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Sobolev Spaces 3

1 Sobolev Spaces

1.1 Introduction

This course is concerned with modern methods in the theory of PDE, in particular
with linear parabolic and elliptic equations. It will be a technical course more than
an applied course, and we will be learning the language required to understand
research in PDE.

For the purposes of illustration, consider the boundary value problem

¨

−∆u= f in U
u= 0 on ∂ U

where U is connected and U is compact. Multiply by a test function ϕ ∈ C∞c (U)
and integrate both sides

∫

U

−∆uϕd x =

∫

U

f ϕd x .

Integrate by parts to get,
∫

U

∇u · ∇ϕd x =

∫

U

f ϕd x ,

since ϕ|∂ U = 0. Define a bilinear form on some space H, with the property that
u= 0 on ∂ U for u ∈ H, by

〈u1, u2〉=
∫

U

∇u1 · ∇u2d x .

For u ∈ H, the norm is ‖u‖ =
∫

U
|∇u|2d x , and we hope that H is a Hilbert space

and ϕ 7→
∫

U
f ϕd x is a bounded linear functional. If these hopes hold true then

by the Riesz representation theorem there is a unique u ∈ H such that
∫

U

∇u · ∇ϕd x = 〈u,ϕ〉=
∫

U

f ϕd x .

Sounds nice, but does it all work?

1.2 Weak derivatives

1.2.1 Definition. Let u ∈ L1
loc(U). The function v ∈ L1

loc(U) is a weak partial
derivative of u in the ith coordinate if

∫

U

uϕx i
d x = (−1)

∫

U

vϕd x



4 PDE II

for all ϕ ∈ C∞c (U). We write v = ux i
.

Analogously, v is the αth weak partial derivative for a multiindex α if

∫

U

uDαϕd x = (−1)|α|
∫

U

vϕd x

for all ϕ ∈ C∞c (U), and we write v = Dαu.

Of course, to define such notation we need the following.

1.2.2 Proposition. Weak derivatives are unique if they exist.

PROOF: Suppose that w1 and w2 are αth derivatives of u. Then, for all ϕ ∈ C∞c (U),

(−1)|α|
∫

U

w1ϕd x = (−1)|α|
∫

U

w2ϕd x .

So
∫

U
(w1 −w2)ϕd x = 0 for all ϕ ∈ C∞c (U), and it follows that w1 = w2 a.e.

(Indeed, let η be the standard mollifier, and ηε be the rescaled mollifier with
support B(0,ε). Then wε(y) :=

∫

U
w(x)ηε(y − x)d x = 0 for all ε and all y , and

this completes the argument since wε → w a.e.) �

1.2.3 Examples.
(i) Let u(x) = |x | for x ∈ R. Then ux(x) = 1 if x > 0 and = −1 if x < 0.

Indeed, for ϕ ∈ C∞c (R),

−
∫

R
uxϕd x =−

∫ 0

−∞
uxϕd x −

∫ ∞

0

uxϕd x

=

∫ 0

−∞
uϕx d x − u(0)ϕ(0) +

∫ ∞

0

uϕx d x + u(0)ϕ(0)

=

∫

R
|x |ϕx d x

We will see later that the weak derivative corresponds to the usual general-
ization of derivative for absolutely continuous functions.

(ii) Let u(x) = 1(0,∞). Then ux(x) = 0 is the only candidate for the derivative
(why?), but

∫

R
uϕx d x =

∫ ∞

0

ϕx d x =−ϕ(0)

which is not necessarily zero. There is a more general notion (that of a “dis-
tribution”) that would give this function a derivative, but for our purposes
this function does not have a weak derivative.
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1.3 Sobolev spaces

1.3.1 Definition. For 1 ≤ p < ∞, let W k,p(U) be the collection of functions u ∈
L1

loc(U) such that for all α with |α| ≤ k, Dαu exists and is in Lp(U). For u ∈
W k,p(U),

‖u‖W k,p(U) :=
�

∑

|α|≤k

∫

U

|Dαu|pd x
�

1
p

=
�

∑

|α|≤k

‖Dαu‖p
p

�
1
p

For p =∞, take instead the essential supremum.

When p = 2 we may write Hk(U) :=W k,2(U).

1.3.2 Definition. W k,p
0 (U) := C∞c (U)

W k,p(U)
.

1.3.3 Example. Let U = B(0,1)⊆ Rn, α > 0, and u(x) = 1
|x |α . Note that

∫

B(0,ε)

1

|x |α
d x = C

∫ ε

0

1

rα
rn−1dr = C̃ rn−α

�

�

�

ε

0
,

so u is in L1
loc(U) if and only if α < n.

For which p and n is u in W 1,p(U)? u is a.e. differentiable, so

ux i
=−α

1

|x |α+1 ·
x i

|x |
=−

αx i

|x |α+2 ,

and |Du| = α

|x |α+1 . As above, ux i
∈ L1

loc(U) if and only if α < n− 1. To check that

this is truly the weak derivative, let Aε := B(0, 1)\B(0,ε). By integration by parts,
∫

Aε

uϕx i
d x =−

∫

Aε

ux i
ϕd x +

∫

∂ B(0,ε)

uϕνidS.

As ε→ 0, Aε → B(0,1) and
�

�

�

�

∫

∂ B(0,ε)

1

εα
ϕνidS

�

�

�

�

≤ Cεn−1−α‖ϕ‖L∞ → 0.

Finally,
∫

U
|Du|pd x <∞ only if

∞>
∫

U

1

|x |(α+1)p
d x = C

∫ 1

0

rn−1−(α+1)pd x = C rn−(α+1)p
�

�

�

1

0
,

which happens when (α+ 1)p < n, or α < n
p
− 1.

1.3.4 Proposition. Let u, v ∈W k,p(U) and let |α| ≤ k.
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(i) Dαu ∈W k−|α|,p(U)

(ii) Dβ(Dαu) = Dα(Dβu) = Dα+βu, for each β such that |α|+ |β | ≤ k.

(iii) Dα is a linear operator.

(iv) If V ⊆ U is open then u|V ∈W k,p(V ).

(v) If ξ ∈ C∞c (U) then ξu ∈W k,p(U) and

Dα(ξu) =
∑

β≤α

�

α

β

�

DβξDα−βu

where
�α

β

�

:= α!
β!(α−β)! .

1.3.5 Theorem. W k,p(U) is a Banach space.

PROOF: If ‖u‖ = 0 then ‖u‖p ≤ ‖u‖ = 0, so u = 0 a.e. Clearly the norm is
homogeneous, so we are left to check the triangle inequality. For p <∞,

‖u+ v‖=
�

∑

α≤k

‖Dαu+ Dαv‖p
p

�
1
p

≤
�

∑

α≤k

�

‖Dαu‖p + ‖Dαv‖p
�p
�

1
p

≤
�

∑

α≤k

‖Dαu‖p
p

�
1
p

+
�

∑

α≤k

‖Dαv‖p
p

�
1
p

= ‖u‖+ ‖v‖

by Minkovski’s inequality in both cases. The case p =∞ is clear.
Let {um} be a Cauchy sequence in W k,p(U). Since the Sobolev norm dominates

the Lp norm, all of the sequences {um} and {Dαum} are Cauchy in Lp, and hence
convergent in Lp. Let u and uα be the limits of these sequences in Lp. Now

∫

U

uDαϕd x = lim
m→∞

∫

U

umDαϕd x

= lim
m→∞
(−1)|α|

∫

U

ϕDαumd x = (−1)|α|
∫

U

uαϕd x

Therefore uα = Dαu, and the sequence converges in W k,p(U). �

1.4 Approximation by smooth functions

Mollifiers

A mollifier is a function η ∈ C∞c (R
n) such that
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(i)
∫

Rn η= 1;

(ii) η≥ 0;

(iii) η is radially symmetric; and

(iv) supp(η)⊆ B(0,1).

For any ε > 0 define ηε(x) =
1
εnη(

x
ε
). Then ηε is also a mollifier for ε < 1. For

f ∈ L1
loc(R

n), define

f ε(x) := ηε ∗ f (x) =

∫

Rn

ηε(x − y) f (y)d y =

∫

Rn

ηε(y) f (x − y)d y.

1.4.1 Proposition. The following properties are true of mollified functions.

(i) f ε ∈ C∞ for every ε > 0;

(ii) f ε → f a.e.;

(iii) If f ∈ C(U), then f ε → f in Cloc(U). Warning: Mollification does not play
well with the L∞ norm.

(iv) If 1≤ p <∞ and f ∈ Lp
loc(U) then f ε → f in Lp

loc(U).

1.4.2 Exercise. Is it the case that if 1 ≤ p < ∞ and f ∈ Lp(U) then f ε → f in
Lp(U)?

Interior Approximation

1.4.3 Theorem. Let 1 ≤ p < ∞ and u ∈ W k,p(U). For any 0 < ε < 1, let Uε :=
{x ∈ U | dist(x ,∂ U)> ε}. For x ∈ Uε, define uε(x) := ηε ∗ u(x). Then

(i) uε ∈ C∞(Uε); and

(ii) uε → u in W k,p
loc (U) as ε→ 0.

Notice that if V ⊂⊂ U then dist(V ,∂ U)> 0, so uε is defined on V for all small
enough ε.

PROOF: Let |α| ≤ k. Then for x ∈ Uε, Dαuε(x) = ηε ∗ Dαu. Indeed,

Dαuε(x) = Dαx

∫

U

ηε(x − y)u(y)d y

=

∫

U

Dαxηε(x − y)u(y)d y

= (−1)|α|
∫

U

Dαyηε(x − y)u(y)d y

= (−1)|α|(−1)|α|
∫

U

ηε(x − y)Dαu(y)d y

= ηε ∗ Dαu
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Now Dαu ∈ Lp
loc(U), so Dαuε = ηε ∗ Dαu→ Dαu in Lp

loc(U). It follows that for any
V ⊂⊂ U , as ε→ 0,

‖uε − u‖p
W k,p(V )

=
∑

|α|≤k

‖Dαuε − Dαu‖p
Lp(V )→ 0.

�

Approximation by smooth functions

1.4.4 Theorem. Let U be a bounded domain, 1≤ p <∞, and u ∈W k,p(U). Then
there are um ∈ C∞(U)∩W k,p(U) such that um→ u in W k,p(U).

PROOF: Let Ui := {x ∈ U | dist(x ,∂ U)> 1
i
}, and let Vi := Ui+3\U i+1 and V0 := U1.

Then U =
⋃∞

i=0 Vi , and each point of U is contained in at most three of the Vi .
Let {ξi} be a partition of unity subordinate to the cover Vi . That is to say,

(i) ξi ∈ C∞(U , [0,1]);

(ii) supp(ξi)⊆ Vi; and

(iii)
∑

i ξi = 1.

Notice that supp(ξiu)⊆ Vi . Fix δ > 0, and pick ε > 0 so small that

(i) ‖ηε ∗ (ξiu)− ξiu‖W k,p(U) ≤
δ

2i+1 ; and

(ii) supp(ηε ∗ (ξiu))⊆Wi := Ui+4 \ U i .

We can do this because, by 1.4.3, ηε ∗ (ξiu) approximates ξiu locally, and are they
both identically zero off of a compact set.

Let v :=
∑∞

i=0ηε ∗ (ξiu). Then for each V ⊂⊂ U ,

‖v− u‖W k,p(V ) ≤
∞
∑

i=0

‖ηε ∗ (ξiu)− ξiu‖W k,p(U) ≤
∞
∑

i=0

δ

2i+1 = δ,

so we conclude ‖v − u‖W k,p(U) ≤ δ by taking the supremum over all V ⊂⊂ U . �

1.4.4 implies that W k,p is the completion (in its norm) of the collection of
smooth functions with finite W k,p norm.

Global approximation

In the previous approximation we could only find functions um ∈ C∞(U). If the
boundary of U is well-behaved then we can do better.

1.4.5 Theorem. Let U be a bounded domain with C1 boundary, 1 ≤ p <∞, and
u ∈W k,p(U). Then there are um ∈ C∞(U) such that um→ u in W k,p(U).
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PROOF: We write x = ( x̂ , xn) for x ∈ Rn. Fix a point x0 ∈ ∂ U and write

U ∩ B(x0, r) = {x ∈ B(0, r) | xn > γ( x̂)}

for some r > 0 and C1 function γ : Rn−1→ R. Let V := U ∩ B(x0, r
2
).

For λ ∈ R and ε > 0, let xε := x +λεen. Choose λ so that

B(xε,ε)⊆ U ∩ B(x0, r) for all ε > 0 and x ∈ V .

(Idea: take λ large, depending on ‖Dγ‖L∞(V∩∂ U), so that the tip of the cone over
x with “slope” λ lies in B(x0, r).)

Define uε(x) := u(xε) and let vε := ηε ∗uε. The idea is that we jiggle x slightly
so that there is “room” to mollify. Then vε ∈ C∞(V ), and we claim that vε → u in
W k,p(V ). Indeed let |α| ≤ k.

‖Dαvε − Dαu‖Lp(V ) ≤ ‖Dαuε − Dαu‖Lp(V ) + ‖Dαuε − Dαvε‖Lp(V )

The shift operator is continuous on Lp, so the left hand term goes to zero as ε→ 0.
Recall Dαvε = Dα(ηε ∗ uε) = ηε ∗ Dαuε, so

∫

V

|ηε ∗ Dαuε(x)− Dαuε(x)|pd x =

∫

V+λεen

|ηε ∗ Dαu(x)− Dαu(x)|pd x

≤
∫

U∩B(x0,r)

|ηε ∗ g − g|pd x → 0

as ε → 0, where g(x) = Dαu(x) for x ∈ U and 0 outside. (This redefinition is
required so that the convolution is defined over all of U .)

Let δ > 0. ∂ U is compact, so choose finitely many boundary points x i (1 ≤
i < N) such that the corresponding radii ri and sets Vi := U ∩ B(x i ,

ri

2
) cover ∂ U ,

and choose vi ∈ C∞(V i) such that

‖vi − u‖W k,p(Vi) ≤
δ

N
.

Choose V0 ⊂⊂ U such that U =
⋃N−1

i=0 Vi and v0 ∈ C∞(V 0) such that

‖v0 − u‖W k,p(Vi) ≤
δ

N
,

which may be done by 1.4.3.
Let {ξi} be a partition of unity defined on U subordinate to the cover {V0, B(x i , ri)},

and set v :=
∑N−1

i=0 ξi vi . Finally,

‖ξi vi − ξiu‖W k,p(Vi) =
�

∑

|α|≤k

∫

Vi

|Dα(ξi vεi
)− Dα(ξiu)|pd x

�
1
p

≤ C‖vi − u‖W k,p(Vi)
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where Ci is a constant that depends only on ξi , |α|, n, and p (but not on N or δ).
Indeed,

∫

V

|(ξv)x − (ξu)x |pd x =

∫

V

|ξ(vx − ux) + ξx(v− u)|pd x

≤ C

∫

V

|ξ|p|vx − ux |p + |ξx |p|v − u|pd x

≤ C(‖ξ‖∞ + ‖ξx‖∞)
∫

V

|vx − ux |p + |v − u|pd x .

Therefore ‖v − u‖W k,p(U) ≤
∑N−1

i=0 Ci‖vi − u‖W k,p(Vi) ≤ Cδ. �

The construction used in this proof also works for Lipschitz domains (i.e. those
domains for which the boundary can be smoothed out by a Lipschitz continuous
function). The idea is that, for this proof to work, the “corners” of the domain
cannot be too sharp.

1.5 Extension

1.5.1 Theorem. Let U be a bounded domain with C1 boundary, 1 ≤ p <∞, and
V be open in Rn and such that U ⊂⊂ V . Then there exists a bounded linear
operator E : W 1,p(U)→W 1,p(Rn) such that

(i) Eu|U = u for all u ∈W 1,p(U);

(ii) supp(Eu)⊆ V ; and

(iii) ‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(U) (where C depends only on p, U , and V ).

PROOF: Let u ∈ C1(U), and suppose there is x0 ∈ ∂ U and a small ball B around
x0 such that inside this ball ∂ U is the hyperplane {xn = 0}. For x ∈ B let

u(x) =

¨

u(x) xn > 0

−3u( x̂ ,−xn) + 4u( x̂ ,− xn

2
) xn < 0

Then u is continuous on B, and is in fact C1 on B. Further, we have the estimate

‖u‖Lp(B−) ≤ C‖u‖Lp(B+)

since
∫

B−
|−3u( x̂ ,−xn) + 4u( x̂ ,− xn

2
)|pd x ≤ C

∫

B−
|u( x̂ ,−xn)|p + |u( x̂ ,− xn

2
)|pd x

≤ C

∫

B+
|u|pd x
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by changing variables appropriately. By the same method it can be shown

‖u‖W 1,p(B) ≤ C‖u‖W 1,p(B+).

Now suppose that ∂ U is not necessarily so nice near x0. There is a C1 change
of coordinates y = Φ(x) such that ŷ = x̂ and yn = xn − γ( x̂), and locally the
boundary in the image is {yn = 0}. Let Ψ denote the inverse mapping, and notice
that both det(DΦ) = 1 and det(DΨ) = 1. Let u ∈ C1(U) and v(y) = u(Ψ(y)).
As above, reflect to obtain v defined on some ball B around y0 = Φ(x0). For
x ∈ W = Ψ(B), let u(x) = v(Φ(x)). Then u is a C1 extension of u defined on the
neighbourhood W of x0. Further,

‖u‖p
W 1,p(W ) =

∫

W

|u(x)|p +
n
∑

i=1

|ux i
(x)|pd x

=

∫

W

|v(Φ(x))|p +
n
∑

i=1

|∂x i
v(Φ(x))|pd x

=

∫

B

|v(y)|pd y +
n
∑

i=1

∫

W

�

�

�

�

n
∑

j=1

∂y j
v(Φ(x))

∂Φ j

∂ x i

�

�

�

�

p

d x

=

∫

B

|v(y)|pd y + C
n
∑

i=1

∫

B

|v y j
(y)|pd y

≤ C‖v‖p
W 1,p(B) ≤ C‖v‖p

W 1,p(B+) ≤ C‖u‖p
W 1,p(W∩U)

Choose W0 and {Wi | 1 ≤ i < N} such that U ⊆
⋃N−1

i=0 Wi ⊆ V and ∂ U ⊆
⋃N−1

i=0 Wi . Choose a partition of unity {ξi} subordinate to this cover and let ui be
the reflection obtained above defined on Wi . Define

Eu := ξ0u+
N−1
∑

i=1

ξiui ,

so that supp(Eu)⊆ V and

‖Eu‖W 1,p(Rn) ≤
N−1
∑

i=1

‖ξiui‖W 1,p(Wi) ≤
N−1
∑

i=1

C(ξi)‖ui‖W 1,p(Wi) ≤ C‖u‖W 1,p(U).

For u ∈W 1,p(U), by 1.4.5 there are um ∈ C∞(U) such that um→ u in W 1,p(U).
E is bounded and linear on a dense subset of W 1,p(U), so we can extend it to a
continuous linear map by defining Eu := limn→∞ Eum. �

This theorem also holds true for C k domains and W k,p, but fails for domains
with corners.

1.6 Traces

Even for reasonable sets, it is not possible to talk of the value of an element of
Lp(U) on the boundary of U . But it is possible for elements of W 1,p(U) when U
has C1 boundary.
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1.6.1 Theorem. Let U be a bounded domain with C1 boundary, and 1 ≤ p <∞.
There exists T : W 1,p(U) → Lp(∂ U), linear and bounded such that Tu = u|∂ U if
u ∈W 1,p(U)∩ C(U).

PROOF: First, we consider u ∈ C1(U). Let x0 ∈ ∂ U and assume that ∂ U is flat
near x0 (i.e. the boundary is given by {xn = 0} in U ∩ B := B(x0, r)). Let Γ =
(∂ U)∩ B(x0, r

2
). Let ξ be a cut-off-function, i.e.

(i) ξ ∈ C∞c (B, [0,1]); and

(ii) ξ= 1 on B(x0, r
2
).

Then
∫

Γ

|u|pd x ≤
∫

B∩{xn=0}
ξ|u|pd x

=−
∫

B+
(ξ|u|p)xn

d x

=−
∫

B+
ξxn
|u|p + ξp|u|p−1sign(u)uxn

d x

≤ C

∫

B+
|u|p + |Du|pd x

by Young’s inequality, ab ≤ ap

p
+ bq

q
for a, b ≥ 0, where 1

p
+ 1

q
= 1. (We have

|uxn
||u|p−1 ≤ C(|uxn

|p+|u|p).) (An equivalent formulation is that aαbβ ≤ C(aα+β+
bα+β).)

Second, if the boundary is not flat then there is a mapping Φ that flattens it
out. We have (in the notation of the proof of 1.5.1)

1

C
‖u‖Lp(Γx0

≤ ‖v‖Lp(Γy0
) ≤ C‖v‖W 1,p(By0

) ≤ C‖u‖W 1,p(W )

Therefore for all x0 ∈ ∂ U there is a relatively open Γx0
in ∂ U with x0 ∈ Γx0

such
that there is Cx0

= C(ξ0, U , p) with ‖u‖Lp(Γx0
≤ Cx0

‖u‖W 1,p(U).
Third, ∂ U is compact, so there is a finite cover {Γi}, and ‖u‖Lp(U) ≤ C‖u‖W 1,p(U)

where C =max Ci .
Fourth, consider u ∈ W 1,p(U). There are um ∈ W 1,p(U) ∩ C∞(U) such that

um→ u in W 1,p(U). We have

‖Tum − Tu`‖Lp(∂ U) = ‖T (um − u`)‖Lp(∂ U) ≤ C‖um − u`‖W 1,p(U)

so {Tum} is a Cauchy sequence (hence convergent) since {um} is convergent (hence
a Cauchy sequence). Take Tu := limm→∞ Tum.

We must still check the property for u ∈W 1,p(U)∩ C(U). �

1.6.2 Theorem. Let U be a bounded domain with C1 boundary, and 1 ≤ p <∞.
For u ∈W 1,p(U), u ∈W 1,p

0 (U) if and only if Tu= 0.
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1.7 Sobolev inequalities

Fix U ⊆ RN . For what N , p, q is there a (continuous) embedding of W 1,p(U) into
Lq(U)?

Gagliardo-Nirenberg-Sobolev inequality

Consider u ∈ C∞c (R
N ). We consider first a “scale-free” inequality involving only

the derivatives. Note first that any inequality that holds must have the powers of
the norms balance on each side (e.g. ‖u‖ ≤ C‖Du‖2 can not hold for all u, for any
norms). This is seen by considering uα := αu.

Suppose that ‖u‖Lq(RN ) ≤ C‖Du‖Lp(RN ) holds. Consider uλ(x) := u(λx) to see
that

‖uλ‖q = λ
− N

q ‖u‖q and ‖Duλ‖p = λ
1− N

p ‖Du‖p,

so
λ
− N

q
−1+ N

p ‖uλ‖q ≤ ‖Duλ‖p,

and for this to work we must have 1
p
+ 1

q
= 1

N
by the reasoning in the paragraph

above. The Sobolev conjugate is p∗ := q = N p
N−p

.

1.7.1 Theorem (Gagliardo-Nirenberg-Sobolev).
Assume that 1 ≤ p < N . There exists C = C(N , p) such that ‖u‖p∗ ≤ C‖Du‖p for
all u ∈ C1

c (R
N ).

PROOF: Write u(x) =
∫ x i

−∞ ux i
(x1, . . . , x i−1, si , x i+1, . . . , xn)dsi , so that by the fun-

damental theorem of calculus,

|u(x)| ≤
∫ ∞

−∞
|ux i
(x1, . . . , x i−1, si , x i+1, . . . , xn)|dsi .

For p = 1, p∗ = N
N−1

, and

|u(x)|
N

N−1 =
N
∏

i=1

�
∫ ∞

−∞
|ux i
|dsi

�
1

N−1

∫ ∞

−∞
|u(x)|

N
N−1 d x1 =

�
∫ ∞

−∞
|ux1
|ds1

�
1

N−1
∫ ∞

−∞

N
∏

i=2

�
∫ ∞

−∞
|ux i
|dsi

�
1

N−1

d x1

≤
�
∫ ∞

−∞
|ux1
|ds1

�
1

N−1
� N
∏

i=2

∫ ∞

−∞

∫ ∞

−∞
|ux i
|dsi d x1

�
1

N−1

Repeat this (see Evans) to get

�
∫

RN

|u(x)|
N

N−1 d x
�

N−1
N

≤
∫

RN

|Du(x)|d x .
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Now for 1 < p < N , consider v = |u|γ. By Hölder’s inequality and the result for
p = 1 above,

�
∫

RN

|u(x)|γ
N

N−1 d x
�

N−1
N

=
�
∫

RN

|v(x)|
N

N−1 d x
�

N−1
N

≤
∫

RN

γ|u|γ−1|Du(x)|d x

≤ γ
�
∫

RN

|u|(γ−1) p
p−1 d x

�
p−1

p
�
∫

RN

|Du|pd x
�

1
p

.

Take γ= p(N−1)
N−p

, and notice that

(γ− 1)
p

p− 1
=

N p

N − p
= γ

N

N − 1
and

N − 1

N
−

p− 1

p
=

N − p

N p
,

so ‖u‖p∗ ≤ C‖Du‖p. �

1.7.2 Theorem. Let U ⊆ RN be a bounded domain with C1 boundary, and 1 ≤
p < N . If u ∈ W 1,p(U) then u ∈ Lp∗(U) and there is a constant C = C(N , p, U)
such that ‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U).

PROOF: Let V be a large ball containing U . By 1.5.1 there is u ∈ W 1,p(RN ) such
that supp(u)⊆ V and there is C1 = C1(N , p, U) such that

‖u‖W 1,p(RN ) ≤ C1‖u‖W 1,p(U).

By 1.4.4 there are um ∈W 1,p(RN )∩C1
c (R

N ) such that um→ u in W 1,p(RN ). By the
Gagliardo-Nirenberg-Sobolev inequality there is C2 = C2(N , p, U) such that

‖um − u`‖Lp∗ (RN ) ≤ C2‖Dum − Du`‖Lp(RN ) ≤ C2‖um − u`‖W 1,p(Rn).

It follows that um is a Cauchy sequence in Lp∗(RN ), and so um → u in Lp∗(RN ),
and we have

‖u‖Lp∗ (U) ≤ ‖u‖Lp∗ (RN ) ≤ C2‖Du‖Lp(RN ) ≤ C1C2‖u‖W 1,p(U). �

It is not necessarily the case that W 1,N (U) embeds in L∞(U) (see problem set
1, exercise 13), so the inequality does not hold in the limit p↗ N .

1.7.3 Theorem (Poincaré Inequality). Let U ⊆ RN be a bounded domain with
C1 boundary, and 1 ≤ p < N . If u ∈W 1,p

0 (U) then there is C = C(N , p) such that
‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U).

PROOF: By definition of W 1,p
0 (U) there is um ∈ C1

c (U) such that um→ u in W 1,p(U).

‖um − u`‖Lp∗ (U) ≤ C‖Dum − Du`‖Lp(U)

so um→ u in Lp∗(U) and ‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U). �
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If U is bounded and p > q then Lp(U) embeds in Lq(U). Indeed,

∫

U

|u|qd x ≤
�
∫

U

(|u|q)
p
q d x

�
q
p
�
∫

U

1d x
�

p−q
p

so ‖u‖q ≤ C‖u‖p, where C is a constant depending on the volume of U .

Morrey’s inequality

1.7.4 Definition. u ∈ C(U) is Hölder continuous with exponent γ if

[u]γ := sup
x ,y∈U
x 6=y

|u(x)− u(y)|
|x − y|γ

<∞.

We write u ∈ C0,γ(U), with norm ‖u‖C0,γ(U) := ‖u‖C(U) + [u]γ Analogously, define
‖u‖C k,γ(U) := ‖u‖C k(U) +

∑

|α|=k[D
αu]γ for u ∈ C k(U). (Note that the Hölder semi-

norm is only applied to the highest order derivatives.)

1.7.5 Theorem. Let N < p ≤∞. Then there is a constant C = C(N , p) such that
for γ= 1− N

p
and all u ∈ C1

c (R
N ), ‖u‖C0,γ(RN ) ≤ C‖u‖W 1,p(RN ).

Keep in mind that u ∈ W 1,∞(U) does not necessarily imply u ∈ C0,1(U). The
function in exercise 13 from problem set 1 (where U is taken to be the unit disc
with a slit removed) is not Hölder continuous for any exponent.

PROOF: Let x , y ∈ Rn and write y = x + rw, where w is a unit vector and r =
|x − y|. Let ϕ(t) = u(x + tw), so that ϕ′(t) = Du(x + tw) · w, and by the
fundamental theorem of calculus,

|u(y)− u(x)|=
�

�

�

�

∫ r

0

Du(x + tw) ·w dt

�

�

�

�

≤
∫ s

0

|Du(x + tw)| d t.

Therefore

∫

∂ B(0,1)

|u(x + rw)− u(x)| dSw ≤
∫ r

0

∫

∂ B(0,1)

|Du(x + tw)| dSw d t

=

∫ r

0

∫

∂ B(x ,t)

|Du(z)|t1−N dSz d t

=

∫

B(x ,r)

|Du(z)|
|x − z|N−1 dz
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taking z = x + tw, and by the co-area formula. Now consider
∫

B(x ,r)

|u(y)− u(x)|d y =

∫ r

0

∫

∂ B(x ,t)

|u(y)− u(x)|dSy d t

=

∫ r

0

tN−1

∫

∂ B(0,1)

|u(x + tw)− u(x)|dSwd t

≤
∫ r

0

tN−1

∫

B(x ,t)

|Du(z)|
|x − z|N−1 dz d t

≤
∫ r

0

tN−1d t

∫

B(x ,r)

|Du(z)|
|x − z|N−1 dz

=
rN

N

∫

B(x ,r)

|Du(z)|
|x − z|N−1 dz

The first inequality below holds since it holds pointwise.

|u(x)| ≤ −
∫

B(x ,1)

|u(x)− u(y)|d y +−
∫

B(x ,1)

|u(y)|d y

≤ C

∫

B(x ,1)

|Du(y)|
|x − y|N−1 d y + C‖u‖Lp(RN )

≤ C
�
∫

B(x ,1)

|Du(y)|pd y
�

1
p
�
∫

B(x ,1)

|x − y|(1−N) p
p−1 d y

�
p−1

p

+ C‖u‖Lp(RN )

≤ C‖u‖W 1,p(RN )

by Hölder’s inequality, and since p > N . Therefore ‖u‖∞ ≤ C‖u‖W 1,p(RN ).
Let W = B(x , r)∩ B(y, r), and notice that C1|B(x , r)| ≤ |W | ≤ |B(x , r)|.

|u(x)− u(y)| ≤ −
∫

W

|u(x)− u(z)|dz+−
∫

W

|u(z)− u(y)|dz

≤
1

C1
−
∫

B(x ,r)

|u(x)− u(z)|dz+
1

C1
−
∫

B(y,r)

|u(z)− u(y)|dz

But the two integrals are of comparable size, and

−
∫

B(x ,r)

|u(x)− u(z)|dz

≤ C

∫

B(x ,r)

|Du(z)|
|x − z|N−1 dz

≤ C
�
∫

B(x ,r)

|Du(z)|pdz
�

1
p
�
∫

B(x ,r)

|x − z|(1−N) p
p−1 dz

�
p−1

p

≤ ‖u‖W 1,p(RN )s
1− N

p .
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Therefore, since r = |x − y|,

sup
x ,y∈RN

x 6=y

|u(x)− u(y)|

|x − y|1−
N
p

≤ C‖u‖W 1,p(RN )

and ‖u‖C0,γ(RN ) ≤ C‖u‖W 1,p(RN ), by combining this with the L∞ bound obtained
above. �

1.7.6 Theorem. Let U ⊆ RN be a bounded domain with C1 boundary, and N <
p <∞. Then W 1,p(U) embeds in C0,γ(U), where γ = 1− N

p
, and the norm of the

embedding depends only on N , p, and U .

Sobolev inequalities

Recall, Gagliardo-Nirenberg-Sobolev says that when p < N , W 1,p(U) ,→ Lq(U) for
q ≤ p∗ = N p

N−p
, and M says that when p > N , W 1,p(U) ,→ C0,γ(U) for γ≤ 1− N

p
.

1.7.7 Theorem (Sobolev Inequalities). Let U ⊆ RN be a bounded domain with
C1 boundary, and u ∈W k,p(U).

(i) If kp < N then u ∈ Lq(U), where q = N p
N−kp

(so 1
q
= 1

p
− k

N
), and the norm of

the embedding depends only on N , p, k, and U .

(ii) If kp > N then u ∈ C k−b N
p
c−1,γ(U), where γmay be taken 0≤ γ < 1 if N

p
is an

integer, and 0≤ γ≤ bN
p
c+1− N

p
otherwise, and the norm of the embedding

depends only on N , p, k, γ, and U .

PROOF: Let p( j) := N p
N− jp

(so p∗ = p(1), and 1
p( j)
= 1

p
− j

N
). Since, by the properties

of the weak derivative, Dαu ∈ W 1,p(U) for all |α| < k, the Gagliardo-Nirenberg-
Sobolev inequality implies that, for each j = 1, . . . , k− 1,

‖u‖W 1− j,p( j) (U) ≤ C j‖u‖W k−( j−1),p( j−1) (U).

One further application implies ‖u‖Lq(U) ≤ CC1 · · ·Ck−1‖u‖W k,p(U).
Let ` := bN

p
c. Suppose that ` is not an integer and let r = p(`) = N p

N−`p > N .

If u ∈W k−`,r(U) then as above, for all |α| < k− ` we have Dαu ∈W 1,r(U), so by
Morrey’s inequality Dαu ∈ C0,γ(U), where γ= 1− N

r
= bN

p
c+ 1− N

p
. �

1.8 Compactness

1.8.1 Definition. Let X and Y be Banach spaces. A linear map Φ : X → Y is said
to be sequentially compact (or compact) if Φ is continuous and the image of any
bounded sequence in X has a convergent subsequence in Y .
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Remark.
(i) Recall the theorem of Arzela-Ascoli: If { fn} is a sequence of functions that is

uniformly bounded and equicontinuous then it has a uniformly convergent
subsequence.

(ii) C k,α(U)⊂⊂ C k,β(U) if 1≥ α > β ≥ 0. (Prove this as an exercise.)

(iii) Lp(U) ,→ Lq(U) when p > q, but the embedding is not compact.

1.8.2 Theorem (Relich-Kondrachov). Let U ⊆ RN be a bounded domain with C1

boundary, and u ∈W 1,p(U). If p < N then for all 1 ≤ q < p∗ = N p
N−p

, W 1,p(U) ⊂⊂
Lq(U).

PROOF: Let {um} be a bounded sequence in W k,p(U). Let V be an open ball
containing U . By the extension theorem there are um such that ‖um‖W k,p(Rn) ≤
C‖um‖W k,p(U) and supp(um) ⊆ V . It is enough to show the middle of the following
string of inequalities (since the first and last are proved).

‖um‖Lq(U) ≤ ‖um‖Lq(Rn) ≤ ‖um‖W k,p(Rn) ≤ C‖um‖W k,p(U)

Without loss of generality, we may suppose that um ∈W k,p
0 (V ). For 0 < ε < 1, let

uεm := ηε ∗ um (supposing that V is large enough to support the convolution).
We claim that

(i) uεm→ um in Lq(V ) as ε→ 0, uniformly in m; and

(ii) for fixed ε, {uεm} is uniformly bounded and equicontinuous.

Assuming these claims, for all δ > 0 there is εδ > 0 such that ‖uεδm −um‖Lq(V ) <
δ

3
.

From the second claim and the Arzela-Ascoli theorem, there is a uniformly con-
vergent subsequence uεδmk

→ uεδ . Consequently, uεδmk
→ uεδ in Lq(V ). In particular,

this subsequence is a Cauchy sequence in Lq(V ), so there is a kδ such that for all
k,`≥ kδ, by the triangle inequality,

‖umk
− um`‖< δ.

Note that this does not immediately imply that {umk
} is a Cauchy sequence in

Lq(V ). Diagonalize to obtain a Cauchy subsequence, which is a convergent subse-
quence since Lq(V ) is complete.

Now for the proof of the first claim. Let a(t) = x+ t(y− x), and consider that,
by the fundamental theorem of calculus,

um(y)− um(x) =

∫ 1

0

d

d t
um(a(t))d t =

∫ 1

0

Dum(a(t)) · (y − x)d t
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so, taking z := y − x ,

uεm(x)− um(x) =

∫

RN

ηε(x − y)(um(y)− um(x))d y

=

∫

RN

ηε(−z)

∫ 1

0

Dum(x + tz) · z d t dz

‖uεm(x)− um(x)‖L1(V ) =

∫

V

�

�

�

�

∫

Rn

ηε(−z)

∫ 1

0

Dum(x + tz) · z d t dz

�

�

�

�

d x

≤
∫

Rn

∫ 1

0

∫

V

ηε(−z)|Dum(x + tz)||z| d x d t dz

≤ ε
∫

Rn

∫ 1

0

ηε(−z)‖Dum‖L1(V )d t dz

= ε‖Dum‖L1(V ) ≤ εC(V )‖Dum‖Lp(V ) ≤ Cε.

Recall the following fact: if fn → f in L1 and { fn} is bounded in Lp then fn → f
in Lq for all q ∈ [1, p). This uses the interpolation inequality

‖ f ‖q ≤ ‖ f ‖θ1‖ f ‖1−θ
p where

1

q
=
θ

1
+

1− θ
p

.

Note that {uεm − um} is bounded in Lp∗ since um converges in W 1,p(V ), and by the
Sobolev inequalities this space embeds in Lp∗ .

For the second claim,

|uεm(x)| ≤
∫

Rn

ηε(z)|um(x − z)|dz ≤ ‖ηε‖∞‖um‖L1(V ) ≤ C‖um‖W 1,p(V )

and

|Duεm(x)| ≤
∫

Rn

|Dηε(z)||um(x − z)|dz ≤ ‖Dηε‖∞‖um(x − z)‖L1(Rn)

showing uniform boundedness and uniform Lipschitz continuity. �

Remark. If X ,→ Y ,→ Z are Banach spaces and either of the embeddings are
compact then the composition X ,→ Z is compact.

1.9 Poincaré inequalities

We call an inequality giving a bound on u determined entirely by the derivatives
of u a Poincaré inequality.
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1.9.1 Theorem. Let U ⊆ RN be a bounded, connected domain with C1 boundary.
Then ‖u− −

∫

U
u‖p ≤ C‖Du‖p for all u ∈ W 1,p(U), where C depends on N , p, and

U .

Remark. If U is not connected then a locally constant function on U that is not
identically constant on U gives a counterexample to the inequality.

PROOF: Assume that the conclusion of the theorem does not hold. Then for each
k ≥ 1 there is uk ∈ W 1,p(U) such that ‖uk − −

∫

U
uk‖p > k‖Duk‖p. Both sides of

the inequality do not change upon adding a constant to u, and the inequality is
invariant under multiplying by a scalar. Define vk := uk − −

∫

U
uk and normalize

vk so that ‖vk‖p = 1. Then ‖vk‖p > k‖Dvk‖p for all k ≥ 1. Therefore {vk} is a
bounded sequence in W 1,p(U). Since W 1,p(U) ⊂⊂ Lp(U) whenever p < p∗ (i.e.
when p < N), and

W 1,p(U)⊂⊂ C0,γ(U)⊆ L∞(U)⊆ Lp(U)

whenever p > N . (Alternatively, notice that W 1,p(U) ,→W 1,q(U) whenever p > q,
so since q∗ > q and q∗ → ∞ as q → N , we get the p ≥ N case by taking q only
slightly smaller than N , but close enough to N to give q∗ > p.) Thus there is
a subsequence converging in the Lp norm. Without loss of generality we may
assume vk → v in Lp. Since ‖vk‖p = 1 for all k ≥ 1, ‖v‖p = 1. Further, −

∫

U
v = 0,

since −
∫

U
· d x is a continuous linear functional on Lp(U), since U is bounded. We

will now show that Dv ≡ 0. Indeed, by the dominated convergence theorem,
∫

U

vϕx i
d x = lim

k→∞

∫

U

vkϕx i
d x =− lim

k→∞

∫

U

∂x i
vkϕ d x = 0

where the last equality is by Hölder’s inequality, since ‖Dvk‖p → 0 as k → ∞.
Therefore the weak derivative exist and is zero, and v ∈W 1,p(U). But this implies
v ≡ 0, and this contradicts ‖v‖p = 1. �

Remark. There are other proofs of this inequality that give an estimate on the
constant, and yet others which give the optimal constant.

1.10 Difference quotients

1.10.1 Definition. Let U ⊆ RN be open, and define

Uδ := {x ∈ U | dist(x ,∂ U)> δ}.

For 0< h< δ, define the difference quotient in the direction of ei by

Dh
i u(x) :=

u(x + hei)− u(x)
h

.

1.10.2 Theorem. Let U ⊆ RN be open
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(i) Let 1≤ p <∞ and u ∈W 1,p(U). For all V ⊂⊂ U open,

‖Dhu‖Lp(V ) ≤ C‖Du‖Lp(U),

where C = C(N , p, U , V ) for all h ∈ (0, 1
2
dist(V,∂ U)).

(ii) Let 1 < p <∞ and u ∈ Lp(U), and V ⊂⊂ U open. Assume there is C such
that ‖Dhu‖Lp(V ) ≤ C for all h ∈ (0, 1

2
dist(V,∂ U)). Then we may conclude

that u ∈W 1,p(V ) and ‖Du‖Lp(V ) ≤ C .

PROOF: Without loss of generality, we may assume that u is smooth.

‖Dh
i u‖Lp(V ) =

∫

V

|u(x + hei)− u(x)|p

|h|p
d x

≤
∫

V

�

�

�

�

∫ 1

0

|Du(x + thei)|d t

�

�

�

�

p

d x

≤
∫

V

∫ 1

0

|Du(x + thei)|pd t d x by Jensen

=

∫ 1

0

∫

V

|Du(x + thei)|pd x d t

≤
∫ 1

0

∫

U

|Du(y)|pd y d t y := x + thei

= ‖Du‖Lp(U).

For the second part of the theorem, suppose ϕ ∈ C∞c (U) and supp(ϕ) ⊆ V and
0< h< dist(V,∂ U) and h< dist(supp(ϕ),∂ V ). It can be checked that

∫

V

uDh
i ϕ d x =−

∫

V

D−h
i uϕ d x .

For lack of a better proof, at this point we must strengthen our assumption on
the bound of the difference quotient to all 0 < |h| < 1

2
dist(V,∂ U). By the Banach-

Alouglu theorem, there is a sequence hk → 0 such that D−hk
i u→ vi in Lp(V ) for all

i = 1, . . . , N .
∫

V

viϕ d x = lim
k→∞

∫

V

D−hk
i uϕ d x = lim

k→∞
−
∫

V

uDhk
i ϕ d x =−

∫

V

uDiϕ d x .

Therefore vi = Diu, so u has a weak derivative, and notice that ‖Diu‖Lp(V ) ≤
lim infk ‖D

−hk
i u‖Lp(V ). �

1.10.3 Definition. u : U → R is differentiable at x ∈ U if there is a ∈ RN such that

lim
y→x

|u(y)− u(x)− a · (y − x)
|y − x |

= 0

and we write Du= a.
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1.10.4 Theorem. Assume that u ∈ W 1,p
loc (U) for some N < p ≤ ∞. Then u is a.e.

differentiable.

PROOF: In the proof of Morrey’s inequality we showed that when u is continuous,
for y ∈ B(x , r),

|u(y)− u(x)| ≤ C r1− N
p

�
∫

B(x ,2r)

|Du|pd x
�

1
p

.

The Lebesgue Differentiation Theorem states that when f ∈ Lp
loc(R

N ), for 1≤ p <
∞ and for a.e. x ∈ RN ,

−
∫

B(x ,r)

| f (y)− f (x)|pd y → 0

as r → 0. Therefore, for a.e. x ∈ U ,

−
∫

B(x ,r)

|Du(x)− Du(z)|pdz→ 0

as r → 0. Let x be such a point and consider

v(y) = u(y)− u(x)− Du(x) · (y − x) ∈W 1,p
loc (U).

Let r = |y − x |, so that

|v(y)− v(x)|= |v(y)| ≤ C r1− N
p

�
∫

B(x ,2r)

|Dy v(z)− Dy v(x)|pd x
�

1
p

= C r
�

r−N

∫

B(x ,2r)

|Du(z)− Du(x)|pd x
�

1
p

= C̃ r
�

−
∫

B(x ,2r)

|Du(z)− Du(x)|pd x
�

1
p

→ 0 as y → x . �

1.11 The dual space H−1

1.11.1 Definition. H−1(U) := (H1
0(U))

′, the collection of continuous linear func-
tionals on H1

0(U).

Remark.
(i) Recall that for 1 ≤ p <∞, (Lp)′ = Lq when 1

p
+ 1

q
= 1. More explicitly, for

every ϕ ∈ (Lp)′ there is a unique f ∈ Lq such that 〈ϕ, g〉 =
∫

g f d x for all
g ∈ Lp. We would like a similar “explicit” characterization of H−1.
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(ii) If X ,→ Y then Y ′ ,→ X ′. So L2 ,→ H−1 since H1
0 ,→ L2. The correspondence

is, for f ∈ L2, 〈 f , u〉 :=
∫

uf d x for u ∈ H1.

1.11.2 Theorem. For every ϕ ∈ H−1(U) there exist f 0, f 1, . . . , f N ∈ L1(U) such
that

〈ϕ, u〉=
∫

U

f 0u d x +
N
∑

i=1

∫

U

f iux i
d x .

Moreover, ‖ϕ‖H−1(U) = inf{(
∫

U

∑N
i=0( f

i)2d x)
1
2 }, where the infimum is taken over

all representations ( f0, . . . , fN ) of ϕ.

Remark.
(i) This is not truly a representation theorem since the representation of ϕ is

not uniquely determined Indeed, (0, 1) and (0,0) both represent the zero
functional on H1

0((0, 1)).

(ii) This theorem holds for W 1,p
0 (and the analogous dual space) but with L2

replaced with Lq.

PROOF: H1
0(U) is a Hilbert space with the inner product

(u, v) :=

∫

U

uv+ Du · Dv d x .

Therefore, for ϕ ∈ H−1(U) there is a unique element f ∈ H1
0(U) such that 〈ϕ, u〉=

(u, f ) for any u ∈ H1
0(U). Take f 0 = f and ( f 1, . . . , f N ) = D f . The infimum in the

statement of the theorem is attained for this choice of ( f 0, . . . , f N ), and it is the
norm of ϕ. �

2 Elliptic PDE

2.1 Introduction

For the rest of term we will be studying the following problem

(P)

¨

Lu= f in U
u= 0 on ∂ U .

This is the problem with Dirichlet boundary conditions. We may also consider the
Neumann boundary conditions ∇u = 0 on ∂ U . The non-divergence form of the
problem is

Lu=−
N
∑

i, j=1

ai jux i x j
+

N
∑

i=1

biux i
+ cu
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where the coefficients are bounded, ai j , bi , c ∈ L∞(U). The divergence form of the
problem is

Lu=−
N
∑

i, j=1

(ai jux i
)x j
+

N
∑

i=1

biux i
+ cu.

We will be using the summation convention of summing over terms in which there
is a are repeated indices, e.g. Lu = −(ai jux i

)x j
+ biux i

+ cu. We can convert be-

tween divergence and non-divergence form when the coefficients ai j are in C1(U)
by only altering the coefficients bi . We can and will always assume that the matrix
A= (ai j) is symmetric.

2.1.1 Definition. L is uniformly elliptic on U if A is symmetric and positive definite
with a uniform lower bound, i.e. if A(x)≥ εI , i.e. if ξT A(x)ξ≥ ε|ξ|2 for all ξ ∈ RN

for all x ∈ U , for some ε > 0 that does not depend on x .

We say that u ∈ C2(U) is a classical solution if −(ai jux i
)x j
+ biux i

+ cu = f . In
this case, for any smooth function ϕ ∈ C∞c (U),

∫

U

[−(ai jux i
)x j
+ biux i

+ cu]ϕ d x =

∫

U

f ϕ d x

so, by integration by parts,
∫

U

ai jux i
ϕx j
+ biux i

ϕ+ cuϕ d x =

∫

U

f ϕ d x .

But this equation makes sense for any u ∈ H1(U), and motivates the definition of
a weak solution to (P).

2.1.2 Definition. For ai j , bi , c ∈ L∞(U), we say that u ∈ H1
0(U) is a weak solution

of (P) for some f ∈ H−1(U) if for all v ∈ H1
0(U),

B[u, v] :=

∫

U

ai jux i
vx j
+ biux i

v+ cuv d x = 〈 f , v〉.

2.2 Existence of solutions and the Fredholm alternative

2.2.1 Example. For Lu = −∆u + u, B[u, v] =
∫

Du · Du + uv d x = (u, v), the
usual inner product on H1

0(U). Therefore a weak solution to (P) is a u such that
(u, v) = 〈 f , v〉 for all v ∈ H1

0(U), and such a solution exists for all f ∈ H−1(U) by
the Riesz representation theorem.

2.2.2 Theorem (Lax-Milgram). Let H be a Hilbert space and B : H × H → R be
a bilinear form such that

(i) B is bounded, i.e. there is α such that |B[u, v]| ≤ α‖u‖‖v‖ for all u, v ∈ H.



Existence of solutions and the Fredholm alternative 25

(ii) B is coercive, i.e. there is β > 0 such that β‖u‖2 ≤ B[u, u] for all u ∈ H.

Then for every f ∈ H ′ there is a unique u ∈ H such that 〈 f , v〉 = B[u, v] for all
v ∈ H.

PROOF: Fix u ∈ H and consider v 7→ B[u, v], a continuous linear functional on H.
By the Riesz representation theorem there is a unique Au ∈ H such that B[u, v] =
(Au, v) for all v ∈ H. We will now show that A : H → H is invertible.

(i) A is linear by the bilinearity of B.

(ii) A is bounded because ‖Au‖2 = (Au, Au) = B[u, Au] ≤ α‖u‖‖Au‖, so ‖Au‖ ≤
α‖u‖.

(iii) A is injective because ‖u‖2 ≤ βB[u, u] = β(Au, u) ≤ β‖Au‖‖u‖, so ‖u‖ ≤
β‖Au‖, and Au= 0 if and only if u= 0.

(iv) The range of A is closed. Indeed, consider a Cauchy sequence Auk in the
range of A. By coercivity,

1

β
‖uk − u`‖ ≤ ‖A(uk − u`)‖= ‖Auk − Au`)‖ → 0

as k,`→∞. Therefore uk → u ∈ H, and Auk → Au in the range of A.

(v) A is surjective, because otherwise, for any non-zero w ∈ (range(A))⊥, β‖w‖2 ≤
B[w, w] = (Aw, w) = 0, a contradiction.

Given f ∈ H ′ there is z ∈ H such that 〈 f , v〉 = (z, v) for all v ∈ H. Let u = A−1(z),
so that 〈 f , v〉= (z, v) = (Au, v) = B[u, v]. Uniqueness follows from coercivity. �

2.2.3 Example. Consider u= sin x , so that u′′ =− sin x and u solves
¨

−u′′ − u= 0 in (0,π)
u= 0 at 0 and π.

But the problem
¨

−u′′ − u= 1 in (0,π)
u= 0 at 0 and π.

does not have a solution. Indeed, suppose for contradiction that there was a
solution. Multiply by sin x and integrate to see

∫ π

0

(−u′′ − u) sin x d x =

∫ π

0

sin x d x = 2

but
∫ π

0

u′ cos x − u sin x d x =

∫ π

0

u sin x − u sin x d x = 0.

For one of these problems the solution is not unique, and for the other there are
no solutions. We will see that these problems come in pairs.
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2.2.4 Theorem (Energy estimates). There exist constants α,β > 0 and γ ≥ 0
such that

(i) B[u, v]≤ α‖u‖H1
0 (U)
‖v‖H1

0 (U)
; and

(ii) γ‖u‖2
L2(U) + B[u, u]≥ β‖u‖2

H1
0 (U)

.

PROOF: Recall that M I ≥ A(x)≥ θ I > 0 for some θ and M . Indeed,

ξAξT = ξia
i jξ j ≤max

i, j
‖ai j‖∞|ξiξ j | ≤ (N max

i, j
‖ai j‖∞)‖ξ‖2.

Whence,

|B[u, v]|=
�

�

�

�

∫

U

Du · A(Dv)T + (b · Du)v+ cuv d x

�

�

�

�

≤ M

∫

U

|Du||Dv| d x +
∑

i

‖bi‖∞

∫

U

|Du||v| d x + ‖c‖∞

∫

U

|uv| d x

≤ M‖Du‖2‖Dv‖2 +
∑

i

‖bi‖∞‖Du‖2‖v‖2 + ‖c‖∞‖u‖2‖v‖2

≤ α‖u‖2
H1

0 (U)
‖v‖2

H1
0 (U)

by Cauchy-Schwartz, for some constant α > 0.

B[u, u] =

∫

U

Du · A(Du)T + (b · Du)u+ cu2d x

≥ θ‖Du‖2
2 −max

i
‖bi‖∞

∫

U

|Du||u| d x +min
U

c‖u‖2
2

≥ θ‖Du‖2
2 −max

i
‖bi‖∞

�

ε

∫

U

|Du|2d x +
1

4ε

∫

U

|u|2d x
�

+min
U

c‖u‖2
2

≥ (θ −mbε)‖Du‖2
2 +
�

mc −
1

4ε

�

‖u‖2
2

by Cauchy’s inequality with ε. Set ε = θ

2mb
to see that γ = ( θ

2
− mc +

mb

2θ
)+ will

do. �

Remark. Better constants can be found by using the Poincaré inequality.

2.2.5 Theorem (Existence I). For ai j , bi , c ∈ L∞(U) there is γ ≥ 0 such that for
all µ≥ γ and f ∈ H−1(U), the problem

(Pµ)

¨

Lµu := Lu+µu= f in U
u= 0 on ∂ U

has a unique weak solution.
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PROOF: Note that the linear form associated with Lµ is

Bµ[u, v] := B[u, v] +µ(u, v),

so Bµ[u, u] = B[u, u]+µ‖u‖2
L2(U). That Bµ is bounded for all µ follows from energy

estimates, and by energy estimates there is γ≥ 0 such that for µ≥ γ,

Bµ[u, u] = B[u, u] +µ‖u‖L2(U) ≥ β‖u‖2
H1

0 (U)
+ (µ− γ)‖u‖2

L2(U) ≥ β‖u‖
2
H1

0 (U)
.

Lax-Milgram implies the existence of a unique weak solution to (Pµ). �

For µ ≥ γ, Lµ = L + µI : H1
0(U) → H−1(U) is an injective (by uniqueness),

surjective (by existence), continuous (by energy estimates) linear mapping. It
follows that Lµ is an isomorphism between these spaces. Consider S = (Lµ)−1 :
H−1(U)→ H1

0(U), the solution mapping. The composition

H−1(U)
S−→ H1

0(U) ,→ L2(U) ,→ H−1(U)

is compact since the embedding of H1
0(U) into L2(U) is compact. Furthermore,

L2 S−→H1
0 ,→ L2 is compact. In some sense, the solution map is squishing things

quite a bit. We will see that the solution map ups the differentiability of the
function by two, and functions with two additional derivatives are sparse in some
sense.

2.2.6 Definition. For Lu = −(ai jux i
)x j
+ biux i

+ cu, the formal adjoint of L is L∗,
defined by L∗v =−(ai j vx i

)x j
− bi vx i

+ (c− bi
x i
)v.

The reason for considering L∗ is the following.

(Lu, v) =

∫

U

(Lu)v d x =

∫

U

−(ai jux i
)x j

v+ biux i
v+ cuv d x

=

∫

U

ai jux i
vx j
+ ((biu)x i

− bi
x i

u)v+ cuv d x

=

∫

U

−(ai j vx i
)x j

u− bi vx i
u+ (c− bi

x i
)vu d x

=

∫

U

(L∗v)u d x = (u, L∗v)

This “formal” adjoint is only helpful if b ∈ C1(U), as only in this case are the
coefficients of L∗ are in L∞(U).

2.2.7 Definition. The adjoint bilinear form of B (associated with L) is B∗, defined
by B∗[u, v] = B[v, u]. We say that v ∈ H1

0(U) is a weak solution of

(P∗)

¨

L∗u= f in U
u= 0 on ∂ U .

if B[u, v] = B∗[v, u] = 〈 f , u〉 for all u ∈ H1
0(U).
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2.2.8 Theorem (Existence II).
(i) Exactly one of the following two statements is true.

a) For all f ∈ L2(U) there is a unique weak solution to

(P)

¨

Lu= f in U
u= 0 on ∂ U .

b) There is u ∈ H1
0(U), u 6= 0, such that

(P0)

¨

Lu= 0 in U
u= 0 on ∂ U .

(ii) If (b) holds then let N be the set of solutions to (P0). Then N is a finite
dimensional subspace of H1

0(U) and dim(N) = dim(N ∗), where N ∗ is the set
of solutions to (P∗0 ). For f ∈ L2(U), (P) has a weak solution if and only if
f ∈ (N ∗)⊥.

This theorem is a consequence of the Fredholm alternative from the theory of
Banach algebras.

2.2.9 Definition. Let H be a Hilbert space and A be a bounded linear operator on
H. The adjoint of A is A∗, defined by the condition that (Au, v) = (u, A∗v) for all
u, v ∈ H.

It can be show that A∗ is a bounded linear operator on H with ‖A∗‖ = ‖A‖.
Further, if K is a compact linear operator on H then so is K∗.

2.2.10 Fredholm Alternative. Let K be a compact linear operator on an infinite
dimensional Hilbert space H.

(i) ker(I − K) is finite dimensional.

(ii) range(I − K) is closed.

(iii) range(I − K) = ker(I − K∗)⊥

(iv) ker(I − K) = {0} if and only if range(I − K) = H.

(v) dimker(I − K) = dimker(I − K∗).

PROOF:
(i) Assume that ker(I − K) is not finite dimensional. Let (uk)k≥1 be an infinite

sequence of pairwise orthogonal unit vectors in ker(I − K). The sequence
(Kuk)k≥1 has a convergent subsequence since K is compact, so without loss
of generality we may assume that the sequence converges. But Kuk = uk
for all k ≥ 1, so distance between any pair of elements is

p
2, and this

contradicts that the sequence converges.
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(ii) We claim that there is β > 0 such that ‖(I −K)u‖ ≥ β‖u‖ for all u ∈ ker(I −
K)⊥. Assume for contradiction that there is no such β . Let (uk)k≥1 be a
sequence of unit vectors in ker(I − K)⊥ such that

‖uk − Kuk‖<
1

k
for all k ≥ 1.

By the Banach-Alaoglu theorem, we may assume without loss of generality
that ui * u weakly. Note that ‖u‖ = 1. Since K is compact, without loss
of generality we may assume that Kuk → v, for some v ∈ H. But linear
operators are weakly continuous, so Kuk * Ku, and it must be the case that
v = Ku. Therefore Kuk → Ku. But uk − Kuk → 0, so for any w ∈ H,

(w, Ku− u) = lim
k→∞
(w, Ku− Kuk + Kuk − uk + uk − u) = 0

and it follows u = Ku. Therefore u ∈ ker(I − K), and this is a contradiction
since then (uk, u) = 0 and

(u, u) = 1 6= 0= lim
k→∞
(uk, u).

To show that range(I−K) is closed, suppose that vk ∈ range(I−K) is Cauchy.
Then there are uk ∈ ker(I−K)⊥ such that (I−K)uk = vk. By the claim above,

‖vk − v`‖ ≥ β‖uk − u`‖ for all k,`≥ 1,

so uk → u for some u ∈ H, and vk → (I − K)u ∈ range(I − K).

(iii) We claim that for any bounded linear operator A, range(A) = (ker A∗)⊥.
Indeed, if v ∈ range(A) then there are uk ∈ H such that Auk → v. For
any w ∈ ker(A∗), (Auk, w) = (uk, A∗w) = 0, so (v, w) = 0.

Conversely, if v ∈ range(A)⊥ then for all u ∈ H, 0 = (v, Au) = (A∗v, u), so
v ∈ ker A∗. Therefore range(I − K) = ker(I − K∗)⊥ since the left hand side is
closed by part (ii).

(iv) Suppose that I − K is one-to-one, but that H1 := range(I − K) ( H. Induc-
tively define Hk+1 := (I − K)Hk, and notice that Hk+1 ( Hk for all k ≥ 1
since I − K is one-to-one. For each k ≥ 1, choose a unit vector uk ∈ Hk
orthogonal to Hk−1. For k > `≥ 1,

Kuk − Ku` =−(I − K)uk + (I − K)u` + uk
︸ ︷︷ ︸

=:w∈H`+1

− u`

so ‖Kuk − Ku`‖2 = ‖w‖2+ ‖u`‖2 ≥ 1, which contradicts that K is a compact
operator.

Conversely, if range(I − K) = H then ker(I − K∗) = {0} by part (iii), so
range(I − K∗) = H by the first part, and again by (iii), ker(I − K) = {0}.

(v) Apply (iii) and (iv) and induction (exercise). �
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PROOF (EXISTENCE II): From Existence I, there is γ≥ 0 such that

(Pγ)

¨

Lu+ γu= f in U
u= 0 on ∂ U

has a unique solution for every f ∈ L2(U), with Bγ[u, v] = B[u, v] + γ(u, v).
Consider the solution operator L−1

γ : L2(U)→ H1
0(U)⊂⊂ L2(U).

β‖u‖2
H1

0 (U)
≤ Bγ[u, u] =

∫

U

f u≤ ‖ f ‖L2(U)‖u‖L2(U) ≤ ‖ f ‖L2(U)‖u‖H1
0 (U)

,

so ‖L−1
γ ‖ ≤

1
β

. Regarding the original equation, it can be checked that u is a
solution to (P) if and only if u is a solution to

¨

Lγu= f + γu in U
u= 0 on ∂ U

(Indeed, B[u, v] =
∫

f v for all v ∈ H1
0(U) if and only if Bγ[u, v] =

∫

f v+γ
∫

uv for
all v ∈ H1

0(U).) Therefore any solution satisfies u = L−1
γ f + γL−1

γ u. Yet otherwise
stated, u is a solution to (P) if and only if

(I − γL−1
γ )u= L−1

γ f .

Note that γL−1
γ =: K is a one-to-one compact operator L2(U) → L2(U). By the

Fredholm alternative for compact operators, either

(i) (I − K)u= h has a unique solution for all h ∈ L2(U); or

(ii) (I − K)u= 0 has a non-trivial solution.

In the case (i), for f ∈ L2(U), u = (I − γL−1
γ )
−1 L−1

γ f is the unique solution to
(P). In the case (ii), (I − K)u = 0 has a non-trivial solution, so (P0) has a non-
trivial solution since L−1

γ f = 0 implies f = 0. This establishes the first part of the
theorem since (a) and (b) are mutually exclusive.

For the second part, let N = ker(I−K) be the set of solutions to (P0). Note that
L∗γ = L∗ + γI , and it can be shown that (L−1

γ )
∗ = (L∗γ)

−1, so the set of solutions to
(P∗0 ) is exactly N ∗ = ker(I−K∗), and dim N = dim N ∗ by the Fredholm alternative.
For the solvability condition, (I − K)u = h has a solution if and only if h ∈ (N ∗)⊥.
But for all v ∈ N ∗,

0= (h, v) =
1

γ
(K f , v) =

1

γ
( f , K∗v) =

1

γ
( f , v),

so (P) has a weak solution if and only if f ∈ (N ∗)⊥. �
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2.2.11 Theorem (Existence III).
(i) There exists a set Σ, at most countable and known as the (real) spectrum of

L, such that

(Pλ)

¨

Lu= λu+ f in U
u= 0 on ∂ U

has a unique solution for all f ∈ L2(U) whenever λ /∈ Σ.

(ii) If Σ is infinite then Σ = {λk}k≥0 where λk →∞.

PROOF: Notice that Lu= λu+ f is equivalent to L−λu= f , so by Existence I there
is γ ≥ 0 such that (Pλ) has a unique solution for all f ∈ L2(U) when −λ ≥ γ. For
the rest of the proof we consider only λ >−γ.

Existence II shows that “(Pλ) has a unique solution for all f ∈ L2(U)” is equiva-
lent to “the only solution to Lu= λu is u≡ 0.” (Lu= λu is known as the Helmholtz
equation.) This is trivially equivalent to “the only solution to Lγu = (λ+ γ)u is
u ≡ 0.” Let L−1

γ be the solution operator, and K := γL−1
γ , a compact operator.

Then u is a solution to this last problem if and only if

u= L−1
γ ((λ+ γ)u) =

λ+γ
γ

Ku, or Ku= γ

λ+γ
u.

By the spectral theory for compact operators (see below, or the appendix in Evans),
the spectrum of K is either finite or a sequence converging to zero. If the spectrum
of K is finite then there are finitely many λ for which (Pλ) fails to have a unique
solution for all f ∈ L2(U). Otherwise, if µk → 0 are the eigenvalues of K then
µk =

γ

λk+γ
and λk = γ

1−µk

µk
→∞. �

2.2.12 (Real) spectrum of a compact operator.
Let A : X → X be a bounded linear operator on a Banach space. The spectrum of A
is σ(A) := R \ρ(A), where

ρ(A) = {λ ∈ R | (λI − A) is one-to-one and onto}

is the resolvent set. The spectrum decomposes into three pieces (defined to be
disjoint)

(i) point spectrum, σp(A) := {λ | ker(λI − A) 6= {0}}

(ii) continuous spectrum, σc(A) := {λ | range(λI − A) is not dense in X }

(iii) residual spectrum, σr(A) := {λ | range(λI − A) is dense in X but 6= X }

If K is a compact operator on a Hilbert space then

(i) 0 ∈ σ(K)

(ii) σ(K) \ {0}= σp(K) \ {0}

(iii) Either σ(K) is finite or σ(K) is a sequence converging to zero.
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2.2.13 Theorem. If λ /∈ Σ then there is a constant C = C(L, U ,λ) such that
‖u‖L2(U) ≤ C‖ f ‖L2(U) whenever u solves (Pλ) for f ∈ L2(U).

PROOF: Let λ /∈ Σ. Assume for contradiction that for every k ≥ 1 there is (uk, fk)
solving (Pλ) such that ‖uk‖L2(U) ≥ k‖ fk‖L2(U). Without loss of generality ‖uk‖L2(U) =
1. Then fk → 0 in L2(U), and by coercivity,

β‖uk‖2
H1

0 (U)
≤ Bλ[uk, uk] + γ‖uk‖2

L2(U) =

∫

U

fkuk d x + γ≤ 2+ γ.

Therefore there is a subsequence uk * u in H1
0(U)weakly. It follows that uk → u in

L2(U), so ‖u‖L2(U) = 1. But in this case B[u, v] =
∫

U
0 · v d x = 0 for all v ∈ H1

0(U),
so Lu= λu, and this is a contradiction since λ /∈ Σ. �

2.3 Regularity of solutions

Suppose that −∆u= f , where f ∈ L2(U). Notice that

∫

U

|D2u|2d x =

∫

(∆u)2d x =

∫

f∆u d x ≤ ε
∫

(∆u)2d x +
1

4ε

∫

f 2d x .

so we can get a bound on the second derivative in terms of ‖ f ‖L2(U), using the
Laplacian of u as a “test function.” Further,

∫

|Du|2d x =

∫

u∆u d x =

∫

f u d x ≤
∫

u2 + f 2 d x

so we can get a bound on the H2 norm of u in terms of ‖ f ‖L2(U), and ‖u‖L2(U),
using u as a test function.

2.3.1 Theorem (Interior Regularity). Let Lu = −(ai jux i
)x j
+ biux i

+ cu be uni-

formly elliptic and act on H1(U), where ai j ∈ C1(U) and bi , c ∈ L∞(U). If
u ∈ H1(U) is a weak solution of Lu = f in U (i.e. B[u, v] =

∫

U
f v d x for all

v ∈ H1
0(U)), where f ∈ L2(U), then

(i) u ∈ H2
loc(U); and

(ii) For all V ⊂⊂ U open there is C = C(U , V, L) such that

‖u‖H2(V ) ≤ C(‖ f ‖L2(U) + ‖u‖L2(U)).

Remark. If case (i) of Existence II applies and u ∈ H1
0(U) then there is C̃ such that

‖u‖L2(U) ≤ C̃‖ f ‖L2(U), so we get a bound on the H2 norm of u in terms of ‖ f ‖L2(U)
alone.
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PROOF: Let V ⊂⊂ U be open. Choose W ⊂⊂ U open such that V ⊆ W . Let
ξ : U → R be a smooth cutoff function that is 1 on V and 0 outside of W . From
B[u, v] =

∫

U
f v d x we write

∫

U

ai jux i
vx j

d x =

∫

U

( f − biux i
− cu)v d x

Let v :=−D−h
k (ξ

2Dh
ku), where

Dh
k g(x) =

1

h
(g(x + hek)− g(x))

is the difference quotient and h< dist(supp(ξ),∂W ).

LHS =

∫

U

ai jux i
(−D−h

k (ξ
2Dh

ku))x j
d x =−

∫

U

ai jux i
D−h

k ((ξ
2Dh

ku)x j
)d x

=

∫

U

Dh
k(a

i jux i
)(ξ2Dh

ku)x j
d x =

∫

U

ai j,hξ2Dh
kux i

Dh
kux j

︸ ︷︷ ︸

A1

+ (Dh
kai j)ξ2ux i

Dh
kux j
+ 2ξξx j

ai j,hDh
kux i

Dh
ku+ 2ξξx j

(Dh
kai j)Dh

ku
︸ ︷︷ ︸

A2

d x

noting that Dh
k( f g) = (Dh

k f )gh + f Dh
k g, where gh(x) = g(x + hek). By uniform

ellipticity,

A1 ≥ θ
∫

U

ξ2|Dh
k Du|2d x .

All of the coefficients involving the (fixed) cutoff function ξ and the ai j are L∞

with bound independent of h, so

|A2| ≤ C

∫

W

ξ(|Du||Dh
k Du|+ |Dh

ku||Dh
k Du|+ |Du||Dh

ku|) d x

≤ Cε

∫

W

ξ|Dh
k Du|2d x +

C

4ε

∫

W

|Du|2d x ,

recalling the Cauchy inequality ab ≤ εa2 + 1
4ε

b2 for any ε > 0. Whence

LHS ≥
θ

2

∫

W

ξ2|Dh
k Du|2 d x − C

∫

W

|Du|2d x

choosing ε appropriately, where this C depends on Dξ, among other things.

RHS =

∫

W

( f − biux i
− cu)v d x ≤ ε

∫

W

v2d x +
C

ε

∫

W

( f 2 + u2 + |Du|2)d x
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and
∫

W

v2d x ≤ C

∫

W

|D(ξ2Dh
ku)|2d x by 1.10.2

≤ C

∫

W

ξ2(|Dh
ku)|2 + |Dh

k Du|2)d x since ξ2 ≤ 1

≤ C

∫

W

(|Du|2 + ξ2|Dh
k Du|2)d x .

Choose ε so small that εC = θ

4
, so that

RHS ≤
θ

4

∫

W

ξ2|Dh
k Du|2d x + C

∫

W

( f 2 + u2 + |Du|2)d x .

Therefore, combining the estimates for the LHS and the RHS,

θ

4

∫

W

ξ2|Dh
k Du|2 ≤ C

∫

W

( f 2 + u2 + |Du|2)d x .

By 1.10.2, u ∈ H2(V ), and by that theorem we need only show that
∫

W

|Du|2d x ≤ C

∫

U

( f 2 + u2)d x

to finish the proof of the theorem. Let η ∈ C∞c (U) be a cut-off function that is 1
on W and zero outside of U . Now let v := η2u.

LHS =

∫

U

(ai jux i
)(η2u)x j

d x

=

∫

U

η2(ai jux i
ux j
) + 2ηai jηx j

u d x

≥ θ
∫

U

η2|Du|2d x − C

∫

U

η|Du||u| d x

and

RHS =

∫

U

( f − biux i
− cu)η2u d x ≤ C

∫

U

( f 2 + u2 +η|Du||u|)d x .

It follows that

θ

∫

U

η2|Du|2d x ≤ C

∫

U

( f 2 + u2 + |Du||u|)d x

≤
θ

2

∫

U

η2|Du|2d x + C

∫

U

u2 f 2d x
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since
∫

U

|Du||u| d x ≤ ε
∫

U

η2|Du|2d x +
1

4ε

∫

U

u2d x

I’m not so sure about these last steps. �

2.3.2 Theorem (Higher-order Regularity). Let m ≥ 0 and assume that ai j ∈
Cm+1(U), bi , c ∈ Cm(U), and f ∈ Hm(U). Assume that u is a weak solution to
Lu= f in U . Then

(i) u ∈ Hm+2
loc (U); and

(ii) For all V ⊂⊂ U open there is C = C(U , V, L) such that

‖u‖Hm+2(V ) ≤ C(‖ f ‖Hm(U) + ‖u‖L2(U)).

PROOF (IDEA): Consider the simpler problem −(ai jux i
)x j
= f , when m = 1 and

f ∈ H1(U). Apply Dk to obtain

−(ai j
xk

ux i
+ ai juxk x i

)x j
= fxk

.

Set v = uxk
and we have

−(ai j vx i
)x j
= fxk

+ (ai j
xk

ux i
)x j
∈ L2(U).

Use the previous theorem to conclude some regularity of v. �

2.3.3 Corollary. If ai j , bi , c, f ∈ C∞(U) then any weak solution u ∈ H1(U) to
Lu= f is in C∞(U).

PROOF: For any k and any V ⊂⊂ U , by Higher-order Regularity and the Sobolev
embedding theorems we may conclude that u ∈ C k,γ(V ). Therefore u ∈ C∞(V ) for
any V ⊂⊂ U , so u ∈ C∞(U). �

2.3.4 Theorem (H2-regularity). Let U be an open, bounded domain with C2

boundary, and let ai j ∈ C1(U), bi , c ∈ L∞(U). Assume that u ∈ H1
0(U) is a weak

solution to Lu= f in U , where f ∈ L2(U). Then

(i) u ∈ H2(U)∩H1
0(U); and

(ii) ‖u‖H2(U) ≤ C(‖ f ‖L2(U) + ‖u‖L2(U)) for some C = C(U , L).

PROOF: Case 1: the flat case. Suppose that 0 ∈ ∂ U assume that

B(0, 1)∩ U = B(0,1)∩ {xN > 0}.

Let V := B(0, 1
2
)∩ U and let ξ be a cut-off function (defined on U) that is 1 on V

and 0 outside of B(0, 1)∩ U . Recall B[u, v] =
∫

U
f v d x since u is a weak solution.

We write
∫

U
ai jux i

vx j
d x =

∫

U
f̃ v d x , where f̃ = f −biux i

−cu. Fix k = 1, . . . , N−1,
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and let v := −D−h
k (ξ

2Dh
ku) for small h. Note that v ∈ H1

0(V ) since ξ is 0 on the
curved boundary and u is zero on the flat boundary. Use estimates similar to the
ones used to prove Interior Regularity to show that

∫

V

|Dh
k Du|2d x ≤ C

∫

U

( f 2 + u2 + |Du|2) d x = C(‖ f ‖2
L2(U) + ‖u‖H1(U)).

From energy estimates the H1 norm of u is bounded above by constant multiples of
the L2 norms of f and u. By the extension to the theorem on difference quotients,
ux i xk

∈ L2(V ), for all 1 ≤ i ≤ N and 1 ≤ k < N . For weak derivatives ux i x j
= ux j x i

a.e., and for the last case j = i = N note that uxN xN
can be written in terms of f ,

the coefficients, and the other second order partials, all of which are in L2.
Case 2 is for a general domain. Centred at a point on the boundary, without

loss of generality xN = γ( x̂). There is a coordinate change y = φ(x) such that
ŷ = x̂ and yN = xN − γ( x̂). Let x = ψ(y) be the inverse transformation, and
consider that det Dφ = 1. Let ũ = u(ψ(y)), so that u(x) = ũ(φ(x)). Note that
ũ is in H1 and its trace is zero on the image of the boundary {yN = 0}. Our task
is to show that ũ is in H2. We will do this by applying Case 1, after checking
that the properties of the uniformly elliptic operator carry through the coordinate
transformation. We claim L̃ũ= f̃ on the image B̃, where f̃ (y) = f (ψ(y)) and L̃ is
given by ãk`(y) = ai j(ψ(y))φk

x i
(ψ(y))φ`x j

(ψ(y)), b̃k(y) = bi(ψ(y))φk
x i
(ψ(y)),

and c̃(y) = c(ψ(y)). �

2.3.5 Theorem (Higher-order Boundary Regularity).
Let U be an open, bounded domain with Cm+2 boundary, and let ai j ∈ Cm+1(U),
bi , c ∈ Cm(U). Assume that u ∈ H1

0(U) is a weak solution to Lu = f in U , where
f ∈ Hm(U). Then

(i) u ∈ Hm+2(U)∩H1
0(U); and

(ii) ‖u‖Hm+2(U) ≤ C(‖ f ‖Hm(U) + ‖u‖L2(U)) for some C = C(U , L, m).

PROOF: A mess of induction. �

2.3.6 Corollary. Let U be an open, bounded domain with smooth boundary. If
ai j , bi , c, f ∈ C∞(U) then any weak solution u ∈ H1

0(U) to Lu= f is in C∞(U).

Note that if Lu = −ai jux i x j
+ biux i

+ cu is not given in divergence form, then
we can rewrite it as L̃u = −(ai jux i

)x j
+ (ai j

x j
+ bi)x i

+ cu. Any classical solution to
the second form is also a classical solution to the first form. This completes the
theory of linear uniformly elliptic equations.

2.4 Maximum principles

For this section U is a bounded, open domain, u ∈ C2(U)∩ C(U), and

Lu :=−ai jux i x j
+ biux i

+ cu,
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where the coefficients are bounded functions and the matrix A= (ai j) is (symmet-
ric and) uniformly elliptic.

2.4.1 Theorem (Weak Maximum Principle). Suppose that c ≡ 0 on U .

(i) If Lu≤ 0 in U (i.e. u is a sub-solution) then maxU u=max∂ U u.

(ii) If Lu≥ 0 in U (i.e. u is a super-solution) then minU u=min∂ U u.

2.4.2 Theorem. Suppose that c ≥ 0 on U .

(i) If Lu≤ 0 in U then maxU u≤ 0∨max∂ U u.

(ii) If Lu≥ 0 in U then minU u≥ 0∧min∂ U u.

2.4.3 Theorem (Comparison). Suppose c ≥ 0 on U . For u, v ∈ C2(U)∩ C(U), if
Lu≤ f in U and f ≤ Lv in U and u≤ v on ∂ U then u≤ v in U .

PROOF (COMPARISON =⇒ 2.4.1):
Let v := max∂ U u. Then Lv = 0 in U and v ≥ u on ∂ U , so v ≥ u in U . Therefore
max∂ U u ≥ maxU u, and the first part follows. For the second part, let v := u and
ũ=min∂ U u and apply 2.4.3 to v and ũ. �

PROOF (COMPARISON =⇒ 2.4.2):
Let v :=max∂ U u and assume that v ≥ 0. Then Lv = cv ≥ 0 ≥ Lu. We have v ≥ u
on ∂ U , so v ≥ u in U and the conclusion follows. If max∂ U u < 0 then take v ≡ 0.
Then Lv = 0 ≥ Lu and v ≥ u on ∂ U , so u ≤ 0 in U . Prove the second part as an
exercise. �

PROOF (COMPARISON): Assume first that Lu< f ≤ Lv in U . Assume there is x̂ ∈ U
such that u( x̂) > v( x̂). Then maxU(u− v) > 0, and a local maximum is attained
at some x0 ∈ U (and in particular not on the boundary). We have

u(x0)> v(x0), Du(x0) = Dv(x0), D2u(x0)≤ D2v(x0).

It follows that

c(x0)u(x0)≥ c(x0)v(x0), bi(x0)ux i
(x0) = bi(x0)vx i

(x0)

and, if A= I , that
−∆u(x0)≥−∆v(x0)

implying that Lu(x0)≥ Lv(x0), a contradiction.
There is an orthogonal matrix O such that OAOT = D = diag(λ1, . . . ,λn). Let

y = x0 +O(x − x0) be a change of coordinates. Then ux i
= uyk

∂ yk

∂ x i
= uyk

oki and

ux i x j
= uyk y`okio` j , so ai jux i x j

= okia
i jo` juyk y` = λkuyk yk

.
For the second case, note that if c > 0 on U then uε := u− ε satisfies Luε =

Lu− cε < f , and uε ≤ v on ∂ U . By the first case it follows that uε ≤ v for all
ε > 0. Since this holds for all ε > 0 it follows that u≤ v.
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For the general case, take uε := u+ εeλx1 − δ, where δ := εeλmax{|x1|,x∈U}. By
the choice of δ, uε ≤ u for all ε > 0, and uε → u as ε→ 0.

Luε = Lu+ εLeλx1 − cδ

= Lu− ελ2a11eλx1 + εb1λeλx1 + εceλx1 − cδ

≤ Lu+ εeλx1(−θλ2 +λ‖b1‖∞ + ‖c‖∞)− cδ

Choose λ large enough that the underlined constant is negative. With this choice
fixed, Luε < f , and uε ≤ v on ∂ U , so uε ≤ v in U , and we are done as above. �

2.4.4 Lemma (Hopf). Suppose c ≡ 0. Assume

(i) Lu≤ 0 in U;

(ii) there is x0 ∈ ∂ U such that u(x0)> u(x) for all x ∈ U; and

(iii) U satisfies the interior ball condition (i.e. for every x0 ∈ ∂ U there is a closed
ball B contained in U such that x0 ∈ B).

Let B be any closed ball in U that contains x0, so that x0 is on the boundary of B.
If ν is the outward normal vector to B at x0 then ∂ u

∂ ν
(x0)> 0.

Further, if instead c ≥ 0 then the above holds if u(x0)≥ 0.

PROOF: Without loss of generality, B = B(0, r). Let v(x) := e−λ|x |
2
− e−λr2

, and
note that v > 0 on B(0, r). For x ∈ A := B(0, r) \ B(0, r

2
),

Lv(x) = (−ai j(−2λδi j + 4λ2 x i x j)− 2biλx i + c)e−λ|x |
2
− ce−λr2

≤ (2λ tr A− 4λ2 x T Ax − 2λbT x)e−λ|x |
2

≤ λ(CA−λθ r2 + Cb r)e−λ|x |
2
< 0

if λ is large enough. Let uε := u + εv, so that uε = u on ∂ B(0, r). We have
u(x0)>maxB(0, r

2
) u+δ for δ > 0 small enough. Choose ε > 0 so that εmaxA v < δ.

Then uε(x) ≤ u(x0) = uε(x0) for all x ∈ ∂ B(0, r
2
). But uε is a sub-solution, so by

the weak maximum principle, uε(x)≤ u(x0) for all x ∈ A.
Complete the proof by computing ∂ v

∂ ν
= Dv · x

|x | =−2λ|x |e−λ|x |
2
< 0. �

2.4.5 Theorem (Strong Maximum Principle). Suppose that U is open, bounded,
and connected.

(i) Suppose c ≡ 0.

a) If Lu≤ 0 in U and u attains its maximum in U then u is constant.

b) If Lu≤ 0 in U and u attains its minimum in U then u is constant.

(ii) If c ≥ 0 then the above conclusions hold provided that the maximum and
minimum are non-negative and non-positive, respectively.
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PROOF: Assume that u has a maximum at x0 ∈ U . Let

A := {x ∈ U | u(x) = u(x0)},

a closed set. Then U ′ := U \A is open. If U ′ is not empty then there is y ∈ U ′ such
that dist(y, A)< dist(y,∂ U). Indeed, let z ∈ ∂ A\∂ U , so that 2ε := dist(z,∂ U)> 0.
Since B(z,ε)⊆ U and z ∈ ∂ A, there is y ∈ B(z,ε) \A, y ∈ U , and y is closer to ∂ A
than to ∂ U .

Let y ∈ ∂ A be such that dist(y, A) = ‖y − y‖. Then B(y, |y − y|) ⊆ U ′. By the
Hopf Lemma, applied to u on U ′, ∂ u

∂ ν
(y) > 0, where ν = y−y

|y−y| . But then there is

δ > 0 such that u(y + δ′ν) > u(y) for all 0 < δ′ < δ, a contradiction since some
of these points are in U . �

2.4.6 Exercise. Suppose that u and −u satisfy the Harnack inequality on B(0,1).
Show that u is α-Hölder continuous on B(0, 1

2
), for some small α > 0.

2.5 Eigenvalues and eigenfunctions

In this section we consider the eigenvalue problem

(EVP)

¨

Lw = λw in U
w = 0 on ∂ U

where Lu = −(ai jux i
)x j

and ai j ∈ C∞(U) and A = (ai j) is (symmetric and) uni-

formly elliptic. As usual, let B[u, v] :=
∫

U
ai jux i

vx j
d x , and notice that B is sym-

metric. We say that λ is an eigenvalue if the (EVP) has a non-trivial solution for λ,
and in this case a non-zero solution is an eigenfunction. Note that by the assump-
tions made on A, all solutions to the (EVP) are smooth.

2.5.1 Theorem. (i) All eigenvalues λ are real.

(ii) Let Σ = {λk} be the spectrum of L, ordered and with each eigenvalue re-
peated to its multiplicity. Then λ2 > λ1 > 0 and λk →∞ as k→∞.

(iii) The corresponding unit eigenfunctions form an orthonormal basis of L2(U)
and an orthogonal basis of H1

0(U).

PROOF: Let S := L−1 : L2 → H1
0 be the solution operator, so that the composition

S : L2 → H1
0 ,→ L2 (which we also call S) is a compact operator. Then S is

symmetric since

(S f , g) =

∫

(S f )g = B[Sg, S f ] = B[S f , Sg] =

∫

f (Sg) = ( f , Sg)

by the definition of weak solution and the fact that B is symmetric. Further,

(S f , f ) = B[S f , S f ]≥ β‖S f ‖H1(U)
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since B is coercive (since A is uniformly elliptic). Let

m := inf{(Su, u) | u ∈ H1
0(U),‖u‖L2(U) = 1}

and
M := sup{(Su, u) | u ∈ H1

0(U),‖u‖L2(U) = 1}.

We claim thatσ(S)⊆ [m, M] and m, M ∈ σ(S). The first assertion follows because
S is symmetric. For the second assertion, we know that m ≥ 0 since B is coercive,
and 0 ∈ σ(S) ⊆ [m, M] since S is a compact operator, so m = 0. For the second
assertion let ‖uk‖2 = 1 be such that (Suk, uk)→ M . Then there is a subsequence
uk * u converging weakly to some u ∈ L2(U). Since continuous linear operators
are continuous for the weak topology, Suk * Su. Now S is compact, so there is a
further subsequence Suk → v ∈ L2. But for any w ∈ L2(U),

(Su− v, w) = lim
k→∞
(Su− v, w) = (v− v, w) = 0

so Suk → Su. In particular, (Su, u) = M and u 6= 0. In fact ‖u‖L2(U) = 1 and
Su= Mu can be seen by considering that (D(u+ tw), u+ tw)≤ M .

Let ηk be the eigenvalues of S and Hk be the corresponding eigenspaces. Then
the Hk are finite dimensional when ηk 6= 0 and pairwise orthogonal. Let H =
span(

⋃

k Hk). To show that H = L2 it suffices to show that H⊥ = {0}. Now
S(H) ⊆ H and since S is symmetric, S(H⊥) ⊆ H⊥. It follows that (Su, u) = 0 for
all u ∈ H⊥, so S is zero on H⊥ since it is symmetric. Therefore H⊥ ⊆ H0 ⊆ H, so
H⊥ = {0}.

Next we prove the following variational principle

λ1 = min
u∈H1

0 (U)
‖u‖L2(U)=1

B[u, u] = min
u∈H1

0 (U)
u6=0

B[u, u]

‖u‖2
L2(U)

.

Furthermore, all minimizers are eigenfunctions (corresponding to λ1) and these
eigenfunctions have no zeros in U . Indeed, if u =

∑m
k=1αkwk is a unit vector

where the wk are unit eigenfunctions corresponding to λk. Then

B[u, u] =
m
∑

k=1

λkα
2
k ≥ λ1

m
∑

k=1

α2
k = λ1

since λ1 is the smallest eigenvalue and ‖u‖L2(U) = 1. In general u is a limit of
functions of the form above, say u =

∑∞
k=1αkwk =: limm→∞ um. It suffices to

prove that B[um, um]→ B[u, u]. This is not trivial because um → u in L2(U), but
evaluating B involves taking some derivatives.

Notice that B[wk, w`] = λkδk`, so let’s define vk := 1p
λk

wk. Then for u ∈

H1
0(U),

βk := B[u, vk] =
1
p

λk

B[u, wk] =
1
p

λk

λk(u, wk) =
p

λkαk,
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Let um =
∑m

i=1 βk vk.

B[u, u] = B[u− um + um, u− um + um]
= B[u− um, u− um] + 0+ 0+ B[um, um]≥ B[um, um]

Therefore
∑∞

k=1 β
2
k <∞. Thus the sequence {um} is Cauchy in H1

0(U), and its only
possible limit is u. Indeed, for all k

0= B[u− lim
m→∞

um, vk] = B[u− lim
m→∞

um,
1
p

λk

wk] =
p

λk(u− lim
m→∞

um, wk)

where the last inner product is in L2.
For the last assertion, suppose that Lu = λ1u. Then from the homework,

u+, u− ∈ H1
0(U), and Du+ = Du1u>0 and Du− =−Du1u<0. We have

∫

u+u− = and
B[u+, u−] = 0, so

λ1 = B[u, u] = B[u+, u+] + B[u−, u−]≥ λ1‖u+‖L2(U) +λ1‖u−‖L2(U) = λ1

since ‖u‖2 = ‖u+‖2 + ‖u−‖2. Whence Lu+ = λ1u+ ≥ 0. By regularity, u+ ∈
C2(U)∩ C(U), and by strong maximum principle either u+ > 0 in U or u+ = 0. It
follows in either case that u has no zeros in U . Note that if we have two positive
eigenfunctions u and u′ then we can choose σ so that

∫

u+σu′ = 0. Such a linear
combination is an eigenfunction, so is always positive (or always negative), so it
must be the case that u and u′ are linearly dependent.

We have the following formula due to Rayleigh

λk = min
u∈H1

0 (U)
u 6=0

u⊥wi ,i<k

B[u, u]

‖u‖2
L2(U)

�

2.6 Non-symmetric elliptic operators

In finite dimensions there is a classical theorem of Frobenius that says that the
smallest real positive eigenvector of a (not necessarily symmetric) real matrix has
an eigenvector with all positive coefficients.

2.6.1 Theorem. Let Lu= ai jux i x j
+biux i

+cu, where the coefficients are in C∞(U)
and A is positive but not necessarily symmetric. We consider the problem Lu= λu
in U and u= 0 on ∂ U .

(i) There is λ1 ∈ R that is an eigenvalue of L, the corresponding eigenspace is
one-dimensional, and the corresponding unit eigenvector may be chosen to
be strictly positive in U .

(ii) ℜλ≥ λ1 for all eigenvalues λ.
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See Evans for the proof.

3 Parabolic PDE

3.1 Bochner Integral

See Appendix E5 of Evans for a list of the results. There is a good reference by
Yoshida, Functional Analysis.

3.1.1 Definition. Let X be a Banach space.

(i) A function s : [0, T]→ X is said to be a simple function if it can be written
s(t) =

∑m
i=1 1Ei

(t)ui , where {Ei}mi=1 is a measurable partition of [0, T] and
ui ∈ X .

(ii) A function f : [0, T] → X is said to be strongly measurable if there is a
sequence of simple functions {sk} such that sk → f a.e.-[0, T], and weakly
measurable if for all u′ ∈ X ′ the function u′( f (·)) : [0, T]→ R is measurable.

(iii) A function f : [0, T] → X is said to be almost separably valued if there is
N ⊆ [0, T] with |N |= 0 such that f ([0, T] \ N) is separable.

Remark. If X is separable then any function is ASV, and if a function is continuous
then it is ASV.

3.1.2 Theorem (Pettis). f : [0, T] → X is weakly measurable and ASV if and
only if f is strongly measurable.

3.1.3 Definition.
(i) If s =

∑m
i=1 1Ei

ui is simple then

∫ T

0

s(t) d t :=
m
∑

i=1

|Ei |ui .

(ii) We say that f : [0, T]→ X is summable (or integrable) if there is a sequence
{sk} of simple functions such that

∫ T

0

‖sk(t)− f (t)‖X d t → 0 as k→∞.

We then define
∫ T

0
f (t) d t := limk→∞

∫ T

0
sk(t) d t.

3.1.4 Theorem (Bochner). A strongly measurable function f is summable if and
only if t 7→ ‖ f (t)‖X is summable. In this case

(i) ‖
∫ T

0
f (t) d t‖X ≤

∫ T

0
‖ f (t)‖X d t; and
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(ii) u′(
∫ T

0
f (t) d t) =

∫ T

0
u′( f (t)) d t for all u′ ∈ X ′.

3.1.5 Theorem (Fatou). Let { fn} be summable and suppose fn → f a.e.-[0, T]
and {

∫ T

0
‖ fn(t)‖X d t} is bounded. Then f is summable and

∫ T

0

‖ f (t)‖X d t ≤ lim inf
n

∫ T

0

‖ fn(t)‖X d t.

3.1.6 Theorem (LDCT). Let { fn} be summable and suppose fn → f a.e.-[0, T]
and there is g : [0, T]→ R integrable such that ‖ fn(s)‖X ≤ g(s) a.e.-[0, T]. Then
f is summable and

∫ T

0

‖ f (t)− fn(t)‖X d t → 0 as n→∞.

In particular
∫ T

0
fn(t) d t →

∫ T

0
f (t) d t as n→∞.

3.2 Spaces involving time

This section follows §5.9 in Evans.

3.2.1 Definition. For 1 ≤ p < ∞, Lp(0, T, X ) is the set of strongly measurable
functions u : [0, T]→ X such that

‖u‖Lp(0,T,X ) :=
�
∫ T

0

‖u(t)‖p
X d t

�
1
p

<∞.

L∞(0, T, X ) is defined in the obvious way. C([0, T], X ) is the set of continuous
functions [0, T]→ X .

If X is separable and p <∞ then Lp(0, T, X ) is separable.

3.2.2 Theorem (Phillips). For 1< p <∞, Lp(0, T, X )′ = Lq(0, T, X ′).

The derivative of f : [0, T]→ X is defined in the usual way by

f ′(t) = lim
h→0

f (t + h)− f (t)
h

,

provided the limit of the difference quotients exists.

3.2.3 Theorem. If f : [0, T] → X is summable and F(t) :=
∫ t

0
f (s) ds then

F ′(t) = f (t) a.e.-[0, T].

3.2.4 Definition. For u ∈ L1(0, T, X )we say that v ∈ L1(0, T, X ) is the weak deriva-
tive in time of u and write v = u′ if

∫ T

0

u(t)ϕ′(t) d t =−
∫ T

0

v(t)ϕ(t) d t

for all ϕ ∈ C∞c ((0, T ),R).
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Remark. Consider X = L1(R). If u ∈ L1(0, T, L1(R)) then there is an associated
ũ ∈ L1([0, T]×R), and u′ corresponds in a natural way to (ũ)t (see problem set
5).

3.2.5 Definition. W 1,p(0, T, X ) is the space of all u ∈ Lp(0, T, X ) such that u′ exists
and u′ ∈ Lp(0, T, X ). In this case define

‖u‖W 1,p(0,T,X ) :=
�
∫ T

0

‖u(t)‖p
X + ‖u

′(t)‖p
X d t
�

1
p

.

We write H1(0, T, X ) for W 1,2(0, T, X ).

3.2.6 Theorem (Calculus I). Let u ∈W 1,p(0, T, X ), 1≤ p ≤∞. Then

(i) u ∈ C([0, T], X );

(ii) u(t) = u(s) +
∫ t

s
u′(r) dr for all 0≤ s ≤ t ≤ T ; and

(iii) there is C = C(T ) such that

max
0≤t≤T

‖u(t)‖X ≤ C‖u‖W 1,p(0,T,X ).

PROOF: Define ũ : R→ X by extending u by 0 outside of (0, T ). For ε > 0 define
uε = ηε ∗ ũ. By the same methods as before on mollifiers, it can be checked that
(uε)′ = ηε ∗ (u′)̃ = (u′)ε, and uε → u and u′ε → u′ in Lp

loc(0, T, X ) as ε → 0. For
every small ε > 0 we have

uε(t)− uε(s) =

∫ t

s

u′ε(r) dr.

Apply pointwise convergence and convergence in L1 to conclude the second part,
from which the others follow. �

3.2.7 Theorem (Calculus II). Suppose that u ∈ L2(0, T, H1
0(U)) and u′ ∈ L2(0, T, H−1(U)).

Then

(i) u ∈ C([0, T], L2(U));

(ii) the mapping t 7→ ‖u(t)‖L2 is absolutely continuous and

d

d t
‖u(t)‖2

L2 = 2〈u′(t), u(t)〉;

(iii) there is C = C(T ) such that

max
0≤t≤T

‖u(t)‖L2 ≤ C(‖u‖L2(0,T,H1
0 )
+ ‖u′‖L2(0,T,H−1)).
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PROOF: Let uε := ηε ∗ u. For ε > 0 and δ > 0 and appropriate t,

d

d t
‖uε(t)− uδ(t)‖2

L2 =
d

d t

∫

U

(uε(t)− uδ(t))
2d x

= 2

∫

U

(u′ε(t)− u′δ(t))(uε(t)− uδ(t)) d x

= 2(u′ε(t)− u′δ(t), uε(t)− uδ(t))L2

= 2〈u′ε(t)− u′δ(t), uε(t)− uδ(t)〉
≤ 2‖u′ε(t)− u′δ(t)‖H−1‖uε(t)− uδ(t)‖H1

0

It is a property of mollifiers that uε → u a.e., so there is s ∈ (0, T ) such that
uε(s)→ u(s) in H1

0(U). For all t ∈ [0, T],

‖uε(t)− uδ(t)‖2
L2(U) −‖uε(s)− uδ(s)‖2

L2(U)

≤ 2

∫ T

0

‖u′ε(r)− u′δ(r)‖H−1‖uε(r)− uδ(r)‖H1
0
dr

≤
∫ T

0

‖u′ε(r)− u′δ(r)‖
2
H−1 + ‖uε(r)− uδ(r)‖2

H1
0
dr

= ‖u′ε − u′δ‖
2
L2(0,T,H−1) + ‖uε − uδ‖2

L2(0,T,H1
0 )

But three of these terms go to zero as ε,δ → 0, so it is seen that uε → u in
L2(0, T, L2(U)) as ε→ 0, by completeness.

For the second assertion, as above

d

d t
‖uε(t)‖2

L2(U) = 2〈u′ε(t), uε(t)〉.

Then

‖uε(t)‖2
L2 = ‖uε(s)‖2

L2 + 2

∫ t

s

〈u′ε(t), uε(t)〉 d t

and taking ε→ 0 we get

‖u(t)‖2
L2 = ‖u(s)‖2

L2 + 2

∫ t

s

〈u′(t), u(t)〉 d t
�

3.2.8 Theorem (Lions-Aubin). Let X , Y , and Z be Banach spaces with X ⊂⊂
Y ,→ Z . Let 1< p <∞, 1< q <∞ and

W = {u ∈ Lp(0, T, X ), u′ ∈ Lq(0, T, Z)}

Then W ⊂⊂ Lp(0, T, Y ).

In particular {u ∈ L2(0, T, H1
0(U)), u′ ∈ L2(0, T, H−1(U))} ⊂⊂ L2(0, T, L2(U)).
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3.3 Parabolic equations

Let UT := U × (0, T]. From now on we identify L2(UT ) with L2(0, T, L2(U)) with-
out note.

(P)







ut + Lu= f in UT

u= 0 on ∂ U × [0, T]
u= g on U × {0},

where Lu := −(ai jux i
)x j
+ biux i

+ cu is uniformly elliptic and in divergence form,
ai j , bi , c ∈ L∞(UT ) are bounded (and in particular may now depend on time)
f ∈ L2(UT ), and g ∈ L2(U).

The associated time-dependent bilinear form is

B[u, v, t] :=

∫

U

ai j(x , t)ux i
(x)vx j

(x) + bi(x , t)ux i
(x)v(x) + c(x , t)u(x)v(x) d x

for u, v ∈ H1(U).

3.3.1 Definition. For u ∈ L2(0, T, H1
0(U)) with u′ ∈ L2(0, T, H−1(U)), u is a weak

solution to (P) if, a.e.-[0, T],

〈u′(t), v〉+ B[u(t), v, t] =

∫

U

f (x , t)v(x) d x

for all v ∈ H1
0(U), and u(0) = g.

The last condition is well-posed because we have seen that such u lie in C([0, T], L2(U)).
We will often write B[u, v, t] := B[u(t), v, t] when no confusion could arise.

3.3.2 Theorem (Uniqueness). There is at most one weak solution of (P).

PROOF: By linearity it suffices to assume that f ≡ 0 and g ≡ 0. If u is a weak
solution then d

d t
‖u‖2

L2 = 2〈u′, u〉, so for every t ∈ [0, T],

d

d t
(‖u‖2

L2)(t) = 2〈u′(t), u(t)〉

=−2B[u(t), u(t), t]

≤−2β‖u(t)‖2
H1

0
+ 2γ‖u(t)‖2

L2 by Energy Estimates

≤ 2γ‖u‖2
L2(t)

By Gronwall’s lemma ‖u(t)‖2
L2 ≤ e2γt‖u(0)‖L2 = 0. �

3.3.3 Theorem (Energy Esimates). There is C = C(L, T, U) such that for every
weak solution u of (P),

max
t∈[0,T]

‖u(t)‖L2 + ‖u‖L2(0,T,H1
0 )
+ ‖u′‖L2(0,T,H−1) ≤ C(‖ f ‖L2(0,T,L2) + ‖g‖L2).
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PROOF: We have ut + Lu = f , so by the definition of weak solution (using u(t) is
a test function) and as above,

d

d t

�

1

2
‖u‖2

L2(U)

�

(t) + B[u(t), u(t), t] =

∫

U

f (x , t)u(x , t) d x .

Whence, again by Energy Estimates,

‖u(t)‖2
L2(U) ≤ 2‖g‖2

L2(U) + ‖ f ‖2
L2(UT )

+ (2γ+ 1)

∫ t

0

‖u(s)‖2
L2(U)ds,

so by Gronwall’s lemma

max
t∈[0,T]

‖u(t)‖2
L2(U) ≤ e(2γ+1)T (‖ f ‖2

L2(UT )
+ ‖g‖2

L2(U)),

and it follows that

max
t∈[0,T]

‖u(t)‖L2(U) ≤ C(‖ f ‖L2(UT ) + ‖g‖L2(U)).

(Fill in the rest of this.) �

3.4 Existence via Galerkin Approximation

Let {wk} be an orthonormal basis for L2(U) which is also orthogonal in H1
0(U).

(The collection of eigenfunctions corresponding to an elliptic problem has these
properties, using the bilinear form associated with the problem as the inner prod-
uct on H1

0 . For the Laplacian operator the corresponding collection is orthogonal
with respect to the usual inner product on H1

0 .) Write

um(t) =
m
∑

k=1

dk
m(t)wk = dk(t)mwk,

where dk
m(0) =

∫

U
g(x)wk(x) d x and

(u′m(t), wk) + B[um(t), wk, t] = ( f (t), wk)

for all t and k = 1, . . . , m. (i.e., we require that um is a weak solution to (P) on the
subspace of H1

0 generated by {w1, . . . , xm}.)

3.4.1 Lemma. For every m> 0 there is a unique um of the form above.

PROOF: Suppose there such a um. Since wk does not depend on time, u′m(t) =
(dk

m)
′(t)wk. By the condition that um is a solution

(dm
k )
′(t)(wk, w j) + dk

m(t)B[wk, w j , t] = ( f (t), w j)
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for all j = 1, . . . , m. Let ek j(t) = B[wk, w j , t] and f j(t) = ( f (t), w j), so that for
each j,

(d j
m)
′(t) + dk

m(t)ek j(t) = f j .

The ek j are bounded in time, so by the standard theory from ODE, there is a
unique absolutely continuous system of solutions {dk

m, k = 1, . . . , m}. This proves
existence and uniqueness of um. �

3.4.2 Theorem. There is a constant C = C(U , L, T ) (not depending on m) such
that

max
t∈[0,T]

‖um(t)‖L2 + ‖um‖L2(0,T,H1
0 )
+ ‖u′m‖L2(0,T,H−1) ≤ C(‖ f ‖L2(UT ) + ‖g‖L2).

PROOF: The proof is very similar to the proof of Energy Estimates above. �

3.4.3 Theorem. There is a unique weak solution to (P).

PROOF: Uniqueness has already been proved.
Since L2(0, T, H1

0(U)) and L2(0, T, H−1(U)) are reflexive there is a subsequence
(after relabelling) um converging weakly to some u ∈ L2(0, T, H1

0) such that u′m
converges weakly to some w ∈ L2(0, T, H−1(U)). By the homework w = u′. We
must show that 〈u′, v〉+ B[u, v, t] = ( f , v) for all v ∈ H1

0(U). For v of the form
∑M

i=1αiwi , for m> M , we have

∫ T

0

〈u′m, v〉+ B[um, v, t] d t =

∫ T

0

( f , v) d t.

Passing to the limit,
∫ T

0

〈u′, v〉+ B[u, v, t] d t =

∫ T

0

( f , v) d t

for all such v. But such v are dense in H1
0(U), so this holds for all v. �

3.5 Maximum principles

Let ΓT = (∂ U × [0, T])∪ (U × {0}). Consider the problem






ut + Lu+ h(u) = f in UT

u= 0 on ∂ U × [0, T]
u= g on U × {0}

where h : R→ R is non-decreasing, and Lu=−ai jux i x j
+ biux i

(i.e. c = 0).

3.5.1 Definition. We say that u ∈ C2,1(U × [0, T])∩ C(UT ) is a sub-solution if all
equalities are replaced by ≤, and a super-solution if all equalities are replaced by
≥.
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3.5.2 Theorem (Comparison Principle). Let u be a sub-solution and v be a super-
solution. If u≤ v on ΓT then u≤ v in UT .

PROOF: Assume that u is a strict sub-solution, so that ut + Lu+ h(u)< f . Assume
the conclusion of the theorem is false, and let (x0, t0) ∈ UT be a point where
maxUT

u− v > 0 reaches its maximum. Since u ≤ v on ΓT , we must have x0 ∈
U and t0 ∈ (0, T]. If t ∈ (0, T ) then at (x0, t0) we have Du = Dv, ut = vt ,
D2u ≤ D2v, and u > v. Adding all this up, ut + Lu + h(u) ≥ vt + Lv + h(v)
at (x0, t0), contradicting ut + Lu + h(u) < f ≤ vt + Lv + h(v). If t0 = T , then
ut(x0, T )≥ vt(x0, T ) and the same contradiction follows.

If u is not a strict sub-solution then consider uε(x , t) := u(x , t) − εt. Then
uε ≤ u and uε is a strict sub-solution. It follows that uε ≤ v on UT for every ε > 0,
so u≤ v. �

3.5.3 Theorem (Weak maximum principle). If ut+Lu≤ 0 in UT then maxUT
u=

maxΓT
u, and the same holds if (≤, max) are replaced by (≥, min).

PROOF: Follows from the Comparison Principle. �
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