub-martingale, 12
super-martingale, 12
tail σ-algebra, 21
tight, 33
u.i., 19
uniformly integrable, 19
up-crossing, 15
usual conditions, 28
version, 28
Weiner measure, 37
Weiner space, 37