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Sobolev Spaces 3

1 Sobolev Spaces

1.1 Introduction

This course is concerned with modern methods in the theory of PDE, in particular
with linear parabolic and elliptic equations. It will be a technical course more than
an applied course, and we will be learning the language required to understand
research in PDE.

For the purposes of illustration, consider the boundary value problem

—Au=f inU
u=0 on dU

where U is connected and U is compact. Multiply by a test function ¢ € c(U)

and integrate both sides
f —Aupdx :f fedx.
U U

f Vu-Vt,odx=f fpdx,
U U

since ¢|zy = 0. Define a bilinear form on some space H, with the property that
u=0on dU forueH, by

Integrate by parts to get,

(uq,uy) :f Vu; - Vuydx.
u

For u € H, the norm is ||ul| = fU |Vu|?dx, and we hope that H is a Hilbert space

and ¢ — fU f@dx is a bounded linear functional. If these hopes hold true then
by the Riesz representation theorem there is a unique u € H such that

J Vu-Vedx = (u, ) =J fedx.
U U

Sounds nice, but does it all work?

1.2 Weak derivatives

1.2.1 Definition. Let u € L, (U). The function v € L} (U) is a weak partial
derivative of u in the i coordinate if

f up, dx = (—I)J vipdx
U U
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for all ¢ € C°(U). We write v =u,..
Analogously, v is the a'™ weak partial derivative for a multiindex a if

J uD%pdx =(—1)|“|J vipdx
U U

for all ¢ € C(U), and we write v = D*u.

Of course, to define such notation we need the following.

1.2.2 Proposition. Weak derivatives are unique if they exist.

ProOF: Suppose that w; and w, are a' derivatives of u. Then, for all ¢ € c (),

(—1)""'[ wypdx = (—1)'“'] wypdx.
U U

So fU(w1 —wy)pdx =0 for all p € C*(U), and it follows that w; = w, a.e.
(Indeed, let 1 be the standard mollifier, and 7, be the rescaled mollifier with

support B(0, ¢). Then w,(y) := fU w(x)n.(y —x)dx = 0 for all ¢ and all y, and

this completes the argument since w, — w a.e.) O

1.2.3 Examples.
(1) Let u(x) = |x| for x € R. Then u,(x) =1if x > 0and = -1 if x < 0.
Indeed, for ¢ € C*(R),

0 00
—f uxwdx=—f uxcpdx—f u,pdx
R —00 0

0 o)
= J up,dx —u(0)p(0)+ J up,dx +u(0)p(0)

—00 0

ZJ |x|¢xdx
R

We will see later that the weak derivative corresponds to the usual general-
ization of derivative for absolutely continuous functions.

(i) Let u(x) = 1¢y ). Then u,(x) = 0 is the only candidate for the derivative

(why?), but
J ungdX ZJ ngdX = _90(0)
R 0

which is not necessarily zero. There is a more general notion (that of a “dis-
tribution”) that would give this function a derivative, but for our purposes
this function does not have a weak derivative.



Sobolev spaces 5

1.3 Sobolev spaces

1.3.1 Definition. For 1 < p < oo, let W*P(U) be the collection of functions u €
ZOC(U) such that for all a with |a| < k, D*u exists and is in LP(U). For u €
WRP(U),

1
p
oy = ( 3 f peurax )’ ( > el
\a\<k U lal<k
For p = oo, take instead the essential supremum.

When p = 2 we may write H*(U) := Wk2(U).

. , — W)
1.3.2 Definition. W,”*(U) :=C®(U) .

1.3.3 Example. Let U =B(0,1) S R", a > 0, and u(x) = —-. Note that

1 1, T
—dx=C| —r"dr=Cr"%,
B(0,¢) |x|* o T 0

souisin L), (U) if and only if a < n.
For which p and n is u in WYP(U)? u is a.e. differentiable, so

1 X; ox;
U, =—0——"— =————
Xi |x|a+1 |X| |X|a+2’

and |Dll| w

this is truly the weak derlvatlve, let A, := B(0,1)\ B(0, ). By integration by parts,

J. up, dx = —J u, pdx +f upv;ds.
A, A 9B(0,¢)

£

As above, u, € L1 ,.(U) if and only if @ < n — 1. To check that

Ase—0,A, — B(0,1) and

1
f —<pv ds
aB(0,e) €

Finally, fU |[DulPdx < oo only if

<Ce" 1|l — 0.

1
1

00 > _ —dx=C pi1=@p gy = cpn-latp]
» x| . 0

which happens when (a+ 1)p <n, or a < 127 -1

1.3.4 Proposition. Letu,v € W*P(U) and let |a| < k.
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(i) D% € wWk-lelp(gp)
(i) DP(D%) = D*(DPu) = D**Pu, for each B such that |a|+ |B| < k.
(iii) D* is a linear operator.
(iv) IfV C U is open then ul, € WKP(V).
(v) IfE € CX(U) then Eu € WkP(U) and

D*(Eu) =) (;)DﬁED“_ﬁu

Bsa

— al

where (;) = m

1.3.5 Theorem. W*P?(U) is a Banach space.

Proor: If [[ul| = O then [[ull, < |lull =0, so u = 0 a.e. Clearly the norm is
homogeneous, so we are left to check the triangle inequality. For p < oo,

1

b
lu+ v = (Z ID%u +D“v||§)

a<k
1
P
< (S oty + 1071, 7
a<k
1 1
p p
<(Sweutz)” + (o)
a<k a<k
= Jlull+ IVl

by Minkovski’s inequality in both cases. The case p = oo is clear.

Let {u,,} be a Cauchy sequence in W*P(U). Since the Sobolev norm dominates
the L? norm, all of the sequences {u,,} and {D%u,,} are Cauchy in L?, and hence
convergent in LP. Let u and u, be the limits of these sequences in L. Now

J uD%pdx = lim f u,D*pdx
U

U
= lim (—1)'a|J

pD%u,dx = (—1)“|f U pdx
U

U

Therefore u, = D%, and the sequence converges in W*P(U). O

1.4 Approximation by smooth functions

Mollifiers

A mollifier is a function n € C°(R") such that
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@D Jpn=1
(i) n=0;
(iii) m is radially symmetric; and
(iv) supp(n) € B(0,1).
For any ¢ > 0 define n,(x) = gl"n(f). Then 7, is also a mollifier for ¢ < 1. For

feLl (RY), define

loc

fE) s=mex f(x) =J

R

Ne(x —y)f (y)dy = f N:(Y)f (x — y)dy.

]Rll
1.4.1 Proposition. The following properties are true of mollified functions.

() ffeC™ foreverye > 0;
@) f¢—f ae.;

(iii) If f € C(U), then f* — f in C;,.(U). Warning: Mollification does not play
well with the L*° norm.
(iv) If1<p<ocoandf €L’ (U)thenf®— f inL’ (U).

loc loc

1.4.2 Exercise. Is it the case that if 1 < p < oo and f € LP(U) then f¢ — f in
LP(U)?
Interior Approximation

1.4.3 Theorem. Let 1 < p < oo and u € WXP(U). Forany 0 < e < 1, let U, :=
{x e U | dist(x,0U) > e}. For x € U,, define u,(x) :=n, *xu(x). Then

() u, € C*®(U,); and
(ii) u, — u in WII;’CP(U) ase — 0.
Notice that if V cc U then dist(V,dU) > 0, so u, is defined on V for all small
enough &.
Proor: Let |a| < k. Then for x € U,, D*u,(x) =1, * D*u. Indeed,

D%u,(x) = D¢ J ne(x — y)u(y)dy
U

= J Dine(x — yJu(y)dy
U
= (-1 f Dine(x — yJu(y)dy
U

= (—U""(—D“'J ne(x = y)D%u(y)dy

U
=1, *D%
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Now D%*u e L?

loc

VccU,ase—0,

(U), so D*u, =, * D*u — D% in L?

loc

(U). It follows that for any

ey =,y = D ID%u, = Dull}, ) — 0.
la|<k O

Approximation by smooth functions

1.4.4 Theorem. Let U be a bounded domain, 1 < p < oo, and u € W*P(U). Then
there are u,, € C*(U) N W*P(U) such that u,, — u in W*P(U).

Proor: LetU; := {x € U | dist(x,dU) > %}, and let V; := U;,5\ U4, and V, := U;.
Then U = Ufio V;, and each point of U is contained in at most three of the V;.
Let {&;} be a partition of unity subordinate to the cover V;. That is to say,

(@) & eC™(,[0,1]);
(i) supp(&;) € V;; and

(i) 3, & =1.

Notice that supp(&;u) € V;. Fix § > 0, and pick € > 0 so small that
@ [me * (Eu) — Eullwrry < 2%; and

(i) supp(n, * (§:u)) S W; := U4 \ U,

We can do this because, by 1.4.3, 1), * (&,;u) approximates &;u locally, and are they
both identically zero off of a compact set.
Let v := Y~ n,*(&u). Then for each V cc U,

o0 o0 5

lv— u||wk,P(v) =< Z Ime * (E;u) — €iullww(m = F =0,
i=0

i=0 i

so we conclude [|v — ul|ykr gy < 6 by taking the supremum overall V cCc U. O

1.4.4 implies that wke is the completion (in its norm) of the collection of
smooth functions with finite WP norm.

Global approximation

In the previous approximation we could only find functions u,, € C*(U). If the
boundary of U is well-behaved then we can do better.

1.4.5 Theorem. Let U be a bounded domain with C! boundary, 1 < p < oo, and
u € W;P(U). Then there are u,, € C*®(U) such that u,, — u in W*P(U).
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ProoF: We write x = (X, x,,) for x € R". Fix a point x, € dU and write
UNB(xg,r)={x €B(0,r) | x, > y(%)}

for some r > 0 and C! function y : R"™! — R. Let V := U N B(x,, %)-
For A€ R and ¢ > 0, let x° := x + Aee,. Choose A so that

B(xf,e) CUNB(xq,r) foralle >0and x €V.

(Idea: take A large, depending on ||Dy|| «wna1y, SO that the tip of the cone over
x with “slope” A lies in B(xg,1).)

Define u,(x) := u(x®) and let v, := 1, *u,. The idea is that we jiggle x slightly
so that there is “room” to mollify. Then v, € C®(V), and we claim that v, — u in
WEP(V). Indeed let |a| < k.

ID%v, — D%ullp vy < [ID*u, — Dullppvy + [1D%ue — DVl oy

The shift operator is continuous on L?, so the left hand term goes to zero as ¢ — 0.
Recall D*v, = D*(n, *u,) =1, * D*u,, so

J e % D%ue(x) — Du (x)Pdx = f Ine % D*u(x) — D*u(x)Pdx
14 1

+Aee,

SJ [N, *g—glPdx —0
UNB(xo,r)

as ¢ — 0, where g(x) = D%(x) for x € U and 0 outside. (This redefinition is
required so that the convolution is defined over all of U.)

Let & > 0. dU is compact, so choose finitely many boundary points x; (1 <
i < N) such that the corresponding radii r; and sets V; := U N B(x;, %) cover dU,

and choose v; € C®(V;) such that

[lv; — u“w’w(vi) < N

Choose V, cc U such that U = Uf.\:Ol V; and v, € C*(V,) such that

llvo — U”W’(«P(Vi) =< N’

which may be done by 1.4.3. o
Let {&;} be a partition of unity defined on U subordinate to the cover {V,, B(x;, ;)},

and set v := Zi\[;ol &,v;. Finally,

1

I = Euhrecy = (3 | 1D%CEw,) - DeEaoPax)

la|l<k YV;

< Cllv; — ullwrsey
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where C; is a constant that depends only on &;, ||, n, and p (but not on N or §).
Indeed,

f |(€V)x - (gu)x|pdx :f |§(vx - ux)+ gx(v - u)|pdx
14 14
< CJ 1EIP vy — uy [P + € Plv —ulPdx
|4
< C(l[Ello + ||§x||oo)f Ve =P + v —ufPdx.
\4

N-1
Therefore |[v — ullyroy < Doy Cillvi — ullwraqyy < C6. O

The construction used in this proof also works for Lipschitz domains (i.e. those
domains for which the boundary can be smoothed out by a Lipschitz continuous
function). The idea is that, for this proof to work, the “corners” of the domain
cannot be too sharp.

1.5 Extension

1.5.1 Theorem. Let U be a bounded domain with C' boundary, 1 < p < oo, and
V be open in R" and such that U cC V. Then there exists a bounded linear
operator E : WYP(U) — WYP(R™) such that

(i) Euly =u forallue WH(U);
(ii) supp(Eu) € V; and

(i) ||Eullyrprny < Cllullwrey (where C depends only on p, U, and V).

Proor: Let u € C'(U), and suppose there is x, € dU and a small ball B around
X such that inside this ball dU is the hyperplane {x,, = 0}. For x € B let

200) = {u(x) x,>0

—3u(®, —x,) + 4u(x, —%) x, <0
Then u is continuous on B, and is in fact C' on B. Further, we have the estimate
el -y < Cllullr s+

since

J |=3u(x, —x,) +4u(®, —3)Pdx < CJ |u(%, —x )P + [u(x, —3)Pdx
.

<C |u|Pdx
B+
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by changing variables appropriately. By the same method it can be shown

”ﬂ”WLP(B) < CHUHWLP(B*)-

Now suppose that dU is not necessarily so nice near x,. There is a C! change
of coordinates y = ®(x) such that ¥y = X and y, = x, — (%), and locally the
boundary in the image is {y, = 0}. Let ¥ denote the inverse mapping, and notice
that both det(D®) = 1 and det(D¥) = 1. Let u € C'(U) and v(y) = u(¥(y)).
As above, reflect to obtain v defined on some ball B around y, = ®(x,). For
x €W = W¥(B), let u(x) = v(®(x)). Then u is a C! extension of u defined on the
neighbourhood W of x,. Further,

11,100, = f |a(x)|P+Z|axi(x)|de

f [V(8())IP + Z ERZCIENIEE:

f v(y)

= f |v(y)|de+cZ f v, ()IPdy
i B

< Clivll;

<clvP < Cllully

wio(B) = Wip(B+) = Whe (WNU)
Choose W, and {W,; | 1 < i < N} such that U C Uiz_o W, CV and 0U C

U?I:_Ol W;. Choose a partition of unity {&;} subordinate to this cover and let u; be
the reflection obtained above defined on W;. Define

N-1
Eu:=&qu+ Z &l
i=1
so that supp(Eu) € V and
N-1 N-1
||Eu||wlvp(u§") =< Z ”giﬂi”WLP(Wi) =< Z C(gi)“ﬁinwhp(wi) < C||u||W1vl’(U)~
i=1 i=1
For u € WYP(U), by 1.4.5 there are u,, € C*°(U) such that u,, — u in WP (U).

E is bounded and linear on a dense subset of WHP(U), so we can extend it to a
continuous linear map by defining Eu := lim,,_,, Eu,,. |

This theorem also holds true for C* domains and W*?, but fails for domains
with corners.

1.6 Traces

Even for reasonable sets, it is not possible to talk of the value of an element of
LP(U) on the boundary of U. But it is possible for elements of WP(U) when U
has C! boundary.
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1.6.1 Theorem. Let U be a bounded domain with C' boundary, and 1 < p < 0.
There exists T : V_VLP(U) — LP(9U), linear and bounded such that Tu = u|,y if
uewbhr(U)nc(U).

Proor: First, we consider u € C'(U). Let x, € dU and assume that dU is flat
near x, (i.e. the boundary is given by {x, = 0} in U N B := B(x,,r)). LetT =
(8U) N B(x,, g). Let & be a cut-off-function, i.e.

(@) &eCX(B,[0,1]); and
(ii) £ =1 on B(x,, g).

Then

J lulPdx < f ElulPdx
r BN{x,=0}

=—| (Euf)dx

Bt

=—| & ul”+&plul~ sign(wu,, dx
Bt

< CJ |u|? + |DulPdx
B+

by Young’s inequality, ab < %P + l;—q for a,b > 0, where 11) + 5 = 1. (We have
luy, | [ulp~! < C(luy, [P+[ulP).) (An equivalent formulation is that a®bP < C(a*P+
ba+ﬁ).)

Second, if the boundary is not flat then there is a mapping ¢ that flattens it
out. We have (in the notation of the proof of 1.5.1)

E”u“LP(FxO < ||v||LP(Fy0) =< C”v“WLP(ByO) = C”u”ww(w)

Therefore for all x, € dU there is a relatively open I', in dU with x, € T, such
that there is C, = C(&,, U, p) with ||u||Lp(1~X0 < Cy, llullwrrqwy-

Third, dU is compact, so there is a finite cover {I';}, and |[ull >y < Cllullwrrn
where C = max(C;.

Fourth, consider u € W'P(U). There are u,, € W“?(U) N C®(U) such that
u,, — u in WHP(U). We have

| Ty — Tuglleary = T W — udllravy < Cllug, — ugllwrrw)

so {Tu,,} is a Cauchy sequence (hence convergent) since {u,,} is convergent (hence
a Cauchy sequence). Take Tu := lim,,_,, Tu,- .
We must still check the property for u € WHP(U)N C(U). O

1.6.2 Theorem. Let U be a bounded domain with C* boundary, and 1 < p < co.
Forue W'»(U),ue Wol’p(U) if and only if Tu = 0.



Sobolev inequalities 13

1.7 Sobolev inequalities

Fix U € RVN. For what N, p, q is there a (continuous) embedding of W'P(U) into
LI(U)?

Gagliardo-Nirenberg-Sobolev inequality

Consider u € Cf"(}RN ). We consider first a “scale-free” inequality involving only
the derivatives. Note first that any inequality that holds must have the powers of
the norms balance on each side (e.g. ||u|| < C||Dul|? can not hold for all u, for any
norms). This is seen by considering u, := au.
Suppose that ||ul|zewvy < Cl|Dul| vy holds. Consider u, (x) := u(Ax) to see
that Ly -
lually =2 <llull, and [[Duyll, =2""#|IDull,,
so v
A e lully < NIDwlly,

1

and for this to work we must have 117 + . % by the reasoning in the paragraph

above. The Sobolev conjugate is p* :=q = I\]IV_—P;J'

1.7.1 Theorem (Gagliardo-Nirenberg-Sobolev).
Assume that 1 < p < N. There exists C = C(N, p) such that |[ul|,- < C||Dul|, for
allue Ccl(]RN).

. X
Proor: Write u(x) = fﬁoo Uy, (X154 445 X_1,8i, Xi41, - - -, X, )ds;, so that by the fun-
damental theorem of calculus,

o0
lu(x)| < J [ty (315 -+ 5 X215 805 Xig1s -+ X )| S
—00

Forp=1,p*= %, and

N N © N1
() = U |uxi|dsi)
i=1 —00
00 . 00 ﬁ o© N 00 T
f o, = J 1 J [1( f g lds;) " ax,

Repeat this (see Evans) to get

N-1

(J |U(X)|NN1dX)NSJ |[Du(x)|dx.
RN RN
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Now for 1 < p < N, consider v = |u|". By Hélder’s inequality and the result for
p =1 above,

( f |u(x)|¥rf—1dx)”=( J |v(x)|w”—1dx)”
RN RN

sf ylu" " Du(x)|dx
RN

1

p-1 1
SY(f Iul(y‘”fldx) ’ U |Du|de)p.
RN RN

Take y = pSVN—__pl), and notice that
N N N-1 -1 N-—
r—-1 P _ P _ Y and _P = p’
p—1 N-p N-1 N p Np
so ||ull,- < C|Dull,. O

1.7.2 Theorem. Let U C RN be a bounded domain with C' boundary, and 1 <
p<N. Ifue WY (U) thenu € LP"(U) and there is a constant C = C(N,p,U)
such that ||u||Lp*(U) < Cllullwre -

ProoF: Let V be a large ball containing U. By 1.5.1 there is 1 € WYP(RN) such
that supp(u) € V and there is C; = C;(N, p, U) such that

||ﬂ||w1-P(1RN) = C1”u”W1-P(U)~

By 1.4.4 there are u,, € W-P(RV)n C}(R") such that u,, —» u in W (RY). By the
Gagliardo-Nirenberg-Sobolev inequality there is C, = C5(N, p, U) such that

||um — UZ”LP*(RN) < CZIIDum - DUZ”LP(RN) < C2||um - u¢||W1,p(Rn).

It follows that u,, is a Cauchy sequence in LP (RN), and so u,, — u in LP (RY),
and we have

”u”LP*(U) < ”ﬂ”LP*(RN) =< CleDﬂ”LP(]RN) < C1C2||u||W1vP(U)~ O

It is not necessarily the case that WV (U) embeds in L®(U) (see problem set
1, exercise 13), so the inequality does not hold in the limit p /' N.

1.7.3 Theorem (Poincaré Inequality). Let U € RY be a bounded domain with
C! boundary; and1 <p < N. Ifu € Wol’p(U) then there is C = C(N, p) such that
lull 1y < ClIDull ey

Proo¥F: By definition of Wol’p(U) there is u,, € C}(U) such that u,, — u in WHP(U).
Hum - ulllLP*(U) < C”Dum - Dul”LP(U)

so u,, — uin L? (U) and llell e (1) < ClIDUll o (- O
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If U is bounded and p > g then LP(U) embeds in L4(U). Indeed,
[ =)
p p p
f lulidx < (J (Ju|?)q dx) (J 1dx)
U U U
so |[ull; < Cllull,, where C is a constant depending on the volume of U.

Morrey’s inequality

1.7.4 Definition. u € C(U) is Holder continuous with exponent y if

lu(x) —u(y)
[u], := sup ——
x,yeu |.X' - }’|
x#y
We write u € C%Y(U), with norm llullcor(vy == llullewy + [u], Analogously, define

lullerrwy == lullerwy + 204k [D*ul,, for u € C*(U). (Note that the Holder semi-
norm is only applied to the highest order derivatives.)

1.7.5 Theorem. Let N < p < oo. Then there is a constant C = C(N, p) such that
fory=1- % and allu € C}(R"), |lullcorevy < Cllullwroyy.-

Keep in mind that u € WH*®(U) does not necessarily imply u € C%'(U). The
function in exercise 13 from problem set 1 (where U is taken to be the unit disc
with a slit removed) is not Holder continuous for any exponent.

Proor: Let x,y € R" and write y = x 4+ rw, where w is a unit vector and r =
|x — y|. Let ¢(t) = u(x + tw), so that ¢’(t) = Du(x + tw) - w, and by the
fundamental theorem of calculus,

u(y) — u(x)] = < J DuCx + tw)) dt.
0

J Du(x + tw)-wdt
0

Therefore

J lu(x +rw) —u(x)|dS,, < J f |Du(x + tw)|dS,, dt
2B(0,1) 0 JoB(0,1)

=J J |Du(z)|t™Nds, dt
0 JaB(x,0)

|Du(z)|
= — dz
B(x,r) |x — 2]
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taking z = x + tw, and by the co-area formula. Now consider

j lu(y) —ulx)ldy = J j [u(y) —u(x)ldS,dt
B(x,r) 0 JOIB(x,t)

.
:f tN_lf lu(x + tw) —u(x)|dS,, dt
0 8B(0,1)
-
Du(z
SJ. le | (13|1dzdt
0 Boeny 1X 2l

-
Du(z

sf tN_ldtf %dz
0 B(x,r) |X _Z|

N |Du(z)|
N Jpeer 1X —g|N-1
The first inequality below holds since it holds pointwise.

|u(x)] SJ[ lu(x) —u(y)ldy +J[ [u(y)ldy
B(x,1) B

(1)
|Du(y)|
=< CJ w4y + Cllull v
B

(x,1) |X - .}’|N_1
1

1 p=1

< p P (1—N)%1 P

<C |Du(y)Pdy lx =yl "erdy + Cllull gy
B(x,1) B(x,1)

< Cllullwrr(rry

by Holder’s inequality, and since p > N. Therefore [|ul|s, < Cllullyrgy)-
Let W = B(x,r) N B(y,r), and notice that C;|B(x,r)| < |W| < |B(x,r)|.

() — u(y)| < J[ |u(x)—u(z)|dz+J[ u(z) — u(y)|dz
w w
<2l e —u@idz+ 1 ) - uldz

Cl B(x,r) 1JB(y,r)

But the two integrals are of comparable size, and

J[ lu(x) —u(z)|dz
B(x,r)

Du(z
< CJ —l (1\?'71 dz
B 1% 2
p-1

1 p-1l
ch |Du(z)|sz)p (J I — 2|V 1dz) ’
B(x,r) B(x,r)

1-N
< lullwrrgyys™ ».
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Therefore, since r = |x — y|,

lu(x) —u(y)
sup ﬁ
x,yeRN |x — )
IR lx =yl

< Cllullwrry)

and ||ullcor@vy < Cllullwipgyy, by combining this with the L bound obtained
above. |

1.7.6 Theorem. Let U C R" be a bounded domain with C' boundary, and N <
p < 0o. Then WHP(U) embeds in C*Y(U), where y =1 — %, and the norm of the

embedding depends only on N, p, and U.

Sobolev inequalities

Recall, Gagliardo-Nirenberg-Sobolev says that when p < N, W_LP (U) = LY(U) for
q<p‘= A]]V—_’;, and M says that when p > N, W'P(U) — C%'(U) fory <1-— %’.

1.7.7 Theorem (Sobolev Inequalities). Let U C RN be a bounded domain with
C! boundary, and u € W*P(U).

() Ifkp <N thenu e LY(U), where q = NN—_IIZp (so é = % — %), and the norm of

the embedding depends only on N, p, k, and U.

(i) Ifkp > N thenu € Ck_[%J_l’Y(ﬁ), where y may be taken0 <y <1 if%’ is an
integer, and 0 <y < L%J +1- %’ otherwise, and the norm of the embedding
depends onlyonN, p, k, v, and U.

Proor: Let pt) := NNT‘;.p (so p* =pW, and ﬁ = 117 — ]i\']). Since, by the properties
of the weak derivative, D*u € WP(U) for all |a| < k, the Gagliardo-Nirenberg-
Sobolev inequality implies that, for each j =1,...,k—1,

”u”Wl—j,pU)(U) < Cj”u”Wk—(j—l),pU‘D(U)'

One further application implies |[u|| 7y < CCy -+ - Cy_1 l[ullywrr .-
Let { := L%]J. Suppose that £ is not an integer and let r = p©) = NNlep > N.
If u € W4T (U) then as above, for all |a| < k — £ we have D% € W' (U), so by

Morrey’s inequality D%u € C%"(U), where y = 1 — % = [%J +1-— %. O

1.8 Compactness

1.8.1 Definition. Let X and Y be Banach spaces. A linear map ® : X — Y is said
to be sequentially compact (or compact) if ® is continuous and the image of any
bounded sequence in X has a convergent subsequence in Y.
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Remark.
(i) Recall the theorem of Arzela-Ascoli: If {f,} is a sequence of functions that is
uniformly bounded and equicontinuous then it has a uniformly convergent
subsequence.

(i) ck*(U)cc ckP(U)if1>a> B >0. (Prove this as an exercise.)

(iii) LP(U) — L1(U) when p > q, but the embedding is not compact.

1.8.2 Theorem (Relich-Kondrachov). Let U € RY be a bounded domain with C*
boundary; andu € WYP(U). If p < N then forall1 < q < p* = ,\%’ WLP(U) cc
Li(U).

Proor: Let {u,} be a bounded sequence in W*P(U). Let V be an open ball
containing U. By the extension theorem there are u,, such that |[u,[[yxegr) <
Cllup, llwrr vy and supp(u,,) S V. It is enough to show the middle of the following
string of inequalities (since the first and last are proved).

”umHLq(U) < ”ﬂmHLq(R") < ”ﬂrn”Wk'P(]R”) < C”um”Wk’P(U)

Without loss of generality, we may suppose that u,, € W(f P(V). For0< e <1, let
ut :=n, *u, (supposing that V is large enough to support the convolution).
We claim that

(i) uj, — uy, in LY(V) as € — 0, uniformly in m; and
(i) for fixed ¢, {u! } is uniformly bounded and equicontinuous.

Assuming these claims, for all 6 > 0 there is £5 > 0 such that [[u®? —u,,[[;¢) < %.
From the second claim and the Arzela-Ascoli theorem, there is a uniformly con-
vergent subsequence ufgk — u®s. Consequently, ufrfk — u% in LI(V). In particular,
this subsequence is a Cauchy sequence in L(V), so there is a ks such that for all
k,l > kg, by the triangle inequality,

”umk - um£|| <6é.

Note that this does not immediately imply that {u,, } is a Cauchy sequence in
L1(V). Diagonalize to obtain a Cauchy subsequence, which is a convergent subse-
quence since L(V) is complete.

Now for the proof of the first claim. Let a(t) = x +t(y — x), and consider that,
by the fundamental theorem of calculus,

1 1

d
Uy () = tp(x) = J Zpum(alt))dt = J Duy,(a(t)) - (y — x)dt
0 0
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so, taking z :=y — x,

U, (x) =y (x) = f Ne(x = Y)W (y) = up(x))dy

RN

1
=f ng(—z)f Du,,(x+tz) -zdtdz
RV 0

”flg( Z)J Du,,(x +tz)-zdtdz|dx

f J Jns( 2)|Du,,(x + t2)||z| dx dt dz
SSJ J Ne(=2)IDupllrvydt dz
rJo

= &||Dup|| 1 vy < eC(V)IDttl 1o vy < Ce.

I, () = GOl vy =

Recall the following fact: if f, — f in L! and {f,} is bounded in L? then f, — f
in L4 for all g € [1, p). This uses the interpolation inequality

Il <IFICIFIE-® where ~ = & 4 229
where — = — _
q — 1 p q 1 )

Note that {u; —u,,} is bounded in LP" since u,, converges in WP(V), and by the

Sobolev inequalities this space embeds in LP".
For the second claim,

lu; (x)| < f Ne(2) [t (x — 2)|dz < |0, lloolltimll1ry £ Clluglwroeyy
RTI
and
|Dus ()| < J IDn(2)|[up(x — 2)|dz < ||ID | oo llttm (x — 2)| 11 m
Rn

showing uniform boundedness and uniform Lipschitz continuity. |

Remark. If X — Y — Z are Banach spaces and either of the embeddings are
compact then the composition X — Z is compact.

1.9 Poincaré inequalities

We call an inequality giving a bound on u determined entirely by the derivatives
of u a Poincaré inequality.
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1.9.1 Theorem. Let U C RN be a bounded, connected domain with C* boundary.
Then ||u —)CUuIIP < C||Dull, for allu € WLYP(U), where C depends on N, p, and
U.

Remark. If U is not connected then a locally constant function on U that is not
identically constant on U gives a counterexample to the inequality.

Proor: Assume that the conclusion of the theorem does not hold. Then for each
k > 1 there is u, € WHP(U) such that ||u; _J(U ull, > k||Duyl|,. Both sides of
the inequality do not change upon adding a constant to u, and the inequality is
invariant under multiplying by a scalar. Define v} := u; — JCU u; and normalize
Vi so that |[vi]l, = 1. Then [|v|l, > k||Dv|l, for all k > 1. Therefore {v;} is a
bounded sequence in W P(U). Since WP(U) cC LP(U) whenever p < p* (i.e.
when p < N), and

WLP(U) cc €% (U) € L*®(U) C LP(U)

whenever p > N. (Alternatively, notice that WP(U) < W4(U) whenever p > q,
so since ¢* > q and ¢* — oo as ¢ — N, we get the p > N case by taking g only
slightly smaller than N, but close enough to N to give ¢* > p.) Thus there is
a subsequence converging in the L? norm. Without loss of generality we may
assume v, — v in LP. Since ||v;||, = 1 for all k > 1, ||[v||, = 1. Further, JCUV =0,

since fU- dx is a continuous linear functional on L?(U), since U is bounded. We
will now show that Dv = 0. Indeed, by the dominated convergence theorem,

f vy dx = lim J Viepy, dx = — lim f Oy, vpdx =0
U k—o0 U k—o0 U

where the last equality is by Holder’s inequality, since |[Dv,||, — 0 as k — oo.
Therefore the weak derivative exist and is zero, and v € W P(U). But this implies
v =0, and this contradicts ||v||, = 1. O

Remark. There are other proofs of this inequality that give an estimate on the
constant, and yet others which give the optimal constant.

1.10 Difference quotients
1.10.1 Definition. Let U C R be open, and define
Us :={x e U|dist(x,0U) > &}.

For 0 < h < 0, define the difference quotient in the direction of e; by

u(x + he;) —u(x)

Dh =
Ju(x) N

1.10.2 Theorem. Let U C RN be open
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(i) Let1<p <ooandue WYP(U). ForallV cC U open,
||Dhu||LP(v) < C“Du”LP(U)’
where C = C(N,p,U,V) for all h € (0, %dist(V, aou)).

(i) Let1 <p < oo andu € LP(U), and V cC U open. Assume there is C such
that ||Dhu||Lp(V) < C for all h € (0, %dist(V,aU)). Then we may conclude

thatu € WHP(V) and ||Dull»yy < C.
Proor: Without loss of generality, we may assume that u is smooth.

|u(x + he;) —u(x)IP

h _
ID{ull o vy = ) P
1 p
Sf f |Du(x + the;)|dt| dx
vido
1
< f |Du(x + the;)[Pdt dx by Jensen
vJo
1
:f f |Du(x + the;)[Pdx dt
o Jv
1
SJ J |Du(y)IPdydt Y =X+ the;
0o Ju
= ”Du”LP(U)'

For the second part of the theorem, suppose ¢ € C*(U) and supp(¢) € V and
0 <h < dist(V,2U) and h < dist(supp(¢), V). It can be checked that

f qugo dx = —J Di_hunp dx.
v v

For lack of a better proof, at this point we must strengthen our assumption on
the bound of the difference quotient to all 0 < |h| < %dist(V, dU). By the Banach-

Alouglu theorem, there is a sequence h; — 0 such that Di_h" u— v; in LP(V) for all
i=1,...,N.

f vipdx = lim j D;hkwp dx = lim —f uD?kt,odx = —J uD;p dx.

v k—o00 v k—00 v v

Therefore v; = D;u, so u has a weak derivative, and notice that ||Dul|;») <
lim infy [|D; ™ ul| o). O
1.10.3 Definition. u : U — R is differentiable at x € U if there is a € RN such that

i O —uG) —a-(y—x)
im =

0
yox ly — x|

and we write Du = a.
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1.10.4 Theorem. Assume thatu € Wli’cp(U) for some N < p < o0o. Thenu is a.e.
differentiable.

Proor: In the proof of Morrey’s inequality we showed that when u is continuous,

for y € B(x,r),

u(y) - u(x)| < Cr1h ( f |Du|de) '

B(x,2r)

The Lebesgue Differentiation Theorem states that when f € szoc (RV), for1<p <
oo and for a.e. x € RV,

J[ lf(y)—f(x)Pdy — 0
B(x,r)
as r — 0. Therefore, for a.e. x € U,
J[ |Du(x) — Du(z)|Pdz — 0
B(x,r)

as r — 0. Let x be such a point and consider
v(y) = u(y) = u(x) = Du(x) - (y — x) € WP (V).

Let r =|y — x|, so that

1
1-N

v(y) = v(0)l = v(y)l < Cr ( f |Dyv(z)—Dyv(x)|de)p
B(x,2r)

—Cr (rN J |Du(z) — Du(x)lpdx) !
B(x,2r)

C’rG |Du(z) — Du(x)Ipdx) !
B(x,2r)

—Qasy —x. O

1.11 The dual space H™'

1.11.1 Definition. H(U) := (H}(U)Y’, the collection of continuous linear func-
tionals on Hé(U).

Remark.
(i) Recall that for 1 < p < oo, (L) = L? when }% + % = 1. More explicitly, for

every ¢ € (LP) there is a unique f € L? such that (¢, g) = fgf dx for all
g € LP. We would like a similar “explicit” characterization of H™ .
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(i) fX — Y then Y’ — X’. So L? — H™! since H; — L?. The correspondence

is, for f € L2, (f,u) := [uf dx foru e H'.

1.11.2 Theorem. For every p € H 1(U) there exist f°, f!,...,fN € LY(U) such

that
N
(cp,u):f foudx+2f fiuxidx.
U i=1JU

Moreover, ||¢ ||z = inf{(fU Z?;O(fi)zdx)%}, where the infimum is taken over
all representations (fy, ..., fy) of ¢.

Remark.
(i) This is not truly a representation theorem since the representation of ¢ is
not uniquely determined Indeed, (0,1) and (0,0) both represent the zero
functional on H}((0, 1)).

(ii) This theorem holds for WO1 P (and the analogous dual space) but with L?
replaced with L9.

PROOF: Hé(U) is a Hilbert space with the inner product
(u,v):= f uv+Du-Dvdx.
U

Therefore, for ¢ € H™!(U) there is a unique element f € H(l)(U) such that {p,u) =
(u,f) for any u € Hy(U). Take f° = f and (f',...,f") = Df. The infimum in the
statement of the theorem is attained for this choice of (f°,...,f"), and it is the
norm of ¢. O

2 Elliptic PDE

2.1 Introduction

For the rest of term we will be studying the following problem

Lu= inU
R
u=0 on dU.

This is the problem with Dirichlet boundary conditions. We may also consider the
Neumann boundary conditions Vu = 0 on dU. The non-divergence form of the
problem is
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where the coefficients are bounded, a”/, b’,c € L®(U). The divergence form of the
problem is

N N
Lu=— Z (aijuxi )y, Z biuxl_ + cu.
{j=1 i=1

We will be using the summation convention of summing over terms in which there
is a are repeated indices, e.g. Lu = —(a"u,, )xj + b'u,. + cu. We can convert be-

tween divergence and non-divergence form when the coefficients a'/ are in C*(U)
by only altering the coefficients b*. We can and will always assume that the matrix
A= (a") is symmetric.

2.1.1 Definition. L is uniformly elliptic on U if A is symmetric and positive definite
with a uniform lower bound, i.e. if A(x) > I, i.e. if ETA(x)E > ¢|E|? forall £ € RN
for all x € U, for some ¢ > 0 that does not depend on x.

We say that u € C*(U) is a classical solution if —(a"u,, ), + bu, +cu=f.In
this case, for any smooth function ¢ € C*(U),

f [—(aijuxi)xj + biuxi +cul]pdx = f fedx
U U

so, by integration by parts,

J aijuxi Py, T biuxicp +cupdx = J fedx.

U U

But this equation makes sense for any u € H!(U), and motivates the definition of
a weak solution to (P).

2.1.2 Definition. For a”,b’,c € L™(U), we say that u € H}(U) is a weak solution
of (P) for some f € H™'(U) if for all v € Hy(U),

Blu,v] :=J aijuxivxj + biuxiv +cuvdx = (f,v).
U

2.2 Existence of solutions and the Fredholm alternative

2.2.1 Example. For Lu = —Au + u, Blu,v] = fDu -Du+uvdx = (u,v), the

usual inner product on Hé(U). Therefore a weak solution to (P) is a u such that
(u,v) =(f,v) forallv Hé(U), and such a solution exists for all f € H™*(U) by
the Riesz representation theorem.

2.2.2 Theorem (Lax-Milgram). Let H be a Hilbert space and B : H X H — R be
a bilinear form such that

(i) B is bounded, i.e. there is a such that |B[u,v]| < a||u||||v|| for allu,v € H.
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(ii) B is coercive, i.e. there is 8 > 0 such that f8||u||*> < B[u,u] for allu € H.

Then for every f € H’' there is a unique u € H such that (f,v) = B[u,v] for all
veH.

Proor: Fix u € H and consider v — B[u,v], a continuous linear functional on H.
By the Riesz representation theorem there is a unique Au € H such that B[u,v] =
(Au, v) for all v € H. We will now show that A: H — H is invertible.

(i) Ais linear by the bilinearity of B.

(ii) A is bounded because ||Au||?* = (Au,Au) = B[u,Au] < allul|||lAu||, so ||Au|| <
alull.

(iii) A is injective because ||ul|> < BB[u,u] = B(Au,u) < BlAul|||ull, so |lul| <
BllAu||, and Au = 0 if and only if u = 0.

(iv) The range of A is closed. Indeed, consider a Cauchy sequence Au, in the
range of A. By coercivity,

1
p

as k,{ — oo. Therefore u;, — u € H, and Au;, — Au in the range of A.

lluge — gl < Ay — up)ll = Ay — Aug)|| — 0

(v) Ais surjective, because otherwise, for any non-zero w € (range(A))*, B|lw||? <
B[w,w] = (Aw,w) = 0, a contradiction.

Given f € H' there is z € H such that (f,v) = (z,v) forallv € H. Let u = A™(2),
so that (f,v) = (z,v) = (Au,v) = B[u, v]. Uniqueness follows from coercivity. O

2.2.3 Example. Consider u = sinx, so that u” = —sinx and u solves
—u”"—u=0 in(0,7)
u=20 at 0 and 7.

But the problem

—u”—u=1 in(0,7)
u=0 at 0 and 7.

does not have a solution. Indeed, suppose for contradiction that there was a
solution. Multiply by sinx and integrate to see

T T
f (—u”—u)sinxdx=f sinxdx =2
0 0

but

YA K
J u'cosx —usinxdx = J usinx —usinxdx =0.
0 0
For one of these problems the solution is not unique, and for the other there are
no solutions. We will see that these problems come in pairs.
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2.2.4 Theorem (Energy estimates). There exist constants a,3 > 0 and y > 0
such that
() Blu,v] < aHu”Hé(U)”V”Hé(U); and
(i) 7l +Blusu) = Bllull, .
Proor: Recall that MI > A(x) > 61 > 0 for some 6 and M. Indeed,
EAET = £1aVE; < H}E!XIlaijllmliiijl <N H}ﬁXIIaijllm)IIEIIZ-

Whence,

|Blu,v]| =

f Du-A(Dv)"T +(b-Du)v + cuvdx
U

SMJ |Du||Dv|dx+Z||bi||oof |Du||v|dx+||c||ooJ luv|dx
U ; U

U
< MIDul, 1DVl + D byl lDullolv Il + ool 11
i
< 2 2
< alluly g V1

by Cauchy-Schwartz, for some constant a > 0.
Blu,u] = f Du-A(Du)" + (b - Du)u + cu’dx
U
> 60||Dull} - maXIIbilloof |Dulluldx + mJHCIIUIlﬁ
13
U

. 1
> 9||Du||§ —max ||b'|s (8 |Dul*dx + — Iulzdx) + mincllullg
i U 4¢ U U
2 1 2
2 (6 —mye)||Dull; + | m. — e llull

by Cauchy’s inequality with £. Set & = % to see that y = (% —m, + 22)" will
b
do. O

Remark. Better constants can be found by using the Poincaré inequality.

2.2.5 Theorem (Existence I). For a”,b’,c € L®(U) there is y > 0 such that for
all uy >y and f € H"'(U), the problem

) Lyu:=Lutpyu=f inU
u=0 ondU

has a unique weak solution.
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Proor: Note that the linear form associated with L,is
B,[u,v] :=Blu,v] + u(y,v),

so B, [u,u] = B[u,u] +u||u||i2w). That B, is bounded for all u follows from energy

estimates, and by energy estimates there is y > 0 such that for u > 7,
Bl u) = Blu,u) + pllullzy = Bl ) + (= DllullZs ) = BllullZ, .
Lax-Milgram implies the existence of a unique weak solution to (P,,). O

Foru=>vy, L, =L+ul: Hy(U) — H™Y(U) is an injective (by uniqueness),
surjective (by existence), continuous (by energy estimates) linear mapping. It
follows that L, is an isomorphism between these spaces. Consider S = (Lu)_l :
H™'(U) — H}(U), the solution mapping. The composition

H™\(U) 3 HA(U) & L2(U) — H\(U)

is compact since the embedding of H(l)(U ) into L2(U) is compact. Furthermore,
L? -Hj — L? is compact. In some sense, the solution map is squishing things
quite a bit. We will see that the solution map ups the differentiability of the
function by two, and functions with two additional derivatives are sparse in some
sense.

2.2.6 Definition. For Lu = —(a"uy,),, + b'u,, + cu, the formal adjoint of L is L*,
defined by L*v = —(a'/v, ), — b'v,, +(c — b v.

The reason for considering L* is the following.
(Lu,v) = J. (Lu)vdx = J —(aijuxi )ij + biuxiv +cuvdx
U U
= J aijuxivxj + ((biu)xi — b;iu)v +cuvdx
U
= J —(aijvxi)xju — bivxiu +(c— b;i)vu dx
U

= J (L*v)udx = (u,L*v)
U
This “formal” adjoint is only helpful if b € C'(U), as only in this case are the
coefficients of L* are in L*°(U).

2.2.7 Definition. The adjoint bilinear form of B (associated with L) is B*, defined
by B*[u,v] = B[v,u]. We say that v € Hé(U) is a weak solution of

L*u= inU
P4 f
u=0 on dU.

if B[u,v] =B*[v,u] = (f,u) for all u EH&(U).
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2.2.8 Theorem (Existence II).
() Exactly one of the following two statements is true.

a) For all f € L?(U) there is a unique weak solution to

Lu= inU
@) {=1
u=0 ondU.

b) There isu € Hy(U), u # 0, such that

(P Lu=0 inU
“lu=0 onadU.

(i) If (b) holds then let N be the set of solutions to (Py). Then N is a finite
dimensional subspace ofHé(U) and dim(N) = dim(N™*), where N* is the set
of solutions to (Py). For f € L2(U), (P) has a weak solution if and only if
f e (N9

This theorem is a consequence of the Fredholm alternative from the theory of
Banach algebras.

2.2.9 Definition. Let H be a Hilbert space and A be a bounded linear operator on
H. The adjoint of A is A*, defined by the condition that (Au,v) = (u,A*v) for all
u,v € H.

It can be show that A* is a bounded linear operator on H with ||A*|| = ||All.
Further, if K is a compact linear operator on H then so is K*.

2.2.10 Fredholm Alternative. Let K be a compact linear operator on an infinite
dimensional Hilbert space H.

(1) ker(I —K) is finite dimensional.
(i) range(I —K) is closed.
(iii) range(I — K) =ker(I — K*)*
(iv) ker(I — K) = {0} if and only if range(I — K) = H.
(v) dimker(I — K) = dimker(I — K*).

PrOOF:

(i) Assume that ker(I — K) is not finite dimensional. Let (i );>; be an infinite
sequence of pairwise orthogonal unit vectors in ker(I — K). The sequence
(Kug)x>1 has a convergent subsequence since K is compact, so without loss
of generality we may assume that the sequence converges. But Ku;, = u;
for all k > 1, so distance between any pair of elements is +/2, and this
contradicts that the sequence converges.
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(i)

(iii)

(iv)

We claim that there is 8 > 0 such that ||(I — K)u/|| > B||u|| for all u € ker(I —
K)'. Assume for contradiction that there is no such . Let (u;)r=; be a
sequence of unit vectors in ker(I — K)* such that

1
[lup — Kuy || < % forall k > 1.

By the Banach-Alaoglu theorem, we may assume without loss of generality
that u; — u weakly. Note that |lu|]| = 1. Since K is compact, without loss
of generality we may assume that Ku;, — v, for some v € H. But linear
operators are weakly continuous, so Ku; — Ku, and it must be the case that
v = Ku. Therefore Ku;, — Ku. But u;, — Kuy — 0, so for any w € H,

(W,Ku—u)zkli_)ngo(w,Ku—Kuk +Ku —up +u,—u)=0

and it follows u = Ku. Therefore u € ker(I — K), and this is a contradiction
since then (u;,u) =0 and

(u,u)=1#0= klim (ug, u).

To show that range(I —K) is closed, suppose that v, € range(I —K) is Cauchy.
Then there are u;, € ker(I—K)* such that (I —K)u; = v;. By the claim above,

Vi = vell = Bllug — uyll for all k, £ > 1,
so u; — u for some u € H, and v, — (I — K)u € range(I — K).

We claim that for any bounded linear operator A, range(A) = (kerA*)*.
Indeed, if v € range(A) then there are u; € H such that Ay — v. For
any w € ker(A"), (Aug, w) = (ug,A*'w) =0, so (v,w) =0.

Conversely, if v € Tange(A)* then for all u € H, 0 = (v,Au) = (A*v,u), so
v € kerA*. Therefore range(I — K) = ker(I — K*)* since the left hand side is
closed by part (ii).

Suppose that I — K is one-to-one, but that H; := range(I — K) € H. Induc-
tively define H,,, := (I — K)H,, and notice that H,,; & Hy forall k > 1
since I — K is one-to-one. For each k > 1, choose a unit vector u;, € H;
orthogonal to Hy_;. Fork > { > 1,

Kuk _KUZ = _(I _K)Uk+(1 _K)u€ +uk — U

=:w€H;,
so ||Kuy — Ku,||? = |[w]|? + |lug]|? = 1, which contradicts that K is a compact
operator.

Conversely, if range(I — K) = H then ker(I — K*) = {0} by part (iii), so
range(I — K*) = H by the first part, and again by (iii), ker(I — K) = {0}.

(v) Apply (iii) and (iv) and induction (exercise). O
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Proor (ExisTENCE II): From Existence I, there is y > 0 such that

Lu+yu=f inU
P
( ){ =0 on dU

has a unique solution for every f € L2%(U), with B ([u,v] = Blu,v] + y(u,v).
Consider the solution operator L~ 12 L2(U) - Hy(U) cc L2(U).

ﬁ”U”Hl(U) [u,u] ZJ fus ||f||L2(U)||u||L2(U) < ||f||L2(U)||u||H3(U),
U

o) ||Ly_ Il < 1. Regarding the original equation, it can be checked that u is a

|

solution to (P) if and only if u is a solution to

Lu=f+yu inU

u=0 on dU
(Indeed, B[u,v] = ffv forallv e Hl(U) if and only if B, [u,v] = ffv+}/fuv for
allv e Hé(U ).) Therefore any solution satisfies u = L 1] f+ )fLY u. Yet otherwise
stated, u is a solution to (P) if and only if

-1y, _ 11
(I—)/LY )u—LY f.

Note that yL>! =: K is a one-to-one compact operator L>(U) — L?(U). By the
Fredholm alternative for compact operators, either

(i) (I —K)u = h has a unique solution for all h € L2(U); or
(ii) (I — K)u = 0 has a non-trivial solution.

In the case (i), for f € L2(U), u= (I — }fLy‘l)‘lL;lf is the unique solution to
(P). In the case (ii), (I — K)u = 0 has a non-trivial solution, so (P,) has a non-
trivial solution since L, 1f =0 implies f = 0. This establishes the first part of the
theorem since (a) and (b) are mutually exclusive.

For the second part, let N = ker(I —K) be the set of solutions to (P,). Note that
Ly =L"+7vI, and it can be shown that (Ly_l)* = (L;)_l, so the set of solutions to
(P;) is exactly N* = ker(I —K*), and dimN = dim N* by the Fredholm alternative.
For the solvability condition, (I — K)u = h has a solution if and only if h € (N*)*.
But for all v € N¥,

1 1 1
0=(hv)=—(Kf,v)=-(f,KV)==(f,v),
Y Y 1

so (P) has a weak solution if and only if f € (N*)*. O
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2.2.11 Theorem (Existence III).
() There exists a set %, at most countable and known as the (real) spectrum of
L, such that

Lu=Au+f inU
p
(P2) {u=0 ondU

has a unique solution for all f € L?>(U) whenever A ¢ 3.
(i) If% is infinite then ¥ = {A; };>o where A, — 0.

Proor: Notice that Lu = Au+ f is equivalent to L_,u = f, so by Existence I there
is ¥ > 0 such that (P,) has a unique solution for all f € L2(U) when —A > y. For
the rest of the proof we consider only A > —v.

Existence II shows that “(P,) has a unique solution for all f € L2(U)” is equiva-
lent to “the only solution to Lu = Auisu = 0.” (Lu = Au is known as the Helmholtz
equation.) This is trivially equivalent to “the only solution to L,u = (A + y)u is
u = 0. Let L7! be the solution operator, and K := rL, 1 a compact operator.
Then u is a solution to this last problem if and only if

u=L (A +71)u)= %Ku, or Ku=;u.
By the spectral theory for compact operators (see below, or the appendix in Evans),
the spectrum of K is either finite or a sequence converging to zero. If the spectrum
of K is finite then there are finitely many A for which (P,) fails to have a unique
solution for all f € L2(U). Otherwise, if u; — O are the eigenvalues of K then

— N )
uk—%kﬂandkk—y o 00 O

2.2.12 (Real) spectrum of a compact operator.
Let A: X — X be a bounded linear operator on a Banach space. The spectrum of A
is o(A) :=R\ p(A), where

p(A) ={A eR | (AI — A) is one-to-one and onto}
is the resolvent set. The spectrum decomposes into three pieces (defined to be
disjoint)
() point spectrum, o ,(A) := {A | ker(AI —A) # {0}}
(ii) continuous spectrum, o .(A) := {A | range(AI — A) is not dense in X'}
(iii) residual spectrum, o .(A) := {A | range(AI — A) is dense in X but # X}
IfK is a compact operator on a Hilbert space then
(i 0eo(K)
(i) o(K)\ {0} =0,(K)\ {0}

(iii) Either o(K) is finite or o(K) is a sequence converging to zero.
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2.2.13 Theorem. If A ¢ X then there is a constant C = C(L,U,A) such that
llullr2(ry < ClIfllz2(r) whenever u solves (P,) for f € L2(U).

Proor: Let A ¢ ¥. Assume for contradiction that for every k > 1 there is (uy, fi)
solving (P, ) such that |luy || 2y = kllfill 2y Without loss of generality [|uy |2y =
1. Then f, — 0 in L?(U), and by coercivity,

ﬁ”%”%w) < By [ug, wi] +Y||uk||%2(U) = f friwgdx +y <2+7.
u

Therefore there is a subsequence u;, — u in Hé(U) weakly. It follows that u;, — uin
L*(U), so ||ull 2yy = 1. But in this case B[u,v] = fUO-v dx =0 forallv € H}(U),
so Lu = Au, and this is a contradiction since A ¢ 3. O

2.3 Regularity of solutions

Suppose that —Au = f, where f € L2(U). Notice that

J |D?u|*dx = J(Au)zdx = ffAu dx < sJ(Au)de + % J f2dx.
U

so we can get a bound on the second derivative in terms of ||f||;2(y), using the
Laplacian of u as a “test function.” Further,

J|Du|2dx:JuAudx:JfudeJUZ‘Ffde

so we can get a bound on the H? norm of u in terms of 1 220y, and [lull 2w,
using u as a test function.

2.3.1 Theorem (Interior Regularity). Let Lu = —(a"u, ), + b'u,, + cu be uni-
formly elliptic and act on H'(U), where a¥/ € C'(U) and b',c € L®(U). If
u € HY(U) is a weak solution of Lu = f in U (i.e. B[u,v] = fovdx for all
% EHé(U)), where f € L2(U), then

(i) ueH?

loc

(U); and
(ii) For allV ccC U open there is C = C(U,V, L) such that

lullizqry < CUIS N2y + lullzzqw))-

Remark. If case (i) of Existence Il applies and u € Hé(U ) then there is C such that
llull g2y < CllfIILz(U), so we get a bound on the H2 norm of u in terms of f 1220
alone.
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ProOOF: Let V cC U be open. Choose W cc U open such that V. € W. Let
£ : U — R be a smooth cutoff function that is 1 on V and 0 outside of W. From
Blu,v] = fovdx we write

f aijuxivxjdx = J (f - biuxi —cu)vdx
U U
Let v := —D_"(£2D"u), where
h 1
Dg(x) = (8(x +hey) — g(x))
is the difference quotient and h < dist(supp(&), dW).
LHS=Ja%%GD#@%ﬂwhﬁx=—fammDﬂﬂﬁD@LJm
U U

=JDﬁwwm¥%w¢h=fa“8%wﬁ@ﬁ
U U S——— — —
Al

+ (D}a )EzuxiDZux}_ + 25§xjaij’hDZuxiDZu +288, (Dfa)DMu dx

Ay

noting that DZ(fg) = (DZf)gh +fDZg, where g"(x) = g(x + he;). By uniform
ellipticity,
A > ef £2|DiDul*dx.
U

All of the coefficients involving the (fixed) cutoff function £ and the al are L™
with bound independent of h, so

lA,| < CJ £(|Dul|D!Du| + |Du||DEDul + |Dul|Dful) dx
w
h1y, (2 ¢ 2
<Ce | &|D;Dul*dx+ — | [Dul*dx,
w 4 Jw

recalling the Cauchy inequality ab < ga? + 4%? b? for any £ > 0. Whence

6 211y, 12 2

LHS > — | &*|D;Dul*dx —C | [Dul*dx

2 Jw w

choosing € appropriately, where this C depends on D&, among other things.

. C
RHS:f (f—bluxi—cu)vdXSEJ vzdx—l-—f (f?+u? +|Du®)dx
w w € Jw
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and
J vidx < CJ ID(&2DMu)|*dx by 1.10.2
w w
< CJ £2(IDfw)* + |DIDul*)dx since £2 <1
w
< CJ (IDul® + &2DfDul*)dx.
w
Choose ¢ so small that eC = %, so that
6 211y, |2 2, .2 2
RHS < 7 &°|DpDul*dx +C | (f*+u”+ |Dul*)dx.
w w
Therefore, combining the estimates for the LHS and the RHS,
6 211h |2 2, .2 2
— | &°IDiDul* < C | (f*+u”+[Dul*)dx.
4 Jw w
By 1.10.2, u € H%(V), and by that theorem we need only show that

f [Du|?dx < CJ (f2+u®)dx
w U

to finish the proof of the theorem. Let n € C°(U) be a cut-off function that is 1
on W and zero outside of U. Now let v := nu.

LHS = f (aVu, (), dx
U
=f nz(aijuxiuxj)+2naijnxjudx
U

> QJ nleulzdx—CJ n|Dul|u| dx
U U

and

RHS =J (f - biule —cu)n?udx < CJ (f2 +u?+ n|Dul|u)dx.
U U

It follows that
GJ n?|Dul?dx < CJ (f? +u? + |Dul|ul)dx
U U

0
< Ef nleuIde+Cf u?f2dx
u

U
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since

217y,12 1 2
|Dulluldx < e | n°|Dul*dx+ — | u®dx
U U 4e Jy

I'm not so sure about these last steps. O

2.3.2 Theorem (Higher-order Regularity). Let m > 0 and assume that aV €

C™I(U), bl,c € C™(U), and f € H™(U). Assume that u is a weak solution to
Lu=f inU. Then

() ue€H?*(U); and
(i) For allV cc U open there is C = C(U,V, L) such that

||U||Hm+2(v) = C(Hf”H’”(U) + ||u||L2(U))~

PrOOF (IDEA): Consider the simpler problem —(a”uy,),; = f, when m = 1 and
f € HY(U). Apply D, to obtain

_(aicjk uxi + al] uxkxi )x}- = ka .
Set v =u, and we have
N . )
—(@"vy )y, = fo, + (@ uy )y, € L7(U).
Use the previous theorem to conclude some regularity of v. O

2.3.3 Corollary. If a/,b',c,f € C*®(U) then any weak solution u € H*(U) to
Lu=f isin C®(U).

Proor: For any k and any V cC U, by Higher-order Regularity and the Sobolev
embedding theorems we may conclude that u € C*7(V). Therefore u € C®(V) for
anyV cc U, soue C*®(U). O

2.3.4 Theorem (H2_-'regular_ity).4Let U be an open, bounded domain with C?
boundary, and let aV € C'(U), b',c € L®(U). Assume thatu € Hy(U) is a weak
solution to Lu = f in U, where f € L?(U). Then

() ue H*(U)NH,(U); and
(ii) ||U||H2(U) < C(||f||L2(U) + ||U||L2(U)) for some C = C(U, L).
Proor: Case 1: the flat case. Suppose that 0 € dU assume that
B(0,1)NU =B(0,1) N {xy > 0}.

Let V := B(O0, %) N U and let & be a cut-off function (defined on U) thatis 1 on V
and 0 outside of B(0,1)NU. Recall B[u,v] = fov dx since u is a weak solution.
We write fU aVuy vy dx = fov dx, where f = f —b'u, —cu. Fixk=1,...,N—1,
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and let v := —D;"(&2Dw) for small h. Note that v € H}(V) since & is 0 on the
curved boundary and u is zero on the flat boundary. Use estimates similar to the
ones used to prove Interior Regularity to show that

J IDRDul?dx < Cf (f?+u? +Du?) dx = CUIf 12y + Nl wn)-
v U

From energy estimates the H! norm of u is bounded above by constant multiples of
the L2 norms of f and u. By the extension to the theorem on difference quotients,
Uy, €L*(V),forall1<i <N and1<k<N. For weak derivatives Uy, = Uy,
a.e., and for the last case j =i = N note that u, , can be written in terms of f,
the coefficients, and the other second order partials, all of which are in L2.

Case 2 is for a general domain. Centred at a point on the boundary, without
loss of generality x5y = y(X). There is a coordinate change y = ¢ (x) such that
7 =x and yy = xy — y(x). Let x = (y) be the inverse transformation, and
consider that detD¢ = 1. Let it = u(y(y)), so that u(x) = i(¢(x)). Note that
il is in H! and its trace is zero on the image of the boundary {yy = 0}. Our task
is to show that i is in H2. We will do this by applying Case 1, after checking
that the properties of the uniformly elliptic operator carry through the coordinate
transformation. We claim Lii = f on the image B, where f(y) = f (¢(y)) and L is

given by @ (y) = a”(l/)(y))da’ji(w(y))gbﬁj(w(y)), br(y) = bi(ll)(y))qﬁ,’;(l/)(y)),
and é(y) = c(y(¥)). O

2.3.5 Theorem (Higher-order Boundary Regularity).

Let U be an open, bounded domain with C™*? boundary, and let a'/ € C™+(U),
bi,c € C™(U). Assume thatu € Hé(U) is a weak solution to Lu = f in U, where
f € H™(U). Then

() ue H"(U)NH}(U); and
a0 lullgme2@y < CUS Nlgmwy + lullz2@y) for some C = C(U, L, m).
Proor: A mess of induction. O

2.3.6 Corollary. Let U be an open, bounded domain with smooth boundary. If
a’,b',c, f € C*°(U) then any weak solution u € Hé(U) to Lu = f isin C*°(U).

Note that if Lu = —aYu,,, + b'u,, + cu is not given in divergence form, then
we can rewrite it as Lu = —(aYu,,),, + (ai(f; +b"),, + cu. Any classical solution to
the second form is also a classical solution to the first form. This completes the
theory of linear uniformly elliptic equations.

2.4 Maximum principles
For this section U is a bounded, open domain, u € C2(U) N C(U), and

e ] i
Lu:=—a uxixj+buxi+cu,
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where the coefficients are bounded functions and the matrix A = (a/) is (symmet-
ric and) uniformly elliptic.

2.4.1 Theorem (Weak Maximum Principle). Suppose thatc =0 on U.
() IfLu<0inU (ie. u is a sub-solution) then maxgu = maxyy u.

(ii) If Lu>=0inU (i.e. u is a super-solution) then ming u = min,y u.

2.4.2 Theorem. Suppose thatc >0 onU.
() IfLu<0inU then maxgu < 0V max,y u.

(ii) If Lu> 0 in U then mingu > 0 A mingy u.

2.4.3 Theorem (Comparison). Suppose c >0 on U. Foru,v € C2(U)NC(U), if
Lus<finUandf <LvinU andu<vondU thenu<vinU.

ProoF (COMPARISON —> 2.4.1):

Let v :=maxsyu. Then Lv=0in U and v > u on dU, so v = u in U. Therefore
max,y u > maxgu, and the first part follows. For the second part, let v := u and
it = min,y u and apply 2.4.3 to v and ii. |

PrOOF (COMPARISON —> 2.4.2):

Let v := max,y u and assume that v > 0. Then Ly =cv > 0> Lu. We have v > u
on dU, so v > u in U and the conclusion follows. If max,; u < 0 then take v = 0.
Then Lv=02> Luand v > uon dU, sou < 0 in U. Prove the second part as an
exercise. a

ProoF (CoMPARISON): Assume first that Lu < f < Lv in U. Assume there is X € U
such that u(%) > v(%). Then maxgz(u —v) > 0, and a local maximum is attained
at some x, € U (and in particular not on the boundary). We have

u(xo) > v(xg), Du(xo) =Dv(x), D?*u(xy) < D*v(xy).
It follows that

c(x)u(xg) = c(xo)v(xg),  b'(xoluy,(x0) = b (xp)vy, (o)

and, if A=1I, that
—Au(xg) = —Av(xg)

implying that Lu(x,) > Lv(x,), a contradiction.
There is an orthogonal matrix O such that OAO” = D = diag(A4,...,A,). Let
oy

Y = xo + O(x — x,) be a change of coordinates. Then u, = u,, a_xt =u,, 0); and

U, = Uy, y OkiOtj> S0 AUy = 047 0gjy, o = Ay, y,

For the second case, note that if ¢ > 0 on U then u® := u — ¢ satisfies Lu® =
Lu—ce < f,and u® < v on dU. By the first case it follows that u® < v for all
€ > 0. Since this holds for all £ > 0 it follows that u < v.
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For the general case, take u® := u + ge*1 — §, where § := getm{xilx€U} gy

the choice of 6, u®* <uforall e >0, and u* - uase— 0.
Luf = Lu+eLe™ —¢6
= Lu —eA?at e 4+ b Ae™1 4 gce™ — ¢S

< Lu+ee™1 (=022 + A|IbY|o + llclle) — 6

Choose A large enough that the underlined constant is negative. With this choice
fixed, Lu® < f, and u®* <v on dU, so u® <vin U, and we are done as above. 0O

2.4.4 Lemma (Hopf). Suppose c =0. Assume
() Lu<0inU;
(ii) there is x, € dU such that u(x,) > u(x) for all x € U; and

(iii) U satisfies the interigr ball condition (i.e. for every x, € U there is a closed
ball B contained in U such that x, € B).

Let B be any closed ball in U that contains x,, so that x, is on the boundary of B.

If v is the outward normal vector to B at x, then g—:(xo) > 0.

Further, if instead ¢ > 0 then the above holds if u(x,) > 0.

Ar?

Proor: Without loss of generality, B = B(0,r). Let v(x) := P , and

note that v > 0 on B(0, ). For x € A:=B(0,r)\ B(0, %),
Lyv(x) = (—=a¥(=2A8; + 422x;x;) — 2b Ax; + c)e I — ce=H*
< (21 trA—422xTAx — 2AbT x)e A’
< AMCy—A0r2+ Cyr)e M <0

if A is large enough. Let u® := u + ¢v, so that u® = u on dB(0,r). We have
u(xg) > maxgp(, 1) u+6 for & > 0 small enough. Choose ¢ > 0 so that e max, v < &.
Then u®(x) < u(x,) = u®(x,) for all x € dB(0,L). But uf is a sub-solution, so by
the weak maximum principle, u®(x) < u(x,) for all x € A.

Complete the proof by computing g—: =Dv- Ii_l = —27|x|e " < 0. O

2.4.5 Theorem (Strong Maximum Principle). Suppose thatU is open, bounded,
and connected.

(i) Suppose c =0.

a) If Lu <0 in U and u attains its maximum in U then u is constant.

b) If Lu <0 in U and u attains its minimum in U then u is constant.

(i) If ¢ > 0 then the above conclusions hold provided that the maximum and
minimum are non-negative and non-positive, respectively.
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Proor: Assume that u has a maximum at x, € U. Let
A= {x €U |u(x)=u(xy)},

a closed set. Then U’ := U \ A is open. If U’ is not empty then there is y € U’ such
that dist(y,A) < dist(y, dU). Indeed, let z € A\A U, so that 2¢ := dist(z,dU) > 0.
Since B(z,¢) C U and z € 9A, thereis y € B(z,6)\A, y € U, and y is closer to A
than to dU.

Let ¥ € A be such that dist(y,A) = ||y — ¥||. Then B(y, |y —¥|) S U’. By the
Hopf Lemma, applied to u on U’, 8—5(7) > 0, where v = I§:§ E But then there is
6 > 0 such that u(y + 6’v) > u(y) for all 0 < 6’ < §, a contradiction since some
of these points are in U. O

2.4.6 Exercise. Suppose that u and —u satisfy the Harnack inequality on B(0, 1).
Show that u is a-Hélder continuous on B(0, %), for some small a > 0.

2.5 Eigenvalues and eigenfunctions

In this section we consider the eigenvalue problem

(EVP) Lw=Aw inU
w=0 on U
where Lu = —(a"u,, )y, and a'’ € C®(U) and A = (a¥) is (symmetric and) uni-

formly elliptic. As usual, let B[u,v] := f v a'u, v, dx, and notice that B is sym-
metric. We say that A is an eigenvalue if the (EVP) has a non-trivial solution for A,
and in this case a non-zero solution is an eigenfunction. Note that by the assump-
tions made on A, all solutions to the (EVP) are smooth.

2.5.1 Theorem. (i) All eigenvalues A are real.

(i) Let > = {A,} be the spectrum of L, ordered and with each eigenvalue re-
peated to its multiplicity. Then A, > A; > 0 and A, — oo as k — oo.

(iii) The corresponding unit eigenfunctions form an orthonormal basis of L2(U)
and an orthogonal basis of Hé(U).

ProoF: LetS:=L7':L[%— Hé be the solution operator, so that the composition

S : L* - Hy — L? (which we also call S) is a compact operator. Then S is
symmetric since

(Sf,g)= J(Sf)g =B[Sg,Sf]=B[Sf,Sg]l = Jf(Sg) =(f,Sg)

by the definition of weak solution and the fact that B is symmetric. Further,

(Sf,f)=BISf,Sf12 BISS lmw)
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since B is coercive (since A is uniformly elliptic). Let
m := inf{(Sw,u) | u € Hy(U), llull 2wy = 1}

and
M := sup{(Su,u) | u € Hy(U), llull 2 = 1}

We claim that o(S) € [m,M] and m, M € o(S). The first assertion follows because
S is symmetric. For the second assertion, we know that m > 0 since B is coercive,
and 0 € o(S) € [m,M] since S is a compact operator, so m = 0. For the second
assertion let ||u; ||, = 1 be such that (Suy,u;) — M. Then there is a subsequence
u, — u converging weakly to some u € L2(U). Since continuous linear operators
are continuous for the weak topology, Su;, — Su. Now S is compact, so there is a
further subsequence Su, — v € L2. But for any w € L?(U),

(Su—v,w)=klim(Su—v,w)=(v—v,w)=0

so Su; — Su. In particular, (Su,u) = M and u # 0. In fact |[ul|;2y) = 1 and
Su = Mu can be seen by considering that (D(u + tw),u+ tw) < M.

Let 7 be the eigenvalues of S and H;. be the corresponding eigenspaces. Then
the H, are finite dimensional when 7, # 0 and pairwise orthogonal. Let H =
span(|_, H*). To show that H = L? it suffices to show that H- = {0}. Now
S(H) € H and since S is symmetric, S(H*) € H*. It follows that (Su,u) = 0 for
all u € H*, so S is zero on H* since it is symmetric. Therefore H- € Hy C H, so
H' = {0}.

Next we prove the following variational principle

. . Blu,u]
Ay= min Bly,u] = min ———.
ueH (V) ueHy () [|ull 72y
lull 25, =1 u#0

Furthermore, all minimizers are eigenfunctions (corresponding to A;) and these
eigenfunctions have no zeros in U. Indeed, if u = ZIT:I a;wy is a unit vector
where the w; are unit eigenfunctions corresponding to A;. Then

m m
Blu,u] = Z?Lkai > Alzai =2
k=1 k=1

since A, is the smallest eigenvalue and |[[ul|;2;y = 1. In general u is a limit of
functions of the form above, say u = 212; awy =: lim,,_, u,,. It suffices to
prove that B[u,,,u,,] — B[u,u]. This is not trivial because u,, — u in L2(U), but
evaluating B involves taking some derivatives.

Notice that B[wy,w,] = A8, so let’s define v, := —=w,. Then for u €

H,(U),

B

1

En

B := Blu,v.] = —=B[u,w;] = —= A (1, wi) = v/ Aea,

1
T
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m
Let u, = 2 Bk

Blu,u] = Bu — U, + Uy, U — Uy, + Upy ]
=Blu—up,u—u,]+0+0+Blu,, Uy,] = Bluy,Un]

Therefore Y, | 7 < co. Thus the sequence {u,,} is Cauchy in H}(U), and its only
possible limit is u. Indeed, for all k

. . 1 .
0=B[u- lim u,,,v] =B[u— lim u,,, —w;] = v/ A (u— lim u,,,w;)
m—0o0 m—0o0 m—0o0

Nn

where the last inner product is in L.

For the last assertion, suppose that Lu = A;u. Then from the homework,
u*,u” € H\(U), and Du* = Dul,., and Du~ = —Dul,.o. We have [ u*u~ = and
BluT,u"]1=0, so

Ay =Blu,u] =Blu",u]+Blu",u"] = A |lut |l 2@y + A llu 2y = 4

since ||lul|> = |lu™||> + |lu"||®>. Whence Lu* = A;u* > 0. By regularity, u™ €
C%(U)N C(U), and by strong maximum principle either u* > 0in U or u* = 0. It
follows in either case that u has no zeros in U. Note that if we have two positive
eigenfunctions u and u’ then we can choose o so that f u+ou’ = 0. Such a linear
combination is an eigenfunction, so is always positive (or always negative), so it
must be the case that u and u’ are linearly dependent.

We have the following formula due to Rayleigh

. Blu,u]
M= Tl
ueH (V) ||u
u;ﬁOO L2(U)
ulw;,i<k O

2.6 Non-symmetric elliptic operators

In finite dimensions there is a classical theorem of Frobenius that says that the
smallest real positive eigenvector of a (not necessarily symmetric) real matrix has
an eigenvector with all positive coefficients.

2.6.1 Theorem. Let Lu = au,, +b'u, +cu, where the coefficients are in C*(U)
and A is positive but not necessarily symmetric. We consider the problem Lu = Au
inU andu=0ondU.

(i) There is A, € R that is an eigenvalue of L, the corresponding eigenspace is
one-dimensional, and the corresponding unit eigenvector may be chosen to
be strictly positive in U.

(ii) RA > A, for all eigenvalues A.
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See Evans for the proof.

3 Parabolic PDE

3.1 Bochner Integral

See Appendix E5 of Evans for a list of the results. There is a good reference by
Yoshida, Functional Analysis.

3.1.1 Definition. Let X be a Banach space.
(i) A function s : [0, T] — X is said to be a simple function if it can be written
s(t) = Z:":l 1 (t)u;, where {E;}., is a measurable partition of [0, T] and
u; €X.

(i) A function f : [0,T] — X is said to be strongly measurable if there is a
sequence of simple functions {s,} such that s, — f a.e.-[0, T], and weakly
measurable if for all u’ € X’ the function u’(f(-)) : [0, T] — R is measurable.

(iii) A function f : [0,T] — X is said to be almost separably valued if there is
N C [0, T] with [N| = 0 such that f([0, T] \ N) is separable.

Remark. If X is separable then any function is ASV, and if a function is continuous
then it is ASV.

3.1.2 Theorem (Pettis). f : [0,T] — X is weakly measurable and ASV if and
only if f is strongly measurable.

3.1.3 Definition.
() Ifs=),", 1z is simple then

T m
f s(t)dt :zZlEilui.
0 i=1

(i) We say that f : [0, T] — X is summable (or integrable) if there is a sequence
{s;} of simple functions such that

T
J llsi(6) = f(Ollx dt — 0 as k — oo.
0

We then define fon(t) dt :=limg_, fOT se(t)dt.

3.1.4 Theorem (Bochner). A strongly measurable function f is summable if and
only if t — ||f (t)||x is summable. In this case

@ 11 f, FO)dtlly < [ If (Olly dt; and
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@ «'(f, F()do) =[] W' (f()dt forall ' €X'.

3.1.5 Theorem (Fatou). Let {f,,} be summable and suppose f, — f a.e.-[0,T]
and {fOT llf.(t)llx dt} is bounded. Then f is summable and

J IIf(t)IIthSIin}lian Ifa(Ollx dt.
0 0

3.1.6 Theorem (LDCT). Let {f,} be summable and suppose f, — f a.e.-[0,T]
and there is g : [0, T] — R integrable such that ||f,(s)|lx < g(s) a.e.-[0, T]. Then
f is summable and

T
f If () = fa(Ollx dt — 0 as n — oo.
0
In particular fOT fu()dt — fOTf(t)dt asn— oo.

3.2 Spaces involving time

This section follows §5.9 in Evans.

3.2.1 Definition. For 1 < p < oo, L?(0,T,X) is the set of strongly measurable
functions u : [0, T] — X such that

”u“LP(O,T,X) = (J
0

L*®(0,T,X) is defined in the obvious way. C([0,T],X) is the set of continuous
functions [0, T] — X.

T 1

(o)l dt) ' < .

If X is separable and p < oo then L?(0, T, X) is separable.
3.2.2 Theorem (Phillips). For1 < p < oo, LP(0,T,X) = L1(0, T,X').

The derivative of f : [0, T] — X is defined in the usual way by

fle+h) —f(1)
—

provided the limit of the difference quotients exists.

f'(6) = lim

3.2.3 Theorem. If f : [0,T] — X is summable and F(t) := fotf(s)ds then
F'(t)=f(t) a.e.-[0,T].

3.2.4 Definition. Foru € L(0, T,X) we say that v € L1(0, T, X) is the weak deriva-
tive in time of u and write v = u’ if
T

T
f U(f)tp’(t)dt=—f v(t)e(t)de
0

0
for all ¢ € C((0, T),R).
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Remark. Consider X = L*(R). If u € L'(0, T, L(R)) then there is an associated
ii € L'([0,T] x R), and u’ corresponds in a natural way to (i), (see problem set
5).

3.2.5 Definition. W1P(0, T, X) is the space of allu € L?(0, T, X) such that u’ exists
and u’ € LP(0, T,X). In this case define

”u”leP(O,T,X) = (f
0

We write H(0, T,X) for W2(0, T, X).

T 1

(oI + ||u’(t)||§;dt) "

3.2.6 Theorem (Calculus I). Letu € W'P(0,T,X), 1 <p < co. Then
(i) ue C([0,T],X);
(i) u(t) =u(s)+ f; u'(r)dr forall0<s <t <T;and

(iii) there is C = C(T) such that

<
OféltaSXT lu(Ollx < Cllullwrreor.x)-

Proor: Define ii : R — X by extending u by 0 outside of (0, T). For £ > 0 define
u, = 1, *i. By the same methods as before on mollifiers, it can be checked that
(w) =n.xW)= W), and u, » uand u, - v’ in L} (0,T,X) as & — 0. For
every small € > 0 we have

t

u () —u,(s)= J u,(r)dr.

N

Apply pointwise convergence and convergence in L! to conclude the second part,
from which the others follow. O

3.2.7 Theorem (Calculus II). Suppose thatu € L*(0, T, Hy(U)) andu’ € L*(0, T, H~'(U)).
Then

() uec([o,T],L2));

(ii) the mapping t — |[u(t)||2 is absolutely continuous and
d 2 /
7 IO = 24 (6, u());

(iii) there is C = C(T) such that

/
OfgflSXT lu(oll> < C(||U||L2(0,T,Hg) + llu “LZ(O,T,H*l))-
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Proor: Letu, :=m, *u. For ¢ > 0 and 6 > 0 and appropriate t,
d 2 d 2
Ellug(t) —us(Ol7, = R U(ug(t) —ug(t))"dx

= 2f (g (8) —ug () (ue(8) — us(£)) dx
U

=2(u(t) — uj(t), u(t) —us(t))2
=2(ul(t) — us(t),u(t) —ugs(t))
< 2[fug () — w5 (Ol llug (6) — ug (Ol

It is a property of mollifiers that u, — u a.e., so there is s € (0, T) such that
u(s) = u(s) in Hy(U). For all t € [0, T],

”us(t) - u5(t)||%2(u) - ”us(s) - u5(5)”%2(U)

SZJ llu, (r) = w5 (Pl llue (1) — us (Dl dr
0

T
< J ) =y I+, () = (I dr
0

= lluy — ujll? + llu

— u;?
12(0,T,H™Y) 6ll20,7,H))

But three of these terms go to zero as €,6 — 0, so it is seen that u, — u in
L%(0,T,L%(U)) as € — 0, by completeness.
For the second assertion, as above

d 2 /
E”ue‘(t)”LZ(U) = 2<u€(t)7 us(t»-

Then .

llue(OI7, = llu ()13, +2f (ug (6),u (1)) dt

N

and taking € — 0 we get

[u(ON7> = l[u()IIZ, +2J (W' (6),u(t))dt -

3.2.8 Theorem (Lions-Aubin). Let X, Y, and Z be Banach spaces with X CC
Y—Z. Letl<p<oo,1<q<o0and

W ={ueLP(0,T,X),« €190, T, Z)}
Then W cc LP(0, T, Y).

In particular {u € L*(0, T, Hy(U)),u’ € L*(0, T, H *(U))} cc L?(0, T, L*(U)).
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3.3 Parabolic equations

Let Uy := U x (0, T]. From now on we identify L?(Uy) with L2(0, T, L2(U)) with-
out note.
u+Lu=f inU;

(P)iu=0 ondU x [0,T]
u=g on U x {0},
where Lu := —(a"u,,),, + b'u,, + cu is uniformly elliptic and in divergence form,

a’,bl,c € L®(U;) are bounded (and in particular may now depend on time)
f € L?>(Uy), and g € L*(U).
The associated time-dependent bilinear form is

Blu,v,t] := f al(x, tu,, (x)vx]_ (x) + bi(x, uy, (Iv(x) + c(ox, ulx)v(x)dx
U

for u,v € H(U).
3.3.1 Definition. For u € L*(0, T,H,(U)) with u’ € L*(0, T,H™'(U)), u is a weak
solution to (P) if, a.e.-[0, T],

(u'(t),v) +Blu(t),v,t] = j fx, t)v(x)dx
U

for all v € Hy(U), and u(0) = g.

The last condition is well-posed because we have seen that such u lie in C([0, T, L2(U)).
We will often write Bu, v, t] := B[u(t), v, t] when no confusion could arise.

3.3.2 Theorem (Uniqueness). There is at most one weak solution of (P).
Proor: By linearity it suffices to assume that f = 0 and g = 0. If u is a weak
solution then %Hu”%z = 2(u’,u), so for every t € [0,T],

d 2 /

E(Ilulle)(t) = 2(u'(t), u(t))

= —2B[u(t),u(t),t]
<-28 ||u(t)||1211é + 2}f||u(t)||i2 by Energy Estimates

< 2y|lull?, ()
By Gronwall’s lemma [[u(t)||?, < e*"*[ju(0)||;= = 0. O

3.3.3 Theorem (Energy Esimates). There is C = C(L, T,U) such that for every
weak solution u of (P),

ma (el + oy + I iso -1 < COIf ooy + g o).
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ProoFr: We have u, + Lu = f, so by the definition of weak solution (using u(t) is
a test function) and as above,

d (1
o (§||u||§2w)) (t)+Blu(t),u(t), t] = JUf(x, Ou(x, t)dx.

Whence, again by Energy Estimates,

i) < 20812, + 1 22, + (2 +1) f t ()2 g ds,
0
so by Gronwall’s lemma
ma ()], < e TS I+ g,
and it follows that
max [u(O)llze) < CUF o, + ey

(Fill in the rest of this.) O

3.4 Existence via Galerkin Approximation

Let {w,} be an orthonormal basis for L?(U) which is also orthogonal in Hé(U).
(The collection of eigenfunctions corresponding to an elliptic problem has these
properties, using the bilinear form associated with the problem as the inner prod-
uct on Hé. For the Laplacian operator the corresponding collection is orthogonal
with respect to the usual inner product on Hé.) Write

1, (£) = Y dE(Owy = d¥(E)wy,
k=1

where df(0) = [, g(x)wy(x)dx and

(u;n(t)’ Wk) +B[um(t)’ Wi t] = (f(t)’ Wk)

forall t and k =1,...,m. (i.e., we require that u,, is a weak solution to (P) on the
subspace of Hé generated by {wq,...,x,,}.)

3.4.1 Lemma. For every m > 0 there is a unique u,, of the form above.

ProoF: Suppose there such a u,,. Since w; does not depend on time, u/ (t) =
(drlfl)’(t)wk. By the condition that u,, is a solution

(A ()W, w)) + dr (OBIwi, wy, 1] = (f(0),w))
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for all j = 1,...,m. Let ¢;(t) = B[wy,wj,t] and f;(t) = (f(t),w;), so that for
each j,

(d]Y () +d} (D)ex; () = f;.
The e;; are bounded in time, so by the standard theory from ODE, there is a
unique absolutely continuous system of solutions {d’;l, k =1,...,m}. This proves
existence and uniqueness of u,,. O

3.4.2 Theorem. There is a constant C = C(U, L, T) (not depending on m) such
that

(Ol + 0.2+ 1 iz 109 < CUF g + ).
Proor: The proof is very similar to the proof of Energy Estimates above. O
3.4.3 Theorem. There is a unique weak solution to (P).

Proor: Uniqueness has already been proved.
Since L*(0, T, H,(U)) and L*(0, T, H~'(U)) are reflexive there is a subsequence
(after relabelling) u,, converging weakly to some u € L%(0, T, Hé) such that u/,

converges weakly to some w € L2(0, T,H '(U)). By the homework w = u’. We
must show that (u’,v) + B[u,v,t] = (f,v) for all v € Hé(U). For v of the form

M
>, aw;, for m > M, we have

T T
J. (u:n,v)+B[um,v,t]dt=f (f,v)dt.

0 0

Passing to the limit,
T T
f (u',v)+B[u,v,t]dt:f (f,v)dt
0 0

for all such v. But such v are dense in H(l)(U ), so this holds for all v. O

3.5 Maximum principles

Let 'y =(@U x [0, T])U (U x {0}). Consider the problem

u+Lu+h(u)=f inUp

u=0 on dU x [0,T]
u=g on U x {0}
where hi : R — R is non-decreasing, and Lu = —a"u,,, +b'u,, (i.e.c=0).

3.5.1 Definition. We say that u € C>'(U x [0, T]) N C(Uy) is a sub-solution if all
equalities are replaced by <, and a super-solution if all equalities are replaced by
>.
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3.5.2 Theorem (Comparison Principle). Letu be a sub-solution and v be a super-
solution. Ifu<v onTy thenu<vinUy.

ProoF: Assume that u is a strict sub-solution, so that u, + Lu + h(u) < f. Assume
the conclusion of the theorem is false, and let (x,,t,) € Uy be a point where
maxg-u — v > 0 reaches its maximum. Since u < v on I'r, we must have x;, €
U and t, € (0,T]. If t € (0,T) then at (x,,t,) we have Du = Dv, u, = v,
D?*u < D?v, and u > v. Adding all this up, u, + Lu + h(u) > v, + Lv + h(v)
at (x,, ty), contradicting u, + Lu + h(u) < f < v, +Lv+h(v). If ty = T, then
u,(xg, T) = v.(xq, T) and the same contradiction follows.

If u is not a strict sub-solution then consider u®(x,t) := u(x,t) — et. Then
u® < u and u® is a strict sub-solution. It follows that u® < v on Uy for every £ > 0,
sou=<v. |

3.5.3 Theorem (Weak maximum principle). Ifu,+Lu < 0inU; then maxg, u=
maxr, u, and the same holds if (<, max) are replaced by (=, min).

ProorF: Follows from the Comparison Principle. O
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