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Spectral Theory in Hilbert Spaces 3

1 Spectral Theory in Hilbert Spaces

1.1 Orthogonal Projections

Projection onto a convex set

This chapter is concerned with the geometric structure of linear transformations,
i.e. spectral theory. Let X be a non-trivial Hilbert space over K with inner product
(·, ·).

1.1.1 Theorem (Projection on a closed convex set). Let X be a Hilbert space
and K ⊆ X be non-empty, closed, and convex. Let x ∈ X be given. Then there is
exactly one point y0 ∈ K such that ‖x − y0‖= inf{‖x − y‖ | y ∈ K}

1.1.2 Theorem (Projection). Let X be a Hilbert space and M a closed subspace
of X . Let x ∈ X be given. Then there is exactly one pair (y, z) ∈ M×M⊥ such that
x = y + z.

In fact,y is the point y0 for K = M in the previous theorem.

Orthogonal projections

Let M be a closed subspace. For each x ∈ X let PM x be the unique element of M
such that ‖x−PM x‖ ≤ ‖x− y‖ for all y ∈ M . Then PM is linear, and x−PM x ∈ M⊥.
Clearly x = (x−PM x)+PM x and it follows that ‖PM x‖ ≤ ‖x‖, so PM is continuous.
It can be shown that PM⊥ = I − PM .

Orthonormal lists and bases

As list (ei | i ∈ I) is an orthonormal list provided that for all i, j ∈ I we have ei ⊥ e j
if i 6= j and ‖ei‖ = 1. An orthonormal list is a maximal orthonormal list or an
orthonormal basis if for all x ∈ X , if x ⊥ ei for all i ∈ I then x = 0. These terms
apply to sets of elements by considering it a self-indexed list.

Let (ei | i ∈ I) be an orthonormal basis and x ∈ X . Then x =
∑

i∈I(x , ei)ei ,
where there (generally uncountable) sum is interpreted in the usual way.

Duality

1.1.3 Theorem (Riesz Representation). Let x∗ ∈ X ∗ be given. Then there exists
exactly one y ∈ X such that 〈x∗, x〉 = (x , y) for all x ∈ X , and moreover ‖x∗‖∗ =
‖y‖.

Last semester we introduced the Riesz operator R : X → X ∗, defined by (R(y))(x) :=
(x , y). It is important to note that R is conjugate linear isometry.

Let A ∈ L (X ; X ) be given. The Banach space adjoint is A∗ : X ∗ → X ∗, defined
by 〈A∗x∗, x〉 = 〈x∗, Ax〉. The Hilbert space adjoint is A∗H : X → X , defined by
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(Ax , y) = (x , A∗H y). These adjoints are related by A∗H = R−1A∗R, and they are not
equal in general.
Warning: Until further notice we will use A∗ for the Hilbert space adjoint.

1.2 Self-adjoint Operators

Self-adjoint operators

We say that A is self-adjoint (or Hermitian in the complex case) provided A = A∗.
We say that A is normal provided that it commutes with its adjoint, i.e. that AA∗ =
A∗A.

1.2.1 Proposition. Assume thatK= C and let A∈ L (X ; X ) be given. Then A= A∗

if and only if (Ax , x) ∈ R.

PROOF: If A is self-adjoint then (Ax , x) = (x , Ax) = (Ax , x) so (Ax , x) ∈ R. Con-
versely, let x , y ∈ X and α ∈ C be given. Then (A(x + αy), x + αy) ∈ R, so in
particular α(Ay, x) +α(Ax , y)x ∈ R. It follows that

α(Ay, x) +α(Ax , y)x = α(x , Ay) +α(y, Ax)
= α(A∗x , y) +α(A∗ y, x)

Take α = 1 and α = i and reduce to see (Ax , y) = (A∗x , y). Since this holds for
arbitrary x , y ∈ X , it follows that A= A∗. �

1.2.2 Proposition. If A= A∗ then ‖A‖= sup{|(Ax , x)| | x ∈ X ,‖x‖= 1}.

PROOF: Let M = sup{|(Ax , x)| | x ∈ X ,‖x‖ = 1}, and let x ∈ X with ‖x‖ = 1
be given. Then |(Ax , x)| ≤ ‖Ax‖‖x‖ = ‖Ax‖ ≤ ‖A‖ so M ≤ ‖A‖. Note that the
self-adjointness of A was not used in this calculation.

Conversely, let x , y ∈ X with ‖x‖= ‖y‖= 1 be given. Then

(A(x + y), x + y) = (Ax , x) + (Ax , y) + (Ay, x) + (Ay, y)
= (Ax , x) + (Ax , y) + (y, A∗x) + (Ay, y)
= (Ax , x) + (Ax , y) + (y, Ax) + (Ay, y)
= (Ax , x) + 2ℜ(Ax , y) + (Ay, y)

and (A(x − y), x − y) = (Ax , x)− 2ℜ(Ax , y) + (Ay, y)
so 4ℜ(Ax , y) = (A(x + y), x + y)− (A(x − y), x − y)

Whence

4|ℜ(Ax , y)| ≤ |(A(x + y), x + y)|+ |(A(x − y), x − y)|

≤ M(‖x + y‖2 + ‖x − y‖2)

≤ M(2‖x‖2 + 2‖x‖2) = 4M
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Choose θ ∈ [0,2π) such that (Ax , y) = eiθ |(Ax , y)| (note that if K = R then θ ∈
{0,π}). Put z = e−iθ x . Then ‖z‖= 1 and it follows that |(Ax , y)|=ℜ(Az, y)≤ M .
Recall that ‖Ax‖ = sup{|(Ax , y)| | y ∈ X ,‖y‖ = 1}, so ‖Ax‖ ≤ M . Since this holds
for all x ∈ X with ‖x‖= 1, ‖A‖ ≤ M . �

1.2.3 Corollary. If A= A∗ and (Ax , x) = 0 for all x ∈ X then A= 0.

Note that the self-adjointness is required in the real case. Rotation R by π

2
in

R2 is a non-zero linear operator but satisfies (Rx , x) = 0 for all x ∈ R2. Self-
adjointness is not required in the complex case. Prove this as an exercise.

Normal operators

1.2.4 Proposition. A is normal if and only if ‖Ax‖= ‖A∗x‖ for all x ∈ X .

PROOF: Let x ∈ X be given.

‖Ax‖2 −‖A∗x‖2 = (Ax , Ax)− (A∗x , A∗x)
= (A∗Ax , x)− (AA∗x , x)
= ((A∗A− AA∗)x , x)

Since A∗A− AA∗ is self-adjoint, the above expression is zero if and only if A∗A =
AA∗. �

1.2.5 Corollary. If A is normal then ker(A) = ker(A∗).

Isometries

1.2.6 Definition. A is said to an isometry if ‖Ax‖= ‖x‖ for all x ∈ X . A surjective
isometry is said to be unitary.

The right-shift operator on `2 is an isometry that is not surjective.

1.2.7 Proposition. A is an isometry if and only if (Ax , Ay) = (x , y) for all x , y ∈
X .

PROOF: Assume that A is an isometry and let x , y ∈ X and α ∈K be given. Then

‖A(x +αy)‖2 = (A(x +αy), A(x +αy))

= ‖Ax‖2 + 2ℜ(α(Ay, Ax)) + |α|2‖Ay‖2

= ‖x‖2 + 2ℜ(α(Ay, Ax)) + |α|2‖y‖2

‖x +αy‖2 = ‖x‖2 + 2ℜ(α(y, x)) + |α|2‖y‖2

Since the terms on the left are equal, ℜ(α(y, x)) = ℜ(α(Ay, Ax)). If K = R then
we are done. If K = C then put α = 1, i to get the result. The other direction is
clear. �
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1.2.8 Proposition. A is isometric if and only if A∗A= I .

PROOF: A is isometric if and only if (Ax , Ay) = (x , y) for all x , y ∈ X , which
is equivalent to (A∗Ax , y) = (x , y) for all x , y ∈ X , which holds if and only if
x = A∗Ax for all x ∈ X . �

Warning: The theorem does not necessarily hold if we look at AA∗ instead. Let
R denote the right shift operator and L denote the left shift operator. R is an
isometry, while L is not. Notice that R∗ = L and L∗ = R, so R∗R = LR = I and
RR∗ = RL 6= I . Keep in mind that R and L are not normal operators.

1.2.9 Proposition. Assume that A is isometric. Then A is normal if and only if A
is surjective.

PROOF: If A is normal then I = A∗A = AA∗ so A is surjective since I is surjective.
If A is surjective then A is invertible (since isometries are automatically injective)
and A−1 is an isometry. Whence (A−1)∗A−1 = I , and since ∗ commutes with −1, we
get I = (A∗)−1A−1 = (AA∗)−1, so AA∗ = I = A∗A since A is an isometry. �

1.3 Idempotent operators

1.3.1 Definition. E ∈ L (X ; X ) is said to be idempotent provided E2 = E.

Note that every orthogonal projection is idempotent, but not every idempotent
operator is an orthogonal projection. E.g. non-orthogonal projections are idempo-
tent. More specifically, for X = R2, E =

� 1 1
0 0

�

is idempotent but not orthogonal.
Note that E is not normal and ‖E‖=

p
2> 1.

Let X be a Hilbert space and E an idempotent operator on X . Then (I − E)2 =
I2 − 2E + E2 = I − E, so I − E is also idempotent. Now x ∈ ker(I − E) if and only
if Ex = x , so ker(I − E) ⊆ range(E). Conversely, y ∈ range(E) if there is x ∈ X
such that y = Ex , so E y = E2 x = Ex = y and so y ∈ ker(I − E). In particular
ker(I − E) = range(E) and the range of E is closed.

Recall that ker(A) = range(A∗)⊥.

1.3.2 Proposition. Assume that E is idempotent and put M := range(E). Then
E = PM if and only if ker(E) = range(E)⊥.

PROOF: Exercise. �

If E is idempotent then ‖E‖= ‖E2‖ ≤ ‖E‖2, so ‖E‖ ≥ 1.

1.3.3 Proposition. Assume that E2 = E and E 6= 0, and put M := range(E). Then
E = PM if and only ‖E‖= 1.
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PROOF: If E = PM then for every x ∈ X , x = PM x + (I − PM )x , and these compo-
nents are orthogonal. Therefore

‖x‖2 = ‖PM x‖2 + ‖(I − PM )x‖2 ≥ ‖PM x‖2,

so ‖E‖ ≤ 1 and it must be equal since E is a non-zero idempotent.
Assume ‖E‖ = 1. By 1.3.2, since range(E) is a closed subspace, it suffices to

show that range(E) = ker(E)⊥. Let x ∈ ker(E)⊥ be given. Notice that range(I −
E) = ker(E), so

0= (x − Ex , x) = ‖x‖2 − (Ex , x)≥ ‖x‖(‖x‖− ‖Ex‖).

Since ‖E‖ = 1, it must be the case that ‖Ex‖ = ‖x‖, and it follows that ‖Ex‖ =
p

(Ex , x). Whence ‖x− Ex‖2 = 0 and x ∈ range(E). Conversely, let y ∈ range(E)
be given. Write y = x + z with x ∈ ker(E) and z ∈ ker(E)⊥ ⊆ range(E). Then
y = E y = E(x + z) = Ez = z, so y ∈ ker(E)⊥. �

1.3.4 Proposition. Assume that E2 = E and let M = range(E). The following are
equivalent.

(i) E = PM ;
(ii) ‖E‖= 1;

(iii) E = E∗;
(iv) E is normal.

PROOF: (i) and (ii) are equivalent by 1.3.3. Assume E = PM and let x , y ∈ X .
Write x = x1 + x2 and y = y1 + y2 where x1, y1 ∈ M and x2, y2 ∈ M⊥.

(Ex , y) = (Ex1 + Ex2, y1 + y2) = (x1, y1) = (x1 + x2, E y1 + E y2) = (x , E y),

so (i) implies (iii). Clearly (iii) implies (iv). Assume that E is normal. Then for
all x ∈ X , ‖Ex‖ = ‖E∗x‖, and it follows that ker(E) = ker(E∗) = range(E)⊥. By
1.3.2, E = PM and (iv) implies (i). �

1.3.5 Proposition. Assume E2 = E and put M = range(E). Then E = PM if and
only if (Ex , x)≥ 0 for all x ∈ X (i.e. is real and non-negative).

PROOF: Assume E = PM , and note that, for any x ∈ X , we can write x = x1 + x2
with x1 ∈ M and x2 ∈ M⊥, so (Ex , x) = (x1, x1)≥ 0.

Conversely, in the complex case (Ex , x) ∈ R for all x ∈ X implies that E is
self-adjoint, so it is a projection by 1.3.4. In the real case, let x ∈ X be given and
write x = Ex + (I − E)x =: y + z.

0≤ (E y + Ez, y + z) = (y, y + z) = ‖y‖2 + (y, z),

Therefore (y, z) = 0 for all y ∈ range(E) and z ∈ range(I − E) = ker(E) and E is
orthogonal. �
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1.4 Spectral Theory

Invariant and reducing subspaces

Let X be a Hilbert space and M ≤ X a closed subspace. Note that X = M ⊕ M⊥.
We can write an operator A∈ L (X ; X ) as

�

PM (Ax)
PM⊥(Ax)

�

=
�

B C
D F

��

PM x
PM⊥ x

�

where B ∈ L (M ; M), C ∈ L (M⊥; M), D ∈ L (M ; M⊥), and F ∈ L (M⊥; M⊥).
We say that M is invariant under A provided that A[M] ⊆ M , and M reduces A

provided that A[M] ⊆ M and A[M⊥] ⊆ M⊥. Notice that M reduces A if and only
if C = 0 and D = 0. M (M⊥) is invariant under A if and only if D = 0 (C = 0).

1.4.1 Proposition. M is invariant under A if and only if M⊥ is invariant under A∗.

PROOF: Assume that M is invariant under A and let x ∈ M and y ∈ M⊥ be given.
Then (x , A∗ y) = (Ax , y) = 0. It follows that A∗ y ∈ M⊥, so M⊥ is invariant under
A∗. �

1.4.2 Proposition. M is invariant under A if and only if PM APM = APM .

PROOF: Assume M is invariant under A and let x ∈ X be given. Then PM x ∈ M ,
so APM x ∈ M , so PM APM x = APM x . Conversely, let x ∈ M be given, and note that
Ax = APM x = PM APM x ∈ M , so M is invariant under A. �

1.4.3 Proposition. The following are equivalent.
(i) M reduces A;

(ii) PM A= APM ;
(iii) M is invariant under A and A∗.

PROOF: Exercise. �

The spectrum

Let α ∈ K be given. We say that α ∈ ρ(A), the resolvent set of A ∈ L (X ; X ),
provided that αI−A is bijective. Note that if α ∈ ρ(A) then (αI−A)−1 ∈ L (X ; X ).
The spectrum of A is defined to be σ(A) = K \ρ(A). A number λ ∈ K is called an
eigenvalue of A provided ker(λI −A) 6= {0}. Each non-zero member of ker(λI −A)
is called an eigenvector. The set of all eigenvalues of A is called the point spectrum
of A and is denoted σp(A). Clearly σp(A) ⊆ σ(A). A number λ ∈ K is said be a
generalized eigenvalue of A provided

inf{‖(λI − A)x‖ | x ∈ X ,‖x‖= 1}= 0.

In this case there is a sequence {xn, n = 1,2, . . . } of unit vectors such that (λI −
A)xn → 0 as n→∞. It is clear that every eigenvalue is a generalized eigenvalue.
Every generalized eigenvalue belongs to σ(A).
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1.4.4 Example. Let X = `2 and Ax = (x1, 1
2

x2, 1
3

x3, . . . ). Then A is injective, so

0 /∈ σp(A), but ‖Ae(n)‖= 1
n
→ 0, so 0 is a generalized eigenvalue.

Spectral theory of compact operators

1.4.5 Proposition. Assume that A is compact, λ ∈ σp(A), λ 6= 0. Then ker(λI−A)
is finite dimensional.

PROOF: Assume that ker(λI − A) is infinite dimensional. Choose an orthonormal
sequence {en, n ≥ 1}, and choose a subsequence {enk

} such that Aenk
converges

strongly. For j 6= k,

‖Aenk
− Aen j

‖2 = ‖λenk
−λen j

‖= 2|λ|2.

But this contradicts that Aenk
converges strongly. �

1.4.6 Proposition. Assume that A is compact and λ ∈K\{0}. If λ is a generalized
eigenvalue of A then it is an eigenvalue of A.

PROOF: Let {xn, n ≥ 1} be a sequence of unit vectors such that (λI − A)xn → 0.
Choose a subsequence {xnk

} such that Axnk
→ 0. Since λ 6= 0 it follows that

xnk
→ 0, which is a contradiction unless λ= 0, which it isn’t. �

1.4.7 Corollary. Assume that A is compact and let λ ∈ K \ {0} be given. Assume
that λ /∈ σp(A) and that λ /∈ σp(A∗) (this second condition is redundant). Then
λI − A is bijective (and (λI − A)−1 is bounded).

PROOF: By 1.4.6, since λ /∈ σp(A), λ is not a generalized eigenvalue of A. Whence
there is c > 0 such that ‖(λI − A)x‖ ≥ c‖x‖ for all x ∈ X . Therefore λI − A has
closed range. It follows that

range(λI − A) = ker(λI − A∗)⊥ = {0}⊥ = X ,

so λI − A is surjective. It is injective because λ is not an eigenvalues, so by the
corollary to the Open Mapping Theorem, (λI − A)−1 is bounded. �

Spectral theory of normal operators

1.4.8 Proposition. Assume that A is normal and let λ ∈K be given. Then ker(λI−
A) = ker(λI − A∗) and ker(λI − A) reduces A.

PROOF: Clearly λI − A is normal, so

ker(λI − A) = ker((λI − A)∗) = ker(λI − A∗).

To prove the second assertion, by 1.4.3, it suffices to show that ker(λI − A) is
invariant under both A and A∗. Let x ∈ ker(λI − A) be given. Then Ax = λx ∈
ker(λI − A), and A∗x = λx ∈ ker(λI − A). �
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1.4.9 Proposition. Assume A is normal and let λ,µ ∈ σp(A) be given, with λ 6= µ.
Then ker(λI − A)⊥ ker(µI − A).

Note that this is a generalization of the fact from basic linear algebra that the
eigenspaces of a symmetric matrix are orthogonal.

PROOF: Let x ∈ ker(λI − A) and y ∈ ker(µI − A) be given. We must show that
(x , y) = 0. Since A is normal, y ∈ ker(µI − A∗), and

λ(x , y) = (λx , y) = (Ax , y) = (x , A∗ y) = (x ,µy) = µ(x , y),

so (x , y) = 0 since λ 6= µ. �

1.4.10 Proposition. If A∗ = A then σp(A)⊆ R.

PROOF: Let λ ∈ σp(A) and let x ∈ ker(λI − A) = ker(λI − A∗), with x 6= 0. Then

λx = Ax = A∗x = λx , so λ= λ. �

Spectral theory of compact self-adjoint operators

1.4.11 Proposition. Assume that A is compact and self-adjoint. Then one or both
of ±‖A‖ is an eigenvalue of A.

PROOF: This is immediate if A= 0, so we may assume that A 6= 0. Since A is self-
adjoint, by 1.2.2, ‖A‖ = sup{|(Ax , x)| : ‖x‖ = 1}. Choose a sequence {xn, n ≥ 1}
of unit vectors such that |(Axn, xn)| → ‖A‖. Actually, since this is a sequence of real
numbers, we many choose {xn} so that (Axn, xn) → λ, where λ is ‖A‖ or −‖A‖.
Then,

0≤ ‖(A−λI)xn‖2

= (Axn, Axn)− 2λ(Axn, xn) +λ
2(xn, xn)

→ ‖A‖2 − 2‖A‖2 + ‖A‖2 = 0

Therefore λ is a generalized eigenvalue. Since A is compact and λ 6= 0, by 1.4.6,
λ ∈ σp(A). �

Let M and N be closed subspaces of X , with M ⊥ N . The direct sum of M and
N is M ⊕ N = {x + y | x ∈ M , y ∈ N}. Then M ⊕ N is a closed subspace of X and
(M ⊕ N)⊥ = M⊥ ∩ N⊥.

Let A be a compact self-adjoint operator on X . Let M be a closed subspace
of X that reduces A. Define Ã ∈ L (M ; M) by Ã = A|M . Then Ã is compact and
self-adjoint, and ‖Ã‖ ≤ ‖A‖. Note that if λ ∈ σp(A) then |λ| ≤ ‖A‖.

With all of this in mind, consider the following algorithm. Let A1 := A.

◦ Choose λ1 ∈ σp(A1) such that |λ1|= ‖A1‖.
◦ Let E1 := ker(λ1 I − A). If E1 = X then we are done.
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◦ Put X2 := E⊥1 . Note that X2 reduces A1 because E1 reduces A1.
◦ Put A2 := A|X2

, a compact self-adjoint operator on X2.
◦ Choose λ2 ∈ σp(A2) such that |λ2| = ‖A2‖. Then |λ2| = ‖A2‖ ≤ ‖A1‖ = |λ1|

and λ2 6= λ1.
◦ Put E2 := ker(λ2 I − A) and notice that E1 ⊥ E2. If E1 ⊕ E2 = X then stop.

In general, for n≥ 2,
◦ Put Xn+1 := (E1 ⊕ E2 ⊕ · · · ⊕ En)⊥. Note that Xn+1 reduces A.
◦ Put An+1 := A|Xn+1

= An|Xn+1
.

◦ Choose λn+1 ∈ σp(An+1)⊆ σp(A) such that |λn+1|= ‖An+1‖ ≤ |λn|
◦ Put En+1 := ker(λn+1 I − A) and notice that En+1 ⊥ (E1 ⊕ · · · ⊕ En). If E1 ⊕
· · · ⊕ En+1 = X then stop.

If this process terminates in finitely many steps N , then E1 ⊕ · · · ⊕ EN = X . Note
that dim(En) < ∞ for each n < N . If dim(EN ) is infinite then λN = 0, and
otherwise dim(X ) < ∞. Assume that dim range(A) is infinite. By induction, we
get a sequence {λn}∞n=1 of distinct eigenvalues of A with |λ1| ≥ |λ2| ≥ · · · and a
sequence of orthogonal subspaces {En}∞n=1 defined by En = ker(λn I−A). Moreover,
|λn+1|= ‖A|(E1⊕···⊕En)⊥‖.

Let α := limn→∞ |λn|. We claim that α = 0. To see why, for each n ≥ 1, choose
xn ∈ En with ‖xn‖ = 1. Note (xn, xm) = δn,m. Since A is compact, {Axn}∞n=1 has a
convergent subsequence {Axnk

}∞k=1. Now Axnk
= λnk

xnk
, so

‖Axnk
− Axn j

‖2 = ‖λnk
xnk
−λn j

xn j
‖2 = λ2

nk
+λ2

n j
≥ 2α2

Since convergent sequences have the Cauchy property, α= 0.
Put Pn := PEn

. We will show that ‖A−
∑∞

j=1λ j Pj‖ → 0 as n→∞. Indeed, let
n ∈ N and x ∈ X , with ‖x‖ = 1, be given. Then x = x1 + · · ·+ xn + x⊥, where
x i ∈ Ei and x⊥ ∈ (E1 ⊕ · · · ⊕ En)⊥. Since Ax i = λi x i , it follows that













(A−
∞
∑

j=1

λ j Pj)x













= ‖Ax⊥‖= ‖A|(E1⊕···⊕En)⊥ x⊥‖ ≤ |λn+1|.

Therefore ‖A−
∑∞

j=1λ j Pj‖ → 0 as n→∞.
Now we will show that {λi | i ∈ N} = σp(A) \ {0}. Indeed, let µ ∈ σp(A) \ {0}

and choose x ∈ X such that ‖x‖ = 1 and Ax = λx . If µ /∈ {λi | i ∈ N} then
(Pj x , x) = 0 for all j ∈ N. But this contradicts the note above, because µx = Ax =
∑∞

j=1λ j Pj x = 0 but x 6= 0 and µ 6= 0.
We have proven the following decomposition theorem.

1.4.12 Theorem. Assume that A is a compact, self-adjoint operator on X .
(i) σ(A) \ {0} ⊆ σp(A).

(ii) There is λ ∈ σp(A) such that |λ|= ‖A‖.
(iii) σp(A) is countable and zero is the only possible accumulation point.
(iv) A has finite rank if and only if σp(A) is a finite set.
(v) For each λ ∈K \ {0}, ker(λI − A) is finite dimensional.

(vi) For all λ,µ ∈K with λ 6= µ, ker(λI − A)⊥ ker(µI − A).
(vii) There is an orthonormal basis {ei | i ∈ I} for X of eigenvectors of A. More-

over, for any such basis, Ax =
∑

i∈I λi(x , ei)ei , where Aei = λiei .
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Spectral theory of compact normal operators

Let A be a compact, normal operator on X . Assume for this section that K = C.
(On R A need not have an eigenvalue.) Write

A= 1
2
(A+ A∗) + i 1

2i
(A− A∗) =: B+ iC ,

and note that B and C are compact, self-adjoint, and BC = CB. We claim further
that B and C are simultaneously diagonalizable.

1.4.13 Theorem. Assume that A compact and normal and K = C. Then σp(A) is
non-empty, countable, and zero is the only possible accumulation point. Further,
there exists an orthonormal basis {ei | i ∈ I} for X of eigenvectors of A, and for
any such basis Ax =

∑

i∈I λi(x , ei)ei , where Aei = λiei .

There are further spectral theories for unitary operators, bounded self-adjoint
operators, unbounded self-adjoint operators, etc., but proper treatment of these
theories would take the rest of the course.

2 Spectral Theory in Banach Spaces

2.1 The spectrum and resolvent set

Let X be a Banach space and T ∈ L (X ; X ). The resolvent set of T , denoted ρ(T ),
is the set of all λ ∈ K such that λI − T is bijective. The spectrum of T , denoted
σ(T ), is the complement of the resolvent set, σ(T ) :=K\ρ(T ). Eigenvectors and
generalized eigenvectors are as before.

2.1.1 Proposition. Let λ1, . . . ,λn be distinct eigenvalues of T and x1, . . . , xn be
the associated eigenvectors. Then {x1, . . . , xn} is linearly independent.

2.1.2 Proposition. Assume ‖T‖ < 1. Then 1 ∈ ρ(T ) and the series
∑∞

k=0 T k

converges in the operator norm to (I − T )−1.

PROOF: Notice that ‖T k‖ ≤ ‖T‖k for all k ∈ N, so
∑∞

k=0 ‖T
k‖ is convergent. Since

X is complete, L (X ; X ) is complete, and
∑∞

k=0 T k converges in operator norm.
Let n ∈ N be given and put Sn =

∑n
k=0 T k. Notice that

(I − T )Sn = I − T n+1 = Sn(I − T ).

As n→∞, ‖T n+1‖ ≤ ‖T‖n→ 0, and

(I − T )
∞
∑

k=0

T k = I =
� ∞
∑

k=0

T k
�

(I − T ).
�

2.1.3 Corollary. If λ ∈K is such that |λ|> ‖T‖ then λ ∈ ρ(T ).
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For all µ ∈ ρ(T ), let R(µ; T ) := (µI − T )−1, the resolvent function of T at µ.
Let λ0 ∈ ρ(T ) be given. Let λ ∈K be such that |λ−λ0|‖R(λ0; T )‖< 1.

λI − T = (λ0 I − T ) + (λ−λ0)I

= (λ0 I − T )(I + (λ−λ0)(λ0 I − T )−1)
= (λ0 I − T )(I − (λ0 −λ)R(λ0; T ))

so (λI − T )
∞
∑

k=0

(λ0 −λ)kR(λ0; T )k = λ0 I − T

and
∞
∑

k=0

(λ0 −λ)kR(λ0; T )k(λI − T ) = λ0 I − T

Therefore λ ∈ ρ(T ) and R(λ; T ) =
∑∞

k=0(λ0 −λ)kR(λ0; T )k+1.

2.1.4 Theorem. ρ(T ) is open and σ(T ) is closed.

2.1.5 Corollary. When |λ−λ0|‖R(λ0; T )‖< 1,

R(λ; T ) =
∞
∑

k=0

(λ0 −λ)kR(λ0; T )k+1.

The mapping λ 7→ R(λ; T ) is analytic on K.

2.1.6 Theorem. Let λ,µ ∈ ρ(T ) and s ∈ L (X ; X ) be given.
(i) R(λ; T )− R(µ; T ) = (µ−λ)R(λ; T )R(µ; T ).

(ii) If TS = ST then SR(λ; T ) = R(λ; T )S.
(iii) R(λ; T )R(µ; T ) = R(µ; T )R(λ; T ).

PROOF:
(i) We employ a standard trick.

R(λ; T )− R(µ; T )
= R(λ; T )(µI − T )R(µ; T )− R(λ; T )(λI − T )R(µ; T )
= R(λ; T )((µ−λ)I)R(µ; T )
= (µ−λ)R(λ; T )R(µ; T )

(ii) Note that S(λI−T ) = (λI−T )S since everything commutes with I . Multiply
on the right and left by R(λ; T ).

(iii) Follows from either of the first two parts. �

2.1.7 Theorem. If K= C then σ(T ) 6=∅.
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PROOF: The mapping λ 7→ R(λ; T ) is analytic on ρ(T ). Suppose that σ(T ) =∅, so
that ρ(T ) = C. Let D := {λ ∈ C : |λ| ≤ 2‖T‖}, which is non-empty and compact.
Let M :=max{‖R(λ; T )‖ : λ ∈ D}. For λ ∈ C \ D,

R(λ; T ) = (λI − T )−1 = 1
λ
(I − T

λ
)−1,

and ‖ T
λ
‖ ≤ 1

2
. Therefore

‖R(λ; T )‖=












1

λ

∞
∑

n=0

�

T

|λ|

�n 










≤
1

λ

∞
∑

n=0













T

λ













n

≤ ‖T‖.

Let x ∈ X and x∗ ∈ X ∗ be given. Define f : C → C by f (λ) := x∗R(λ; T )x , so
that | f (λ)| ≤ ‖x∗‖‖x‖max{M ,‖T‖}. But by assumption, f is entire. Since it is
bounded, by Liouville’s Theorem, f is constant. Since this holds for all x and x∗,
this is a contradiction. �

Note that 2.1.7 might not hold if K = R, and might not hold if T is an un-
bounded operator.

2.1.8 Theorem (Spectral Mapping). Assume that K = C. Let p : C → C be a
non-constant polynomial. Then σ(p(T )) = p[σ(T )].

PROOF: Later. �

The spectral radius of T , defined when σ(T ) 6=∅, is defined to be

rσ(T ) :=max{|λ| : λ ∈ σ(T )}.

Note that 0≤ rσ(T )≤ ‖T‖.

2.1.9 Theorem. If K= C then rσ(T ) = limn→∞
n
p

‖T n‖ (and this limit exists).

PROOF: By 2.1.8, rσ(T n) = (rσ(T ))n. Further, rσ(T n)≤ ‖T n‖, so

rσ(T ) =
n
p

rσ(T n)≤ n
p

‖T n‖.

Therefore rσ(T )≤ lim infn
n
p

‖T n‖. For the other direction, consider the following.

R(λ; T ) =
1

λ

∞
∑

n=0

�

T

λ

�n

=: z
∞
∑

n=0

znT n.

The function of z on the right is analytic on a disc centred at the origin. Put
an := ‖T n‖. Then ‖

∑∞
n=0 znT n‖ ≤

∑∞
n=0 an|z|n. The radius of convergence r of

this real power series satisfies 1
r
= lim supn

n
p

an = limsupn
n
p

‖T n‖. Now, 1
r

is the
radius of the smallest disc centred at the origin whose exterior lies in ρ(T ). It
follows that rσ(T ) =

1
r
= limsupn

n
p

‖T n‖. �
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2.1.10 Corollary. Assume that X is a complex Hilbert space and A is normal. Then
‖A‖= rσ(A).

PROOF: It suffices to show that ‖A‖2 = ‖A2‖. Observe that

‖A‖2 = sup{|(Ax , Ax)| : ‖x‖= 1}
= sup{|(A∗Ax , x)| : ‖x‖= 1}
= ‖A∗A‖ since A∗A is self-adjoint

= ‖A2‖ since A is normal �

2.2 Spectral theory of compact operators

2.2.1 Theorem. If T is a compact operator then σp(T ) is countable and 0 is the
only possible accumulation point.

PROOF: For each ε > 0 put Λε := {λ ∈ σp(T ) : |λ| ≥ ε}. We will show that Λε is a
finite set for every ε > 0.

Let ε > 0 be given and suppose that Λε is infinite. Choose an injective sequence
{λn}∞n=1 in Λε and choose a sequence {xn}∞n=1 of corresponding eigenvectors. For
each n, put Mn = span{x1, . . . , xn}. Notice that {Mn}∞n=1 is increasing, and that
T[Mn] = Mn for each n.

Let n ∈ N and x ∈ Mn. Then x = α1 x1 + · · ·+αn xn for some αi ∈K.

(λn I − T )x = α1(λn −λ1)x1 + · · ·+αn−1(λn −λn−1)xn−1 + 0.

It follows that (λn I − T )[Mn] = Mn−1. Note finally that each Mn is a closed sub-
space of X . By the Riesz Lemma (from last semester) we can choose a sequence
{yn}∞n=1 such that, for all n ∈ N, yn ∈ Mn, ‖yn‖ = 1, and ‖yn − x‖ ≥ 1

2
for all

x ∈ Mn−1.
Let m, n ∈ N with m< n be given.

T yn − T ym = λn yn − (λn I − T )yn − T ym =: λn(yn −
1
λn

x),

and x ∈ Mn−1 since T ym ∈ Mm ⊆ Mn−1 and (λn I − T )yn ∈ Mn−1. It follows
from the properties of the sequence that ‖T yn − T ym‖ ≥

1
2
|λn| ≥

1
2
ε. Therefore

the sequence {T yn}∞n=1 has no convergent subsequences, which is a contradiction
since T is compact. �

2.2.2 Proposition. Assume that T is compact and let λ ∈ K \ {0} be given. Then
ker(λI − T ) is finite dimensional.

PROOF: By 2.2.1 there are finitely many linearly independent eigenvectors of T
associated with any eigenvalue of T . Therefore either ker(λI − T ) = {0} or
ker(λI − T ) is finite dimensional. �
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2.2.3 Theorem. Assume that T is compact and let λ ∈ K \ {0} be given. Then
range(λI − T ) is closed. It follows that range(λI − T ) = ⊥ ker(λI − T ∗), where T ∗

is the Banach space adjoint of T .

PROOF: Suppose for contradiction that range(λI − T ) is not closed. Choose a
sequence {xn}∞n=1 such that yn := (λI − T )xn→ y /∈ range(λI − T ).

Note that y 6= 0, so without loss of generality we may assume that yn 6= 0 for
all n ∈ N. Hence xn /∈ ker(λI − T ) for all n ∈ N. For each n ∈ N, put

δn = inf{‖xn − z‖ : z ∈ ker(λI − T )}> 0,

and choose zn ∈ ker(λI − T ) such that an := ‖xn − zn‖< 2δn.
We claim that an → ∞ as n → ∞. If not then {xn − zn}∞n=1 would have a

bounded subsequence {xnk
− znk

}∞k=1. But

xnk
− znk

=
1

λ
((λI − T ) + T )(xnk

− znk
) =

1

λ
ynk
+

1

λ
T (xnk

− znk
)

so {xnk
− znk

}∞k=1 has a further subsequence that converges strongly. Let v denote
the limit of that subsequence, and note that (λI−T )v = y , which is a contradiction
since y /∈ range(λI − T ).

Put wn =
1
an
(xn − zn). Notice that ‖wn‖= 1 and

(λI − T )wn =
1

an
(λI − T )xn→ 0

as n→∞. Choose a subsequence {wnk
}∞k=1 such that {Twnk

}∞k=1 is strongly conver-
gent. We concluded that {wnk

}∞k=1 is strongly convergent. Put w := limk→∞ wnk
,

and note that (λI − T )w = 0. Put un = zn + anw ∈ ker(λI − T ). By definition of
δn,

δn ≤ ‖xn − un‖= ‖xn − zn − anw‖= an‖wn −w‖ ≤ 2δn‖wn −w‖,

so 1
2
≤ ‖wn −w‖ for all n. This is a contradiction. �

PROOF (ALTERNATE): Let {yn}∞n=1 be a convergent sequence in range(λI − T ). Put
y = limn→∞ yn. We hope to show that y ∈ range(λI − T ). Let xn be such that
(λI − T )xn = yn. If {xn}∞n=1 were bounded then there would be a subsequence
such that {T xnk

}∞k=1 converges, and hence also that {xnk
}∞k=1 converges. We claim

that there is a bounded sequence {zn}∞n=1 such that (λI − T )zn = yn. �

2.2.4 Theorem. Assume that T is compact and let λ ∈K\{0} be given. Then the
following hold.

(i) range(λI − T ) = ⊥ ker(λI − T ∗); and
(ii) range(λI − T ∗) = ker(λI − T )⊥.

2.2.5 Corollary. Assume that T is compact and let λ ∈ K \ {0} be given. If λ ∈
σ(T ) then either λ ∈ σp(T ) or λ ∈ σp(T ∗) (or both).
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In fact, it is also true that dim ker(λI − T ) = dim ker(λI − T ∗), so the “both” in
the corollary always holds.

Assume that T is compact and let λ ∈K \ {0} and n ∈ N be given.

(λI − T )n = λn I +
n
∑

k=1

�

n

k

�

(−1)kλn−k T k

︸ ︷︷ ︸

compact

=: µI − L.

It follows that ker((λI − T )n) is finite dimensional and range((λI − T )n) is closed.

2.2.6 Lemma. Assume that T is compact and let λ ∈ K \ {0} be given. There is
a smallest non-negative integer r such that ker((λI − T )n) = ker((λI − T )n+1) for
all n≥ r. Moreover, if r > 0 then the inclusions below are strict.

ker((λI − T )0)⊂ ker((λI − T )1)⊂ · · · ⊂ ker((λI − T )r)

PROOF: Put Km := ker((λI − T )m). Suppose that Kn ( Kn+1 for all n ≥ 0. By the
Riesz Lemma there is a sequence {yn}∞n=1 such that yn ∈ Kn+1 \ Kn, ‖yn‖ = 1, and
dist(yn, Kn)≥

1
2

for all n≥ 1. Let m< n be given and consider

(λI − T )n((λI − T )yn + T ym) = (λI − T )n+1 yn + T (λI − T )n ym = 0,

so (λI − T )yn + T ym ∈ Kn. It follows that

‖T yn − T ym‖= ‖λyn − ((λI − T )yn + T ym)‖ ≥
|λ|
2

.

This is a contradiction because it implies {T yn}∞n=1 has no convergent subse-
quences.

Let n ≥ 0 be such that Kn = Kn+1. We will show Kn+1 = Kn+2, proving the last
statement of the lemma. Let x ∈ Kn+2 be given.

0= (λI − T )n+2 x = (λI − T )n+1(λI − T )x
= (λI − T )n(λI − T )x Kn = Kn+1

= (λI − T )n+1 x . �

2.2.7 Lemma. Let λ ∈K\{0} be given and assume that T is compact. Then there
is a smallest non-negative integer q such that range((λI−T )n) = range((λI−T )q)
for all n≥ q. Moreover, if q > 0 then the inclusions below are strict.

range((λI − T )0)⊃ range((λI − T )1)⊃ · · · ⊃ range((λI − T )q).

2.2.8 Lemma. Let λ ∈ K \ {0} be given and assume T is compact. Then the
number r from 2.2.6 is the same as q from 2.2.7.
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PROOF: We will show that q ≥ r. The other inequality is easier. Let Kn = ker((λI−
T )n) and Rn = range((λI − T )n). Then Rq = Rq+1, so (λI − T )[Rq] = Rq. Given
y ∈ Rq there is x ∈ Rq such that (λI − T )x = y .

We claim that (λI − T )|Rq
is injective. Suppose not. Choose x1 ∈ Rq \ {0} such

that (λI − T )x1 = 0, x1 ∈ R2 \ {0} such that (λI − T )x2 = x1, etc. We get an
infinite sequence {xn}∞n=1 such that 0 6= x1 = (λI − T )n−1 xn and (λI − T )n xn =
(λI − T )x1 = 0. So xn ∈ Kn \ Kn−1, which contradicts 2.2.6.

Next we claim that Kq+1 = Kq, proving the inequality. We already know Kq ⊆
Kq+1. Suppose the other inclusion does not hold, and choose x0 ∈ Kq+1 \ Kq. Put
y := (λI − T )q x ∈ Rq, and note that y 6= 0. But (λI − T )y = 0, contradicting the
first claim. �

2.2.9 Theorem. Let λ ∈ K \ {0} be given and assume that T is compact. If λ ∈
σ(T ) then λ ∈ σp(T ).

PROOF: If λ /∈ σp(T ) then ker(λI − T ) = {0}, so r = 0. But then q = 0, so λI − T
is surjective. Whence λI − T is bijective and λ /∈ σ(T ). �

2.2.10 Theorem. Let λ ∈ K \ {0} be given and assume that T is compact. Let r
be as in 2.2.6. Then X = ker((λI − T )r)⊕ range((λI − T r).

PROOF: Write Kr and Rr as before. Let x ∈ X be given. Notice that R2r = Rr .
Choose x1 ∈ X such that (λI − T )2r x1 = (λI − T )r x and put x0 = (λI − T )r x1 ∈
Rr . Notice that (λI − T )r x0 = (λI − T )r x . It follows that x − x0 ∈ Kr , so x =
x0 + (x − x0).

Suppose that x = x̃0+(x− x̃0) is another decomposition. Put v0 = x0− x̃0 ∈ Rr .
Choose v ∈ X such that v0 = (λI − T )r v. Note that v0 = (x − x̃0)− (x − x0) ∈ Kr ,
so (λI − T )2r v = (λI − T )r v0 = 0. But v ∈ K2r = Kr , so 0= (λI − T )r v = v0. �

2.2.11 Theorem. Let λ ∈ K \ {0} be given and assume that T is compact. Then
dimker(λI − T ) = dimker(λI − T ∗).

2.2.4 together with 2.2.11 is often known as the Fredholm alternative.

PROOF (IDEA): Let {x1, . . . , xn} and {y∗1 , . . . , y∗m} be bases for ker(λI − T ) and
ker(λI−T ∗), respectively. Choose a dual bases {x∗1, . . . , x∗n} and {y1, . . . , ym} in X ∗

and X .
If n < m define Sx = T x +

∑n
i=1 x∗i (x)yi . S is compact. It can be shown that

ker(λI − S) = {0}, so λI − S is surjective, which is a contradiction. �

3 General Linear Operators

3.1 Introduction

Let X and Y be Banach spaces. Let D(A)⊆ X . We say that A : D(A)→ Y is linear if
D(A) is a linear subspace of X (not necessarily closed) and A is linear map between
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these vector spaces. At this point there is no concept of norm or continuity. We
say that A is bounded if there is K ∈ R such that ‖Ax‖Y ≤ K‖x‖X for all x ∈ D(A).
L (X ; Y ) is the set of all bounded linear function X → Y whose domain is all of
X . If A is not bounded then we say that A is unbounded. We say that A is closed
provided that Gr(A) = {(x , Ax) | x ∈ D(A)} is closed in X ×Y . Recall the following
theorem.

3.1.1 Theorem (Closed Graph). Let X and Y be Banach spaces, D(A) ⊆ X , and
assume that A : D(A)→ Y is linear. If A is closed and D(A) is closed in X then A is
bounded.

3.1.2 Lemma. With the notation of the closed graph theorem, A is closed if and
only if for every x ∈ X and y ∈ Y and every sequence {xn}∞n=1 in D(A) such that
xn→ x and Axn→ y we have x ∈ D(A) and Ax = y .

3.1.3 Examples.
(i) Let X = Y = C[0,1], D(A) = C1[0, 1], and Af = f ′ for all f ∈ D(A). Then A

is closed and unbounded. Indeed, if fn→ f uniformly and f ′n → g uniformly
then f ∈ C1[0,1] and f ′ = g, so we concluded with 3.1.2.

(ii) Let X = Y = C[0,1], D(B) = C2[0, 1], and B f = f ′ for all f ∈ D(B). Then
B is unbounded and not closed. Clearly B is not closed because of poor
choice of domain.

3.1.4 Lemma. LetD(A)⊆ X and assume that A : D(A)→ Y is linear and bounded.
If D(A) is closed then A is closed.

PROOF: Let {xn}∞n=1 in D(A) be such that xn→ x ∈ X and Axn→ y ∈ Y . If D(A) is
closed then x ∈ D(A). Since A is bounded,

‖Ax − Axn‖Y ≤ K‖x − xn‖X → 0 as n→∞. �

3.1.5 Lemma. Let D(A) ⊆ X and assume that A : D(A)→ Y is linear and closed.
Then ker(A) := {x ∈ D(A) | Ax = 0} is closed in X .

PROOF: Let {xn}∞n=1 in ker(A) be such that xn → x ∈ X . Then Axn = 0 for each
n, so in particular Axn → 0 in Y . Since A is closed, x ∈ D(A) and Ax = 0, so
x ∈ ker(A). �

3.1.6 Lemma. Let D(A) ⊆ X and assume that A : D(A)→ Y is linear, closed, and
injective. Then A−1 : range(A)→ X is closed.

PROOF: Let {yn}∞n=1 in range(A) be such that yn → y ∈ Y and A−1 yn → x ∈ X .
Then A−1 yn ∈ D(A) and AA−1 yn → y , so since A is closed, x ∈ D(A) and Ax = y ,
i.e. A−1 y = x . �
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A is said to be closable provided there is a linear mapping Ã : D(Ã)→ Y such
that Gr(A) ⊆ Gr(Ã), i.e. Ã is a closed linear extension of A. In this case there is a
minimal closed extension of A. The minimal closed extension is called the closure
of A.

3.2 Adjoints

Let A : D(A) → Y be linear. We want to find a linear A∗ : D(A∗) → X ∗ with
D(A∗)⊆ Y ∗ such that

〈y∗, Ax〉= 〈A∗ y∗, x〉

for all x ∈ D(A) and y∗ ∈ D(A∗). For this to be reasonable, we require that D(A)
is dense in A, for otherwise A∗ would not be uniquely determined by the formula.
In case that D(A) is dense in X , define

D(A∗) := {y∗ ∈ A∗ | ∃!z∗ ∈ X ∗ such that 〈y∗, Ax〉= 〈z∗, x〉 for all x ∈ D(A)},

and A∗ y∗ = z∗ for y∗ ∈ D(A∗).

Warning: Even if D(A) is dense, it can happen that D(A∗) = {0}.

Remark. If X is a Hilbert space and A : D(A) ⊆ X → X , the Hilbert space adjoint
A∗H is defined in the way one would expect. A is said to be self-adjoint provided
A∗H = A and the domains are equal.

3.2.1 Example. Choose p ∈ [1,∞) and set X = Y = `p. Then X ∗ = Y ∗ = `q,
where 1

p
+ 1

q
= 1. Let D(A) :=K(N) and define Ax = (

∑∞
n=1 nxn, x2, x3, . . . ).

Note that D(A) is dense in `p. We would like to find the adjoint. For y ∈ D(A∗)
(to be determined) we want z ∈ `q such that 〈y, Ax〉 = 〈z, x〉 for all x ∈ K(N). The
identity

y1

∞
∑

n=1

nxn +
∞
∑

k=2

yk xk = z1 x1 +
∞
∑

k=2

zk xk

implies first that y1 = 0. Once we have seen this, it follows that zk = yk for all
k ≥ 2, so D(A∗) = {y ∈ `q | y1 = 0} and A∗ y = y . Note that D(A∗) is not dense in
`q.

3.2.2 Example. Let K= R and take X = Y = L2[0, 1]. Define

D(A) := { f ∈ AC[0, 1] : f ′ ∈ L2[0, 1], f (0) = f (1) = 0},

and note that D(A) is dense in L2. Define Af = f ′ for f ∈ D(A). What is A∗?
For g ∈ D(A∗) (to be determined) we want h ∈ L2[0, 1] such that for all f ∈

D(A),
∫ 1

0
f ′gd x =

∫ 1

0
f hd x . If g ∈ D(A) then

∫ 1

0
f ′gd x =−

∫ 1

0
f g ′d x , integrating

by parts. Therefore the required h is −g ′ in this case. It follows that D(A)⊆ D(A∗)
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and A∗g = −g ′ for all g ∈ D(A). Is D(A∗) = D(A)? Not quite: the elements of
D(A∗) do not need to vanish at zero and one, i.e.

D(A∗) = { f ∈ AC[0, 1] : f ′ ∈ L2[0, 1]}.

It can be shown that A∗∗ = A (with equal domains).

We can extend the above example as follows. Define

D(∆) := { f ∈ AC[0, 1] : f ′ ∈ AC[0,1], f ′′ ∈ L2[0, 1], f (0) = f (1) = 0},

and∆ f = f ′′. Then D(∆∗) = D(∆) and∆∗ =∆. We could also replace the condi-
tions on the functions in D(∆) at the endpoints with conditions on the derivatives
at the endpoints, etc.

3.2.3 Theorem. Assume that D(A) is dense in X . Then A∗ is closed.

PROOF: Let x∗ ∈ X ∗, y∗ ∈ Y ∗, and let {y∗n}
∞
n=1 in D(A∗) be given. Assume y∗n → y∗

and that A∗ y∗n → x∗. We need to show that y∗ ∈ D(A∗) and that A∗ y∗ = x∗. For all
x ∈ D(A) we have

〈y∗n , Ax〉 → 〈y∗, Ax〉 and 〈y∗n , Ax〉= 〈A∗ y∗n , x〉 → 〈x∗, x〉

as n→∞. It follows that 〈y∗, Ax〉 = 〈x∗, x〉 for all x ∈ D(A), so A∗ y∗ = x∗ by the
definition of the adjoint. �

3.2.4 Proposition. Assume that D(A) is dense X , A : D(A)→ Y is linear, and Y is
reflexive. Then A is closable if and only if D(A∗) is dense in Y ∗.

There are many identities like ker(A∗) = ⊥ range(A), etc. that can be proved
about general linear operators. The book Unbounded linear operators by S. Gold-
berg answers many of these questions.

3.2.5 Theorem. Assume D(A) is dense in X . Then D(A∗) = Y ∗ if and only if A is
bounded (i.e. there is C such that ‖Ax‖ ≤ C‖x‖ for all x ∈ D(A)). Moreover, if
D(A∗) = Y ∗ then A∗ ∈ L (Y ∗; X ∗) and

‖A∗‖= sup{‖Ax‖ : x ∈ D(A),‖x‖ ≤ 1}.

PROOF: Assume that A is bounded. Let y∗ ∈ Y ∗ be given. Then y∗A : D(A)→ K is
a bounded linear functional. By the Hahn-Banach theorem we can choose x∗ ∈ X
that extends y∗A. In particular, 〈y∗, Ax〉 = 〈x∗, x〉 for all x ∈ D(A). It follows
that A∗ y∗ = x∗, and D(A∗) = Y ∗. Conversely, by the closed graph theorem A∗ ∈
L (Y ∗; X ∗). Put B := {x ∈ D(A) : ‖x‖ ≤ 1} and write |A| := sup{‖Ax‖ : x ∈ B} ≤
∞. For any y∗ ∈ Y ∗ = D(A∗),

sup{|〈y∗, Ax〉| : x ∈ B}= sup{|〈A∗ y∗, x〉| : x ∈ B} ≤ ‖A∗‖‖y∗‖.
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We claim that sup{‖Ax‖ : x ∈ B} <∞. Indeed, let J be the canonical injection of
Y into Y ∗∗. Put S = A[B]. For all y∗ ∈ Y ∗, sup{|J(y)y∗| : y ∈ S} <∞, so by the
Principle of Uniform Boundedness, sup{‖J(y)‖ : y ∈ S} < ∞. Therefore J[S] is
bounded in Y ∗∗, so it follows that S is bounded in Y . For all y∗ ∈ Y ∗,

‖A∗ y∗‖ ≤ sup{|〈A∗ y∗, x〉| : x ∈ X ,‖x‖ ≤ 1}
= sup{|〈A∗ y∗, x〉| : x ∈ B} B dense

= sup{|〈y∗, Ax〉| : x ∈ B}
≤ ‖y∗‖|A|

so ‖A∗‖ ≤ |A|. Finally, for all x ∈ D(A),

‖Ax‖= sup{|〈y∗, Ax〉| : y∗ ∈ Y ∗,‖y∗‖ ≤ 1}
= sup{|〈A∗ y∗, x〉| : y∗ ∈ Y ∗,‖y∗‖ ≤ 1}
≤ ‖A∗‖‖x‖

so |A| ≤ ‖A∗‖ and hence |A|= ‖A∗‖. �

3.3 Spectral theory

Let X be a Banach space over K, D(A)⊆ X , and A : D(A)→ X is linear.

3.3.1 Definition. The resolvent set of A, denoted ρ(A), is the set of λ ∈ K such
that

(i) λI − A is injective;
(ii) range(λI − A) is dense in X ; and

(iii) (λI − A)−1 : range(λI − A)→ X is bounded.
The spectrum of A is defined to be σ(A) := K \ρ(A). We divide the spectrum into
three parts.

(i) The point spectrum of A, denoted σp(A), is the set of λ ∈K such that λI − A
is not injective, i.e. for which (i) fails.

(ii) The continuous spectrum of A, denoted σc(A), is the set of λ ∈ K such that
(i) and (ii) hold but (iii) fails, i.e. (λI − A)−1 exists but is unbounded.

(iii) The residual spectrum of A, denoted σr(A), is the set of λ ∈ K such that (i)
holds but (ii) fails, i.e. range(λI − A) is not dense.

These pieces form a partition of the spectrum. The elements ofσp(A) are called
eigenvalues and the elements of the respective kernels are called eigenvectors.

3.3.2 Example. Let X = `2 and assume that T ∈ L (X ; X ) is compact. Then
0 ∈ σ(T ). Zero can appear in any of the pieces.

(i) Let Ax := (0, 1
2

x2, 1
3

x3, 1
4

x4, . . . ). Then 0 ∈ σp(A).
(ii) Let Bx := (x1, 1

2
x2, 1

3
x3, 1

4
x4, . . . ). Then B−1 x = (x1, 2x2, 3x3, 4x4, . . . ),

which is unbounded, so 0 ∈ σc(B).
(iii) Let R denote the left shift operator and let C = R◦B. Then C is compact and

injective but range(C) is not dense, so 0 ∈ σr(A).
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3.3.3 Proposition. Assume that A is closed and let λ ∈ ρ(A) be given. Then
(λI − A)−1 ∈ L (X ; X ).

PROOF: If A is closed then λI − A is closed. By definition of ρ(A), λI − A is injec-
tive. By 3.1.6, (λI − A)−1 is closed. Again by the definition ρ(A), (λI − A)−1 is
bounded. By 3.1.2, D((λI − A)−1) is closed. Finally, again from the definition of
ρ(A), range(λI − A) = D((λI − A)−1) is dense, so (λI − A)−1 is defined on all of
X . �

3.3.4 Example. Let K = C and X = L2[0,1]. We would like to find closed,
densely defined A and B such that ρ(A) =∅ and σ(B) =∅.

(i) Let D(A) = { f ∈ AC[0,1] : f ′ ∈ L2[0, 1]} and Af = f ′. Let λ ∈ C be
given. Note that (λI − A) f = 0 always has a solution, namely fλ(x) := eλx .
Therefore σp(A) = C.

(ii) Let D(B) = { f ∈ AC[0, 1] : f ′ ∈ L2[0,1], f (0) = 0} and B f = f ′. (Note the
boundary condition.) It can be shown that D(B) is dense in X . Let λ ∈ C
and g ∈ X be given. We would like to find f ∈ D(B) such that (λI−B) f = g,
which is equivalent to finding a solution to f ′ −λ f = g, f (0) = 0. Let

fλ,g =−
∫ x

0

eλ(x−t)g(t)d t,

and notice that fλ,g is the required solution, and it is unique. Finally, it can
be shown that (λI − B)−1 is compact, so ρ(B) = C.

3.3.5 Definition. Let λ ∈ ρ(A) be given. Define the resolvent function of A at λ,
R(λ; A) ∈ L (X ; X ), by R(λ; A) = (λI − A)−1.

Notice that R(λ; A) : X →D(A). For all x ∈ D(A),

x = (λI − A)R(λ; A)x = R(λ; A)(λI − A)x ,

so AR(λ; A)x = R(λ; A)Ax = (λR(λ; A)− I)x .

3.3.6 Theorem. Assume A is closed and let λ0 ∈ ρ(A) and λ ∈ K be given, with
|λ−λ0|‖R(λ0; A)‖< 1 be given. Then λ ∈ ρ(A) and

R(λ; A) =
∞
∑

n=0

R(λ0; A)n+1(λ0 −λ)n

PROOF: The proof of 2.1.2 goes through unchanged, but one must take care re-
garding domains. �

3.3.7 Corollary. ρ(A) is open and σ(A) is closed.

Unlike the continuous case, σ(A) is not necessarily bounded.
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3.3.8 Theorem. Assume that A is closed and let λ,µ ∈ ρ(A) be given. Then

R(λ; A)− R(µ; A) = (µ−λ)R(λ; A)R(µ; A) = (µ−λ)R(µ; A)R(λ; A).

PROOF: The proof of 2.1.6 goes through unchanged. �

As in the continuous case,

R(λ; A)− R(µ; A)
λ−µ

= R(λ; A)R(µ; A),

so R′(µ; A) = −R(µ; A)2. Again, R(·; A) is an analytic function. Unlike in the con-
tinuous case, its composition with a linear functional may fail to be bounded, cf.
2.1.7.

4 Semigroups of linear operators

4.1 Introduction

Our goal is to define exponentials of linear operators. We will try to construct
etA as a linear operator, where A : D(A) → X is a general linear operator, not
necessarily bounded. Notationally, it seems we are looking for a solution to µ̇(t) =
Aµ(t), µ(0) = µ0, and we would like to write µ(t) = etAµ0. It turns out that this
will hold once we make sense of the terms.

How can we construct etA when A is a (finite) matrix? The most obvious way is
to write down the power series:

∑∞
n=0

1
n!
(tA)n. This series is absolutely convergent

for every A and every t ∈ R. In fact, this method works for A∈ L (X ; X ), even if X
is infinite dimensional.

A second method is to consider the connexion with the explicit Euler scheme.
Consider the system of ODE µ̇(t) = Aµ(t), µ(0) = µ0. Partition [0, t] into n parts
and write

µ̇

�

kt

n

�

=
n

t

�

µ

�

(k+ 1)t
n

�

−µ
�

kt

n

��

,

the forward difference quotient approximation. From the ODE we get

Aµ
�

kt

n

�

=
n

t

�

µ

�

(k+ 1)t
n

�

−µ
�

kt

n

��

µ

�

(k+ 1)t
n

�

=
�

I +
t

n
A
�

µ

�

kt

n

�

µ(t) = µ
�nt

n

�

≈
�

I +
t

n
A
�n

µ0.

Thus µ(t) = limn→∞(I +
t
n
A)nµ0 and we write etA = limn→∞(I +

t
n
A)n.

Both of these methods are doomed to failure if A is not bounded. When the ex-
plicit method fails, one would normally try the implicit method. The third method
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we consider is the connexion with the implicit Euler scheme. Partition [0, t] into n
parts and write

µ̇

�

(k+ 1)t
n

�

=
n

t

�

µ

�

(k+ 1)t
n

�

−µ
�

kt

n

��

,

the backward difference quotient approximation. From the ODE we get

Aµ
�

(k+ 1)t
n

�

=
n

t

�

µ

�

(k+ 1)t
n

�

−µ
�

kt

n

��

µ

�

(k+ 1)t
n

�

=
�

I −
t

n
A
�−1

µ

�

kt

n

�

µ(t) = µ
�nt

n

�

≈
�

I −
t

n
A
�−n

µ0.

Thus µ(t) = limn→∞(I−
t
n
A)−nµ0 and we write etA = limn→∞(I−

t
n
A)−n. This works

for some unbounded A as well. The key point will be the behavior of ‖R(λ; A)n‖
for large n.

An engineer might consider the Laplace transform. If f (t) = etA then it can be
shown that f̂ (λ) = (λI − A)−1 = R(λ; A). There is an inversion formula, namely

etA =
1

2πi

∫ γ+i∞

γ−i∞
eλtR(λ; A)dλ,

where γ is chosen so that the spectrum of A lies to the left of the line over which we
are integrating. This formula can be interpreted and it works for many important
unbounded linear operators.

A fifth method works for self-adjoint matrices. Let {ek}Nk=1 be an orthonormal

basis of X of eigenvectors of A. For any v ∈ X , v =
∑N

k=1(v, ek)ek and Av =
∑N

k=1λk(v, ek)ek. We take

etAv =
N
∑

k=1

eλk t(v, ek)ek.

In general, if X is a Hilbert space and A : D(A)→ X is self-adjoint then

A=

∫ ∞

−∞
λdP(λ),

where {P(λ) | λ ∈ R} is the spectral family associated with A. We know σ(A) ⊆ R,
so if σ(A) is bounded above then we could define

etA =

∫ ∞

−∞
eλt dP(λ).

Note that the matrix A can be recovered from its exponential via the formula

A= lim
t↓0

1
t
(etA− I).
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4.2 Linear C0-semigroups

Let X be a Banach space over K. By a linear C0-semigroup (or a strongly continuous
semigroup) we mean a mapping T : [0,∞)→L (X ; X ) such that

(i) T (0) = I ;
(ii) T (t + s) = T (t)T (s) for all s, t ∈ [0,∞); and

(iii) for all x ∈ X , limt↓0 T (t)x = x .

Remark.
(i) By the second condition, T (t)T (s) = T (s)T (t) for all s, t.

(ii) We will sometimes use the notation {T (t)}t≥0.
(iii) If we have some mapping T : [0,∞)→L (X ; X ) satisfying conditions (i) and

(ii), (called a semigroup of bounded linear operators) then if the following
condition holds then (iii) holds.
(iii’) limt↓0〈x∗, T (t)x〉= 〈x∗, x〉 for all x∗ ∈ X ∗ and x ∈ X

(iv) The condition limt↓0 ‖T (t)− I‖= 0 implies that T (t) =
∑∞

n=0
1
n!
(tA)n for all

t, for some A∈ L (X ; X ). This condition is too strong for practical purposes.
(v) The “C0” in the name many come from “continuous at zero” or it may refer

to the fact that these semigroups are (merely) continuous, as opposed to
differentiable, etc.

Let T be a linear C0-semigroup. The infinitesimal generator of T is the linear
operator A : D(A)→ X defined as follows.

D(A) =
n

x ∈ X | lim
t↓0

1
t
(T (t)x − x) exists

o

and for all x ∈ D(A), Ax = limt↓0
1
t
(T (t)x − x). It is not immediately obvious that

D(A) 6= {0}. We will show that D(A) is dense and that A is a closed linear operator.

4.2.1 Example (Translation semigroup). Let X = BUC(R) = bounded uniformly
continuous functions R→K. Define (T (t) f )(x) := f (t+ x) for all t ∈ [0,∞) and
x ∈ R. Clearly T satisfies (i) and (ii) of the definition. Uniform continuity is
essential to get (iii). Indeed, if f is uniformly continuous then

‖T (t) f − f ‖∞ = sup{| f (t + x)− f (x)| : x ∈ R} → 0 as t → 0.

The infinitesimal generator is

Af = lim
t↓0

f (t + x)− f (x)
t

= f ′(x),

i.e. differentiation. Note that the solution to the PDE µt(x , t) = µx(x , t), µ(x , 0) =
µ0 is µ(x , t) = µ0(x + t) = (T (t)µ0)(x).

4.2.2 Lemma. Let T be a linear C0-semigroup. Then there are M ,ω ∈ R such
that ‖T (t)‖ ≤ Meωt for all t ∈ [0,∞).
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PROOF: We claim first that there is η > 0 such that sup{‖T (t)‖ : t ∈ [0,η]}
is finite. Indeed, suppose there is no such η. Choose {tn}∞n=1 such that tn ↓ 0
and {‖T (tn)‖, n ∈ N} is unbounded. However, for all x ∈ X , since T (tn)x → x ,
{T (tn)x}∞n=1 is a convergent sequence, so sup{‖T (tn)x‖ : n ∈ N} is finite for each
x ∈ X . By the Principle of Uniform Boundedness, sup{‖T (tn)‖ : n ∈ N} is finite, a
contradiction.

Choose η > 0 as claimed above. Set M := sup{‖T (t)‖ : t ∈ [0,η]} ≥ 1. Let
t ∈ [0,∞) be given. Choose n ≥ 0 and α ∈ [0,η) such that t = nη+ α. Then
T (t) = T (nη+α) = (T (η))nT (α) by the semigroup property. Whence

‖T (t)‖ ≤ ‖T (α)‖‖T (η)‖n ≤ M M n.

Put ω= 1
η

log M ≥ 0, so that ωt ≥ n log M , and ‖T (t)‖ ≤ Meωt . �

4.2.3 Definition. Let T be a linear C0-semigroup. We say that T is
(i) uniformly bounded if there is M ∈ R such that ‖T (t)‖ ≤ M for all t ≥ 0.

(ii) contractive if ‖T (t)‖ ≤ 1 for all t ≥ 0.
(iii) quasi-contractive provided there is ω ∈ R such that ‖T (t)‖ ≤ eωt for all

t ≥ 0.

Contractive semigroups are much easier to study than general linear C0-semigroups.
If T is a linear C0-semigroup satisfying ‖T (t)‖ ≤ Meωt then S(t) := e−ωt T (t) is a
uniformly bounded linear C0-semigroup. Note that the infinitesimal generator of
S is related to that of T as follows.

lim
t↓0

S(t)x − x

t
= lim

t↓0

e−ωt T (t)x − x

t

= lim
t↓0

e−ωt − 1

t
T (t)x + lim

t↓0

T (t)x − x

t
=−ωx + Ax = (A−ωI)x

Further, there is an equivalent norm ||| · ||| on X such that S is contractive with
respect to ||| · |||. In fact, we may take |||x ||| := sup{‖S(t)x‖ : t ∈ [0,∞)}. Indeed,
for all x ∈ X ,

|||S(t)x |||= sup{‖S(t + s)x‖ : s ∈ [0,∞)} ≤ |||x |||.

Warning: This norm ||| · ||| need not preserve all “nice” geometric properties of
‖ · ‖, such as the parallelogram law. See the book by Goldstein for an example.

4.2.4 Lemma. Let T be a linear C0-semigroup and let x ∈ X be given. Then the
mapping t 7→ T (t)x is continuous on [0,∞).

PROOF: For continuity from the right, let t ≥ 0 be given and notice that

T (t + h)x − T (t)x = (T (h)− I)(T (t)x)→ 0 as h→ 0.
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For continuity from the left, let t > 0 and h ∈ (0, t) be given. Choose M ≥ 1 and
ω≥ 0 such that ‖T (s)‖ ≤ Meωs for all s ∈ [0,∞).

‖T (t − h)x − T (t)x‖= ‖T (t − h)(I − T (h))x‖
≤ ‖T (t − h)‖‖T (h)x − x‖

≤ Meω(t−h)‖T (h)x − x‖ → 0 as h→ 0. �

4.2.5 Lemma. Let T be a linear C0-semigroup with infinitesimal generator A, and
let x ∈ X be given.

(i) For all t ≥ 0, limh→0
1
h

∫ t+h

t
T (s)xds = T (t)x (where the limit is one sided if

t = 0).
(ii) For all t ≥ 0,

∫ t

0
T (s)xds ∈ D(A) and A

∫ t

0
T (s)xds = T (t)x − x .

PROOF: (i) This follows from 4.2.4 and basic calculus.
(ii) If t = 0 there is nothing to prove. Let t > 0 be given. For h> 0,

T (h)− I

h

∫ t

0

T (s)xds =
1

h

∫ t

0

(T (s+ h)− T (s))xds

=
1

h

∫ t

0

T (s+ h)xds−
1

h

∫ t

0

T (s)xds

=
1

h

∫ t

h

T (u)xdu+
1

h

∫ t+h

t

T (u)xdu

−
1

h

∫ t

h

T (s)xds−
1

h

∫ h

0

T (s)xds

=
1

h

∫ t+h

t

T (u)xdu−
1

h

∫ h

0

T (s)xds

→ T (t)x − x as h→ 0

by part (a). The conclusions follows. �

4.2.6 Lemma. Let T be a linear C0-semigroup with infinitesimal generator A, and
let x ∈ D(A) be given. Put µ(t) = T (t)x for all t ≥ 0. Then µ(t) ∈ D(A) for all
t ≥ 0, µ is differentiable on [0,∞), and for each t ≥ 0,

µ̇(t) = T (t)Ax = AT (t)x = Aµ(t).

PROOF: Let t ≥ 0 be given. For h> 0,

T (t + h)x − T (t)x
h

=
�

T (h)− I

h

�

T (t)x = T (t)
�

T (h)− I

h

�

x → T (t)Ax
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as h ↓ 0. In particular, T (t)x ∈ D(A) and AT (t)x = T (t)Ax . Furthermore,
D+µ(t)x = T (t)Ax . Let t > 0 be given. For h ∈ (0, t),

T (t − h)x − T (t)x
h

= T (t − h)
�

x − T (h)x
h

�

→−T (t)Ax as h→ 0.

so D−µ(t)x = T (t)Ax . Since the left and right derivatives both exist and are
equal, µ is differentiable and µ̇(t) = Aµ(t). �

4.2.7 Lemma. Let T be a linear C0-semigroup with infinitesimal generator A, and
let x ∈ D(A) be given. Then for all s, t ∈ [0,∞),

T (t)x − T (s)x =

∫ t

s

AT (u)xdu=

∫ t

s

T (u)Axdu.

PROOF: This follows from 4.2.6 and the Fundamental Theorem of Calculus. �

4.2.8 Theorem. Let T be a linear C0-semigroup with infinitesimal generator A.
Then D(A) is dense in X and A is closed.

PROOF: Let x ∈ X be given. By 4.2.5, x = limh↓0
1
h

∫ h

0
T (s)xds, and

∫ h

0
T (s)xds ∈

D(A) for all h≥ 0, so D(A) is dense in X .
Let {xn}∞n=1 be a sequence in D(A) converging to x ∈ X and suppose that

Axn→ y ∈ X as n→∞. We must show that x ∈ D(A) and that Ax = y . For h> 0,
by 4.2.7,

T (h)xn − xn =

∫ h

0

T (s)Axnds.

Let n → ∞, noting that we may move the limit under the integral sign for the
same reason we may do so in basic calculus, to see

T (h)x − x =

∫ h

0

T (s)yds,

so by 4.2.5,

Ax = lim
h↓0

T (h)x − x

h
= lim

h↓0

1

h

∫ h

0

T (s)yds = y.

It follows that x ∈ D(A) and Ax = y . �

4.2.9 Lemma. Let S, T be linear C0-semigroups having the same infinitesimal
generator A. Then S(t) = T (t) for all t ≥ 0.



30 Functional Analysis II

PROOF: Let x ∈ D(A) and t > 0 be given. Define the function µ : [0, t] → X by
µ(s) = T (t − s)S(s)x for all x ∈ [0, t]. We will show that µ is constant as follows.
We claim that µ is differentiable on [0, t] and

µ̇(s) = T (t − s)AS(s)x − T (t − s)AS(s)x = 0

for all s ∈ [0, t]. This will imply that µ is constant on [0, t], so

T (t)x = µ(0) = µ(1) = S(t)x .

Since D(A) is dense in X , it will follow that T (t) = S(t) on X for all t ≥ 0. To
prove the claim apply 4.2.6.

µ(s+ h)−µ(s)
h

=
1

h
(T (t − s− h)S(s+ h)x − T (t − s)S(s)x)

=
1

h
T (t − s− h)(S(s+ h)− S(s))x +

1

h
(T (t − s− h)− T (t − s))S(s)x

= T (t − s− h)
�

S(s+ h)− S(s)
h

�

x +
�

T (t − s− h)− T (t − s)
h

�

S(s)x

→ T (t − s)AS(s)x − T (t − s)AS(s)x = 0 as h→ 0.

The mean value theorem holds as in basic calculus, so µ is constant. �

4.3 Infinitesimal Generators

Given a closed densely defined A, how do we tell if A generates a linear C0-
semigroup? Let a ∈ R and n ∈ N and put f (t) = tn−1eat for all t ≥ 0. Recall
that the Laplace transform of f is

f̂ (λ) =
(n− 1)!
(λ− a)n

.

Let A be an N × N matrix and put F(t) = etA.

F̂(λ) =

∫ ∞

0

e−λt etAd t =

∫ ∞

0

et(A−λt)d t

= (A−λI)−1et(A−λI)
�

�

�

∞

0
=−(A−λI)−1 = R(λ; A)

Recall that etA = limn→∞(I −
t
n
A)−n = limn→∞(

n
t
)nR( t

n
; A)n. To apply this to un-

bounded operators, the behavior of R(λ; A)n for large n will be key. We conjecture
that

R(λ; A)n =
1

(n− 1)!

∫ ∞

0

e−λt tn−1etAd t.
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4.3.1 Lemma. Let M ,ω ∈ R and λ ∈ K with ℜλ > ω be given. Let T be a linear
C0-semigroup such that ‖T (t)‖ ≤ Meωt for all t ≥ 0, and let A be the infinitesimal
generator of T . Then λ ∈ ρ(A) and, for all x ∈ X ,

R(λ; A)x =

∫ ∞

0

e−λt T (t)xd t.

PROOF: Put I1(λ)x =
∫∞

0
e−λt T (t)xd t for all x ∈ X . We need to show that λ ∈

ρ(A) and R(λ; A) = I1(λ). Let x ∈ D(A) be given.

I1(λ)Ax =

∫ ∞

0

e−λt T (t)Axd t

=

∫ ∞

0

e−λt d

d t
(T (t)x)d t 4.2.6

=−x +λ

∫ ∞

0

e−λt T (t)xd t integration-by-parts

= λI1(λ)x − x

Let x ∈ X be given. We will show that I1(λ)x ∈ D(A) and

AI1(λ)x = λI1(λ)x − x .

Let h> 0 be given and compute the difference quotient.

�

T (h)− I

h

�

I1(λ)x

=
1

h

∫ ∞

0

e−λt(T (t + h)x − T (t)x)d t

=
1

h

∫ ∞

0

e−λt T (t + h)xd t −
1

h

∫ ∞

0

e−λt T (t)xd t

=
1

h

∫ ∞

h

e−λ(s−h)T (s)xds−
1

h

∫ ∞

0

e−λt T (t)xd t

=
1

h

∫ ∞

0

e−λ(t−h)T (t)xd t −
1

h

∫ ∞

0

e−λt T (t)xd t −
1

h

∫ h

0

e−λ(t−h)T (t)xd t

=

∫ ∞

0

e−λ(t−h) − e−λt

h
T (t)xd t − eλh 1

h

∫ h

0

e−λ(t−h)T (t)xd t

→ λI1(λ)− x as h→ 0.

This proves the result. �
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4.3.2 Lemma. Let M ,ω ∈ R and λ ∈ K with ℜλ > ω be given. Let T be a linear
C0-semigroup such that ‖T (t)‖ ≤ Meωt for all t ≥ 0, and let A be the infinitesimal
generator of T . Then λ ∈ ρ(A) and, for all n ∈ N and all x ∈ X ,

R(λ; A)n x =
1

(n− 1)!

∫ ∞

0

e−λt tn−1T (t)xd t.

PROOF: We already know that ρ(A) ⊇ {µ ∈ K : ℜµ > ω}. We also know that
µ 7→ R(µ; A) is analytic. We have seen that

R(µ; A) =
∞
∑

n=0

(λ−µ)nR(λ; A)n+1 =
∞
∑

n=0

(−1)nR(λ; A)n+1(µ−λ)n

for |µ − λ| sufficiently small. Let R(k)(λ; A) denote the kth derivative of R(µ; A)
evaluated at µ= λ. From the power series, for all n ∈ N,

R(n−1)(λ; A)
(n− 1)!

= (−1)n−1R(λ; A)n.

By 4.3.1, R(λ; A)x =
∫∞

0
e−λt T (t)xd t for all x ∈ X . From this,

R(n−1)(λ; A)x = (−1)n−1

∫ ∞

0

e−λt tn−1T (t)xd t.

This proves the result. �

4.3.3 Theorem (Hille-Yosida, 1948). Let M ,ω ∈ R be given. Suppose that A :
D(A)→ X is a linear operator with D(A)⊆ X . Then A is the infinitesimal generator
of a linear C0-semigroup T satisfying ‖T (t)‖ ≤ Meωt for all t ≥ 0 if and only if
the following hold.

(i) A is closed and D(A) is dense in X ; and

(ii) ρ(A) ⊇ {λ ∈ R : λ > ω} and ‖R(λ; A)n‖ ≤ M
(λ−ω)n for all λ ∈ R with λ > ω

and all n ∈ N.

The inequality ‖R(λ; A)n‖ ≤ M
(λ−ω)n might be tough to verify in practise. Notice

that ‖R(λ; A)‖ ≤ M
λ−ω implies that ‖R(λ; A)n‖ ≤ M n

(λ−ω)n , so if M = 1, i.e. if the
semigroup is quasi-contractive, then it is enough to verify the inequality for n= 1
only.
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Hille-Yoside: proof of necessity

We have already seen that (i) holds, by 4.2.8, and that ρ(A) contains {λ ∈ R : λ >
ω}, by 4.3.1. By 4.3.2,

R(λ; A)n x =
1

(n− 1)!

∫ ∞

0

e−λt tn−1T (t)xd t

‖R(λ; A)n x‖ ≤
1

(n− 1)!

∫ ∞

0

e−λt tn−1‖T (t)x‖d t

≤
M

(n− 1)!
‖x‖

∫ ∞

0

e−λt tn−1eωt d t

=
M

(n− 1)!
(n− 1)!
(λ−ω)n

‖x‖=
M

(λ−ω)n
‖x‖

(The evaluation of the integral can be found in any book explaining the Laplace
transform.) This concludes the proof of necessity.

Hille-Yosida: proof of sufficiency

Should we try using the inverse Laplace transform? If we could write

T (t) =
1

2πi

∫ γ+i∞

γ−i∞
eλtR(λ; A)dλ

then T would have higher order regularity in general. This method would work
for so called “analytic” semigroups, but not for general C0-semigroups.

How about the limit obtained from considering the implicit scheme? In general
T (t) = limn→∞(I −

t
n
A)−n, and this method can be used, but we will not use it

here. What we will do is approximate A with bounded operators {Aλ}λ>ω and put
Tλ(t) =

∑∞
n=0

1
n!
(tAλ)n. Then in theory Tλ(t)→ T (t) as λ→∞.

4.3.4 Lemma. Let A : D(A) → X be a linear operator with D(A) ⊆ X . As-
sume that (i) and (ii) of the Hille-Yosida theorem hold. Then, for all x ∈ X ,
limλ→∞λR(λ; A)x = x .

PROOF: Let x ∈ D(A) be given. For any λ >ω,

(λI − A)R(λ; A)x = x

λR(λ; A)x − x = AR(λ; A)x
= R(λ; A)Ax

‖λR(λ; A)x − x‖= ‖R(λ; A)Ax‖

≤
M

λ−ω
‖Ax‖

→ 0 as λ→∞

Since D(A) is dense in X , the result follows. �
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The Yosida approximation Aλ of A, for λ >ω, is defined by

Aλx := λAR(λ; A)x = (λ2R(λ; A)−λI)x .

By 4.3.4, Aλx → Ax as λ → ∞ for all x ∈ D(A). We claim the following re-
sults, given as a homework exercises. Let B ∈ L (X ; X ) be given and define
etB =

∑∞
n=0

1
n!
(tB)n for all t ∈ R.

(i) {etB}t≥0 is a linear C0-semigroup with infinitesimal generator B.
(ii) limt→0 ‖etB − I‖= 0

(iii) For all λ ∈K, et(B−λI) = e−λt etB.
It can be shown that if T is a linear C0-semigroup with the property that limh↓0 ‖T (h)−
I‖= 0 then T (t) = etB for some B ∈ L (X ; X ).

Assume that conditions (i) and (ii) of the Hille-Yoside theorem hold. Put Aλ =
λ2R(λ; A)−λI and notice that for any λ >ω,

etAλ = e−λt
∞
∑

n=0

λ2n tnR(λ; A)n

n!

‖etAλ‖ ≤ Me−λt
∞
∑

n=0

λ2n tn

(λ−ω)nn!
by (ii)

= Me−λt exp

�

λ2

λ−ω
t

�

λ >ω

= M exp
�

λω

λ−ω
t
�

.

It follows that ‖etAλ‖ ≤ Meω1 t for any fixed ω1 > ω, for all λ sufficiently large
with respect to ω.

Put Tλ(t) = etAλ for all t ≥ 0 and λ > ω. Notice that AλAµ = AµAλ and
AλTµ(t) = Tµ(t)Aλ for all λ,µ >ω. Let x ∈ D(A) be given.

Tλ(t)x − Tµ(t)x =

∫ t

0

d

ds
(Tµ(t − s)Tλ(s)x)ds

=

∫ t

0

Tµ(t − s)AλTλ(s)x − Tµ(t − s)AµTλ(s)xds

=

∫ t

0

(Tµ(t − s)Tλ(s))(Aλx − Aµx)ds

‖Tλ(t)x − Tµ(t)x‖ ≤ M2eω1 t t‖Aλx − Aµx‖

Therefore {Tλ(t)x}λ>ω has the Cauchy property, uniformly in t on bounded inter-
vals. D(A) is dense in X and we have a bound on ‖Tλ(t)‖ (in λ), so for all x ∈ X ,
limλ→∞ Tλ(t)x exists.

For all t ≥ 0 and x ∈ X , put T (t)x = limλ→∞ Tλ(t)x . Note that ‖T (t)‖ ≤
Meω1 t , T (t)T (s) = T (t + s) for all s, t ≥ 0, and T (0) = I , since these relations
hold for each Tλ. Continuity follows since the convergence is uniform for t in
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bounded intervals. Let B be the infinitesimal generator of T . We must show that
B = A. First we will show that B extends A, and then we will use a resolvent
argument to show that D(A) = D(B). Let x ∈ D(A) be given.

‖Tλ(t)Aλx − T (t)Ax‖ ≤ ‖Tλ(t)(Aλx − Ax)‖+ ‖(Tλ(t)− T (t))Ax‖
≤ Meω1 t‖Aλx − Ax‖+ ‖(Tλ(t)− T (t))Ax‖
→ 0 as λ→∞

Since the convergence is uniform in t on bounded intervals,

T (t)x − x = lim
λ→∞

Tλ(t)x − x

= lim
λ→∞

∫ t

0

Tλ(s)Aλxd x =

∫ t

0

T (s)Axd x .

Checking the definition of B, for any h> 0,

T (h)x − x

h
=

1

h

∫ h

0

T (s)Axds→ Ax as h ↓ 0.

Therefore x ∈ D(B) and Bx = Ax . B is closed since it is the infinitesimal generator
of a linear C0-semigroup, and A is closed by assumption. Since ‖T (t)‖ ≤ Meω1 t for
any ω1 > ω, by 4.3.1 ρ(B) ⊇ (ω,∞), so it follows that ρ(B)∩ρ(A) 6= ∅. Choose
λ ∈ ρ(A)∩ρ(B). By 3.3.3, since A and B are closed, (λI−A)[D(A)] = X and (λI−
B)[D(B)] = X . Further, since B extends A, (λI − B)[D(A)] = (λI −A)[D(A)] = X .
To conclude the proof of the Hille-Yoside theorem, note that D(A) = R(λ; B)[X ] =
D(B).

Remark. Let A : D(A)→ X be a linear operator with D(A) ⊆ X . The following are
equivalent.

(i) A is closed;
(ii) (λI − A) : D(A)→ X is a bijection for some λ ∈ ρ(A);

(iii) (λI − A) : D(A)→ X is a bijection for all λ ∈ ρ(A).

4.3.5 Corollary. Assume that A : D(A) → X is linear with D(A) ⊆ X , and that
D(A) is dense and A is closed. Then A generates a contractive linear C0-semigroup
if and only if ρ(A)⊇ (0,∞) and ‖R(λ; A)‖ ≤ 1

λ
for all λ > 0.

4.4 Contractive semigroups

Let T : [0,∞)→L (X ; X ) be a contractive semigroup. For all t, h ∈ [0,∞),

‖T (t + h)‖= ‖T (h)T (t)‖ ≤ ‖T (h)‖‖T (t)‖ ≤ ‖T (t)‖,

so t 7→ ‖T (t)‖ is a decreasing function. Assume for now that X is Hilbert space.
Let x ∈ D(A) be given and put µ(t) = ‖T (t)x‖2 = (T (t)x , T (t)x). For all t ≥ 0,
since µ is decreasing,

0≥ µ̇(t) = (T (t)x , T (t)Ax) + (T (t)Ax , T (t)x) = 2ℜ(AT (t)x , x).
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In particular, for t = 0, ℜ(Ax , x)≤ 0 for all x ∈ D(A).
We will prove that if X is a Hilbert space and A : D(A)→ X is a linear operator

then A generates a generates a contractive semigroup if and only if both of the
following hold.

(i) ℜ(Ax , x)≤ 0 for all x ∈ D(A); and
(ii) there exists λ0 > 0 such that λ0 I − A is surjective.

4.4.1 Definition. Let X be a Banach space over K with norm ‖ ·‖. By a semi-inner
product on X , we mean a mapping [·, ·] : X × X →K such that

(i) [x + y, z] = [x , z] + [y, z] for all x , y, z ∈ X ;
(ii) [αx , y] = α[x , y] for all x , y ∈ X and α ∈K;

(iii) [x , x] = ‖x‖2 for all x ∈ X ; and
(iv) |[x , y]| ≤ ‖x‖‖y‖ for all x , y ∈ X .

Remark. The term “semi-inner product” is frequently used in a more general sense
that is not linked to a pre-existing norm.

We must ask, do semi-inner products exist, and can there be more than one
associated with any given norm? The answer to both is yes in general. However,
if X ∗ is strictly convex then there cannot be more than one. We will see that if
ℜ[Ax , x] ≤ 0 with respect to one semi-inner product then it holds with respect to
any semi-inner product.

4.4.2 Proposition. There is at least one semi-inner product on a Banach space.

PROOF: Let X be a Banach space. For every x ∈ X put

F (x) := {x∗ ∈ X ∗ | 〈x∗, x〉= ‖x‖2 = ‖x∗‖2}.

By the Hahn-Banach theorem F (x) is non-empty for every x ∈ X . For every
x ∈ X , choose F(x) ∈ F (x). Define [·, ·] : X × X →K by [x , y] = 〈F(y), x〉 for all
x , y ∈ X . �

If X ∗ is strictly convex then there is exactly one semi-inner product, essentially
because the set F (x) contains a single element.

4.4.3 Definition. Assume that A : D(A) → X is linear with D(A) ⊆ X . We say
that A is dissipative provided that there is a semi-inner product on X such that
ℜ[Ax , x]≤ 0 for all x ∈ D(A).

The notion of dissipativity depends on the particular norm used. Given a par-
ticular norm, it turns out that dissipativity will not depend on the semi-inner prod-
uct used.

Aside: Consider µt t(x , t) = ∆µ(x , t)− α(x)µt(x , t) with µ|∂Ω = 0, where α
is non-negative, smooth, with compact support, and

∫

Ω
α > 0. Then solutions µ

tend to zero with t. Crazy!
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4.4.4 Lemma. Assume that A : D(A) → X is linear with D(A) ⊆ X . Then A is
dissipative if and only if ‖(λI − A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0.

PROOF: Assume that A is dissipative. Choose a semi-inner product such thatℜ[Ax , x]≤
0 for all x ∈ D(A). Then for all x ∈ D(A) and λ > 0, we have

ℜ[(A−λI)x , x] = λ‖x‖2 −ℜ[Ax , x]≥ λ‖x‖2.

Combining that with the fact that

ℜ[(λI − A)x , x]≤ |[(λI − A)x , x]| ≤ ‖(λI − A)x‖‖x‖

yields the result. Assume now that ‖(λI−A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0.
As before, put

F (x) := {x∗ ∈ X ∗ | 〈x∗, x〉= ‖x‖2 = ‖x∗‖2}.

We identify three cases: x = 0, x ∈ D(A) \ {0}, and x /∈ D(A).
Let x ∈ D(A) \ {0} be given. Notice that ‖(nI − A)x‖ ≥ n‖x‖ for all n ∈ N.

Choose y∗n ∈ F (nx − Ax) and put z∗n =
1
‖y∗n‖

y∗n for all n ∈ N.

n‖x‖ ≤ ‖nx − Ax‖ by assumption

=
1

‖y∗n‖
〈y∗n , nx − Ax〉 since y∗n ∈ F (nx − Ax)

= 〈z∗n, nx − Ax〉 (this is a real number)

= nℜ〈z∗n, x〉 −ℜ〈z∗n, Ax〉

Since ‖z∗n‖= 1 by construction,

n‖x‖ ≤ nℜ〈z∗n, x〉 −ℜ〈z∗n, Ax〉 ≤ n‖x‖−ℜ〈z∗n, Ax〉

Therefore ℜ〈z∗n, Ax〉 ≤ 0 and similarly ℜ〈z∗n, x〉 ≥ ‖x‖− 1
n
‖Ax‖. Assume with great

loss of generality that X is reflexive or separable. Choose a subsequence {z∗nk
}∞k=1

of {z∗n}
∞
n=1 and z∗ ∈ X ∗ such that z∗nk

∗
* z∗ as k → ∞. (In general we would

use nets.) Then ‖z∗‖ ≤ 1, ℜ〈z∗, Ax〉 ≤ 0, and ℜ〈z∗, x〉 ≥ ‖x‖. It follows that
〈z∗, x〉= ‖x‖. Define a semi-inner product as before, but with

F(x) =







0 x = 0

z∗‖x‖ x ∈ D(A) \ {0}
anything in F (x) x ∈ X \D(A) �

4.4.5 Lemma. Assume that A : D(A) → X is linear with D(A) ⊆ X and that A is
dissipative. Let λ0 ∈ (0,∞) be given and assume that λ0 I − A is surjective. Then
A is closed, ρ(A)⊇ (0,∞), and ‖R(λ; A)‖ ≤ 1

λ
for all λ > 0.
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PROOF: Notice that, by 4.4.4, ‖(λI − A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0.
Whence immediately ‖R(λ; A)‖ ≤ 1

λ
, provided the resolvent exists. The key points

are to show that A is closed and that λI − A is surjective for all λ > 0.
Notice that λ0 I − A is bijective since it is surjective and bounded below, and

further, ‖(λ0 I − A)−1 x‖ ≤ 1
λ0
‖x‖. So (λ0 I − A)−1 ∈ L (X ; X ), hence it is closed, so

A is closed by 3.1.6.
To show that ρ(A) ⊇ (0,∞) it suffices to show that (λI − A)−1 is surjective for

all λ > 0. Put Λ = {λ ∈ (0,∞) : λ ∈ ρ(A)}, which is open (in the relative topology
of (0,∞)) and non-empty. We will show Λ is closed and conclude Λ = (0,∞). Let
{λn}∞n=1 be a sequence in Λ converging to λ∗ ∈ (0,∞). We will show that λ∗ ∈ Λ
by showing that λ∗ I − A is surjective. Let y ∈ X be given. Produce x ∈ X such
that (λ∗ I − A)x = y as follows. For every n ∈ N put xn = R(λn; A)y . Note that
sup{ 1

λn
: n ∈ N}<∞.

‖xn − xm‖= ‖(R(λn; A)− R(λm; A))y‖
= |λm −λn|‖R(λn; A)R(λm; A)y‖

≤ |λm −λn|
‖y‖
λnλm

→ 0 as n, m→∞

Write xn → x . Finally, {xn}∞n=1 ⊆ D(A), xn → x , and Axn → λ∗x − y . Since A is
closed (λ∗ I − A)x = y . �

4.4.6 Theorem (Lumer-Phillips, 1961). Assume A : D(A) → X is linear with
D(A) dense in X .

(i) If A is dissipative and there is λ0 > 0 such that λ0 I − A is surjective then A
generates a contractive linear C0-semigroup.

(ii) If A generates a contractive linear C0-semigroup then λI −A is surjective for
all λ > 0 and ℜ[Ax , x] ≤ 0 for all x ∈ D(A) and every semi-inner product
on X (in particular, A is dissipative).

PROOF: The first part follows from 4.4.5 and the Hille-Yoside theorem, since ‖R(λ; A)‖ ≤
1
λ

implies ‖R(λ; A)n‖ ≤ 1
λn .

In the second part, the surjectivity conclusion follows from the Hille-Yosida
theorem. Let [·, ·] be a semi-inner product on X . We need to show thatℜ[Ax , x]≤
0 for all x ∈ D(A). For all h> 0 and x ∈ D(A),

ℜ[T (h)x − x , x] =ℜ[T (h)x , x]−‖x‖2

≤ ‖T (h)x‖‖x‖− ‖x‖2 ≤ ‖x‖2 −‖x‖2 ≤ 0

Dividing by h and letting h ↓ 0 we get ℜ[Ax , x]≤ 0. �

4.4.7 Corollary. Assume B : D(B)→ X is linear withD(B) dense in X . Letω,λ0 ∈
R with λ0 > ω be given. If λ0 I − B is surjective and there exists a semi-inner
product on X such that ℜ[Bx , x] ≤ ω‖x‖2 for all x ∈ D(B), then B generates a
linear C0-semigroup T such that ‖T (t)‖ ≤ eωt .
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PROOF: Put A= B−ωI and apply the Lumer-Phillips theorem to A. �

4.4.8 Lemma. Assume X that is reflexive and that A : D(A) → X is linear with
D(A)⊆ X . Let λ0 > 0 be given and assume that A is dissipative and that λ0 I −A is
surjective. Then D(A) is dense in X .

This lemma shows that if X is reflexive then we do not need to assume that
D(A) is dense in the Lumer-Phillips theorem. This is less helpful than it seems
because in many applications it is trivial to check that the domain is dense.

Remark. Let M be a linear manifold in a Banach space X (not necessarily re-
flexive). Then M is dense in X if and only if for all y ∈ X there is a sequence
{xn}∞n=1 ⊆ M such that xn * y as n→∞. Indeed, one direction is trivial. For the
other, if y is not in the closure of M then dist(M , y) > 0. By Hahn-Banach there
is y∗ ∈ X ∗ such that y∗(x) = 0 for all x ∈ M and y∗(y) 6= 0.

PROOF: Let y ∈ X be given. It suffices to prove that there is {xn}∞n=1D(A) such
that xn * y as n→∞. Put xn = (I −

1
n
A)−1 y = nR(n; A)y ∈ D(A) for all n ∈ N.

Then

‖xn‖ ≤ n‖R(n; A)‖‖y‖ ≤ n
1

n
‖y‖= ‖y‖.

Choose a subsequence {xnk
}∞k=1 and x ∈ X such that xnk

* z as k →∞. We are
done if we show y = z. But

A
� xnk

nk

�

= xnk
− y * z− y

and xnk
* 0 (in fact, xnk

→ 0). Gr(A) is closed and convex, so it is weakly closed.
Since (0, z− y) ∈ Gr(A), z = y . �

4.4.9 Theorem (Lumer-Phillips for Hilbert spaces).
Let X be a Hilbert space and assume that B : D(B)→ X is linear with D(B) ⊆ X .
Let ω ∈ R and λ0 > ω be given. Assume that ℜ(Bx , x) ≤ω‖x‖2 for all x ∈ D(B)
and that λ0 I−B is surjective. Then B generates a linear C0-semigroup T such that
‖T (t)‖ ≤ eωt for all t ≥ 0.

4.4.10 Example. Let

D(A) := {u ∈ AC[0, 1] : u′ ∈ AC[0,1], u′′ ∈ L2[0, 1], u(0) = u(1) = 0},

and Au := u′′. We have seen that A is closed and A is densely defined (in fact it is
self-adjoint). For any u ∈ D(A),

(Au, u) =

∫ 1

0

u′′ud x =−
∫ 1

0

(u′)2d x ≤ 0
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If we can solve the ODE u− u′′ = f , u(0) = u(1) = 0 for any f ∈ L2(0, 1), then
A generates a contraction semigroup T by the Lumer-Phillips theorem. Thus the
solutions to the heat equation







ut − ux x = 0 on (0, 1)
u(t, 0) = u(t, 1) = 0 for all t ≥ 0

u(0, x) = g(x) for all x ∈ (0,1)

can be written u(x , t) = (T (t)g)(x).

5 Fourier Transforms

5.1 Multi-index notation

Before introducing the Fourier transform we review the concept of multi-indices,
and restate some well-known theorems in this notation. Let n ∈ N be given. By
a multi-index of length n we mean a list α = (α1, . . . ,αn) such that each αi is a
non-negative integer. The set of all multi-indices of length n is denoted by Mn.
The notation of multi-indices was introduced by Whitney (reported by L. Tartar
via personal communication with L. Schwartz). Write
◦ |α| :=

∑n
i=1αi;

◦ α! := α1! · · ·αn!; and
◦ α≤ β if and only if αi ≤ βi for all i = 1, . . . , n.

For α≤ β , write
�

α

β

�

:=
β!

(β −α)!α!
.

For f : Rn→K of class C∞, write

Dα f (x) :=
∂ |α| f

∂ xα1
1 · · ·∂ xαn

n
(x).

We have the Binomial Theorem,

(x + y)α =
∑

β≤α

�

α

β

�

xβ yα−β

and Taylor’s Theorem

f (x0 + x) =
∑

α∈Mn

1

α!
Dα f (x0)x

α.

Finally, we introduce one piece of non-standard notation,

Pα(x) := xα = xα1
1 · · · x

αn
n .

The standard notation is to simply write xα, but it will be convenient to have a
name for this oft-used function.
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5.2 Fourier transforms

5.2.1 Definition. The Fourier transform of f ∈ L1(Rn;K) is f̂ : Rn → C defined
by

f̂ (ξ) :=
1

(2π)n/2

∫

Rn

exp(−i x · ξ) f (x)d x .

There are several closely related, but slightly different, definitions of f̂ appear-
ing in the literature. Sometimes the normalizing constant is changed or left out,
and sometimes the basis functions are modified by changing the sign or inserting
a factor of 2π. Be very careful about any formulae related to Fourier series that
you pull from an unfamiliar book.

5.2.2 Lemma. For f ∈ L1(Rn), f̂ is continuous and lim|ξ|→∞ f̂ (ξ) = 0.

PROOF: Suppose that ξm → ξ in Rn. For all m ≥ 1, |e−i x ·ξm f (x)| = | f (x)| for all
x ∈ Rn. Therefore, by the Lebesgue dominated convergence theorem, f̂ (ξm) →
f̂ (ξ). Since this holds for arbitrary convergent sequences, f̂ is continuous.

The second assertion is the Riemann-Lebesgue lemma and its proof can be found
in any text on Fourier transforms. �

Remark. Not every continuous function that vanishes at infinity is the Fourier
transform of some L1 function. Indeed, ˆ : L1(Rn)→ Cv(Rn) is an injective linear
mapping that is continuous, because | f̂ (ξ)| ≤ ‖ f ‖L1 for all ξ ∈ Rn. But it can be
shown that these spaces are not isomorphic, so the Fourier transform cannot be
surjective. We will see that, for 1 ≤ p ≤ 2 with 1

p
+ 1

q
= 1, the Fourier transform

can be defined on Lp and maps into Lq, but is surjective if and only if p = q = 2.

Suppose that f is really nice, by which we mean that it has sufficient differ-
entiability and boundedness properties that all of the following computations are
valid.

(Dα f̂ )(ξ) =
1

(2π)n/2

∫

Rn

Dαξ e−i x ·ξ f (x)d x

=
1

(2π)n/2

∫

Rn

(−i x)αe−i x ·ξ f (x)d x

= (−i)|α|ÔPα f (ξ)

(Dα f )̂ (ξ) =
1

(2π)n/2

∫

Rn

e−i x ·ξDα f (x)d x

=
1

(2π)n/2
(−1)|α|

∫

Rn

(−iξ)αe−i x ·ξ f (x)d x

= i|α|Pα(ξ) f̂ (ξ)

Therefore, Dα f̂ = (−i)|α|(Pα f )̂ and (Dα f )̂ = i|α|Pα f̂ .
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5.2.3 Definition (Schwartz space).

S (Rn) := {ϕ ∈ C∞(Rn) | sup
x∈R
|xβDαϕ(x)|<∞ for all multi-indices α and β}

This is also known as the collection of rapidly decreasing functions.

5.2.4 Lemma. Let ϕ ∈ S (Rn) be given and let α be a multi-index. Then ϕ̂ ∈
S (Rn), Dαϕ̂ = (−i)|α|ÔPαϕ, and ÕDαϕ = i|α|Pαϕ̂.

PROOF: The computations above are valid for elements of S (Rn). �

5.2.5 Lemma. Let ϕ,ψ ∈ S (Rn) and x ∈ Rn be given. Then

∫

Rn

ei x ·ξϕ̂(ξ)ψ(ξ)dξ=

∫

Rn

ϕ(x + y)ψ̂(y)d y

PROOF: The following is valid for elements of S .

∫

Rn

ei x ·ξϕ̂(ξ)ψ(ξ)dξ=
1

(2π)n/2

∫

Rn

∫

Rn

ei x ·ξe−iz·ξϕ(z)ψ(ξ)dzdξ

=
1

(2π)n/2

∫

Rn

∫

Rn

e−i(z−x)·ξψ(ξ)ϕ(z)dξdz

=

∫

Rn

ψ̂(z− x)ϕ(z)dz =

∫

Rn

ψ̂(y)ϕ(x + y)dz �

5.2.6 Theorem (Fourier inversion). Let ϕ ∈ S (Rn) be given. Then

ϕ(x) =
1

(2π)n/2

∫

Rn

exp(i x · ξ)ϕ̂(ξ)dξ.

PROOF: Let ψ ∈ S (Rn) be given. Define ψε : Rn→K by ψε(z) :=ψ(εz).

Óψε(ξ) =
1

(2π)n/2

∫

Rn

e−i x ·ξψ(εx)d x =
ε−n

(2π)n/2

∫

Rn

e−i z
ε
·ξψ(z)dz
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Thus, by 5.2.5,
∫

Rn

ei x ·ξϕ̂(ξ)ψ(εξ)dξ=

∫

Rn

ei x ·ξϕ(x + y)Óψε(y)d y

=
ε−n

(2π)n/2

∫

Rn

∫

Rn

ϕ(x + y)e−i z
ε
·yψ(z)dzd y

=
ε−n

(2π)n/2

∫

Rn

∫

Rn

ϕ(x + y)e−iz· y
εψ(z)dzd y

= ε−n

∫

Rn

ϕ(x + y)ψ̂
� y

ε

�

d y

=

∫

Rn

ϕ(x + εz)ψ̂(z)dz

∫

Rn

ei x ·ξϕ̂(ξ)ψ(0)dξ=

∫

Rn

ϕ(x)ψ̂(z)dz letting ε ↓ 0.

Whence, for every ψ ∈ S (Rn),

ψ(0)

∫

Rn

ei x ·ξϕ̂(ξ)dξ= ϕ(x)

∫

Rn

ψ̂(z)dz.

To prove the theorem we choose a convenient ψ ∈ S (Rn). Namely, we pick the
normal density function, ψ(x) = exp(− 1

2
|x |2), so that

ψ(0) = (2π)n/2
∫

Rn

ψ̂(z)dz. (1)

The result follows. �

Remark. As a consequence of the proof, equation (1) holds for all ψ ∈ S (Rn).

Given ϕ ∈ S (Rn), define ϕ̌ ∈ S (Rn) by ϕ̌(x) := ϕ(−x). Notice that ϕ̌ = ˆ̂ϕ,
and also

ˇ̂ϕ(ξ) =
1

(2π)n/2

∫

Rn

ei x ·ξϕ(x)d x =
1

(2π)n/2

∫

Rn

e−iz·ξϕ̌(z)dz = ˆ̌ϕ(ξ).

It is a corollary of (5.2.6) that ˆ : S (Rn) → S (Rn) is bijective. Namely, ϕ̂ = 0
implies ϕ = 0, so it is injective, and ϕ = ˆ̌ϕ, so it is surjective.

5.2.7 Lemma. Let ϕ,ψ ∈ S (Rn) be given. Then
∫

Rn

ϕψ̂d x =

∫

Rn

ϕ̂ψd x .
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PROOF: By (5.2.5),
∫

Rn ei x ·ξϕ̂(ξ)ψ(ξ)dξ=
∫

Rn ϕ(x + y)ψ̂(y)d y . Put x = 0. �

5.2.8 Theorem (Parseval’s relation). Let ϕ,ψ ∈ S (Rn) be given. Then
∫

Rn

ϕψ̄d x =

∫

Rn

ϕ̂ ¯̂ψd x ,

i.e. the Fourier transform is an isometry with respect to the L2-norm.

PROOF: We claim that ψ̄=
ˆ̂̄
ψ, so

∫

ϕψ̄d x =
∫

ϕ
ˆ̂̄
ψd x =

∫

ϕ̂ ¯̂ψd x .

¯̂ψ(ξ) =
1

(2π)n/2

∫

Rn

e−i x ·ξψ(x)d x =
1

(2π)n/2

∫

Rn

ei x ·ξψ̄(x)d x =
ˆ̄̌
ψ(ξ)

Taking the Fourier transform of both sides proves the claim. �

5.2.9 Example. Given f ∈ S (Rn), find u ∈ S (Rn) such that −∆u+u= f , where
∆ is the Laplacian operator. Put P(ξ) = 1+ |ξ|2. Apply the Fourier transform to
the equation to get

−Ó∆u+ û= f̂

(1+ |ξ|2)û(ξ) = f̂ (ξ)

i.e. Pû= f̂

Now, û ∈ S (Rn) if and only if f̂ /P ∈ S (Rn). But P is never zero so we can
divide by it with no problem. Therefore there is a unique u ∈ S (Rn) solving the
equation, namely u = ( f̂ /P )̂ .̌ The equation −∆u = f cannot be solved in this
manner because the resulting polynomial is zero at ξ= 0.

5.3 Tempered distributions

Topologize S (Rn) as follows. For every N ∈ N∪ {0}, define

|||ϕ|||N :=
∑

|α|,|β |≤N

‖PαDβϕ‖∞.

Define the metric ρ : S (Rn)×S (Rn)→ [0,∞) by

ρ(ϕ,ψ) :=
∞
∑

k=0

|||ϕ−ψ|||k2−k

1+ |||ϕ−ψ|||k
.

It can be shown that (S (Rn),ρ) is complete and ρ is translation invariant.

5.3.1 Definition. A continuous linear mapping µ : S (Rn) → K is called a tem-
pered distribution. We write 〈µ,ϕ〉 for µ(ϕ) with ϕ ∈ S (Rn), and let S ′(Rn)
denote the set of all tempered distributions.
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Remark.
(i) Notice that ψk → ψ in S (Rn) if and only if PβDαϕk → PβDαψ uniformly

on Rn for all multi-indices α and β .
(ii) The equation−u′′+u= 0 has solution u(x) = c1ex+c2e−x for any c1, c2 ∈ R.

But c1ex + c2e−x ∈ S ′(Rn) if and only if c1 = c2 = 0.

Many linear operations that are defined on S can be extended to S ′ in a
natural way, by thinking of the elements of S ′ as “integrating” elements of S . Let
µ ∈ S ′(Rn) be given.
◦ Define µ̂ ∈ S ′(Rn) by 〈µ̂,ϕ〉= 〈µ, ϕ̂〉 for all ϕ ∈ S (Rn).
◦ Define µ̌ ∈ S ′(Rn) by 〈µ̌,ϕ〉= 〈µ, ϕ̌〉 for all ϕ ∈ S (Rn).
◦ Define Pαµ ∈ S ′(Rn) by 〈Pαµ,ϕ〉= 〈µ, Pαϕ〉 for all ϕ ∈ S (Rn).
◦ Define Dαµ ∈ S ′(Rn) by 〈Dαµ,ϕ〉= (−1)|α|〈µ, Dαϕ〉 for all ϕ ∈ S (Rn).

5.3.2 Example. For ϕ ∈ S (Rn) define Lϕ ∈ S ′(Rn) by 〈Lϕ,ψ〉 :=
∫

Rn ϕψd x . Let
p ∈ [1,∞) and µ ∈ Lp(Rn) be given. Define Lµ ∈ S ′(Rn) by

〈Lµ,ϕ〉 :=

∫

Rn

µ(x)ϕ(x)d x .

For µ ∈ Lp(Rn), we generally identify µ and Lµ. Notice that if 〈Lµ,ϕ〉 = 0 for all
ϕ ∈ S (Rn) then µ= 0 a.e., so L : Lp →S ′(Rn) is an injection.

Let µ ∈ L1(Rn) be given. Then

〈Lµ, ϕ̂〉=
1

(2π)n/2

∫

Rn

�
∫

Rn

e−x ·ξϕ(ξ)dξ
�

µ(x)d x = 〈Lµ̂,ϕ〉.

Therefore the definition of Fourier transform for tempered distributions agrees
with the definition given for L1 functions at the beginning of the chapter. It can
be checked that µ ∈ L2(Rn) if and only if µ̂ ∈ L2(Rn) for Lµ ∈ S ′(Rn).

5.3.3 Theorem. Let µ ∈ S ′(Rn) and a multi-index α be given. Then
(i) ˆ̂µ= µ̌;

(ii) ˆ̌µ= ˇ̂µ;
(iii) Dαµ̂= (−i)|α|ÔPαµ; and
(iv) ÔDαµ= i|α|Pαµ.

PROOF: Exercise. �

5.3.4 Example (Delta function). Define δ0 ∈ S ′(Rn) by δ0(ϕ) = ϕ(0).

〈δ̂0,ϕ〉= 〈δ0, ϕ̂〉= ϕ̂(0) =
1

(2π)n/2

∫

Rn

ϕ(x)d x

This final expression looks like “(2π)−n/2 L1,” but the constant function 1 is not
an element of S (Rn). It is, however, an element of S ′(Rn), and we write δ̂0 =
(2π)−n/21. Notice

〈δ̌0,ϕ〉= 〈δ0, ϕ̌〉= ϕ̌(0) = ϕ(0) = 〈δ0,ϕ〉,

so by 5.3.3, 1̂= (2π)n/2 ˆ̂δ0 = (2π)n/2δ0.
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5.4 Convolution

5.4.1 Definition. Given ϕ,ψ ∈ S (Rn), define the convolution of ϕ and ψ to be
ϕ ∗ψ : Rn→K, where

ϕ ∗ψ(x) =
∫

Rn

ϕ(x − y)ψ(y)d y =

∫

Rn

ϕ(y)ψ(x − y)d y.

Note that ϕ ∗ψ ∈ S (Rn) and convolution is associative. For any multi-index
α, Dα(ϕ ∗ψ) = (Dαϕ) ∗ψ = ϕ ∗ (Dαψ), so the convloution is as smooth as its
smoothest argument.

5.4.2 Lemma. Let ϕ,ψ ∈ S (Rn) be given. Then
(i) ×ϕ ∗ψ= (2π)n/2ϕ̂ψ̂; and

(ii) dϕψ= (2π)−n/2ϕ̂ ∗ ψ̂.

PROOF: By the inversion theorem we only need to get down to the nitty-gritty for
one of the parts.

×ϕ ∗ψ(ξ) =
1

(2π)n/2

∫

Rn

ei x ·ξ
�
∫

Rn

ϕ(y)ψ(x − y)d y
�

d x

=
1

(2π)n/2

∫

Rn

∫

Rn

ei(x−y)·ξe−i y·ξϕ(y)ψ(x − y)d yd x

=
1

(2π)n/2

∫

Rn

∫

Rn

eiz·ξe−i y·ξϕ(y)ψ(z)dzd x

= (2π)n/2ϕ̂(ξ)ψ̂(ξ)

For part (ii),

dϕψ= (2π)−n/2
×

×ˆ̌ϕ ∗ ˆ̌ψ= (2π)−n/2( ˇ̂ϕ ∗ ˇ̂ψ)̌ = (2π)−n/2ϕ̂ ∗ ψ̂ �

To define the convolution on distributions, it will be convenient to introduce
the translation operator. Given h ∈ Rn and ϕ ∈ S (Rn), define τhϕ ∈ S (Rn)
by (τhϕ)(x) := ϕ(x − h) for all x ∈ Rn. Beware that some sources define the
translation operator with a “+”. Now,

〈Lτhµ
,ϕ〉=

∫

Rn

τhµ(x)ϕ(x)d x =

∫

Rn

µ(x − h)ϕ(x)d x

=

∫

Rn

µ(x)ϕ(x + h)d x =

∫

Rn

µ(x)τ−hϕ(x)d x = 〈Lµ,τ−hϕ〉,

so for µ ∈ S ′(Rn) we should define τhµ ∈ S ′(Rn) by 〈τhµ,ϕ〉= 〈µ,τ−hϕ〉 for all
ϕ ∈ S (Rn). For and ϕ,ψ ∈ S (Rn),

(ϕ∗ψ)(x) =
∫

Rn

ϕ(y)ψ(x− y)d y =

∫

Rn

ϕ(y)ψ̌(y− x)d y =

∫

Rn

ϕ(y)τxψ̌(y)d y.
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Therefore, for µ ∈ S ′(Rn) and ϕ ∈ S (Rn), we should define µ ∗ϕ : Rn → K by
(µ ∗ϕ)(x) = 〈µ,τx ϕ̌〉 for all x ∈ Rn. It can be shown that µ ∗ϕ ∈ C∞(Rn), but
there is no reason to expect that it is rapidly decreasing. It does however have at
most polynomial growth, so it lives in S ′.

5.4.3 Lemma. Let µ ∈ S ′(Rn), ϕ,ψ ∈ S (Rn), and a multi-index α be given.
(i) (µ ∗ϕ) ∗ψ= µ ∗ (ϕ ∗ψ);

(ii) Dα(µ ∗ϕ) = µ ∗ (Dαϕ) = (Dαµ) ∗ϕ;
(iii) (µ ∗ψ)̂ = (2π)n/2ψ̂µ̂; and
(iv) dψµ= (2π)−n/2µ̂ ∗ ψ̂.

PROOF: We prove (iii) and leave the rest as exercises. Let ϕ ∈ S (Rn) be given.

〈(µ ∗ψ)̂ ,ϕ〉= 〈µ ∗ψ, ϕ̂〉 by definition of ˆ

= 〈µ ∗ψ,τ0
ˇ̂̌ϕ〉 trivially

= ((µ ∗ψ) ∗ ˇ̂ϕ)(0) by definition of ∗

= (µ ∗ (ψ ∗ ˇ̂ϕ))(0) by part (i)

= (µ ∗ (ψ̌ ∗ ϕ̂)̌ )(0) it can be “checked”

= 〈µ, ψ̌ ∗ ϕ̂〉 as above

= 〈µ, (2π)n/2Ôˆ ϕψ〉 5.4.2

= (2π)n/2〈µ̂, ψ̂ϕ〉

= (2π)n/2〈ψ̂µ̂,ϕ〉 �

5.4.4 Example. The fundamental solution of a PDE is defined to be the solution
with δ0 on the right hand side, i.e. the solution to Lu= δ0, if there is a solution.

5.5 Sobolev spaces

Let p ∈ [1,∞] and a non-negative integer m be given. Define

W m,p(Rn) := {u ∈ S ′(Rn) : Dαu ∈ Lp(Rn), |α| ≤ m},

where W 0,p(Rn) = Lp, and the norm

‖u‖m,p =

(

�
∑

|α|≤m ‖D
αu‖p

Lp

�1/p 1≤ p <∞
∑

|α|≤m ‖D
αu‖L∞ p =∞

For 1 < p <∞, (W m,p,‖ · ‖m,p) is uniformly convex and reflexive. Neither is true
for p = 1 or p =∞.

The case p = 2 is special. Note that u ∈ W m,2(Rn) if and only if Qm/2û ∈
L2(Rn), where Qs = (1+ |x |2)s. Indeed, the Fourier transform is a bijection from
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L2 to L2 and ÔDαu= i|α|Pαû for all multi-indices α. An equivalent inner product on
W m,2(Rn) is given by

(u, v)m :=

∫

Rn

Qm(ξ)û(ξ)¯̂v(ξ)dξ.

For s ∈ R, define H s(Rn) := {u ∈ S ′(Rn) : Qs/2û ∈ L2(Rn)}, with inner product
(·, ·)s. Notice that Hm(Rn) =W m,2(Rn) for non-negative integers m.

5.5.1 Theorem (Sobolev Embedding, special case).
Let Cv denote the collection of all continuous functions f : Rn → K such that
sup | f (x)| → 0 as |x | → ∞, equipped with the norm ‖ · ‖∞. Then for all real
s > n/2, H s(Rn) ,→ Cv(Rn).

PROOF: Let u ∈ H s(Rn), so that Qs/2û ∈ L2(Rn). Write û= (Qs/2û)/Qs/2.

ǔ= ˆ̂u=

�

Qs/2û

Qs/2

�

ˆ

so it suffices to show that 1/Qs/2 ∈ L2, for then û ∈ L1(Rn), which implies that
ǔ ∈ Cv by 5.2.2. Changing to polar coördinates,

∫

Rn

�

1

Qs/2

�2

d x =

∫

Rn

1

(1+ |x |)s
d x =

∫ ∞

0

1

(1+ r2)s
rn−1dr <∞

if and only if s > n/2. �

5.5.2 Example (Heat equation). The heat equation is ut(x , t) = ∆u(x , t), for
x ∈ Rn and t ≥ 0, with initial condition u(x , 0) = u0(x) for x ∈ Rn. Our ba-
sic space is X = L2(Rn). Formally, we want an operator A : D(A) → X such that
Av =∆v for all v ∈ D(A). If I−A is surjective and A is dissipative then A generates
a contractive linear C0-semigroup (X is reflexive so we do not need to worry about
the domain being dense to apply the Lumer-Phillips theorem.)

Given f ∈ X = L2(Rn), we have to find u ∈ D(A) such that u−∆u = f . Put
P(ξ) = 1+ |ξ|2 = Q1. Then, taking the Fourier transform, Pû = f̂ , so û = f̂ /P.
Therefore there is such a u and it lives in H2(Rn). We take D(A) = H2(Rn), and
I − A is a bijection between D(A) and L2(Rn).

Looking to the inner product as the obvious semi-inner product, we need to
know that (Av, v)≤ 0 for all v ∈ D(A). We could integrate by parts

(Av, v) =

∫

Rn

∆u(x)ū(x)d x =−
∫ n

R
u2(x)d x ≤ 0,

or we could also use Parseval’s relation,

(cAv, v̂) =

∫

Rn

Ó∆u¯̂udξ=−
∫

Rn

|ξ|2û¯̂ud x ≤ 0.
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Thus, by the Lumer-Phillips theorem, A generates a contractive linear C0-semigroup,
and for all u0 ∈ D(A), the mapping t 7→ T (t)u0 is differentiable on [0,∞) and
d
d t
(T (t)u0) = AT (t)u0.
The results here are not optimal. In fact, given u0 ∈ L2(Rn), it can be shown

T (t)u0 ∈
⋂∞

n=1D(A
n) for all t > 0 and t 7→ T (t) is analytic on [0,∞) in the

uniform operator topology. To get these results one would have to develop the
theory of analytic contractive semigroups.

5.5.3 Example (Wave equation). The wave equation is ut t(x , t) = ∆u(x , t), for
x ∈ Rn and t ≥ 0, with initial conditions u(x , 0) = u0(x) and ut(x , 0) = v0(x)
for x ∈ Rn. Walter Litmann 1967 showed that if n > 2 then the wave operator
generates a C0-semigroup in Lp if and only if p = 2, so the following results are
optimal.

For now we take K = R. Formally multiply the equation by ut and integrate
over Rn to get

∫

Rn

utut t d x =

∫

Rn

(∆u)ut d x

1

2

d

d t

∫

Rn

(ut)
2d x =−

∫

Rn

∇u · ∇ut d x =−
1

2

d

d t

∫

Rn

|∇u|2d x

0=
1

2

d

d t

∫

Rn

(u2
t + |∇u|2)d x .

This is referred to as conservation of energy. We have, for all t ≥ 0,

1

2

∫

Rn

(u2
t + |∇u|2)(x , t)d x =

1

2

∫

Rn

((v0(x))
2 + |∇u0(x)|2)d x =:

ε0

2
.

Note that
∫

Rn
1
2
(u(x))2d x is conspicuously missing. When n is odd, it can be

shown that
∫

Rn
1
2
u2

t d x → 1
2
ε0 and

∫

Rn
1
2
|∇u(x)|2d x → 1

2
ε0 as t → ∞. This is

referred to as equipartition of energy.
Let X = H1(Rn)× L2(Rn). We write the wave equation as the system

u̇1 = u2

u̇2 =∆u2.

Formally, we define the operator A : D(A) → X by A(ϕ1,ϕ2) = (ϕ2,∆ϕ1) (the
parentheses represent ordered pairs, not inner products). Then the system may
be written (u̇1, u̇2) = A(u1, u2). We would like to see that A generates a linear
C0-semigroup. Equip X with the inner product

〈(ϕ1,ϕ2), (ψ1,ψ2)〉=
∫

Rn

ϕ1ψ1 +∇ϕ1 · ∇ψ1 +ϕ2ψ2d x .

Based on the formal computation, we would expect the term first term in the
inner product to “cause issues” in what follows. The domain of A must be D(A) =
H2(Rn)×H1(Rn) since we need A to map into X .
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We must show that A is dissipative. Take (ϕ1,ϕ2) ∈ D(A) and consider

〈A(ϕ1,ϕ2), (ϕ1,ϕ2)〉= 〈(ϕ2,∆ϕ1), (ϕ1,ϕ2)〉

=

∫

Rn

ϕ2ϕ1 +∇ϕ2 · ∇ϕ1 + (∆ϕ1)ϕ2d x =

∫

Rn

ϕ2ϕ1d x

by parts or by Parseval’s relation. (Note that if the domain were bounded then we
would have Poincaré’s inequality and be done.) Finally,

∫

Rn

ϕ2ϕ1d x ≤
1

2

∫

Rn

ϕ2
1 +ϕ

2
2d x ≤

1

2
‖(ϕ1,ϕ2)‖2,

so A is quasi-dissipative with ω = 1
2

(this is not optimal). Now we must show

there is λ0 >
1
2

such that λ0 I − A is surjective. We may as well take λ0 = 1 and
consider the system (ϕ1,ϕ2)− A(ϕ1,ϕ2) = ( f1, f2), i.e.

ϕ1 −ϕ2 = f1

ϕ2 −∆ϕ1 = f2.

Solving, we need ϕ1 −∆ϕ1 = f2 + f1, and we’ve already seen that there is ex-
actly one ϕ1 ∈ H2(Rn) that satisfies this equation. Therefore A generates a quasi-
contractive linear C0-semigroup {T (t)}t≥0.

From the homework, for all m ∈ N, D(Am) is invariant under T (t) for all t ≥ 0.
Therefore if u0 ∈ Hm+1(Rn) and v0 ∈ Hm(Rn) then the solution (u(·, t), ut(·, t))
lives in Hm+1(Rn)×Hm(Rn) for all t ≥ 0.

6 Non-linear Operators

6.1 Monotone operators

6.1.1 Definition. Let X be a real Banach space and X ∗ be its dual space. We say
that a (not-necessarily linear) mapping F : X → X ∗ is

(i) a monotone mapping provided 〈F(u)− F(v), u− v〉 ≥ 0 for all u, v ∈ X ;
(ii) a strictly monotone mapping provided 〈F(u)−F(v), u− v〉> 0 for all u, v ∈ X

with u 6= v;
(iii) a bounded mapping provided F[B] is bounded in X ∗ for all bounded subsets

B of X ;
(iv) hemi-continuous provided the mapping λ 7→ 〈F(u+λv), w〉 is continuous as

a function from R to R for all u, v, w ∈ X ;
(v) coercive provided 〈F(u), u〉/‖u‖ →∞ as ‖u‖ →∞.

This definition of coercivity is a slight generalization of the definition of coer-
civity from the Lax-Milgram theorem.
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6.1.2 Lemma. Let m ∈ N be given and assume that P : Rm → Rm is continuous
and satisfies ξ · P(ξ) ≥ 0 for all ξ ∈ Rm with |ξ| = ρ. Then there is η ∈ RM with
|η| ≤ ρ such that P(η) = 0.

PROOF: Suppose there is no such η. Define Ψ(ξ) = −ρP(ξ)/|P(ξ)|, so that Ψ is
continuous and maps Bρ, the closed ball of radius ρ, to itself. By Brouwer’s Fixed
Point theorem Ψ has a fixed point ξ0 ∈ Bρ. Then |ξ0|= |Ψ(ξ0)|= ρ and

0≤ ξ0 · P(ξ0) =−ρ|P(ξ0)|< 0. �

6.1.3 Theorem. Let X be a separable, reflexive Banach space and assume that
F : X → X ∗ is monotone, bounded, hemi-continuous, and coercive. Then F is
surjective.

PROOF: Let f ∈ X ∗ be given. We must find u ∈ X such that F(u) = f . Assume
that X is finite dimensional. Since X is separable, we may choose a linearly inde-
pendent sequence {vm}∞m=1 such that the linear span of {vm}∞m=1 is dense in X . For
m ∈ N put Vm := span{v1, . . . , vm}.

Fix m ∈ N. We look for um ∈ Vm such that 〈F(um), vi〉 = 〈 f , vi〉 for all i =
1, . . . , m. Write um =

∑m
j=1 ξ j v j and solve for the required ξ ∈ Rm. Define a

mapping P : Rm → Rm by Pi(ξ) = 〈F(um)− f , vi〉. P is continuous because F is
hemi-continuous. Then

ξ · P(ξ) =
m
∑

i=1

ξi Pi(ξ) = 〈F(um)− f , um〉

= 〈F(um), um〉 − 〈 f , um〉

≥ ‖um‖
� 〈F(um), um〉

‖um‖
− ‖ f ‖X ∗

�

.

Choose ρ > 0 (independent of m) such that ξ · P(ξ) ≥ 0 for all ξ ∈ Rm with
|ξ| = ρ. This can be done because F is coercive. By the lemma, P has a zero in
Bρ, and this zero is the ξ giving the desired um.

Generate a sequence {um}∞m=1 in this way with ‖um‖ ≤ ρ for all m ∈ N. Then
{F(um)}∞m=1 is bounded because F is bounded. Bounded sequences have weakly
convergence subsequences because X is reflexive. Without loss of generality we
may assume that {um}∞m=1 is weakly convergent in X and {F(um)}∞m=1 is weak*
(weakly) convergent in X ∗. Let u be the weak limit of {um}∞m=1 in X and let ϕ be
the weak limit of {F(um)}∞m=1 in X ∗. We will show that ϕ = f and F(u) = ϕ.
〈F(um), v〉 = 〈 f , v〉 for all v ∈ Vm, so 〈ϕ, v〉 = 〈 f , v〉 for all v ∈

⋃∞
m=1 Vm. This
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set is dense, so ϕ = f . By monotonicity, for all m ∈ N and v ∈ X ,

0≤ 〈F(v)− F(um), v− um〉
= 〈F(v), v〉 − 〈F(v), um〉 − 〈F(um), v〉+ 〈F(um), um〉
= 〈F(v), v〉 − 〈F(v), um〉 − 〈F(um), v〉+ 〈 f , um〉
→ 〈F(v), v〉 − 〈F(v), u〉 − 〈 f , v〉+ 〈 f , u〉

so 0≤ 〈F(v)− f , v− u〉.

Let w ∈ X be given and put v = u+ λw in the inequality. For all λ > 0, 〈F(u+
λw)− f , w〉 ≥ 0, so letting λ ↓ 0 we see that 〈F(u)− f , w〉 ≥ 0 by hemi-continuity,
and this holds for all w ∈ X . Therefore F(u) = f . �

6.2 Differentiability

6.2.1 Definition. Let X and Y be Banach spaces. F : X → Y is said to be Fréchet
differentiable at x0 ∈ X provided there is L ∈ L (X ; Y ) such that

lim
h∈X
‖h‖↓0

F(x0 + h)− F(x0)− Lh

‖h‖
= 0.

We write F ′(x0) :=∇F(x0) := DF(x0) := L. We say that F Fréchet differentiable if
it is Fréchet differentiable at each x0 ∈ X .

Remark. Fréchet differentiability implies continuity in norm.

6.2.2 Proposition. Let Z be a third Banach space and let F : X → Y and G :
Y → Z and x0 ∈ X be given. Assume that F is Fréchet differentiable at x0 and G
is Fréchet differentiable at F(x0). Then G ◦ F is Fréchet differentiable at x0 and
(G ◦ F)′(x0) = G′(F(x0))F ′(x0).

PROOF: Using “little-o” notation,

F(x0 + h) = F(x0) + F ′(x0)h+ o(‖h‖)
G(F(x0 + h)) = G(F(x0) + F ′(x0)h+ o(‖h‖))

= G(F(x0)) + G′(F(x0))(F
′(x0)h+ o(‖h‖)) + o(‖h‖)

= G(F(x0)) + G′(F(x0))F
′(x0)h+ o(‖h‖))

which proves the result. �

6.2.3 Definition. Let F : X → Y and x0, v ∈ X be given. We say that F has a
Gâteaux variation in the direction v provided the following limit exists.

δF(x0; v) := lim
t→0

F(x0 + t v)− F(x0)
t

We say that F is Gâteaux differentiable at x0 provided it has a Gâteaux variation in
each direction v ∈ X .
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Remark. δF(x0; v) need not be linear in v, i.e. it need not be the case that δF(x0; v) =
L(x0)v for some L ∈ L (X ; Y ). Linearity in v might be part of the definition in
some books.

6.2.4 Example. Gâteaux differentiability does not imply continuity, even in finite
dimensions. Let S = {x ∈ R2 | 2x2

1 > x2 > x2
1} and consider the characteristic

function of S. 1S(0,0) = 0, and given any line through the origin there is a
neighbourhood of the origin such that, in that neighbourhood, that line does not
intersect S. Therefore 1S is Gâteaux differentiable at (0,0) in every direction with
derivative 0, but 1S is not continuous at (0,0).

6.2.5 Proposition. If F is Fréchet differentiable at x0 then F is Gâteaux differen-
tiable at x0 and δF(x0; v) = F ′(x0)v for all v ∈ X .

6.2.6 Theorem. Let F : X → Y and x0 ∈ X be given. Assume that there is an open
set U containing x0 such that

(i) F is Gâteaux differentiable at each x ∈ U;
(ii) for all x ∈ U there is L(x) ∈ L (X ; Y ) such that δF(x; v) = L(x)v for all

v ∈ X ; and
(iii) x 7→ L(x) is continuous from U to L (X ; Y ).

Then F is Fréchet differentiable at x0 and F ′(x0)h= δF(x0; h) for all h ∈ X .

PROOF: Choose δ > 0 such that Bδ(x0) ⊆ U and let h ∈ Bδ(0) be given. Define
ψ : [0,1]→ X by ψ(t) = F(x0+ th), so that ψ(0) = F(x0) and ψ(1) = F(x0+h).
We need to show that ψ(1)−ψ(0)− L(x0)h is o(‖h‖). By (i) and (ii), ψ′(t) =
δF(x0 + th; h) = L(x0 + th)h, which is continuous by (iii). Therefore, by the
fundamental theorem of calculus,

F(x0 + h)− F(x0)− L(x0)h=

∫ 1

0

(ψ′(t)− L(x0)h)d t

‖F(x0 + h)− F(x0)− L(x0)h‖ ≤
�
∫ 1

0

‖L(x0 + th)− L(x0)‖d t
�

‖h‖

This goes to zero as ‖h‖ → 0 since x 7→ L(x) is continuous. �

6.2.7 Theorem (Inverse function theorem).
Assume that F : X → Y is Fréchet differentiable on X and that x 7→ F ′(x) is
continuous. Let x0 ∈ X be given and assume that F ′(x0) is bijective. Then there
are U ⊆ X and V ⊆ Y , both open, such that x0 ∈ U , F(x0) ∈ V , and F |VU is bijective.
In fact, the inverse is continuously Fréchet differentiable.

Remark. Moreover, there is η > 0 such that, for all y ∈ Bη(F(x0)), the sequence
{xn}∞n=1 generated by xn+1 := xn+[F ′(x0)]−1(y− F(xn)) converges to the unique
solution of y = F(x) in U .
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PROOF: Without loss of generality we may assume x0 = 0 and F(x0) = 0. Let
y ∈ Y be given. We will find conditions on y that will allow us to solve the
equation F(x) = y . Note that F(x) = F ′(0)x + R(x), where

R(x) = F(x)− F ′(0)x = o(‖x‖).

Hence, if x solves F(x) = y then

F ′(0)x = y − R(x)

x = (F ′(0))−1(y − (F(x)− F ′(0)x)).

Define Ty(x) := (F ′(0))−1(y − (F(x)− F ′(0)x)). We will show that if ‖y‖ is suffi-
ciently small then Ty maps a closed ball into itself and Ty is a strict contraction. Let
M := ‖(F ′(0))−1‖. Since ‖F(x)− F ′(0)x‖ decreases super-linearly in ‖x‖, there is
ε > 0 such that ‖F(x)− F ′(0)x‖ ≤ ε

2M
when ‖x‖ < ε. Assume that ‖y‖ < ε

2M
, so

that
‖Ty(x)‖ ≤ M‖y‖+M‖F(x)− F ′(0)x‖< ε

Therefore there is ε > 0 such that Ty : Bε(0) → Bε(0). Further, Ty is Fréchet
differentiable and T ′y(x) =−(F

′(0))−1(F ′(x)− F ′(0)). This goes to zero as ‖x‖ →
0 since we have assumed that x 7→ F ′(x) is continuous. Further restrict ε so that
‖T ′y(x)‖ ≤

1
2

for all x ∈ Bε(0). Notice that

Ty(x)− Ty(z) =

∫ 1

0

T ′y(z+ t(x − z))(x − z)d t

‖Ty(x)− Ty(z)‖=
�
∫ 1

0

‖T ′y(z+ t(x − z))‖d t
�

‖x − z‖ ≤
1

2
‖x − z‖.

Therefore Ty is a strict contraction. By the contractive mapping theorem Ty has a
fixed point, which by construction solves F(x) = y . �

6.3 Convexity

6.3.1 Definition. A function f : X → R ∪ {+∞} is said to be a proper function
if there is x0 ∈ X such that f (x0) < ∞. If f is convex and proper then the
subdifferential or subgradient of f at x0 ∈ X is defined to be

∂ f (x0) := {x∗ ∈ X ∗ | f (x)≥ f (x0) + x∗(x − x0) for all x ∈ X }.

6.3.2 Example. Take X = R and f (x) = |x |. Then

∂ f (x) =







{−1} x < 0

[−1, 1] x = 0

{1} x > 0.
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Remark.
(i) It can happen that ∂ f (x0) =∅. Example?

(ii) If f is convex and proper then f attains a minimum at x0 if and only if
0 ∈ ∂ f (x0).

From here on assume that K= R.

6.3.3 Theorem. Assume that f : X → R is continuous and convex and let x0 ∈ X
be given. Then ∂ f (x0) 6=∅.

PROOF: Use the Hahn-Banach theorem. Put E := {(x ,λ) | x ∈ X , f (x) < λ}, i.e.
the epigraph of f . Notice that E is nonempty, open, and convex. Separate E from
{(x0, f (x0))} by applying a strong form of the separating hyperplane theorem.
Choose (x∗,α) ∈ X ∗ ×R and β ∈ R such that

(i) ‖x∗‖+ |α|> 0, i.e. (x∗,α) 6= (0,0);
(ii) x∗(x) +αλ≥ β whenever λ > f (x); and

(iii) x∗(x0) +α f (x0)≤ β .
It cannot be the case that α = 0 because then we would have x∗(x) ≥ β for all
x ∈ X , which would imply that x∗ = 0 as well, contradicting (i). Further, α > 0
because otherwise we could take λ → ∞ and contradict (ii). Put y∗ = − 1

α
x∗.

Then f (x) ≥ β

α
+ y∗(x) for all x ∈ X by (ii) and so f (x0) =

β

α
+ y∗(x0) by (iii).

Subtracting, f (x)≥ f (x0) + y∗(x − x0), so y∗ ∈ ∂ f (x0). �

6.3.4 Theorem. Assume that f : X → R is convex and continuous, and let x0 ∈ X
be given. The following are equivalent.

(i) ∂ f (x0) is a singleton.
(ii) f is Gâteaux differentiable at x0 and there is L(x0) ∈ X ∗ such that δ f (x0; v) =

L(x0)v for all v ∈ X .

PROOF: Assume (ii) holds. Let v ∈ X be given and put ψ(t) = f (x0+ t v). Then ψ
is continuous, convex, and differentiable at 0, with

ψ′(0) = δ f (x0; v) = L(x0)v.

Since ψ is convex,

ψ(1)≥ψ(0) +ψ′(0)1
so f (x0 + v)≥ f (x0) + L(x0)v

Therefore L(x0) ∈ ∂ f (x0). Let z∗ ∈ ∂ f (x0) be given and y ∈ X .

f (x0 + t y)≥ f (x0) + z∗(t y) = f (x0) + tz∗(y)
and f (x0 + t y) = f (x0) + t L(x0)y + o(t)
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Combining these,

t L(x0)y + o(t)≥ tz∗(y)

L(x0)y +
o(t)

t

¨

≥ z∗(y) if t > 0

≤ z∗(y) if t < 0

Letting t → 0 we conclude that L(x0)y = z∗(y). �

6.3.5 Proposition. Assume that f : X → R is Fréchet differentiable, and notice
that f ′ : X → X ∗. The following are equivalent.

(i) f is convex.
(ii) f (u)≥ f (v) + 〈 f ′(v), u− v〉 for all u, v ∈ X .

(iii) 〈 f ′(u)− f ′(v), u− v〉 ≥ 0 for all u, v ∈ X , i.e. f ′ is monotone.

PROOF: Assume that f is convex. Let u, v ∈ X be given. Then for all t ∈ (0,1],

f (tu+ (1− t)v)≤ t f (u) + (1− t) f (v)
f (v+ t(u− v))≤ f (v) + t( f (u)− f (v))

f (v+ t(u− v))− f (v)
t

≤ f (u)− f (v)

so, taking t ↓ 0, 〈 f ′(v), u− v〉 ≤ f (u)− f (v). The rest of the implications are left
as exercises. �
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