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Exponential Families 3

1 Exponential Families

1.1 Introduction and examples

1.1.1 Definition. A family of distributions is said to form an exponential family if
the distribution Pθ (the parameter θ may be multi-dimensional) has density of the
form

pθ (x) = exp

 

s
∑

i=1

ηi(θ)Ti(x)− B(θ)

!

h(x).

This decomposition is not unique, but B is defined uniquely up to constant multi-
ple. Write ηi = ηi(θ) and write

p(x |η) = exp

 

s
∑

i=1

ηi Ti(x)− A(η)

!

h(x),

where A(η) = B(θ).

1.1.2 Examples.
(i) The family of normal distributions has parameters (ξ,σ2) and density func-

tions

pθ (x) =
1

p
2πσ

exp

�

−
(x − ξ)2

2σ2

�

= exp

�

ξ

σ2 x −
1

2σ2 x2 −
ξ2

2σ2 − log
p

2πσ2

�

T1(x) = x

T2(x) = x2

B(ξ,σ2) =
ξ2

2σ2 + log
p

2πσ2

η1 =
ξ

σ2

η2 =−
1

2σ2

A(η) =−
η2

1

4η2
+ log

r

−
π

η2
.

(ii) For the Poisson distribution,

pθ (x) =
e−θθ x

x!
= exp

�

x logθ − θ
� 1

x!
T (x) = x

h(x) =
1

x!
B(θ) = θ
η(θ) = logθ

A(η) = eη.
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(iii) For the binomial distribution,

pθ (x) =
�

n

x

�

θ x(1− θ)n−x = exp
�

x log
θ

1− θ
+ n log(1− θ)

��

n

x

�

T (x) = x

h(x) =
�

n

x

�

B(θ) =−n log(1− θ)

η(θ) = log
θ

1− θ

A(η) =−n log
1

eη + 1

Suppose we have n independent samples X1, . . . , Xn from Pθ in an exponential
family. Individually, the density functions are pθ (xk), so the joint density function
is

n
∏

k=1

pθ (xk) =
n
∏

k=1

exp

 

s
∑

i=1

ηi(θ)Ti(xk)− A(θ)

!

h(xk)

= exp

 

s
∑

i=1

ηi

 

n
∑

k=1

Ti(xk)

!

− nA(θ)

!

h(x1) · · ·h(xn)

=: exp

 

n
s
∑

i=1

ηi T̃i(x)− nA(θ)

!

h(x1) · · ·h(xn)

where T̃i(x) := 1
n

∑n
k=1 Ti(xk).

1.1.3 Example. If we have n independent samples from a N(ξ,σ2) distribution
then T̃1(x) = x and T̃2(x) =

1
n

∑n
k=1 x2

k , so the joint density is

exp

�

nξ

σ2 x −
n

2σ2 T̃2 −
nξ2

2σ2 − n log
p

2πσ2

�

.

1.2 Moments

Moments are important in large deviation theory. Suppose we have samples
X1, . . . , Xn from a distribution with first two moments µ and σ2. Then by the

central limit theorem
p

n(X−µ)
σ

(d)−→ N(0,1), so

P

�p
n|X −µ|
σ

≥ t

�

= P
�

|X −µ| ≥
σt
p

n

�

= 2Φ(t)

The Mill’s ratio is Φ(t)∼ φ(t) for large t, where φ(t) = ce−t2/2. A small deviation
in this case is on the order λ≡ σtp

n
= O( 1p

n
). A moderate deviation is on the order
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λ = O(
p

log n
p

n
) and a large deviation is λ �

p
log n
p

n
. This theory was developed

by Hoeffding, Bernstien, et al. (see Shorack and Wellner Empirical processes and
applications.) Where do moments come in? Later we will see that similar results
can be derived from the higher moments.

1.2.1 Definition. The (generalized) moment generating function of an exponential
family is defined in terms of T1(x), . . . , Ts(x). The m.g.f. is MT : Rs → R defined
by

MT (u1, . . . , us) := E[exp(u1T1(X ) + · · ·+ us Ts(X ))]

=
∑

r1,...,rs≥0

βr1,...,rs

ur1
1 · · ·u

rs
s

r1! · · · rs!

It can be shown that if MT is defined in a neighbourhood of the origin then it is
smooth and βr1,...,rs

= αr1,...,rs
:= E[T1(X )r1 · · · Ts(X )rs].

1.2.2 Example. Suppose X ∼ N(ξ,σ2). Then the kth centred moment, or kth cu-
mulant, is

E[(X − ξ)k] = σk E
�

�

X − ξ
σ

�k�

,

and the latter is the kth moment of a standard normal distribution, so it suffices to
find those quantities. For Z ∼ N(0,1), we calculate the usual m.g.f. and read off
the moments.

MZ(u) =

∫

euxφ(x)d x = eu2/2 =
∞
∑

k=1

u2k

2kk!
=
∞
∑

k=1

(k− 1)(k− 3) · · ·1
u2k

(2k)!
.

From this, αk = 0 if k is odd and is (k− 1)(k− 3) · · ·1 if k is even.

1.2.3 Definition. Harold Cramer introduced the (generalized) cumulant generat-
ing function,

KT (u) := log MT (u) =
∑

r1,...,rs≥0

Kr1,...,rs

ur1
1 · · ·u

rs
s

r1! · · · rs!

The first few cumulants can be found in terms of the first few moments, and
visa versa, by expanding the power series and equating terms. For an exponential
family, the c.g.f. is generally quite simple.

1.2.4 Theorem. For an exponential family with

p(x |η) = exp

 

s
∑

i=1

ηi Ti(x)− A(η)

!

h(x),

for η in the interior of the set over which it is defined, MT and KT both exist in
some neighbourhood of the origin and are given by KT (u) = A(η+ u)− A(η) and
MT (u) = eKT (u) = eA(η+u)/eA(η).
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1.2.5 Example. The generalized cumulant generating function for the normal
family N(ξ,σ2) is as follows. It can be seen that we recover the usual cumulant
generating function by setting u2 = 0.

K(u1, u2) = log
p

−η2 − log
p

−η2 − u2 +
η2

1

4η2
−
(η1 + u1)2

4(η2 + u2)

= log

r

1

2σ2 − log

r

1

2σ2 − u2 −
ξ2

2σ2 +
( ξ
σ2 + u1)2

4( 1
2σ2 − u2)

Recall that the characteristic function of a random variable X is

ϕX (u) :=

∫

eiux fX (x)d x .

If
∫

|ϕX (u)|du<∞ then the Fourier transform can be inverted

fX (x) =
1

2π

∫

ϕX (u)e
−iux du.

The inversion formula for the usual m.g.f. is more complicated. Under some con-
ditions, pointwise,

fX (x) = lim
γ→∞

∫ x+iγ

x−iγ

MX (u)e
xudu.

On the other hand, for an exponential family the associated m.g.f. is MT (u) =
E[exp(u · T (X ))]. For example, for the normal family the m.g.f. is given by

∫

eu1 x+u2 x2 1
p

2πσ
e−

(x−ξ)2

2σ2 d x .

1.3 Stein’s identity

1.3.1 Example (Stein’s shrinkage). This example is discussed in two papers, one
in 1958 by Stein and one in 1962 by James and Stein. If X ∼ N(µ, Ip) with p ≥ 3
then the best estimator for µ is not X but isThis is likely incorrect. It does not

match with the “Stein’s identity” given
in a later lecture. One or both may
need updating. µ̂=

X

1− c p−2
X ·X

for some 0< c < 1. In these papers the following useful identity was used.

1.3.2 Lemma. Let X be distributed as an element of an exponential family

p(x |η) = exp

 

s
∑

i=1

ηi Ti(x)− A(η)

!

h(x).
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If g is any differentiable function such that E[g ′(X )]<∞ then

E





 

h′(X )
h(X )

+
s
∑

i=1

ηi T
′
i (X )

!

g(X )



=−E[g ′(X )]

This is a generalization of the well-known normal-integration-by-parts rule.
Indeed, in the normal case the lemma gives

E[g ′(X )] =−E
��

ξ

σ2 −
1

2σ2 (2X )
�

g(X )
�

=
1

σ2 E[(X − ξ)g(X )].

Consider some particular examples. If g ≡ 1 then we see E[(X − ξ)] = 0. If
g(x) = x then E[(X − ξ)X ] = σ2, giving the second moment. Higher moments
can be calculated similarly.

Further motivation for finding higher moments is obtained by noting that

g(X ) = g(µ) + g ′(µ)(X −µ) + · · ·

and also in applications of Chebyshev’s inequality,

P[|X −µ| ≥ t]≤
E[|X −µ|k]

tk
.

2 Statistics

2.1 Sufficient statistics

2.1.1 Definition. Let X ∼ Pθ for some element of a family of distributions {Pθ :
θ ∈ Θ} (not necessarily an exponential family). A statistic T (X ) (not the same T
as for exponential families) is sufficient for θ if Pθ [X |T (X )] does not depend on
θ .

There are several concepts of estimation for the parameter θ . One is point
estimation, where we are looking for a specific value of θ . In this case sufficient
statistics are very important. When looking for a confidence interval for θ sufficient
statistics are less important.

2.1.2 Example. For example, if X1, . . . , Xn ∼ Bernoulli(θ) then T =
∑

i X i is suffi-
cient for θ . Indeed, T ∼ Binomial(n,θ), so

Pθ (X |T = t) =
Pθ (X , T = t)

Pθ (T = t)

=

∏n
i=1 θ

X i (1− θ)1−X i

�n
t

�

θ t(1− θ)n−t and
n
∑

i=1

X i = t

=
1
�n

t

�
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Similarly, if X1, . . . , Xn ∼ Poisson(θ) then T =
∑

i X i is sufficient for θ . Indeed,
T ∼ Poisson(nθ), so

Pθ (X |T = t) =
Pθ (X , T = t)

Pθ (T = t)

=

∏n
i=1 e−θ θ

Xi

X i !

e−nθ (nθ)t

t!

and
n
∑

i=1

X i = t

=
�

1

n

�t � t

X1 · · ·Xn

�

2.1.3 Example. Suppose that X1, . . . , Xn are samples from a continuous distribu-
tion F . Then the order statistic (X(1), . . . , X(n)) is sufficient for F .

Warning: the order statistic, for this course, is reduced, in that if there are ties
then the number of samples at each level is not recorded.

For a continuous distribution the probability that any pair of the X i are equal
is zero, so we may assume there are no ties. It follows that

P[X |T] = P[X1, . . . , Xn|X(1), . . . , X(n)] =
1

n!

since we are, effectively, picking a random permutation of the data uniformly.
Clearly this does not depend on the distribution F .

2.1.4 Theorem (Neyman-Fisher-Halmos-Savage).
If the distributions {Pθ : θ ∈ Θ} have densities {pθ : θ ∈ Θ} with respect to a
σ-finite measure µ then T is sufficient for θ if and only if pθ (x) = gθ (T (x))h(x)
for some functions gθ (depending on θ) and h (not depending on θ).

2.1.5 Corollary. If T (X ) is a sufficient statistic and T (X ) = f (U(X )) (i.e. T is
function of another statistic U) then U(X ) is also a sufficient statistic.

PROOF: pθ (x) = gθ (T (x))h(x) = gθ ( f (U(x)))h(x) so U is sufficient. �

The motivation for finding sufficient statistics is data reduction, so we are lead
naturally to the concept of a minimal sufficient statistic. T is said to be a m.s.s. if,
for any sufficient statistic U , there is a function f such that T = f (U).

2.1.6 Example. For the normal distribution N(ξ,σ2), (
∑

i X i ,
∑

i X 2
i ) is a m.s.s.

(It follows then that (X n, S2
n) is also a m.s.s. since there is a one-to-one corre-

spondence taking one pair to the other.) That it is sufficient is clear based on the
representation of N(ξ,σ2) as an exponential family. For the k-dimensional mul-
tivariate normal Nk(ξ,Σ), (

∑

i X i ,
∑

i X iX
T
i ) is a sufficient statistic. This follows

from the form of the density function

pθ (x1, . . . , xn) =
1

(2π)k/2|Σ|n/2
exp

 

−
1

2

n
∑

i=1

(x i − ξ)TΣ−1(x i − ξ)

!

.
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Expanding this out, a term
∑

i x T
i Σ
−1 x i appears. But,

x T
i Σ
−1 x i = tr(x T

i Σ
−1 x i) = tr(Σ−1 x i x

T
i )

so this concludes the proof.

2.1.7 Example (Two-parameter exponential). The one-parameter exponential dis-
tributions

pθ (x) =
1

θ
e−

x
θ 1x>0

clearly form an exponential family. However, the two-parameter exponential dis-
tributions

pa,b(x) =
1

b
e−

(x−a)
b 1x>a

do not. Let X1, . . . , Xn ∼ E(a, b). Then

pa,b(x1, . . . , xn) =
1

bn e−
∑

i (xi−a)
b

n
∏

i=1

1x i>a

=
1

bn e−
(
∑

i xi )−na
b 1mini x i>a

so (
∑

i X i , mini X i) is a sufficient statistic for (a, b).

2.2 Ancillary and complete statistics

2.2.1 Definition. Let X ∼ Pθ for some element of a family of distributions {Pθ :
θ ∈Θ}. A statistic V (X ) is said to be ancillary if the distribution of V (X ) does not
depend on θ . V (X ) is said to be first-order ancillary if Eθ [V (X )] is constant with
respect to θ . A statistic T (X ) is complete if it has the property “for any measurable
function f , if Eθ [ f (T (X ))] = 0 for all θ ∈Θ then f = 0 a.s.”

2.2.2 Theorem (Basu). If T is a complete sufficient statistic for the family {Pθ :
θ ∈Θ} then any ancillary statistic V is independent of T .

PROOF: If V is ancillary then pA := Pθ [V ∈ A] does not depend on θ , since the
distribution of V does not depend on θ . Let ηA(t) := Pθ [V ∈ A|T = t], which
also does not depend on θ since T is sufficient, i.e. the conditional distribution
of X (and hence of V ) given T does not depend on θ . By the tower property of
conditional expectation, for any θ ∈Θ,

Eθ [ηA(T )− pA] = Eθ [Pθ [V ∈ A|T]]− pA

= Eθ [Eθ [1V∈A|T]]− pA

= Eθ [1V∈A]− pA

= Pθ [V ∈ A]− pA = 0.
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Since T is complete, this implies that ηA(t) = pA = P[V ∈ A] a.s. Because the
conditional distribution of V given T is equal to the unconditional distribution of
V , V and T are independent. �

Finding m.s.s. is hard, because the definition of minimal is hard to check.
Completeness and sufficiency are easier, and fortunately these properties imply
minimality.

Warning: Minimal sufficient statistics are not necessarily complete.

2.2.3 Theorem. Complete sufficient statistics are m.s.s.

2.2.4 Theorem. For exponential families in natural form,

p(x |η) = exp
� s
∑

i=1

ηi Ti(x)− A(η)
�

h(x),

the statistic T = (T1, . . . , Ts) is sufficient. T is complete if the natural parameter
space Π0 ⊆ Rs contains an s-dimensional rectangle.

The natural parameter space is convex, i.e. if η and η̃ are parameters for which
p(x |η) and p(x |η̃) are well-defined densities, then p(x |(1− λ)η+ λη̃) is a well-
defined density. (This is a consequence of Hölder’s inequality.) We have seen that,
unfortunately, U(0,θ) (uniform) and E(a, b) (double parameter exponential) are
not exponential families.

2.2.5 Examples.
(i) For X1, . . . , Xn ∼ Bernoulli(θ), X is complete and sufficient.

(ii) For X1, . . . , Xn ∼ N(ξ,σ2), (X , S2) is complete and sufficient.
(iii) For U(0,θ), X(n) = maxi X i is sufficient because Pθ [X |X(n) = t] ∼ U(0, t)

does not depend on θ . It is also complete. Indeed, the density of X(n) is
n
θ n tn−11(0,θ). Suppose that

∫ θ

0
f (t) n

θ n tn−1d t = 0 for all θ > 0. Then

∫ θ

0

f +(t)tn−1d t =

∫ θ

0

f −(t)tn−1d t

for all θ > 0. But because this holds for all θ this implies

∫

A

f +(t)tn−1d t =

∫

A

f −(t)tn−1d t

for all Borel sets A⊆ R++. Taking A= { f > 0} shows that f − ≡ 0 a.s., and
similarly f + ≡ 0 a.s.

(iv) For E(a, b), (X(1),
∑

i(X i − X(1))) is complete and sufficient. It can be shown
that X(1) ∼ E(a, b/n) and

∑

i(X i − X(1))∼ Γ(n− 1, b).
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(v) For U(θ − 1
2
,θ + 1

2
), T = (X(1), X(n)) is sufficient. It can be shown that

T is minimal. Clearly V = X(n) − X(1) is ancillary, so T is not complete
because otherwise T would be independent of V , which is not true. This is
an example of a m.s.s. that is not complete.

(vi) We have seen that (X(1), . . . , X(n)) is sufficient for a continuous distribution
function F . The ranks (R1, . . . , Rn), where Ri := #{ j : X j ≤ X i}, are ancillary.
Indeed, PF[R = (r1, . . . , rn)] =

1
n!

does not depend on F . It can be shown
that the order statistic is also complete, so it is independent of R. Given
any function h, there is a symmetric function g such that h((X(1), . . . , X(n)) =
g(X1, . . . , Xn). Suppose that EF[h(T )] = 0 for all continuous distributions
F . Then

0= EF[h(T )] =

∫

g(x1, . . . , xn) f (x1) · · · f (xn)d x1 . . . d xn

for all densities f . Let f1, . . . , fn be densities and let f =
∑

i αi fi be a convex
combination. Then

0=

∫

g(x1, . . . , xn)
n
∏

j=1

� n
∑

i=1

αi fi(x j)
�

d x j .

The right hand side is a polynomial of degree n in n variables αi . Since
it is zero, all its coefficients must be zero. In particular, the coefficient of
α1 · · ·αn is zero, so

0=
∑

π∈Symn

∫

g(x1, . . . , xn) f1(xπ(1)) · · · fn(xπ(n))d xπ(1) · · · d xπ(n)

=
∑

π∈Symn

∫

g(x1, . . . , xn) f1(x1) · · · fn(xn)d x1 · · · d xn

= n!

∫

g(x1, . . . , xn) f1(x1) · · · fn(xn)d x1 · · · d xn

where we may rearrange the variables arbitrarily because g is symmetric.
Therefore

∫

g(x1, . . . , xn) f1(x1) · · · fn(xn)d x1 · · · d xn = 0, and from this it
follows that g, and hence h, is almost surely zero.

2.2.6 Definition. The risk function associated with a loss function L(θ , a) is de-
fined to be R(θ , X ) := Eθ [L(θ , X )]. When writing L(θ , a) for a loss function, θ is
intended to be the true value of the parameter, a is the estimator, and L(θ , a) is
the penalty if a is incorrect. Often L(θ ,θ) = 0.

Recall Jensen’s inequality: if φ is convex then E[φ(X )] ≥ φ(E[X ]). If φ is
strictly convex then the inequality is strict unless X is a.s. constant.
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2.2.7 Theorem (Rao-Blackwell). Let X be distributed as a element of the family
{Pθ : θ ∈Θ}, and let T (X ) be sufficient for θ . Let L(θ , a) be a loss function that is
convex in a for any θ ∈Θ.

Let δ(X ) be an estimator for g(θ) with finite risk. Then η(T ) := E[δ(X )|T]
is an estimator for g(θ) satisfing R(θ ,η) ≤ R(θ ,δ) for all θ ∈ Θ, with equality
everywhere only if δ(X ) = η(T ) a.s.

PROOF: Note first that η(T ) is a well-defined estimator—in that it doesn’t depend
on θ—because T is sufficient. The risk is computed as follows.

R(g(θ),δ) = E[L(g(θ),δ(X ))]
= E[E[L(g(θ),δ(X ))|T]] tower property

≥ E[L(g(θ),E[δ(X )|T])] Jensen’s inequality

= E[L(g(θ),η(T ))] = R(g(θ),η) �

2.2.8 Examples.
(i) The loss function defined by L(θ , a) = 0 if θ = a and 1 otherwise is not

convex. This is the hamming distance or 0-1 loss function.

(ii) Another non-convex loss function that arises is L(θ , a) =
p

|θ − a|.
(iii) Some common convex loss functions are L(θ , a) = |θ − a|p for p > 0. When

p = 2 this is referred to as squared error loss.

3 Unbiased Estimators

3.1 Uniform minimum variance unbiased estimators

3.1.1 Definition. For squared error loss, the risk can be decomposed as follows.

R(θ ,δ(X )) = E[(θ −δ(X ))2] = (θ −E[δ(X )])2 + Var(δ(X )).

The first term on the right hand side is the bias squared. An unbiased estimator for
g(θ) is a statistic δ(X ) such that E[δ(X )] = g(θ). We call the unbiased estimator
with smallest possible variance the uniform minimum variance unbiased estimator
or UMVUE.

3.1.2 Example (Stein). Unbiased estimators are not necessarily the estimators
with smallest risk. Let X i ∼ N(µ, Ik), where k ≥ 3. It can be shown that X is the
UMVUE. But Stein showed that the following is a better estimator.

µ̂ :=

�

1−
k− 2
∑

i X 2
i

�

X
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Unbiased estimators may not even exist for some problems. Let g(θ) := 1
θ

and
X ∼ Binomial(n,θ). For an unbiased estimator estimator δ(X ) we would need

1

θ
= Eθ [δ(X )] =

n
∑

k=0

�

n

k

�

δ(k)θ k(1− θ)n−k,

but this is impossible because no polynomial in θ equals 1/θ .

3.1.3 Theorem (Lehmann-Scheffé). Let T be a complete sufficient statistic for
θ and let δ(X ) be an unbiased estimator for g(θ) with finite variance. Then
η(T ) := E[δ(X )|T] is the unique UMVUE.

PROOF: Note that η(T ) is a well-defined estimator—in that it does not depend on
θ—because T is sufficient. By the tower property,

Eθ [η(T )] = Eθ [δ(X )] = g(θ),

so η(T ) is unbiased. By the Rao-Blackwell theorem, applied with squared error
loss, Var(η(T ))≤ Var(δ(X )).

If δ′(X ) is any other unbiased estimator of g(θ) then Eθ [η(T )− η′(T )] = 0
for all θ . Since T is complete, η(T ) = η′(T ) a.s. In particular,

Var(η(T )) = Var(η′(T ))≤ Var(δ′(X )),

so η(T ) is a UMVUE. If δ′(X ) is UMVUE then Var(η′(T )) = Var(δ′(X )), so δ′(X ) =
η′(T ) = η(T ) a.s. from the Rao-Blackwell theorem and the completeness of T .
Therefore η(T ) is the unique UMVUE. �

How do we actually find UMVUE? On approach is to try to solve the equation
Eθ [δ(T )] = g(θ) directly, for all θ (I don’t understand why this would give a
UMVUE), and another is to find an unbiased estimator δ(X ) and apply Lehmann-
Scheffé.

3.1.4 Example. Let X1, . . . , Xn ∼ N(µ,σ2), so θ = (µ,σ2). We have seen that
(X , S2) is a complete sufficient statistic for θ .

(i) For g(θ) = µ, X is an unbiased estimator. Since this estimator is a function
of a sufficient statistic it is UMVUE.

(ii) Assume µ = 0 and σ2 is unknown. Consider g(θ) = σr , with r > 1− n. It
can be shown that T =

∑

i X 2
i is complete and sufficient for σ2, and T/σ2 ∼

χ2
n(0).

E
�

�

T

σ2

�r/2
�

= E[(χ2
n(0))

r/2] =: K−1
n,r =

2r/2Γ( n+r
2
)

Γ( n
2
)

Whence Kn,r T r/2 is an unbiased estimator for g(θ).
(iii) It can be shown that when both µ and σ2 are unknown, Kn−1,rS

r is an
unbiased estimator of σr .
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(iv) Consider g(θ) = µ/σ. It can be shown that X and Kn−1,−1S−1 are indepen-
dent, so Kn−1,−1S−1X is an unbiased estimator of g(θ), and is UMVUE since
it is a function of a sufficient statistic.

(v) Assume σ2 = 1 and µ is unknown and take g(θ) = Pµ[X ≤ x] = Φ(x −µ).
We know that X is complete and sufficient for µ. To find a UMVUE we
find an unbiased estimator and then condition on X . δ(X ) := 1X1≤x is an
unbiased estimator of g(θ) (but clearly not a great estimator).

E[δ(X )|X = x] = P[X1 ≤ x |X = x]

= P[X1 − X ≤ x − x |X = x]

= P[X1 − X ≤ x − x] Basu’s theorem

= Φ
�

x − x
p

1− 1/n

�

.

(vi) If both µ and σ2 are unknown then take g(θ) = Pµ,σ2[X ≤ x] = Φ( x−µ
σ
).

The same sorts of computations yield

E[δ(X )|T] = P
�

X1 − X

S
≤

x1 − x

s

�

and in principle the distribution of the random variable (X1 − X )/S can be
computed.

3.1.5 Example. Let X1, . . . , Xn ∼ Bernoulli(θ). Since the Bernoulli distribution is
an exponential distribution, we see that T :=

∑

X i is sufficient and complete for
θ . Clearly E[T] = nθ , so X = T/n is UMVUE.

How to we find a UMVUE δ(T ) for θ(1− θ)? Note that T ∼ Binomial(n,θ),
so we can compute the expected value.

θ(1− θ) set
= Eθ [δ(T )] =

n
∑

k=0

δ(k)
�

n

k

�

θ k(1− θ)n−k

Divide by (1− θ)n and change variables to ρ := θ

1−θ .

n
∑

k=0

δ(k)
�

n

k

�

θ k(1− θ)−k = θ(1− θ)1−n

n
∑

k=0

δ(k)
�

n

k

�

ρk =
ρ

1+ρ

�

1

1+ρ

�1−n

= ρ(1+ρ)n−2

=
n−2
∑

k=0

�

n− 2

k

�

ρk+1 =
n−1
∑

k=1

�

n− 2

k− 1

�

ρk
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We conclude δ(0) = δ(n) = 0 and, for 0< t < n,

δ(t) =

�n−2
t−1

�

�n
t

� =

(n−2)!
(t−1)!(n−t−1)!

n!
t!(n−t)!

=
t(n− t)
n(n− 1)

=
t

n− 1
−

t2

n(n− 1)
.

Similar things could be done to find UMVUE for θ r with r ≤ n. But we could
also condition T . Note that 1X1=1,...,X r=1 is an unbiased estimator of θ r since
P[X1 = 1, . . . , X r = 1] = θ r . Now, {X1 = 1, . . . , X r = 1} is the event that the
first r are all ones, and it’s not hard to condition on the event that we got a total
of t ones, {T = t}. With n≥ t ≥ r,

P[X1 = 1, . . . , X r = 1|T = t] =
θ r�n−r

t−r

�

θ t−r(1− θ)n−t

�n
t

�

θ t(1− θ)t

=

�n−r
t−r

�

�n
t

� =
t(t − 1) · · · (t − r + 1)
n(n− 1) · · · (n− r + 1)

For r = 1 we get T/n and for r = 2 we get

T (T − 1)
n(n− 1)

=
T 2

n(n− 1)
−

T

n(n− 1)
.

Notice that taking the difference between these gives an estimator for θ −θ 2 that
agrees with the one found above.

3.1.6 Example (One-sample exponential). Let X1, . . . , Xn ∼ E(a, b).

pa,b(x) =
1

b
e−

x−a
b 1x>a.

(i) Assume b = 1 is known. If Y ∼ U(0,θ) then − log Y ∼ E(− logθ , 1). From
the uniform case, if Y1, . . . , Yn ∼ U(0,θ) then Y(n) is complete and suffi-
cient for θ . We have X i ∼ − log Yi for i = 1, . . . , n, so it seems as though
X(1) ∼ − log Y(n) and it should be complete and sufficient for a = − logθ .
Sufficiency is easy and completeness follows from the definition (try it).

(ii) From the assignment, T1 := X(1) and T2 :=
∑

i(X i − X(1)) are sufficient
for (a, b). We show now that they are complete for (a, b). Suppose that
Ea,b f (T1, T2) = 0 for all a and b. We must show that f = 0 a.s. We have
seen that T1 ∼ E(a, b/n) and T2 ∼ Γ(n− 1, b) = b

2
χ2

2n−2 and they are inde-
pendent. Define g(t1, b) := Eb f (t1, T2). Then, with b fixed, for all a,

0= Ea,b f (T1, T2) = Ea[g(T1, b)] =

∫ ∞

a

g(t1, b)e−nt1/bd t1

It follows that g(t1, b) = 0 a.s.-t1, for any fixed b. (It also follows because
when b is known, T1 is complete for a in E(a, b).) For any b, there is a set
Nb of measure zero such that g(t1, b) = 0 for t1 ∈ N c

b . Now,

0=

∫

|g(t1, b)|d t1 =

∫∫

|g(t1, b)|d t1d b =

∫∫

|g(t1, b)|d bd t1
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by Fubini’s theorem, since |g(t1, b)| is a non-negative function. Therefore,
for almost all t1, g(t1, b) = 0 a.s.-b. However, g(t1, b) = Eb f (t1, T2) and
T2 is χ2, so b 7→ Eb f (t1, T2) is a continuous function for all t1. It follows
that, for almost all t1, for all b,

Eb f (t1, T2) = g(t1, b) = 0.

For fixed t1 = X(1), T2 =
∑

i(X i − t1) is complete for b because b
2
χ2

2n−2 is an
exponential family. Therefore f (t1, t2) = 0 a.s.-t2, for almost all t1. More
precisely, there is a set N of measure zero such that, for all t1 ∈ N c , there is
a set Mt1

of measure zero such that f (t1, t2) = 0 for all t2 ∈ M c
t1

. Whence,

0=

∫

| f (t1, t2)|d t2 a.s.-t1

so 0=

∫∫

| f (t1, t2)|d t2d t1.

Therefore f = 0 a.s.

Completeness is very important, but can be hard to verify.

3.2 Power series distributions

3.2.1 Definition. A power series distribution has a density function or probability
mass function of the form

pθ (x) =
a(x)θ x

c(θ)
.

It is seen that the binomial distribution is a power series distribution by repa-
rameterizing with ρ = θ

1−θ . The Poisson distribution is already in this form.
If X1, . . . , Xn are distributed as a power series distribution then it is easy to see

that T := X1 + · · ·+ Xn is sufficient and complete, because power series distribu-
tions are exponential families. More explicitly,

P[T = t] = P
�

X1 = x1, . . . , Xn = xn,
n
∑

i=1

x i = t
�

=
∑

∑

i x i=t

a(x1) · · · a(xn)θ
∑

i x i

c(θ)n
=:

A(t, n)θ t

c(θ)n

where A(t, n) :=
∑

x1+···+xn=t a(x1) · · · a(xn). Now, c(θ) =
∑

x a(x)θ x , so

c(θ)n =
∞
∑

t=0

�

∑

∑

i x i=t

a(x1) · · · a(xn)

�

θ t =
∞
∑

t=0

A(t, n)θ t .
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To find A(t, n) we can expand the coefficient c(θ)n into a power series and read
off the coefficients. When looking for a UMVUE for θ r , we look for a function
δ(T ) such that

θ r = E[δ(T )] =
∞
∑

t=0

δ(t)
A(t, n)θ t

c(θ)n

so
∞
∑

t=0

δ(t)A(t, n)θ t−r = c(θ)n =
∞
∑

t=0

A(t, n)θ t

Therefore δ(t) = 0 for t < r and δ(t) = A(t− r, n)/A(t, n) for t ≥ r. It can be seen
that these estimators agree with the estimators obtained in the binomial case.

3.2.2 Example. For the Poisson distribution, c(θ) = eθ , so
∞
∑

t=0

A(t, n)θ n = c(θ)n = enθ =
∞
∑

k=1

1

k!
(nθ)k.

Thus A(t, n) = nt/t! and it follows that the UMVUE for θ r is
¨

T (T − 1) · · · (T − r + 1)/nr it T ≥ r
0 otherwise.

However, things are not always peachy. Suppose X ∼ Poisson(θ) and we use this
method to find a UMVUE for for g(θ) = e−aθ .

e−aθ = Eθ [δ(X )] =
∞
∑

x=0

δ(x)
e−θθ x

x!

so
∞
∑

x=0

δ(x)
θ x

x!
= e(1−a)θ =

∞
∑

x=0

(1− a)x
θ x

x!

Thus δ(x) = (1 − a)x . When a > 2 this is a very bad estimator, despite being
UMVUE. A much better, but biased, estimator could be obtained by expanding the
power series for g(θ) to a few terms and using the estimators for θ r .

3.3 Non-parametric UMVUE

Let X1, . . . , Xn ∼ F , where F is any continuous c.d.f. We have shown that the order
statistic is complete and sufficient and the rank statistics are ancillary. Suppose we
want to estimate ξ=

∫

xdF(x). But the first moment may not exist for all F , so we
must restrict the class under consideration. This may change the properties of the
above statistics, e.g. there is not reason to suspect that the order statistics remain
complete and sufficient. However, Hoeffding showed that the order statistics are
complete and sufficient for each classFr , the class of distribution functions having
finite r th moment. It follows that any UMVUE must be symmetric in its arguments
x1, . . . , xn, because at its heart it is function of the order statistic. Therefore, in
the non-parametric case, to find a UMVUE it suffices to find a symmetric unbiased
estimator.
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3.3.1 Examples.
(i) For P[X ≤ a], 1X1≤a is an unbiased estimator, so symmetrize to obtain a

UMVUE 1
n

∑

i 1X i≤a.
(ii) For ξ(F) =

∫

xdF(x), X is symmetric and unbiased, hence a UMVUE.
(iii) S2 is symmetric and unbiased, hence a UMVUE, for the variance σ2(F) of F

(over F2).
(iv) To find a UMVUE for (ξ(F))2 we have be a bit careful. Notice

(ξ(F))2 =

∫

x2dF(x)−σ2(F),

and for the first term 1
n

∑

i X 2
i is symmetric and unbiased. Alternatively,

ξ2 = ξ · ξ, so X1X2 is unbiased. Symmetrizing, 1
n(n−1)

∑

i, j X iX j is UMVUE,
and these two estimators can be seen to be the same.

4 Lower Bounds on Risk

Recall that risk is expected loss. More precisely, the risk associated with an es-
timator T of a parameter θ is Eθ [L(T,θ)], where L is the loss function, a non-
negative function that quantifies the error when T is not equal to θ . For this
section we will usually consider loss functions of the form L(T,θ) = `(|T − θ |),
where ` : [0,∞)→ [0,∞) is convex and `(0) = 0. Many common loss functions
are of this form, including the very commonly used squared error loss.

Let X1, . . . , Xn ∼ Pθ where θ ∈Θ⊆ Rk. The minimax risk is

R∗n = inf
Tn

sup
θ

Eθ [L(Tn,θ)],

where the infimum is taken over all statistics Tn = Tn(X1, . . . , Xn). We would
like bounds on this risk, and ideally to find an estimator that attains this risk.
Upper bounds can be found by constructing specific statistics T ∗n . With clever
constructions the upper bound R∗n ≤ supθ Eθ [L(T ∗n ,θ)] can be quite good.

Lower bounds are trickier. The Cramer-Rao lower bound was one of the first
lower bounds on risk that was discovered, and is basically a consequence of the
Cauchy-Schwarz inequality. A different approach was taken by Lucien Le Cam,
and developed by Lucien Birgé, David Donoho, and others, and is discussed in
detail in the next section.

To this end, consider the true value θ0 and an estimate θ1, presumably close to
θ0, such that the test of H0 : θ = θ0 vs. H1 : θ = θ1 is “indistinguishable.” It was
shown in the paper Rate of geometric convergence by Donoho and Liu, and going
back to earlier works by Lucien Birgé, that if L(T,θ) = `(|T −θ |) for some convex
function `, then R∗n is bounded below by a multiple of `(|θ1 − θ0|).

What does it mean for two hypotheses to be indistinguishable? Intuitively, if
the sum of the type I and type II errors is close to one for any test then the hy-
potheses cannot be differentiated. We will make this formal and derive estimates
based on notions of the distance between hypotheses.
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(i) Hellinger distance, via the Hellinger affinity
(ii) χ2-distance (not actually a distance)

(iii) L1-distance
(iv) Kullback-Leibler divergence, from information theory.

4.1 Hellinger distance

To simplify the exposition, in this section all measures considered are assumed to
have a density with respect to Lebesgue measure on the real line. Most of the
results still hold in a more general setting.

4.1.1 Definition. The Hellinger distance between two densities p and q is

H(p, q) :=

È

1

2

∫

R

�

p

p(x)−
p

q(x)
�2d x =

p

1− A(p, q),

where A(p, q) :=
∫

R

p

p(x)q(x)d x is the Hellinger affinity.

Remark. Note that H(p, q)2 = 1−A(p, q), and 0≤ A(p, q)≤ 1 by Cauchy-Schwarz,
so 0≤ H(p, q)≤ 1 for all densities p and q.

4.1.2 Definition. Recall that the L1-distance between densities p and q is

‖p− q‖1 :=

∫

|p(x)− q(x)|d x .

The χ2-distance between p and q is
∫

(p(x)− q(x))2

p(x)
d x .

Remark. Note that the χ2-distance is not symmetric in p and q. When p is close
to q, in the sense that ‖(q− p)/p‖∞ is small,

H(p, q)2 = 1−
∫

p

p(x)q(x)d x

= 1−
∫

È

q(x)
p(x)

p(x)d x

= 1−
∫

È

1+
q(x)− p(x)

p(x)
p(x)d x

≈ 1−
∫
�

1+
1

2

q(x)− p(x)
p(x)

−
3

2

�

q(x)− p(x)
p(x)

�2�

p(x)d x
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=
3

2

∫

(q(x)− p(x))2

p(x)
d x

which is 3/2 times the χ2-distance.

Claim. For i ≥ 0, let Hi : θ = θi , and pθi ,n be the joint density of X1, . . . , Xn under
hypothesis Hi . If the Hellinger distance H(pθ0,n, pθn,n) is o(1/

p
n) then the sum of

the type I and type II errors converges to 1 for any test, i.e. the hypotheses H0 and
Hn become indistinguishable.

The remainder of this section is devoted to substantiating this claim.

4.1.3 Definition. A test is a mapping φ : R→ [0,1]. The power function of a test
is π :Θ→ [0,1] : θ 7→ Eθ [φ(X )].

4.1.4 Example. Let φ(x) := 1R(x) for some R ⊆ R, the rejection region for this
test. The power function is π(θ) = Eθ [φ(X )] = Pθ [X ∈ R]. Under the simple
setup of testing H0 : θ = θ0 vs. H1 : θ = θ1, π(θ0) = Pθ0

[X ∈ R] is the level of a
test or the type I error, and π(θ1) = Pθ1

[X ∈ R] is said to be the power of a test.
Higher power tests reject the alternative hypothesis with greater probability.

π(θ1)−π(θ0) = 1− Pθ1
[Accept]− Pθ0

[Reject]

= 1− (type II error + type I error)

4.1.5 Lemma. π(θ1)−π(θ0)≤
1
2
‖pθ1

− pθ0
‖1.

PROOF:

π(θ1)−π(θ0) =

∫

φ(x)p1(x)d x −
∫

φ(x)p0(x)d x

=

∫

φ(x)(p1(x)− p0(x))d x

=

∫

p1≥p0

φ(x)(p1(x)− p0(x))d x +

∫

p1<p0

φ(x)(p1(x)− p0(x))d x

≤
∫

p1≥p0

(p1(x)− p0(x))d x

=
1

2
‖p− q‖1

since ‖p− q‖1 =

∫

p1≥p0

(p1(x)− p0(x))d x −
∫

p1<p0

(p1(x)− p0(x))d x

and 0=

∫

p1≥p0

(p1(x)− p0(x))d x +

∫

p1<p0

(p1(x)− p0(x))d x �
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Remark. The above lemma implies that

type I error + type II error≥ 1− 1
2
‖pθ1

− pθ0
‖1,

so if ‖pθn
− pθ0

‖1→ 0 then the hypotheses become indistinguishable.

4.1.6 Lemma. 1−H(pθn,n, pθ0,n)2 = (1−H(pθn
, pθ0
)2)n

PROOF: Hellinger affinity has the property A(pθn,n, pθ0,n) = A(pθn
, pθ0
)n. �

Show that if
∫

p ∧ q → 0 then H2 → 1 and if
∫

p ∧ q → 1 then ‖p− q‖1 → 0
and H2 → 1(?) Chain: minimax risk lower bound, testing argument, type I error
+ II error, L1-distance, Hellinger distance, Hellinger affinity.

4.1.7 Lemma.

0≤ 2H(p, q)2 ≤ ‖p− q‖1 ≤ (2− A(p, q)2)∧ 2
p

2H(p, q)

PROOF:

2H(p, q)2 =

∫

R
(
p

p−
p

q)2d x

≤
∫

R
|
p

p−
p

q|(
p

p+
p

q)d x

=

∫

R
|p− q|d x = ‖p− q‖1

=

∫

R
|
p

p−
p

q||
p

p+
p

q|d x

≤

È

∫

R
|
p

p−
p

q|2d x

È

∫

R
|
p

p+
p

q|2d x

≤
p

(2H2)(4) = 2
p

2H

It can be shown that 2
∫

R(p ∧ q)d x = 2−‖p− q‖1 by noting that

p+ q = p ∨ q+ p ∧ q and |p− q|= p ∨ q− p ∧ q.

A(p, q) =

∫

R

p
pqd x =

∫

R

p

(p ∨ q)(p ∧ q)d x

≤
∫

R

p

(p+ q)(p ∧ q)d x

≤

È

∫

R
(p+ q)d x

∫

R
(p ∧ q)d x

=
p

2−‖p− q‖1 �
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It follows from this theorem that H(p, q) ≈ 0 if and only if ‖p − q‖1 ≈ 0,
and H(p, q) ≈ 1 if and only if ‖p − q‖1 ≈ 2. In some sense these distances are
“equivalent.”

4.1.8 Example. Let p0 and p1 be densities, and ν be a functional of densities. Let
` : [0,∞)→ R be convex with `(0) = 0. If H(p0, p1)< 1 then

inf
Tn

max
�

En,0[`(|Tn − ν(p0)|)],En,1[`(|Tn − ν(p1)|)]
	

≥ `
�

1

4
|ν(p1)− ν(p0)|

�

1−H(p0, p1)
2�2n

�

To prove it, note that

E[`(|Tn − ν(p0)|)]≥ `(E[|Tn − ν(p0)|])

by Jensen’s inequality, so it suffices to prove the result for the identity function.

inf
Tn

max
�

En,0[`(|Tn − ν(p0)|)],En,1[`(|Tn − ν(p1)|)]
	

≥ inf
Tn

1

2
(En,0[|Tn − ν(p0)|] +En,1[|Tn − ν(p1)|])

=
1

2
inf
Tn

∫

|Tn − ν(p0)|p0(x1) · · · p0(xn) + |Tn − ν(p1)|p1(x1) · · · p1(xn)d x1 · · · d xn

≥
1

2
inf
Tn

∫

(|Tn − ν(p0)|+ |Tn − ν(p1)|)(p0(x1) · · · p0(xn)∧ p1(x1) · · · p1(xn))d x1 · · · d xn

≥
1

2
inf
Tn

∫

|ν(p1)− ν(p0)|(p0(x1) · · · p0(xn)∧ p1(x1) · · · p1(xn))d x1 · · · d xn

=
1

2
|ν(p1)− ν(p0)|

∫

(p0(x1) · · · p0(xn)∧ p1(x1) · · · p1(xn))d x1 · · · d xn

≥
1

4
|ν(p1)− ν(p0)|

�

1−H(p0,n, p1,n)
2�2

=
1

4
|ν(p1)− ν(p0)|

�

1−H(p0, p1)
2�2n

Suppose the family {pθ ,θ ∈ Θ ⊆ Rk} has a common support that does not
depend on θ , and that the pθ are differentiable with respect to θ . Moreover,
suppose there is ˙̀

θ0
(which may usually be taken to be ∇θ pθ (x)/pθ (x)) such that

∫

R

�

p
pθ −

p

pθ0
−

1

2
(θ − θ0)

T ˙̀
θ0

p

pθ0

�2

d x = o(|θ − θ0|).

In the univariate case (ppθ )′(θ−θ0) =
1

2
p

pθ0

( d
dθ

pθ |θ=θ0
)(θ−θ0). Essentially, the

condition is asking that the linear approximation for
p

pθ is good.
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In the claim near the beginning of this section, take θn := θ0+ h/
p

n, where h
is a fixed vector. Then

nH(pθn
, pθ0
)2 =

n

2

∫

(
p

pθn
−
p

pθ0
)2d x

=
1

2

∫

(
p

n(
p

pθn
−
p

pθ0
))2d x

=
1

8

∫

hT`θ0
(x)T`θn

(x)h pθ0
(x) d x + o(1)

=
1

8
Eθ0
[hT I(θ0)h]

where I is the information matrix I(θ) := Eθ [˙̀T
θ

˙̀
θ ], to be discussed at length in

the next section.. In particular, if `(x) = x and ν(pθ ) = cTθ for some vector c,
then

inf
Tn

{|Tn − cTθn|, |Tn − cTθ0|} ≥
1

4
|cTθn − cTθ0|exp

�

−
1

4
hT I(θ0)h

�

=
1

4
p

n
|hT c|exp

�

−
1

4
hT I(θ0)h

�

where the exponential comes from estimating (1 − H2(pθn
, pθ0
)2)2n, noting that

�

1+ x
n

�n
≥ ex for all x and all n (I think).

4.2 Fisher’s information

In the univariate case, with {pθ ,θ ∈Θ⊆ R}, Fisher’s information is

I(θ) =

∫

R

�

p′θ (x)

pθ (x)

�2

pθ (x)d x = Eθ

�

�

d

dθ
log(pθ (X ))

�2�

The name may come from information theory. In regions where the density is
changing quickly, we can estimate θ more accurately. Correspondingly, the infor-
mation is large because the derivative is large. See Elements of information theory
by Thomas Cover.

4.2.1 Example. For X ∼ N(θ ,σ2), with σ2 known,

p′θ (x)

pθ (x)
=

1

σ2 (x − θ)

I(θ) = Eθ

�

1

σ4 (X − θ)
2
�

=
1

σ2

Unfortunately, I(θ) depends on the parameterization of θ , so reparameterizing
can change the information. Suppose that ξ = h(θ), where h is differentiable.
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Then

I(θ) = Eθ

�

�

d

dθ
log p(x; h(θ))

�2�

= Eθ

�

�

dξ

dθ

d

dξ
log p(x;ξ)

�2�

= (h′(θ))2 I(ξ).

Therefore I(ξ) = I(θ)/(h′(θ))2.
In the multivariate case, where Θ⊆ Rk, I(θ) is a matrix with

Ii j(θ) = Eθ

�

∂

∂ θi
log pθ (x)

∂

∂ θ j
log pθ (x)

�

for 1 ≤ i, j ≤ k. If ξi = h(θ1, . . . ,θk) for i = 1, . . . , k then we have a similar
relationship between the information matrices, I(ξ) = J I(θ)J T , where J is the
Jacobian of the inverse transformation: Ji j =

∂ θ j

∂ ξi
. Note that J is usually symmetric

in applications.

4.2.2 Example. Let X be distributed as an element of an exponential family

pθ (x) = exp
� k
∑

i=1

ηi(θ)Ti(x)− A(η(θ))
�

h(x).

Let τi(θ) := Eθ [Ti(X )] for i = 1, . . . , k. Then I(τ) = C−1, where C is the covari-
ance matrix of the random vector (T1(X ), . . . , Tk(X )). Indeed,

1=

∫

R
exp
� k
∑

i=1

ηi Ti(x)− A(η)
�

d x

0=
∂

∂ ηi

∫

R
exp
� k
∑

i=1

ηi Ti(x)− A(η)
�

d x

=

∫

R

�

Ti(x)−
∂

∂ ηi
A(η)

�

pθ (x)d x

so τi = Eθ [Ti(X )] =
∂

∂ ηi
A(η). Taking the derivative again yields

0=

∫

R

�

�

Ti(x)−
∂

∂ ηi
A(η)

�

�

T j(x)−
∂

∂ η j
A(η)

�

−
∂ 2

∂ ηi∂ η j
A(η)

�

pθ (x)d x

so Covθ (Ti(X ), T j(X )) =
∂ 2

∂ ηi∂ η j
A(η). From the definition,

Ii j(η) = Eθ

�

�

Ti(x)−
∂

∂ ηi
A(η)

�

�

T j(x)−
∂

∂ η j
A(η)

��

= Covθ (Ti(X ), T j(X )),

so I(η) = C . The Jacobian of the transformation taking η to τ is again C , so
I(τ) = C−1CC−1 = C−1.
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4.2.3 Example. Let X ∼ N(µ,σ2).

I(µ,σ) =

�

1
σ2 0
0 2

σ2

�

and I(µ,σ2) =

�

1
σ2 0
0 1

2σ4

�

4.2.4 Example. Consider X distributed as a member of an exponential family
with k = 1, so that

pθ (x) = exp(η(θ)T (x)− B(θ))h(x).

We have seen that I(g(θ)) = I(θ)/(g ′(θ))2. By differentiating under the integral
sign it can be shown that η′(θ)Eθ [T (X )] = B′(θ). Therefore

I(θ) = Eθ





�

p′θ (X )

pθ (X )

�2


= Eθ [(η′(θ)T (X )− B′(θ))2] = (η′(θ))2 Varθ (T (X ))

Combining these formulae,

I(g(θ)) =

�

η′(θ)
g ′(θ)

�2

Varθ (T (X )).

For τ(θ) := E[T (X )] we have seen that I(τ) = 1/Varθ (T ), so we get the formulae

Varθ (T (X )) =

�

�

�

�

τ′(θ)
η′(θ)

�

�

�

�

and τ(θ) =
B′(θ)
η′(θ)

.

(i) For X ∼ Γ(α,β), with α known,

pβ(x) =
1

Γ(α)βα
xα−1e−

x
β

So η(β) =− 1
β

, T (x) = x , and B(β) = α logβ . Therefore

τ(β) := Eβ[X ] =
α/β

1/β2 = αβ ,

Varβ(X ) = αβ2, and I(αβ) = 1/(αβ2).
(ii) For X ∼ N(µ,σ2) with σ2 known, B(µ) = µ2/(2σ2), η(µ) = µ/σ2, and

T (x) = x . Therefore I(µ2) = ( 1/σ2

2µ
)2 Var(X ) = 1/(4µ2σ2). These formulae

can be used to do many calculations for exponential families.

4.3 The Cramér-Rao lower bound

One-dimensional case

Let Θ⊆ R be a one-dimensional parameter space, and let {Pθ : θ ∈Θ} be a family
of probability measures with densities pθ with respect to a σ-finite measure µ on
R, and let T be a measurable function.

4.3.1 Conditions.
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(C1) Θ is open in R.

(C2) (a) There is a set B ⊆ R such that µ(Bc) = 0 and d
dθ

pθ (x) exists for all
θ ∈Θ and all x ∈ B.

(b) A := {x : pθ (x) = 0} does not depend on θ

(C3) I(θ) := Eθ [(˙̀θ (X ))2]<∞, where ˙̀
θ (x) =

d
dθ

log pθ (x) is the score.

(C4)
∫

R pθ (x)µ(d x) and
∫

R T (x)pθ (x)µ(d x) can both be differentiated with re-

spect to θ under the integral sign. In this case Eθ [˙̀θ (X )] = 0.

(C5)
∫

R pθ (x)µ(d x) can be differentiated twice with respect to θ under the inte-
gral sign. In this case we have the formula

I(θ) =−E[῭θ (X )] =−E
�

d2

dθ 2 log pθ (x)

�

.

4.3.2 Theorem. Let T (X ) be an estimator for q(θ), and let b(θ) be the bias.
Then, given that (C1)–(C4) hold,

Varθ (T (X ))≥
(q′(θ) + b′(θ))2

I(θ)

for all θ ∈Θ. When T is unbiased this reduces to (q′(θ))2/I(θ).

PROOF: Assuming (C1)–(C4) all hold,

Eθ [T (X )] = q(θ) + b(θ) =

∫

R
T (x)pθ (x)µ(d x) =

∫

Bc∩Ac

T (x)pθ (x)µ(d x)

q′(θ) + b′(θ) =

∫

Bc∩Ac

T (x)
d

dθ
pθ (x)µ(d x)

=

∫

Bc∩Ac

T (x)˙̀θ (x)pθ (x)µ(d x)

= Covθ (T (X ), ˙̀θ (X ))

(q′(θ) + b′(θ))2 = (Covθ (T (X ), ˙̀θ (X )))
2 ≤ Varθ (T (X ))I(θ)

since the score has mean zero and by the Cauchy-Schwarz inequality. �

If the lower bound is achieved then, from the Cauchy-Schwarz inequality, it
must be the case that ˙̀

θ (X ) = A(θ)(T (X )− Eθ [T (X )]) for some constant A(θ).
This is why the MLE often achieves the lower bound, while other statistics fail to
do so. It can be shown that the lower bound can only be achieved for parameters
of an exponential family.This may be false.
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Multivariate case

Let Θ ⊆ Rk be a k-dimensional parameter space, and let {Pθ : θ ∈ Θ} be a family
of probability measures with densities pθ with respect to a σ-finite measure µ on
Rk, Suppose X ∼ Pθ for some θ ∈ Θ and T (X ) is an estimator for q(θ), where
q : Rk → R is differentiable. As usual, b(θ) := Eθ [T (X )]− q(θ) is the bias.

4.3.3 Theorem. Suppose that (M1)–(M4) below hold. Then

Varθ (T (X ))≥ αT I(θ)−1α

for all θ ∈ Θ, where α := ∇(q(θ) + b(θ)). If T (X ) is unbiased this reduces to
Varθ (T (X ))≥ q̇(θ)T I−1(θ)q̇(θ).

4.3.4 Conditions.
(M1) Θ is open in Rk.
(M2) (a) There is a set B ⊆ R such that µ(Bc) = 0 and ∂

∂ θi
pθ (x) exists for all

θ ∈Θ, 1≤ i ≤ k, and all x ∈ B.
(b) A := {x : pθ (x) = 0} does not depend on θ

(M3) The k × k matrix Ii j(θ) := Eθ [˙̀θ (X )˙̀θ (X )T ] is positive definite, where
˙̀
θ (x) =∇θ log pθ (x) is the score vector.

(M4)
∫

Rk pθ (x)µ(d x) and
∫

Rk T (x)pθ (x)µ(d x) can both be differentiated with

respect to θ under the integral sign. In this case Eθ [˙̀θ (X )] = 0.
(M5)

∫

Rk pθ (x)µ(d x) can be differentiated twice with respect to θ under the in-
tegral sign. In this case we have the following formula.

I(θ) =−Eθ ῭
θ (X ) =

�

−Eθ

�

∂ 2

∂ θi∂ θ j
log pθ (X )

��

i j

5 Decision Theory

Let θ ∈ Θ, the parameter space, let a ∈ A, the action space, and let x ∈ X , the
sample space. Let L : Θ× A→ R+ be a loss function and d : A× X → [0,1] be
defined by d(a, x) = d(a|x) = “probability of taking action a given x is observed.”
This is a randomized decision rule. Given a decision rule d(x) := d(·|x) (actually a
probability distribution on A), the decision loss is L(θ , d(x)) and the decision risk
is

R(θ , d) =

∫

X

∫

A

L(θ , a)d(da|x)Pθ (d x).

If the decision rule is non-randomized then the risk is
∫

X
L(θ , d(x))Pθ (d x). Let D

denote the collection of all decision rules.

5.0.5 Definition. A decision rule d is an inadmissible decision rule if there is an-
other rule d ′ such that R(θ , d ′)≤ R(θ , d) for all θ and R(θ , d ′)< R(θ , d) for some
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θ . An admissible decision rule is one that is not inadmissible. A decision rule d∗ is
minimax if

inf
d∈D

sup
θ∈Θ

R(θ , d) = sup
θ∈Θ

R(θ , d∗).

A probability distribution Λ on Θ is called a prior distribution. Given a prior Λ and
d ∈ D, the Bayes risk is

R(Λ, d) =

∫

Θ

R(θ , d)Λ(dθ).

A Bayes rule is any decision rule dΛ satisfying R(Λ, dΛ) = infd∈D R(Λ, d).

5.1 Game theory: the finite case

Suppose Θ, X , and A are all finite sets, of sizes `, n, and k, respectively.

5.1.1 Lemma. D is a bounded convex set.

PROOF: In this setting, D is the collection of k × n matrices with non-negative
entries, all of whose columns sum to one. �

5.1.2 Theorem. R := {(R(θ1, d), . . . , R(θ`, d)) ∈ R`+ : d ∈ D} is convex.

PROOF: Let α ∈ [0,1] and d1, d2 ∈ D be given.

αR(θ , d1) + (1−α)R(θ , d2)

= α
n
∑

j=1

k
∑

i=1

d(1)i j L(θ , ai)pθ (x j) + (1−α)
n
∑

j=1

k
∑

i=1

d(2)i j L(θ , ai)pθ (x j)

=
n
∑

j=1

k
∑

i=1

(αd1 + (1−α)d2)i j L(θ , ai)pθ (x j)

= R(θ ,αd1 + (1−α)d2) �

5.1.3 Theorem. Every d ∈ D can be expressed as a convex combination of non-
randomized decision rules.

PROOF: The extreme points of D are the non-randomized decision rules. In fact
d =

∑kn

r=1λrδ
(r), whereThis formula for λr is unverified.

λr :=
n
∏

j=1

k
∏

i=1

d
δ
(r)
i j

i j

and {δ(r) : 1≤ r ≤ kn} enumerate the non-randomized rules. �
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5.1.4 Example. Let Θ = Θ0 q Θ1, A = {0, 1}, d(1|x) = φ(x) = 1 − d(0|x),
L(θ , 0) = `01θ∈Θ1

, and L(θ , 1) = `11θ∈Θ0
. Then

R(θ , d) =

¨

`1Eθ [φ(X )] θ ∈Θ0

`0Eθ [1−φ(X )] θ ∈Θ1.

Thus decision theory is clearly a generalization of hypothesis testing, where the
risk corresponds to the power.

5.1.5 Example (Urns). Let Θ = {1, 2}, the urns. In urn 1 there are 10 red, 20
blue, and 70 green balls, and in urn 2 there are 40 red, 40 blue, and 20 green
balls. One ball is draw, and the problem is to decide which urn it came from.
Whence X = {R, G, B} and A=Θ. Arbitrarily, let

L(θ , a) =
�

0 10
6 0

�

which can be regarded as Hamming loss 1a 6=θ , θ -by-θ . (In particular it is not
convex.) Let d = (dR, dB, dG) be the decision rule, specified as the probability of
choosing urn 1 given that the colour R, B, or G was shown.

The risk is computed as follows.

R(1, d) =
2
∑

i=1

3
∑

j=1

L(1, j)d( j, x j)p1(x j)

= 10
3
∑

j=1

d(2, x j)p1(x j)

= 10(0.1(1− dR) + 0.2(1− dB) + 0.7(1− dG))
= 10− dR − 2dB − 7dG

and R(2, d) = 2.4dR + 2.4dB + 1.2dG

The Bayes risk is simply

R(Λ, d) = λR(1, d) + (1−λ)R(2, d)
= λ(10− 3.4dR − 4.4dB − 8.2dG) + (2.4dR + 2.4dB + 1.2dG)
= 10λ+ (2.4− 3.4λ)dR + (2.4− 4.4λ)dB + (1.2− 8.2λ)dG

The Bayes rule for λ = 0.5 is dR = dB = 0 (since they have positive coefficients)
and dG = 1 (because it has a negative coefficient). In fact, the Bayes rule will
always be a non-randomized rule. For the case λ = 12/17 the Bayes rule is not
unique, because dA may be any number and the Bayes risk is still minimized.

5.2 Minimax rules, Bayes rules, and admissibility

Remark (Non-randomized rules vs. randomized rules). Corollary 1.7.9 of the text-
book says that if the loss function is convex then we can focus on non-randomized
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rules. More precisely, if L(θ , a) is convex in a for all θ then, given any random-
ized estimator, there is a non-randomized estimator that is at least as good, and
uniformly better if strictly convex.

Remark (Admissibility and Bayes). Under mild conditions it can be shown that
every admissible rule is a Bayes rule for some prior distribution. Theorem 4.2.4
in the textbook says that if a Bayes rule is unique (i.e. if there is a unique d
minimizing

∫

Θ
R(θ , d)Λ(dθ)) then it must be admissible.

5.2.1 Definition. A prior Λ is a least favourable prior if γΛ ≥ γΛ′ for all other priors
Λ′, where γΛ :=

∫

R(θ , dΛ)Λ(dθ) is the Bayes risk of the Bayes rule.

5.2.2 Theorem (Least favourable Bayes rules are minimax).
If γΛ = supθ R(θ , dΛ) then Λ is a least favourable prior and dΛ is minimax. Further,
if dΛ is the unique Bayes rule with respect to Λ then it is the unique minimax rule.

PROOF: Let d be any other decision procedure.

sup
θ

R(θ , d)≥
∫

R(θ , d)Λ(dθ)

≥
∫

R(θ , dΛ)Λ(dθ) by definition of dΛ

= sup
θ

R(θ , dΛ) by assumption

If dΛ is the unique Bayes rule for Λ then the second inequality is strict. �

5.2.3 Corollary. If a Bayes rule has constant risk (i.e. R(θ , dΛ) does not depend
on θ) then it is minimax.

5.2.4 Corollary. Let ΘΛ := {θ ∈ Θ : R(θ , dΛ) = supθ R(θ , dΛ)}. dΛ is minimax if
Λ(ΘΛ) = 1

5.2.5 Example (Urns, revisited). The minimax rule is found by solving

max{10− dR − 2dB − 7dG , 2.4dR + 2.4dB + 1.2dG}.

The solution is d∗ = (dR, dB, dG) = (0,9/22, 1). This is a Bayes rule with λ= 6/11,
but there is no unique Bayes rule for this Λ. This d∗ has constant risk R(1, d∗) =
R(2, d∗) = 24/11.

5.2.6 Theorem. Let L(θ , a) = K(θ)(θ − a)2 be weighted squared error loss (K is a
positive function). Then the Bayes estimator for g(θ) is

dΛ(x) =
E[K(θ)g(θ)|x]
E[K(θ)|x]

=

∫

Θ
K(θ)g(θ)Λ(dθ |x)
∫

Θ
K(θ)Λ(dθ |x)

,

where Λ(θ |x) is the posterior distribution. When K(θ)≡ 1, dΛ(x) = E[g(θ)|x].
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PROOF: Let d be any other estimator and let h(t) be the Bayes risk of dΛ + td
conditional on x .

h(t) :=

∫

Θ

K(θ)(g(θ)− dΛ(x)− td(x))2Λ(dθ |x).

For each x , h is a differentiable function of t, and h′(0) = 0 since dΛ minimizes
the Bayes risk.

0=
d

d t
h(t)

�

�

�

t=0
=−2d(x)

∫

Θ

K(θ)(g(θ)− dΛ(x))Λ(dθ |x)

For each x there is d such that d(x) 6= 0, so we can solve for dΛ(x) and see that it
has the desired expression. �

5.3 Conjugate Priors

5.3.1 Definition. Suppose that x has density p(x |θ) and Λ is a prior distribution.
If the posterior Λ(·|x) has the same form (i.e. lies in the same parametric family
of probability distributions) as the prior then Λ is a conjugate prior.

5.3.2 Example. Let X ∼ binomial(n,θ) and θ ∼ Beta(α,β) = Λ. It can be shown
that (θ |x)∼ Beta(α+ x ,β+n− x). If L(θ , a) = (θ−a)2 is squared error loss then

dΛ = E[θ |X ] =
α+ X

α+ β + n
=

α+ β
α+ β + n

α

α+ β
+

n

α+ β + n

X

n

The risk in this case is

R(θ , dΛ) = E[(dΛ)− θ)2]

=
�

α+ β
α+ β + n

�2� α

α+ β

�2

+
�

n

α+ β + n

�2 θ(1− θ)
n

=
α2 + (n− 2α(α+ β))θ + ((α+ β)2 − n)θ 2

(α+ β + n)2

If we can choose α and β so that is does not depend on θ then we will have
the minimax rule by 5.2.3. We need (α + β)2 = 2α(α + β) = n, so solving,
α= β =

p
n/2 and the minimax rule is obtained by taking Λ = Beta(

p
n/2,

p
n/2).

In this case

d∗ =
1

1+
p

n

�

1

2
+

x
p

n

�

= xn + o
�

1
p

n

�

and the minimax risk is 1/(4(1+
p

n)2).

5.3.3 Example (Normal with known variance).
Let X ∼ N(θ ,σ2) and θ ∼ N(µ,τ2). It can be shown that

(θ |x)∼ N

�

1/τ2

1/τ2 + 1/σ2µ+
1/σ2

1/τ2 + 1/σ2 X ,
1

1/τ2 + 1/σ2

�
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and so, for squared error loss,

dΛ = E[θ |X ] =
1/τ2

1/τ2 + 1/σ2µ+
1/σ2

1/τ2 + 1/σ2 X .

The Bayes risk is

R(θ , dΛ) = E[(dΛ − θ)2]

=

�

1/τ2

1/τ2 + 1/σ2

�2

(µ− θ)2 +
�

1/σ2

1/τ2 + 1/σ2

�2

σ2.

Until now we have not used the fact that σ2 is known. Even if it is know, there
is no prior that can be chosen so that the Bayes risk does not depend on θ , so
we cannot apply 5.2.3. But by taking τ larger and larger, the term with θ can be
made as small as desired. In the limit with τ =∞, there is no dependence on θ .
This motivates the definition of improper prior, a measure Λ on Θ with Λ(Θ) =∞.
This example is continued below.

5.3.4 Theorem. Suppose that θ ∼ Λ and (X |θ) ∼ Pθ . Assume there is a rule d0
that has finite risk. If, for a.e. x , dΛ(x) minimizes

E[L(θ , dΛ(·|x))|X = x] =

∫

Θ

L(θ , d(·|x))Λ(dθ |x).

then dΛ is the Bayes rule.

5.3.5 Definition. A generalized Bayes rule is a rule satisfying the condition of
5.3.4, but with Λ an improper prior instead. A rule d is a limiting Bayes rules if
there is a sequence of proper priors Λk such that d(x) = limk→∞ dΛk

(x) a.s. Such
a sequence {Λk}∞k=1 is said to be a least favourable sequence of priors if γΛk

→ γ and
γΛ ≤ γ for all proper priors Λ.

5.3.6 Theorem. Suppose that {Λk}∞k=1 is a sequence of priors with γΛk
→ γ and

d∗ is an estimator with supθ R(θ , d∗) = γ. Then d∗ is minimax and the sequence
is least favourable.

PROOF: Let d be any other decision procedure. For all k ≥ 1,

sup
θ

R(θ , d)≥
∫

Θ

R(θ , d)Λk(dθ)≥ γΛk
.

Taking k→∞, and noting that the right hand side converges to γ,

sup
θ

R(θ , d)≥ γ= sup
θ

R(θ , d∗),
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so d∗ is minimax. Further, for any prior Λ,

γΛ =

∫

Θ

R(θ , dΛ)dθ ≤
∫

Θ

R(θ , d∗)Λ(dθ)≤ sup
θ

R(θ , d∗) = γ,

so the sequence is least favourable. �

In 5.3.3, take Λk = N(µ, k), where µ is arbitrary because it is irrelevant. Then
γΛk
→ σ2 and the rules dΛk

converge to the rule d(x) = x . We have seen that
R(θ , X ) = σ2, so the sample mean is minimax by 5.3.6.

5.3.7 Lemma. Let X be a random quantity with distribution F and let g(F) be
a functional defined over a set F1 of distributions. Suppose that δ is a minimax
estimator of g(F) when F is restricted to a subset F0 ⊆ F1. Then δ is a minimax
estimator of g(F) for F ∈ F1 if supF∈F0

R(F,δ) = supF∈F1
R(F,δ).

5.3.8 Example (Normal with unknown variance).
Let X ∼ N(θ ,σ2), where θ ∈ R and σ2 ≤ M . For squared error loss, from the
calculations in 5.3.3, supθ ,σ2 R(θ , x) = M . (Note that there is a big problem if we
consider M =∞.) In 5.3.3 we saw that the minimax estimator is the sample mean
when σ2 is known. Applying the lemma, the sample mean remains minimax when
σ2 is unknown but known to be bounded.

5.3.9 Example. Let X1, . . . , Xn ∼ F , where F ∈ Fµ := {F : EF |X |<∞}.
(i) Let FB := {F ∈ Fµ : PF[0 ≤ X ≤ 1] = 1}. What is the minimax es-

timator for θ = EF[X ] under squared error loss? Consider the subclass
F0 := {Bernoulli(p) : 0 ≤ p ≤ 1}. The sum of n Bernoulli r.v.’s is binomial,
so the estimator d(x) = (1/2+

p
nx)/(1+

p
n) is minimax over the class

F0. For any F ∈ FB, write

d =
1

1+
p

n

1

2
+
p

n

1+
p

n
x

E[(d − θ)2] =
1

(1+
p

n)2

�

1

2
− θ
�2

+

� p
n

1+
p

n

�2

Var(X )

=
1

(1+
p

n)2

�

EF[X
2]− θ +

1

4

�

Now, EF[X 2] ≤ EF[X ] = θ , so E[(d − θ)2] ≤ 1/(4(1+
p

n)2), which is the
minimax risk in the class F0. Therefore the minimax estimator is d.

(ii) Let FV := {F ∈ Fµ : VarF (X ) ≤ M} and again θ = EF[X ]. Consider
the subclass F0 := {N(µ,σ2) : µ ∈ R,σ2 ≤ M}. It can be shown that
supF∈FV

R(F, X ) = M/n, which is the minimax risk in the subclass, so the
sample mean is minimax for θ .
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5.4 Inadmissibility

Recall that any unique Bayes rule is admissible by Theorem 4.2.4 in the textbook.

5.4.1 Example. Let X1, . . . , Xn ∼ N(θ ,σ2) with σ2 known. For θ ∼ N(µ,τ2) and
squared error loss, we derived that dΛ(x) = pµ+ (1− p)x , where

p :=
1/τ2

1/τ2 + 1/σ2 .

This is the unique Bayes rule, so it is admissible. It is interesting to ask for which
(a, b) is d(x) := ax + b admissible? This example shows that any such rule with
0< a < 1 and b arbitrary is admissible.

5.4.2 Theorem. Let X have mean θ and variance σ2 (but not necessarily nor-
mally distributed). Then da,b(x) = ax + b is inadmissible for θ in the above
example under squared error loss if

(i) a > 1;
(ii) a < 0; or

(iii) a = 1, b 6= 0.

PROOF: We must demonstrate a rule d such that R(θ , da,b)≥ R(θ , d) for all θ and
strictly greater for some θ .

R(θ , da,b) = Eθ [(aX + b− θ)2]

= Eθ [(a(X − θ) + b+ (a− 1)θ)2]

= a2Eθ [(X − θ)2] + (b+ (a− 1)θ)2

= a2σ2 + (b+ (a− 1)θ)2

Recall that the risk of d(x) = x is σ2. If a > 1 or a = 1 and b 6= 0 then R(θ , da,b)>
σ2 = R(θ , d), so this takes care of (i) and (ii). For the third case, if a < 0 then

R(θ , da,b)> (b+ (a− 1)θ)2 >
�

θ −
b

1− a

�2

= R
�

θ ,
b

1− a

�

. �

5.4.3 Theorem (Stein, 1956). Let µ ∈ Rk and X1, . . . , Xn ∼ N(µ,σ2 Ik), so that
X = 1

n

∑n
i=1i X i ∼ N(µ, σ

2

n
Ik).

(i) If k = 1 then X is admissible.
(ii) If k = 2 then X is admissible.

(iii) If k ≥ 3 then X is not admissible.

Remark. This is discussed in Stein (1959) and discussed at length in James and
Stein (1962). They showed that the estimator

µ̂ := X

�

1−
σ2(k− 2)

n‖X‖2

�

+
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(or something similar) has strictly smaller risk than X when k ≥ 3. When k is very
large then apparently this is very close to X . In many practical cases µ will have
most coordinates equal to zero, so in these cases the threshold estimator is better
still.

µ̂i :=

¨

X i |X i |> t
0 |X i | ≤ t

or µ̂i :=







X i − t |X i |> t
X i + t |X i |<−t
0 |X i | ≤ t

PROOF (k = 1 USING THE CRAMÉR-RAO BOUND):
We prove that X is admissible when k = 1 and σ2 = 1. For squared error loss,
R(θ , X ) = 1/n. Assume that d is an estimator such that R(θ , d) ≤ 1/n for all θ .
Note that

R(θ , d) = Eθ [(d(X )− θ)2] = Varθ (d(X )) + (b(θ))
2,

where b(θ) := Eθ [d(X )]− θ is the bias. By the Cramér-Rao lower bound,

Varθ (d(X ))≥
(1+ b′(θ))2

nI(θ)
=
(1+ b′(θ))2

n
.

Hence, for all θ ,

(b(θ))2 +
(1+ b′(θ))2

n
≤

1

n
.

In particular, |b(θ)| ≤ 1/
p

n for all θ , so b is a bounded function, and b′(θ) ≤ 0
for all θ , so b is a decreasing function. Since b is bounded, there are sequences
θ+i → ∞ and θ−i → −∞ such that b′(θ+i ) → 0 and b′(θ−i ) → 0. From the
inequality, it follows that b(θ+i ) → 0 and b(θ−i ) → 0. Since b is decreasing, it
must be the zero function. Since X is the UMVUE, d(X ) = X . �

PROOF (k = 1 USING BAYES ESTIMATION):
Here is another proof for the case k = 1 and σ2 = 1. Assume for contradiction that
X is inadmissible then there is d∗ such that R(θ , d∗) ≤ 1/n for all θ and strictly
less for some θ . The risk is a continuous function of θ , so there is an interval
[θ0,θ1] and an ε > 0 such that R(θ , d∗) < 1/n− ε for all θ0 ≤ θ ≤ θ1. Let Λτ
denote the prior N(0,τ2), and let dτ be the associated Bayes estimator. Then

γ∗τ :=

∫

R(θ , d∗)Λτ(θ)dθ ≥
∫

R(θ , dτ)Λ(θ)dθ = γτ

by the definition of Bayes estimator. We have seen that, since σ2 = 1,

γτ =
1

1/τ2 + n/σ2 =
τ2

1+ nτ2 .

Now,

1/n− γ∗τ
1/n− γτ

=
1p
2πτ

∫∞
−∞(1/n− R(θ , d∗))e−θ

2/2τ2
dθ

1/n−τ2/(1+ nτ2)
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=
n(1+ nτ2)
p

2πτ

∫ ∞

−∞
(1/n− R(θ , d∗))e−θ

2/2τ2
dθ

≥
n(1+ nτ2)
p

2πτ

∫ θ1

θ0

(1/n− R(θ , d∗))e−θ
2/2τ2

dθ

>
n(1+ nτ2)
p

2πτ
ε(Φ(θ1)−Φ(θ0))

This last quantity goes to∞ as τ→∞. Therefore, for sufficiently large τ, 1/n−
γ∗τ > 1/n− γτ. But this contradictions that γτ ≤ γ∗τ. �

Recall Stein’s Lemma: When k = 1, if X ∼ N(θ ,σ2) and g is a function with
E[|g ′(X )|]<∞ then

σ2E[g ′(X )] = E[(X − θ)g(X )].

In k dimensions, if X ∼ N(θ ,σ2 Ik) and g : Rk → R is with E[| ∂
∂ x i

g(X )|]<∞ then

σ2E
�

∂

∂ x i
g(X )

�

= E[(X i − θi)g(X )].

PROOF (k ≥ 3, INADMISSIBILITY): For simplicity, take σ2 = 1. Then we have seen
that E[|X − θ |2] = 1/n. We look for an estimator θ̂n of the form

θ̂n = X +
1

n
g(X )

where g : Rk → Rk is to be determined, such that for all θ ,

0< Eθ [|X − θ |2]−Eθ

�
�

�

�

�

X +
1

n
g(X )− θ

�

�

�

�

2�

=−
1

n2 E[|g(X )|
2]−

2

n

k
∑

i=1

E[(X i − θi)gi(X )]

=−
1

n2 E[|g(X )|
2]−

2

n2

k
∑

i=1

E
�

∂

∂ x i
gi(X )

�

.

Furthermore, we would like g =∇ logψ for some ψ : Rk → (0,∞). Then

∂

∂ x i
gi(x) =

∂

∂ x i

�

1

ψ(x)
∂ψ

∂ x i

�

=−
1

ψ(x)2

�

∂ψ

∂ x i

�2

+
1

ψ(x)
∂ 2ψ

∂ x2
i

.

With regards to the desired expression for g, x-by-x ,

−
1

n2

k
∑

i=1

1

ψ(x)2

�

∂ψ

∂ x i

�2

−
2

n2

 

k
∑

i=1

−
1

ψ(x)2

�

∂ψ

∂ x i

�2

+
1

ψ(x)
∂ 2ψ

∂ x2
i

!
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=
1

n2

k
∑

i=1

1

ψ(x)2

�

∂ψ

∂ x i

�2

−
2

n2

∆ψ(x)
ψ(x)

.

So we want

0<
1

n2 E[|g(X )|
2]−

2

n2 E
�

∆ψ(X )

ψ(X )

�

.

If we take ψ to be harmonic then we get what we wanted. Take ψ(x) = |x |2−k,
which is harmonic when k ≥ 3. Then g(x) =∇ logψ(x) = 2−k

|x |2 x . Plugging this in,

θ̂n =

�

1−
k− 2

n|X |2

�

X

is a strictly better estimator, with a difference in squared error risk of

(k− 2)2

n2 E
�

1

|X |2

�

.
�

The problem of estimating the mean of n normals has been studied in depth
for a long time. This problem is important in non-parametric estimation, in that
such problems can often be reduced to estimating the mean of n normals, where
n is a large number. Often Stein’s shrinkage is not enough of a correction.

Herbert, Robbins, Bradley, Efron, Larry, and Brown introduced and studied the Some of these are first names, but I
don’t know which are which.empirical Bayes method to solve the same problem. If X ∼ N(θ ,σ2 Ik), with σ2

known, and θ ∼ N(0,τ2 Ik) then dτ =
τ2

σ2+τ2 X is the Bayes estimator. The idea is
to use the data to pick the “best” τ, say τ= τ̂, and then use dτ̂ as the estimator.

5.4.4 Example. Let X be as above, so that X ∼ N(0, (σ2 + τ2)Ik), where σ2 is
known and τ2 is to be estimated. The MLE for τ2 is τ̂2 = (‖X‖2/k−σ2)+, so

dτ̂2(X ) =
τ̂2

τ̂2 +σ2 =

�

1−
kσ2

‖X‖2

�

+

X ,

which is every close to Stein’s estimator for large k and n= 1.

6 Hypothesis Testing

6.1 Simple tests: the Neyman-Pearson lemma

Consider the problem of testing H0 : X ∼ P0 vs. H1 : X ∼ P1, where P0 and
P1 have densities p0 and p1 with respect to a σ-finite measure µ. Recall that a
(generalized) decision rule is

d(a|x) = probability of taking action a when we observe outcome x .
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In this case the action space is {0,1}, corresponding to the hypothesis that we
accept.

Let ψ(x) := d(1|x), the probability of accepting the alternative hypothesis H1
given datum x . The level of a test or size of a test is E0[ψ(X )], the probability of
a type I error (rejecting the null hypothesis despite it being true). The power of a
test is E1[ψ(X )], the probability of accepting the alternative when it is true. The
probability of a type II error (accepting the null hypothesis despite the alternative
being true) is E1[1−ψ(X )].

Recall that (type I error + type II error) ≥ 1− 1
2
‖p0 − p1‖1. In proving this

note that the function

φ1(x) =

¨

1 p1(x)> p0(x)
0 p1(x)< p0(x)

played an important role.

6.1.1 Definition. A level α most powerful test, or MP test, is a test φ with the
property that E0[φ] ≤ α (i.e. it is level α) and, for every other test ψ of level α,
E1[ψ]≤ E1[φ].

In this Neyman-Pearson setting, the objective is to fix the level of a test and
then maximize the power. Equivalently, fix an acceptable level of type I error and
then find the test with the minimum probability of type II error. It turns out that
in this simple setup, the most powerful test is of the form

φk(x) :=







1 p1(x)> kp0(x)
γ p1(x) = kp0(x)
0 p1(x)< kp0(x).

6.1.2 Theorem (Neyman-Pearson). Let 0≤ α≤ 1.
(i) There are constants k and γ such that E0[φk(X )] = α.

(ii) The test φk from (i) is most powerful for testing P0 vs. P1.
(iii) Ifψ is a level αmost powerful test then it must be equal to φk µ-a.e., unless

there is a test of size α with power 1.

PROOF: Let Y = p1(X )/p0(X ), and let FY be the CDF of Y , so that

P
�

p1(X )
p0(X )

> k
�

= 1− FY (k)

Let k := inf{c : 1− F(c)< α}, a non-negative number since Y ≥ 0, and let

γ :=
α− P0[Y > k]

P0[Y = k]

if P0[Y = k] 6= 0, otherwise take γ= 1. Then

E0[φk(X )] = P0[Y > k] + γP0[Y = k]
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= P0[Y > k] +
α− P0[Y > k]

P0[Y = k]
P0[Y = k] = α

Therefore φk is a level α test. Now we check that is it most powerful. Assume for
simplicity that µ[p1 = kp0] = 0. Let ψ be another test with E0[ψ]≤ α.

(E1[φk]−E1[ψ])− k(E0[φk]−E0[ψ])

=

∫

(φk −ψ)(p1(x)− kp0(x))µ(d x)

=

∫

p1>kp0

+

∫

p1<kp0

(φk −ψ)(p1(x)− kp0(x))µ(d x)

=

∫

p1>kp0

(1−ψ(x))(p1(x)− kp0(x))µ(d x)

−
∫

p1<kp0

ψ(x)(p1(x)− kp0(x))µ(d x)≥ 0

because φk = 1 on the first set and φk = 0 on the second set and 0 ≤ ψ ≤ 1
everywhere. Now, k ≥ 0 and E0[φk]−E0[ψ]≥ α−α= 0, so E1[φk]−E1[ψ]≥ 0.
Therefore φk is most powerful.

For uniqueness, assume now that ψ is also most powerful at level α. Then
E0[ψ]≤ α= E0[φk] and E1[ψ] = E1[φk]. From the latter,

−k(E0[φk]−E0[ψ])≥ 0,

so either E0[ψ] = α or E0[ψ]< 0 and k = 0. In the first case This proof was particularly confus-
ingly presented in class. Try to fill in
the case µ[p1 = kp0]> 0.

0=

∫

(φk −ψ)(p1(x)− kp0(x))d x ,

so it follows that ψ = φk = 1 on {p1/p0 > k} and ψ = φk = 0 on {p1/p0 < k},
µ-a.e. If E0[ψ]< α then k = 0, so there is a test of power 1. �

6.1.3 Corollary. If 0< α < 1 and β is the power of the most powerful level α test
then α < β , unless p0 = p1 µ-a.e.

PROOF: Consider the trivial test of level α, namely the constant α. Then

β = E1[φk]≥ E1[α] = α.

Moreover, if α = β then α is most powerful by the Neyman-Pearson lemma, so
p1/p0 = k has probability 1, so k = 1 and the densities are equal. �

6.2 Complex tests

Let {pθ : θ ∈Θ⊆ R} be a family of densities. The last section was concerned with
testing θ = θ0 vs. θ = θ1, a simple test. In this case we know the most powerful
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tests. A complex test involves testing whether θ lies in some infinite subsets of Θ.
We will consider the following four complex tests in detail.

H1 : θ ≤ θ0 vs. K1 : θ > θ0

H2 : θ ≤ θ1 or θ ≥ θ2 vs. K2 : θ1 < θ < θ2

H3 : θ1 ≤ θ ≤ θ2 vs. K3 : θ < θ1 or θ > θ2

H4 : θ = θ0 vs. K4 : θ 6= θ0

What are the most powerful tests in each case?

6.2.1 Definition. For testing θ ∈ Θ0 vs. θ ∈ Θ1, a test φ is uniformly most pow-
erful, or UMP, at level α if supθ∈Θ0

Eθ [φ] ≤ α (i.e. it has level α) and if ψ is any
other level α test then Eθ [ψ]≤ Eθ [φ] for all θ ∈Θ1.

6.2.2 Definition. The family of densities {pθ : θ ∈ Θ ⊆ R} has the monotone
likelihood ratio property, or MLR, on the interval [θ0,θ1] ⊆ Θ if there is a statistic
T and a nondecreasing function g such that

pθ ′(x)
pθ (x)

= g(T (x))

for each pair θ < θ ′ in [θ0,θ1],

6.2.3 Example. Consider a one-parameter exponential family,

pθ (x) = c(θ)eQ(θ)T (x)h(x).

If Q(θ) is nondecreasing then this family has MLR. Indeed, if θ < θ ′ then

pθ ′(x)
pθ (x)

=
c(θ ′)
c(θ)

e(Q(θ
′)−Q(θ))T (x),

which is a nondecreasing function of T (x). The binomial and Poisson families
have this property.

6.2.4 Example. The Cauchy location family pθ (x) =
1

π(1+(x−θ)2) does not have

MLR since 1+(x−θ ′)2

1+(x−θ)2 → 1 as x →∞ and also as x →−∞, but is zero at x = θ ′, so
the ratio cannot be nondecreasing.

6.2.5 Example. Some important MLR families are
(i) N(θ , 1), θ ∈ R

(ii) non-central χ2
k (δ), δ ≥ 0, with k fixed

(iii) non-central t r(δ), δ ≥ 0, with r fixed, where

t r(δ) =
N(δ, 1)
p

χ2
r /r
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(iv) non-central Fm,n(δ), δ ≥ 0, with m and n fixed, where

Fm,n(δ) =
χ2

m(δ)

χ2
n(0)

.

These families show up often, and we often wish to test δ = 0 vs. δ > 0.

6.2.6 Theorem (Karlin-Rubin). Let X be distributed according to a density pθ in
a family with MLR involving the statistic T (X ).

(i) There is a UMP level α test φc of H1 : θ ≤ θ0 vs. K1 : θ > θ1 with the
property that Eθ0

[φc(X )] = α, namely

φc(x) =







1 T (x)> c
γ T (x) = c
0 T (x)< c.

(ii) The power function β(θ) := Eθ [φc(X )] is increasing in θ when β(θ)< 1.
(iii) For all θ < θ0, if φ is a test with Eθ [φ(X )] = α then φc has the smaller

power function.

PROOF (SKETCH): The idea is to construct a test H : θ = θ0 vs. K : θ = θ1, where
θ1 is fixed for now. By the Neyman-Pearson lemma we get a test φ0(x), which we
hope to write as ψ(T (x)). From the MLR property, β(θ) := Eθ [φ(X )] increasing.
As a result, Eθ0

[φ0(X )] = α, and Eθ [φ0(X )] ≤ α for all θ ≤ θ0, so it is level α
in the current setting. The second key fact that follows from the MLR property is
that φ0 is uniquely determined by (θ0,α), and in particular does not depend on
θ1. �

There is a geometric representation of the simple test H : θ = θ0 vs. K : θ = θ1.
Let C := {0≤ φ ≤ 1 measurable} be the set of critical functions and

Ω := {(α,β) = (E0[φ(X )],E1[φ(X )]) : φ ∈ C} ⊆ [0,1]2.

This set has the following properties.
(i) (α,α) ∈ Ω for all 0≤ α≤ 1.

(ii) If (α,β) ∈ Ω then (1−α, 1− β) ∈ Ω.
(iii) Ω is convex because integration is linear and the convex combination of tests

is a test.
(iv) Ω is closed because {0≤ φ ≤ 1} is a weakly compact subset of L∞(?)

6.2.7 Theorem (Generalized Neyman-Pearson lemma).
Let f1, . . . , fm+1 be real-valued functions defined on a Euclidean spaceX and inte-
grable with respect to a σ-finite measure µ (e.g. density functions). Suppose that,
for given constants α1, . . . ,αm, there exists a critical function φ ∈ C such that

∫

X
φ(x) fi(x)µ(d x) = αi
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for i = 1, . . . , m. Let C0 be the class of all critical functions such that the above
equations hold. Then

(i) Over all φ ∈ C0 there is one that maximizes
∫

X φ(x) fm+1(x)µ(d x). (When
m= 1 this quantity is the power.)

(ii) A sufficient condition for φ ∈ C0 to maximize
∫

X φ(x) fm+1(x)µ(d x) is that
there are constants k1, . . . , km ∈ R such that

φ(x) =

¨

1 fm+1(x)>
∑m

i=1 ki fi(x)
0 fm+1(x)<

∑m
i=1 ki fi(x).

(iii) Further, if the ki may be chosen to be non-negative then φ maximizes
∫

X φ(x) fm+1(x)µ(d x) over the larger class

�

φ :

∫

X
φ(x) fi(x)µ(d x)≤ αi for all i = 1, . . . , m

�

.

(iv) Define M := {(
∫

X φ(x) f1(x)µ(d x), . . . ,
∫

X φ(x) fm(x)µ(d x)) : φ ∈ C} ⊆
Rm. If (α1, . . . ,αm) is an interior point of M then there are constants
k1, . . . , km and a test function φ ∈ C0 of the form above that maximizes
∫

X φ(x) fm+1(x)µ(d x). Moreover, a necessary condition for an element of

C0 to maximize
∫

X φ(x) fm+1(x)µ(d x) is that it is of the form above µ-a.e.

6.2.8 Theorem. Consider a one parameter exponential family

pθ (x) = c(θ)eQ(θ)T (x)h(x)

with Q strictly increasing. For the problem of testing

H2 : θ ≤ θ1 or θ ≥ θ2 vs. K2 : θ1 < θ < θ2.

there is a test

φ(x) =







1 c1 < T (x)< c2

γi T (x) = ci , i = 1,2

0 T (x)< c1 or T (x)> c2.

where c1, c2,γ1,γ2 are determined by α= Eθ1
[φ(X )] = Eθ2

[φ(X )], such that
(i) φ is UMP, i.e. φ maximizes Eθ [φ(X )] over all tests of the same level for

every θ1 < θ < θ2.
(ii) φ minimizes Eθ [φ(X )] over all tests of the same level for every θ < θ1 and

θ > θ2.
(iii) The associated power function is unimodal, unless T (X ) is concentrated on

the same set {t1, t2} for all θ .

We will refer to Lemma 3.4.2 from the textbook: If φ = 1[a,b] and satisfies
the constraints α = Eθ1

[φ(X )] = Eθ2
[φ(X )] and θ1 6= θ2 then φ is uniquely

determined µ-a.e.
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PROOF: We claim that (α,α) is an interior point of the region Ω. Indeed, it can be
shown that (α,α+∆) is in the region for ∆ sufficiently small. Take φ to be a level
α MP test for θ = θ1 vs. θ = θ2, so that β = Eθ1

[φ(X )] > α. The symmetry of Ω
completes the proof of the claim.

For part (i), note that T is a sufficient statistic for θ , so we may focus on
functions of the form φ(x) = ψ(T (x)) = ψ(t). Let pT

θ (t)d t = c(θ)eQ(θ)tν(d t)
denote the density of T = T (X ).

First fix θ ′ such that θ1 < θ
′ < θ2 and choose a testψ(T ) such that Eθ1

[ψ(T )] =
Eθ2
[ψ(T )] = α and Eθ ′[ψ(T )] is as large as possible. Note that for the re-

gion M = {(Eθ1
[ψ(T )],Eθ2

[ψ(T )]) : ψ}, (α,α) is an interior point. Applying
Theorem 3.6.1 with f1 = pθ1

(t), f2 = pθ2
(t), and f3 = pθ ′(t) (so m = 2) and

∫

ψ f1 = α =
∫

ψ f2, to maximize
∫

ψ f3. There is ψ0 that does this, and there are
numbers k1 and k2 such that

φ0(t) =

¨

1 f3(t)> k1 f1 + k2 f2

0 f3(t)< k1 f1 + k2 f2.

The desired test will be φ0(x) = ψ0(T (x)). We have expressions for all these
densities, so φ0(t) = 1 only if

k1c(θ1)e
Q(θ1)t + k2c(θ2)e

Q(θ2)t < c(θ ′)eQ(θ ′)t .

Write this as a1eb1 t + a2eb2 t < 1, where a1 = k1c(θ1)/c(θ ′), a2 = k2c(θ2)/c(θ ′),
b1 =Q(θ1)−Q(θ ′)< 0, and b2 =Q(θ2)−Q(θ ′)> 0. There are three cases:

(a) a1 ≤ 0 and a2 ≤ 0
(b) a1 ≤ 0 and a2 > 0
(c) a1 > 0 and a2 ≤ 0
(d) a1 > 0 and a2 > 0.

We claim that only (d) can hold. If (a) holds then ψ0 ≡ 1, which contradicts that
Eθ1
[ψ(T )] = α < 1. If (b) or (c) holds then the left hand side of the inequality

is a monotone function of t, implying that the rejection region is a half-infinite
interval. By Lemma 3.4.2 and Lemma 3.7.1, Eθ [φ(T (X ))] is a strictly mono-
tone function of θ when ψ is of this form, so this contradicts that Eθ1

[ψ(T )] =
Eθ2
[ψ(T )] = α.
So we know we are in case (d). The inequality holds then for c1 < t < c2 for

some constants c1 and c2, and ψ = 1[c1,c2], more or less. It remains to determine
γ1 := ψ(c1) and γ2 := ψ(c2). But by Lemma 3.7.1 there is only one choice µ-
a.e. Further, these depend on (θ1,θ2,α) and not on θ ′. It follows that φ0 is MP
for testing θ ∈ {θ1,θ2} vs. θ = θ ′, and is independent of θ ′. Therefore it is MP
for testing θ ∈ {θ1,θ2} vs. K3 : θ1 < θ < θ2. To finish the proof we need to
show that this test works for H3 : θ ≤ θ1 or θ ≥ θ2, which involves showing that
Eθ [ψ0(T )]≤ α for all θ with θ ≤ θ1 or θ ≥ θ2.

Now fix, without loss of generality, θ ′ < θ1. Find another test φ∗ for which
Eθ1
[ψ(T )] = Eθ2

[ψ(T )] = α and Eθ ′[ψ(T )] is as small as possible. We will be
able to show that ψ∗ = ψ0, which is prove in particular that Eθ ′[ψ0(T )] ≤ α (by
comparing with the constant test α). Similar things can be done for θ ′ > θ2.
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To find ψ∗, instead consider 1−ψ∗ and trying to maximize Eθ ′[ψ(T )] subject
to Eθ1

[ψ(T )] = Eθ2
[ψ(T )] = 1− α As before, there are k1 and k2 such that the

optimum is

1−φ∗(t) =
¨

1 f3(t)> k1 f1 + k2 f2

0 f3(t)< k1 f1 + k2 f2.

The same analysis shows that ψ∗ is 1 only if a1 + a2eb2 t > eb1 t , after dividing by
c(θ ′)eQ(θ1)t . Since Q is increasing, b1 > 0 and b2 < 0. We can show that a2 < 0,
so again the test looks like ψ = 1[c1,c2] for some c1 and c2 depending only on
(θ1,θ2,α), and it must be the same as ψ0.

For the third part. . . (omitted, I guess). �

6.3 UMPU tests

6.3.1 Definition. For testing θ ∈ Θ0 vs. θ ∈ Θ1, a test φ is an unbiased test at
level α if Eθ [φ] ≤ α for all θ ∈ Ω0 and Eθ [φ] ≥ α for all θ ∈ Θ1. A test is UMPU
at level α if it is UMP over the class of unbiased tests at level α.

There is no UMP for the testing H3 vs. K3. Indeed, such a test would have toThis paragraph is quite confusing. See
the homework solutions for a slightly
clearer explanation for why there is no
UMP test for H3.

satisfy supθ1≤θ≤θ2
Eθ [φ(X )] ≤ α. Consider the problem of testing H3 vs. K : θ =

θ ′ where θ ′ > θ2 (this is easier than K3). When the power function is strictly
monotone, there is a MP test. But in this case the MP test cannot be unbiased for
testing H3 vs. K3 (see homework, I guess?). If we restrict the class of tests to those
have Eθ1

[φ(X )] = α= Eθ1
[φ(X )] then a UMP exists. Such tests will be unbiased,

so the most powerful test over this class is the UMPU.

6.3.2 Definition. Let ω be the common boundary of two sets ΩH and ΩK . We say
that φ is similar on the boundary, or SB, if βφ(θ) = Eθ [φ] = α for all θ ∈ω.

6.3.3 Lemma. If βφ(θ) is continuous and φ is unbiased then φ is SB.

PROOF: Intermediate value theorem. �

6.3.4 Lemma. If the distribution pθ is such that the power function of every test
is continuous and φ0 is UMP over the class of SB tests then φ0 is UMPU (i.e. UMP
over the class of unbiased tests).

PROOF: If the power function is always continuous then the class of SB tests con-
tains the class of unbiased tests. �

6.3.5 Theorem. Consider a one parameter exponential family

pθ (x) = c(θ)eQ(θ)T (x)h(x)

with Q strictly increasing. For the problem of testing

H3 : θ1 ≤ θ ≤ θ2 vs. K3 : θ < θ1 or θ > θ2
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there is a unique level α UMPU test, namely

φ =







1 T (x)< c1 or T (x)> c2

γi T (x) = ci , i = 1,2

0 c1 < T (x)< c2.

PROOF: The power functions are all continuous for this family. Consider the prob-
lem of maximizing Eθ ′[ψ(T )] over ψ unbiased, for some fixed θ ′ ∈ [θ1,θ2]. This
is equivalent to the minimization problem for 1−ψ, which brings us back to the
setting of the proof of the last theorem. �

Last week we talked about the tests:

H1 : θ ≤ θ0 vs. K1 : θ > θ0 (UMP)

H2 : θ ≤ θ1 or θ ≥ θ2 vs. K2 : θ1 < θ < θ2 (UMP)

H3 : θ1 ≤ θ ≤ θ2 vs. K3 : θ < θ1 or θ > θ2 (UMPU)

We expect the test for H4 to be a special case of the test for H3, and so we
expect there to be a UMPU test. The problem is to determine c1, c2, γ1, and
γ2 with some constraints. In the third case, the constraints Eθ1

[φ(X )] = α and
Eθ2
[φ(X )] = α determine the four parameters. In case four we only have the one

constraint Eθ0
[φ(X )] = α, which does not seem like it will be enough. Recall that

φ is unbiased for this case if Eθ [φ(X )] ≤ α when θ = θ0 and Eθ [φ(X )] ≥ α
when θ 6= θ0. Therefore βφ attains its minimum at θ0. If it is differentiable then
β ′φ(θ0) = 0. Furthermore, if Pθ (d t) = c(θ)eθ tν(d t) is the distribution of T (X )
and we can write φ(x) =ψ(T (x)) then we can use Stein’s lemma to compute

d

d t
Eθ [ψ(T (X ))] = Eθ [Tψ(T )] +

c′(θ)
c(θ)
Eθ [ψ(T )].

This holds for all unbiased tests, so in particular it holds for φ(x)≡ α. Then

0= αEθ [T (X )] +
c′(θ)
c(θ)

α,

giving Eθ [T] =−c′(θ)/c(θ). Plugging this into the original expression yields

d

d t
Eθ [ψ(T (X ))] = Eθ [Tψ(T )]−Eθ [T]Eθ [ψ(T )] = Cov(T,ψ(T )).

Finally, if ψ is unbiased then Eθ0
[ψ(T )] = α and the derivative is zero at θ = θ0,

so

Eθ0
[Tψ(T )] = αEθ0

[T] =−α
c′(θ0)
c(θ0)

.

This is the second constraint that can be used to find c1, c2, γ1, and γ2.
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6.4 Nuisance parameters

Difference, in addition, we have a nuisance parameter ϑ, e.g. in X i ∼ N(θ ,σ2),
testing θ = θ0 vs. θ 6= θ0 has the nuisance parameter σ2.

Review: unbiasedness of test + continuity of power function = SB property

6.4.1 Definition. Let T be sufficient for P = {pθ (x),θ ∈ ω = ∂Θ} and let PT =
{pT
θ = pθ (T (x)) : θ ∈ ω}. A test function is said to have Neyman structure with

respect to T if Eθ [ψ(X )|T] = α a.e.-PT
θ , for θ ∈ω.

6.4.2 Lemma. If φ has Neyman structure with respect to T then φ is SB.

PROOF: For all θ ∈ω,

Eθ [φ(X )] = Eθ [E[φ(X )|T]] = Eθ [α] = α. �

Neyman structure allows us to use conditioning (on complete sufficient statis-
tics) to reduce a high dimensional problem to fewer dimensions. The question
that remains is, when does SB imply Neyman structure? Note that if all unbiased
tests are SB and all SB tests have Neyman structure, then to find the UMPU test it
suffices to find the UMP test over the class of tests of Neyman structure. Why does
this make the problem any easier?

Eθ φ0 = α α ∈ω

Eθ ,ϑφ0 =

∫∫

φ(u, t)PU |t
θ
(du)PT

θ ,ϑ(d t)

For every fixed t, if φ(u, t) is level α UMP, then the power is greater than or equal
to the power of any other level α Neyman structured test.

6.4.3 Theorem. Let X be a random variable with distribution pθ ∈ P = {pθ : θ ∈
Θ} and let T be sufficient for PB = {pθ : θ ∈ ω = ∂Θ}. Then all SB tests have
Neyman structure if and only if the family of distributions PT = {pT

θ : θ ∈ ω}
is bounded complete, i.e. “if ψ is bounded and Eθ [ψ(T )] = 0 for all θ ∈ ω then
ψ= 0 a.e.”

PROOF: If it is bounded complete then ifφ is a level α SB test then letψ= E[φ|T].
Eθ φ = α for all θ ∈ω so E[ψ(T )−α] = 0 for all θ ∈ω, so E[φ|T] = α a.e.-PT .

Suppose that all SB tests have Neyman structure, but there is a statistic such
that PT is not bounded complete. Then there is h 6= 0 bounded such that Eθ h(T ) =
0 for all θ ∈ω. Define ψ(T ) = ch(T )+α where c is chosen sufficiently small that
ψ is a test. Then Eθ [ψ] = α and E[ψ(T )|T] =ψ(T ) = α+ ch(T ), which is not α
with positive pθ0

-probability for some θ0 ∈ω. �

The setting is now as follows. We have a (k+1)-parameter exponential family
with density functions

pθ ,ϑ = c(θ ,ϑ)exp
�

θU(x) +
k
∑

i=1

ξi Ti(x)
�
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with respect to a σ-finite dominating measure µ. Suppose thatΘ⊆ Rk+1 is convex
with non-empty interior. Then T := (T1, . . . , Tk) is complete and sufficient for the
nuisance parameters ϑ when θ is fixed. In this setting the hypotheses of the above
theorem hold, so we need merely to find the UMP test over the class of tests with
Neyman structure.

1. H : θ ≤ θ0 vs. K : θ > θ0

2. H : θ ≤ θ1 or θ ≥ θ2 vs. K : θ1 < θ < θ2

3. H : θ1 ≤ θ ≤ θ2 vs. K : θ < θ1 or θ > θ2

4. H : θ = θ0 vs. K : θ 6= θ0

The following are UMPU tests.

φ1(u, t) =







1 u> c(t)
γ(t) u= c(t)
0 u< c(t)

φ2(u, t) =







1 c1(t)< u< c2(t)
γi(t) u= ci(t)
0 otherwise

φ3(u, t) =







1 u> c1(t) or u< c2(t)
γi(t) u= ci(t)
0 otherwise

φ4(u, t) =







1 u> c1(t) or u< c2(t)
γi(t) u= ci(t)
0 otherwise

where t = T (x). For φ1 the conditions that Eθ0
[φ1(U , T )|T = t] = α for all

t determine the coefficients. For φ2 and φ3 the conditions are Eθi
[φ(U , T )|T =

t] = α for i = 1, 2 and all t, and forφ4 the conditions are Eθ0
[φ4(U , T )|T = t] = α

and Eθ0
[Uφ4(U , T )|T = t] = αEθ0

[U |T = t] for all t.

PROOF: T is sufficient for ϑ if θ if fixed. The associated family of distributions of
T is

dPT
θ j ,θ
(t) = c(θ j ,θ)E

� k
∑

i=1

ϑi Ti(x)
�

dνθ j
(t)

where θ = θ0, θ1, or θ2 and j = 0, 1, or 2. (ν is like a push-forward or pull-back of
µwrt t = T (x).) By the assumptions on the domainΘ,ω j := {θ = θ j : (θ ,ϑ) ∈Θ}
contains a k-dimensional rectangle. Therefore T is sufficient and complete. If φ
is SB then

Eθ j
[φ(U , T )|T = t] = α

for all t. We now show that φ1 is UMP over all SB tests (in order to conclude that
it is UMPU).
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Consider case 1 for now. For any point (θ ,ϑ) in the alternative K1,

Eθ ,ϑ[φ(U , T )] =

∫∫

φ(u, t)PU |t
θ
(du)PT

θ ,ϑ(d t)

= Eθ ,ϑ[Eθ ,t[φ(U , T )|T = t]]

(The distribution (U |T = t) does not depend on ϑ because T is sufficient.) For all
SB tests, for all t,

Eθ0
[φ(U , T )|T = t] = α.

We claim that φ1 maximizes the inner integration over all t subject to this con-
straint. The rest of the proof is an exercise? �

6.4.4 Example. Suppose that X ∼ Poisson(λ) and Y ∼ Poisson(µ). We are inter-
ested in comparing λ and µ (say, testing λ≤ µ or λ= µ).

P[X = x , Y = y] =
e−(λ+µ)

x!y!
exp
�

y log(µ/λ) + (x + y) logλ
�

.

Let θ = log(µ/λ), ϑ = logλ, U = Y and T = X + Y . For the test H : µ ≤ aλ
(where a is fixed) H : log(µ/λ) ≤ log a, so H : θ ≤ log(a) vs. K : θ > log a with
nuisance parameter ϑ. There is a UMPU test with form

φ(u, t) =







1 u> c(t)
γ(t) u= c(t)
0 u< c(t)

where c and γ are determined by Eθ0
[φ(U , T )|T = t] = α for all t. Here θ0 = log a

so given t,

Pθ0
[U > c(T )|T = t] + γ(t)Pθ0

[U = c(T )|T = t] = α

What is (U |T = t)? It is Binomial(t,µ/(λ+µ)). Under Pθ0
, µ/(λ+µ) = a/(a+1).

This (in principle) determines c and γ as functions of t.

t
∑

k=c(t)+1

�

t

k

�

� a

a+ 1

�k� 1

a+ 1

�t−k

+γ(t)
�

t

c(t)

�

� a

a+ 1

�c(t)� 1

a+ 1

�t−c(t)

= α.

6.4.5 Example. Let X i ∼ N(ξ,σ2), 1 ≤ i ≤ m. We could test H1 : σ ≤ σ0 (UMP
exists), or H2 : σ ≥ σ0 (UMP does not, but UMPU does), or H3 : ξ ≤ ξ0 (UMP
does not, but UMPU does), or H4 : ξ≥ ξ0 (UMP does not, but UMPU does).

Suppose Yj ∼ N(η,τ2), 1≤ j ≤ n. We could test H : ξ≤ η or H ′ : σ2 ≤ aτ2.
For H1, the joint density is

�

1
p

2πσ

�n

exp

�

−
nξ2

2σ2

�

exp
�

−
1

2σ2

∑

x2
i +

nξ

σ2 X
�
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Take θ = −1/(2σ2), ϑ = nξ/σ2, U =
∑

X 2
i and T = X . Then H1 is equivalent to

testing θ ≥ θ0. There is a UMPU test of the form

φ(u, t) =

¨

1 u< c(t)
0 u> c(t)

and we have the constraint

α= Pθ0
[U < c(T )|T = t]

= Pθ0
[U − nT 2 < c0(T )|T = t]

= Pθ0
[U − nt2 < c0(t)]

(Note that U − nT 2 = S2 is independent of X = T .) It follows that c0(t) = c0 is a
constant independent of t. Now U − nT 2 is σ2

0χ
2
n−1 under Pθ0

, so we obtain the
usual χ2-test. Taking c0/σ

2
0 to be the α-percentile of χ2

n−1 determines the test. We
reject when

∑

(X i − X )2 ≤ c0.

Suppose that V = h(U , T ) is monotonically increasing in u for any fixed t.
Then

φ(u, t) =

¨

1 u< c(t)
0 u> c(t)

=

¨

1 v < c0(t)
0 v > c0(t)

=: φ(v)

are the same test. If V is independent of T when θ = θ0 then φ(v) is UMPU for
H1. If V is independent of T when θ = θ1 and θ = θ2 then we get corresponding
statements for H2 and H3. If V is independent of T for θ = θ0 and h(u, t) =
a(t)u+ b(t) then φ4(v) is UMPU for H4. (See the theorem on the bottom of page
151.)

6.4.6 Example (Two sample normal with equal variances).
Let X1, . . . , Xm ∼ N(ξ,σ2) and Y1, . . . , Yn ∼ N(η,σ2). Consider testing the hy-
potheses H : η= ξ or H ′ : η≤ ξ. The joint density of the data is

c(ξ,η,σ2)exp
�

−
1

2σ2

� m
∑

i=1

X 2
i +

n
∑

j=1

Y 2
j

�

+
mξ

σ2 X +
nη

σ2 Y
�

,

so the natural parameters are − 1
2σ2 , mξ

σ2 , and nη
σ2 . Rearrange the parameters to get

something useful.

mξ

σ2 X +
nη

σ2 Y =
η− ξ

( 1
m
+ 1

n
)σ2
(Y − X ) +

mξ+ nη

(m+ n)σ2 (mX + nY )

so we may write the density as

c exp

�

η− ξ
( 1

m
+ 1

n
)σ2
(Y − X ) +

mξ+ nη

(m+ n)σ2 (mX + nY )−
1

2σ2

� m
∑

i=1

X 2
i +

n
∑

j=1

Y 2
j

�

�
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Now write θ = η−ξ
( 1

m
+ 1

n
)σ2 , with nuisance parameters ϑ1 =

mξ+nη
(m+n)σ2 and ϑ2 =

1
2σ2 . We

look for V = h(U , T ) such that h is increasing in u and h(U , T ) is independent of
T when θ = 0. Note that when θ = 0 then Y − X ∼ N(0, ( 1

m
+ 1

m
)σ2), so with this

in mind take

h(U , T ) =
U

Æ

T2 −
1

m+n
T 2

1 −
mn

m+n
U

and note that

V ′ :=
U/
Æ

1
m
+ 1

n
Æ

(T2 −
1

m+n
T 2

1 −
mn

m+n
U)/(m+ n− 2)

∼ tm+n−2.

Therefore we recover the classical t-test.
If the variances are not the same then there is no good answer for the UMPU.

6.4.7 Example (Two sample normal with equal means). From the exam.

Review for second midterm: How to find a Bayes/minimax rule? To find a
Bayes rule calculate the posterior and then find the posterior mean (for squared
error loss). For minimax, if you can find δ(X ) such that it is Bayes and it has
constant risk then it is minimax (and the prior is least favourable). Less rigidly,
if δ has constant risk γ and γ = limn→∞ γΛn

then δ is minimax (think improper
priors, normal mean with variance known). A third approach is to find a minimax
estimator for a restricted family and then show that the risk over the smaller set is
the same as the risk over the larger set (think normal mean with variance unknown
by bounded).

How to find/determine admissible estimators? Recall that aX + b is inadmis-
sible when a < 0, a > 1, or a = 1 and b 6= 0, otherwise it is admissible. When the
dimension is three or greater, X is inadmissible (Stein).

Testing: Neyman-Pearson lemma for the simple test setting shows MP test is of
the form

φ(x) =







1 fK/ fH > k
γ fK/ fH = k
0 fK/ fH < k

and the proof is not very complicated (read it!). For complex tests, we defined
a monotone likelihood ratio family to be one for which fθ ′/ fθ is monotonically
increasing in x (or T (x)) when θ ′ > θ . E.g. one parameter exponential family
c(θ)eQ(θ)U(x)h(x) with increasing Q, location family for some distributions. There
is a UMP for θ ≤ θ0, found by showing the MP for θ = θ0 vs. θ = θ1 does not
depend on θ1 for all θ1 > θ0, and then that the power is increasing in θ for θ < θ0.
See Karlin-Rubin theorem. For the one parameter exponential family in particular,
we considered four testing problems. There are UMP tests for the first two but not
the last two, and if we restrict to the family of unbiased tests then there are UMPU
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tests. For the multi-parameter exponential family we know the UMPU tests. See
theorem on page 151.

7 Maximum Likelihood Estimators

This section follows TPE §1.8.

7.0.8 Theorem (Delta method). Let g be a function that is continuously differ-
entiable at θ0, with g ′(θ0) 6= 0. If

p
n(Tn − θ0)

(d)−→ N(0,τ2) then

p
n(g(Tn)− g(θ0))

(d)−→ N(0,τ2(g ′(θ0))
2).

PROOF: Note that Tn − θ0
(d)−→ 0, so Tn − θ0

(p)
−→ 0. By continuity, g ′(ξn)

(p)
−→ g ′(θ0)

whenever ξn
(p)
−→ θ0. By Taylor’s theorem, for some ξn between Tn and θ0,

p
n(g(Tn)− g(θ0)) = g ′(ξn)

p
n(Tn − θ0)

(d)−→ g ′(θ0)N(0,τ2) (d)= N(0,τ2(g ′(θ0))
2). �

7.0.9 Assumptions. Let {pθ : θ ∈Θ⊆ Rd} be a family of densities with respect to
a σ-finite measure µ on R and satisfying the following assumptions.

A0: (Identifiable) θ 6= θ ′ implies pθ 6= pθ ′ .
A1: (Common support) A= {x : pθ > 0} does not depend on θ .
A2: X1, . . . , Xn ∼ Pθ0

=: P0.
A3: (Smooth around θ0) Θ contains a neighbourhood Θ0 of θ0 such that, for all

θ ∈Θ0,
a) For µ-a.e. x , `(θ |x) = log pθ (x) is twice continuously differentiable.
b) For µ-a.e. x ,

...
` jkl(θ |x) exists and satisfies |

...
` jkl(θ |x)| ≤ M jkl(x) for all

1≤ j, k, l ≤ d, where M is family of constants independent of θ .
A4: (Regular at θ0)

a) E0[˙̀(θ0|X )] = 0.
b) E0[|˙̀(θ0|X )|2]<∞.
c) I(θ0)i j :=−E0[῭i j(θ0|X )] is a positive definite matrix.

We fix the following notation. Ln(θ) :=
∏n

i=1 pθ (x i) is the likelihood func-
tion, and `n(θ) := log Ln(θ) is the log-likelihood function. For B ⊆ Θ, Ln(B) :=
supθ∈B Ln(θ) and `n(B) := supθ∈B `n(θ).

7.0.10 Theorem. Assume that A0–A4 are satisfied.
(i) (Consistency of MLE) With probability one, there is a sequence θ̃n of solu-

tions to the sequence of equations ˙̀
n(θ |x1, . . . , xn) = 0 such that θ̃n

(p)
−→ θ0.

(ii) (Asymptotic efficiency of MLE) θ̃n is “asymptotically linear” with respect to
`n(θ0|x1, . . . , xn), i.e.

p
n(θ̃n − θ0) = I−1(θ0)Zn + oP(1)
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=
1
p

n

n
∑

i=1

˜̀(θ0|x i) + oP(1)

(d)−→ I−1(θ0)Z ∼ N(0, I−1(θ0))

where Zn := 1p
n

∑n
i=1

˙̀(θ0|x i) and ˜̀(θ0|x) := I−1(θ0)˙̀(θ0|x)

(iii) (Asymptotic efficiency of LRT) 2 log λ̃n
(d)−→ Z T I−1(θ0)Z ∼ χ2

d where

λ̃n :=
Ln(θ̃n|x1, . . . , xn)
Ln(θ0|x1, . . . , xn)

Remark. It suffices to remember that “identifiability+ common support+ smooth
around θ0 + regular at θ0 =MLE is consistent and efficient and log(LRT )→ 1

2
χ2

d .”
Note that the general likelihood ratio test statistic

λ̂n :=
maxθ∈Θ Ln(θ |x1, . . . , xn)

Ln(θ0|x1, . . . , xn)
=

Ln(θ̂M LE
n |x1, . . . , xn)

Ln(θ0|x1, . . . , xn)

is slightly different from the likelihood ratio test statistic λ̃n.

PROOF: Fix a > 0 small and let Qa := {θ ∈Θ : |θ − θ0|= a}. We will show that

P0[`n(θ)< `n(θ0) for all θ ∈Qa]→ 1 as n→∞.

It will follow from this that, for n large enough, ˙̀
n(θ) = 0 will have one or more

solutions inside Qa with high probability. By Taylor’s theorem, for θ ∈Qa,

1

n
(`n(θ)− `n(θ0)) = (θ − θ0)

T 1

n
˙̀

n(θ0)

−
1

2
(θ − θ0)

T
�

−
1

n
῭

n(θ0)
�

(θ − θ0) +O(|θ − θ0|3),

where we have used the regularity and the boundedness of the third derivative.
By the SLLN,

1

n
˙̀

n(θ0) =
1

n

n
∑

i=1

˙̀(θ0|x i)→ E0[˙̀(θ0|X )] = 0

and

−
1

n
῭

n(θ0) =
1

n

n
∑

i=1

−῭(θ0|x i)→ E0[−῭(θ0|X )] = I(θ0).

Therefore, since |θ − θ0|= a,

1

n
(`(θ)− `(θ0))≤ aoP(1)−

1

2
(θ − θ0)

T I(θ0)(θ − θ0) + Ba3

≤ aoP(1)−
1

2
λd a2 + Ba3



Kullback-Leibler information 53

where B is some constant and λd > 0 is the smallest eigenvalue of the information
matrix. In particular, for small enough a and big enough n, `(θ)− `(θ0)< 0.

For the next part,

0=
1
p

n
˙̀

n(θ̃n)

=
1
p

n
˙̀

n(θ̃n)−
�

−
1

n
῭

n(θ
∗
n)
�

p
n(θ̃n − θ0)

p
n(θ̃n − θ0) =−

�

1

n
῭

n(θ
∗
n)
�−1 1

p
n

˙̀
n(θ̃n)

By the CLT, the “numerator” converges in distribution to a normal random vari-
able with mean zero and covariance matrix E[˙̀n(θ0)˙̀n(θ0)T ] = I(θ0). For the
“denominator,” recalling that θ ∗n is a number between θ̃n and θ0,

1

n
῭

n(θ
∗
n) =

1

n
῭

n(θ0) +
1

n

...
` n(θ

∗
n)(θ

∗
n − θ0)

(p)
−→−I(θ0),

by the SLLN and because the third derivative is bounded. Therefore
p

n(θ̃n − θ0)
(d)−→ (I(θ0))

−1N(0, I(θ0))
(d)= N(0, I(θ0)

−1).

The final part is more of the same. �

7.0.11 Definition. If δ(X ) is an estimator of θ and
p

n(δ(X ) − θ) (d)−→ N(0,τ2)
then we say that δ is an asymptotically unbiased estimator with asymptotic variance
τ2. It can be shown that the asymptotic variance of an asymptotically unbiased es-
timator is bounded below by I(θ)−1, and that the MLE (under certain conditions)
attains this lower bound. A sequence of estimators that attains the lower bound is
said to be asymptotically efficient.

7.0.12 Example (Newton-Ralphson). If
p

n(θ̃n − θ) = OP(1) then θ̃n is said to
be a

p
n-consistent sequence of estimators for θ . For the MLE, θ̂n,

0= ˙̀
n(θ̂n)

≈ ˙̀
n(θ̃n) + ῭

n(θ̃n)(θ̂n − θ̃n)

θ̂n ≈ θ̃n −
˙̀

n(θ̃n)
῭

n(θ̃n)

This gives a method of obtaining a sequence of asymptotically efficient estimators
given a

p
n-consistent sequence.

7.1 Kullback-Leibler information

7.1.1 Definition. Let P and Q be two probability measures with densities p and q
with respect to a σ-finite measure µ. The Kullback-Leibler information is

K(P,Q) := dK L(P,Q) := EP

�

log
�

p(X )
q(X )

��

=−EP

�

log
�

q(X )
p(X )

��
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7.1.2 Lemma. K(P,Q)≥ 0 and is zero if and only if P =Q.

PROOF: Since x 7→ − log x is a convex function, by Jensen’s inequality,

K(P,Q) =−EP[log(q/p)]≥− logEP[q/p] =− log 1= 0. �

Note that, by the SLLN,

1

n
log
�

Ln(θ0)
Ln(θ)

�

=
1

n

n
∑

i=1

log

�

pθ0
(X i)

pθ (X i)

�

→ Eθ0

�

log

�

pθ0
(X )

pθ (X )

��

= K(Pθ0
, Pθ )

7.2 Examples

Note that the condition of common support excludes the uniform family U(0,θ)
and the one-sided double parameter exponential family, and the smoothness re-
quirement excludes the double exponential family 1

2
exp(−|x − θ |).

7.2.1 Exercise. Show that if X1, . . . , Xn ∼ U(0,θ) then

p
n(X(n) − θ)

(d)−→ Exponential(1).

Also show that if X1, . . . , Xn ∼ N(0,1) then

X(n)
p

2 log n

(p)
−→ 1.

It can be show that there are bn ∼
p

2 log log n and an ∼
p

2 log n such that

bn(X(n) − an)
(d)−→ log(Exponential(1)) =: Gumbel(1).

These limits come up in the theory of empirical processes and extreme value the-
ory.

Clearly the equations ˙̀
n(θ) = 0 each have only one root then the sequence of

roots converges to the true parameter. If those equations all have multiple roots
then it is not necessarily the case that every sequence of roots converges to the
true parameter.

7.2.2 Example (One parameter exponential family). In this case the conditions
always all hold.

pθ (x) = exp(θT (x)− A(θ))h(x)
`(θ) = θT (x)− A(θ) + log(h(x))
˙̀(θ) = T (x)− A′(θ)

Then ˙̀(θ) = 0 if and only if T (x) = A′(θ). Note that A′′(θ) = Varθ (T (X )) > 0,
so A′ is an increasing function. Hence there is at most one root, and the MLE is
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θ̃ = (A′)−1(T (x)). Here I(θ) = Varθ (T (X )) and θ̃ satisfies 1
n

∑n
i=1 T (x i) = A′(θ).

The binomial(n,θ), Poisson(θ), and normal (if one parameter is known) fall under
this example.

7.2.3 Example (Multi-parameter exponential family). In this case the conditions
always all hold.

pη(x) = exp(
d
∑

i=1

ηi Ti(x)− A(η))h(x)

˙̀
η j
= T j(x)−

∂

∂ η j
A(η)

The second derivative matrix is Cov(T, T ), which is positive definite.

7.2.4 Example (Double exponential). Also referred to as the Laplace distribu-
tion. The joint density is f (x1, . . . , xn;θ) = 1

2n exp(−
∑n

i=1 |x i − θ |). The MLE is
found by making

∑n
i=1 |x i − θ | as small as possible. It turns out that θ̂ = sample

median. Indeed, if the sample median is t, then

n
∑

i=1

|x i − t|=
∑

x i≥t

(x i − t) +
n
∑

x i<t

(t − x i)

(Fill this in.) We cannot use the theorem to conclude that
p

n(θ̂ − θ) (d)−→ N(0, I(θ)−1),

even though it is true. Let U1, . . . , Un ∼ U(0, 1). Following pages 89-93 of Fergu-
son’s book, let 0< q < 1 and k := bnqc. The q-quantile is U(k). Then

p
n(U(k) − q)

(d)−→ N(0, q(1− q)).

Now if Y1, . . . , Yn are distributed as some distribution function F , then F(Yi) ∼
U(0,1), and the order statistics are preserved. It follows that

p
n(Y([nq]) − yq)

(d)−→ N

�

0,
q(1− q)
f (yq)2

�

where yq is the q-quantile of F and f is the density. In the case of the double
exponential, the theoretical median is θ and the value of the density at the median
is 1/2, so p

n(θ̂ − θ) (d)−→ N(0, 1).

7.2.5 Example (Cauchy location family). Here f (x) = 1/(π(1+x2)). The deriva-
tive of the log-likelihood function is hence

˙̀(θ |x) =
2(x − θ)

1+ (x − θ)2
.
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Setting ˙̀(θ |x1, . . . , xn) = 0 and rearranging,

0=
n
∑

i=1

2(x i − θ)
1+ (x i − θ)2

0=
n
∑

i=1

�

(x i − θ)
∏

i 6= j

(1+ (x j − θ)2)
�

This is a polynomial equation for θ , and it may have as many as 2n− 1 different
roots. The method we use is as follows. Find a

p
n-consistent estimator θ̃n and

then iterate one step to get

θ̂n = θ̃n −
˙̀

n(θ̃n)
῭(θ̃n)

.

The initial estimator we choose is θ̃n = sample median (because the theoretical
mean is infinite). Via the same analysis as the last example, since the theoretical
median is θ ,

p
n(θ̃n − θ)

(d)−→ N

�

0,
π2

4

�

.

7.3 Method of Moments

The method of moments is very useful for constructing
p

n-estimators. Assume that
f is a density function with sufficiently thin tails that a few moments exists. Let
X1, . . . , Xn ∼ f (x − θ). Set

E[X ] =
∫

R
x f (x − θ)d x =

∫

R
(θ + x) f (x)d x = θ +m

where m=
∫

R x f (x)d x is the theoretical mean. Then

p
n((X n −m)− θ)→ N(0,σ2),

where σ2 is the theoretical variance. Applying Newton-Ralphson, a good estima-
tor is hence

θ̂ = X n − a−
˙̀(X n − a)
῭(X n − a)

.

7.3.1 Example (Mixture distributions). Assume X1, . . . , Xn ∼ θ F + (1 − θ)G.
This can come up in Bayesian situations, e.g. X i is class 1 with probability θ and
class 2 with probability 1− θ , and we wish to estimate θ , the proportion of the
population in class 1.

E[X n] = θmF + (1− θ)mG = θ(mF −mG) +mG

Assuming mF 6= mG but both are known, then (X n − mG)/(mF − mG) is a
p

n-
consistent estimator. In practical applications it is often the case that mG is not
known, but similar estimators can be found.
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7.3.2 Example (Joe Hodge’s super-efficiency). Suppose that
p

n(δn−θ)
(d)−→ N(0,ν(θ)).

One would expect that ν(θ) ≥ I(θ)−1, but this is not always the case. Suppose
X1, . . . , Xn ∼ N(θ , 1) and let

δn =

¨

X n |X n|> n−1/4

aX n |X n| ≤ n−1/4

when θ 6= 0. Then since
p

n(X n − θ)
(d)= N(0,1), so X n = θ +

1p
n
N(0, 1), it follows

that P[X n 6= δn] = P[|X n| ≤ n−1/4] → 0 as n → ∞. It will follow that
p

n(δn −
θ)

(d)−→ N(0, 1) when θ 6= 0. On the other hand, when θ = 0, δn = aXn with high
probability, so

p
nδn

(d)−→ N(0, a2). In this case

ν(θ) =

¨

1 θ 6= 0

a2 θ = 0.

It turns out that this can only happen on a set of parameters of Lebesgue measure
zero.

7.3.3 Example. Let Pµ,σ(x) =
1
2
φ(x) + 1

2σ
φ( x−µ

σ
) be a mixture of normals, a

standard normal half of the time, and a N(µ,σ2) half the time. Then trying to
maximize the likelihood yields an infinite value, so there is no MLE.

sup
µ,σ

L(x |µ,σ)≥
¨

sup
σ,µ=x

1

2
φ(x) +

1

2σ
φ(0)

«

=∞.
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minimax, 28
minimax risk, 18
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monotone likelihood ratio property,

40
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MP test, 38

Neyman structure, 46
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point estimation, 7
power function, 20, 41
power of a test, 20, 38
power series distribution, 16
prior distribution, 28

randomized decision rule, 27
rejection region, 20
risk function, 11
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sample space, 27
SB, 44
score, 26
score vector, 27
similar on the boundary, 44
simple test, 39
size of a test, 38
squared error loss, 12
statistic, 7
Stein’s Lemma, 36
sufficient, 7

test, 20
type I error, 20, 38
type II error, 38

UMP, 40
UMPU, 44
UMVUE, 12
unbiased estimator, 12
unbiased test, 44
uniform minimum variance unbiased

estimator, 12
uniformly most powerful, 40

weighted squared error loss, 30
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