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ABSTRACT
This paper examines a new building block for next-generation net-
works: SNAPP, or Stateless Network-Authenticated Path Pinning.
SNAPP-enabled routers securely embed their routing decisions in
the packet headers of a stream of traffic, effectively pinning a flow’s
path between sender and receiver. A sender can use the pinnedpath
(even if routes subsequently change) by including the path embed-
ding in later packet headers. This architectural building block de-
couples routing from forwarding, which greatly enhances the avail-
ability of a path in the face of routing misconfigurations or mali-
cious attacks. To demonstrate the extreme flexibility of SNAPP,
we show how it can support a wide range of applications, including
sender-controlled paths, expensive route lookups, senderanonymity,
and sender accountability. Our analysis shows that SNAPP’sover-
head is low, and the system is easily implemented in hardware. We
believe that SNAPP is a worthy addition to the network architect’s
toolbox, enabling a variety of new designs and trade-offs.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and pro-
tection; C.2.1 [Network Architecture and Design]: Circuit-switch-
ing networks, Packet-switching networks

General Terms
Design, Reliability, Security

Keywords
Next-Generation Networks, Path Pinning

∗This research was supported in part by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and MURI W 911 NF 0710287
from the Army Research Office, grant CNS-0716278 from the Na-
tional Science Foundation, and a faculty fellowship from the Sloan
Foundation. Bryan Parno is supported in part by a National Sci-
ence Foundation Graduate Research Fellowship. The views and
conclusions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either express or implied, of ARO, CMU, NSF, Sloan
Foundation, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

1. INTRODUCTION
In decades past, debates abounded over the relative merits of

circuit-switched networks vs. packet-switched networks,with each
camp claiming unbeatable technical advantages. With the recent
expansion of community interest in novel Internet architectures, the
discussions are beginning again [18].

Recognizing the merits of both approaches, we propose a new
technique that achieves the advantages of both, at the expense of in-
creased packet state. As available bandwidth continues to increase,
we believe this represents a beneficial tradeoff.

Specifically, we consider apath pinning approach. Like a circuit-
switched network, path pinning binds a particular flow (or connec-
tion) to a specific path through the network for as long as the flow
and the path both exist. Like a packet-switched network, thepath
pinning mechanism we present does not require per-flow statein
the network. Prior techniques for providing path pinning rely on
copious per-flow state in routers, or provide end hosts with an un-
comfortable degree of control (see §2).

The contribution of this work is astateless, secure path-pinning
building block that provides numerous benefits without the draw-
backs of prior approaches. This mechanism, SNAPP, adds a small
amount of information to packet headers as they pass throughthe
network, akin to the techniques used by network capabilities [19,
28,30]. Once a packet has traversed a path, the sender and receiver
can send additional packets that are forwarded based upon the in-
formation encoded in the packet. Of course, routers may always
make a new routing decision; §4.5 shows how to seamlessly update
the path pinning while implicitly informing the sender and receiver
of the change.

We explore SNAPP’s suitability as a basic building block foruse
at the network layer, as well as at higher-layers such as overlay
networks. Our evaluation in §6 indicates that we can implement
SNAPP using today’s hardware, and that SNAPP is a useful tool
for new network architectures.

SNAPP’s versatility addresses many problems:
Expensive Route Lookups. Because SNAPP decouples route ta-
ble lookups and forwarding, a designer might consider an architec-
ture in which comparatively expensive routing lookups are amor-
tized over subsequent packets. As an extreme example, the Inten-
tional Naming System [1] performs complex string-matchingand
range comparisons when computing packet destinations. SNAPP
provides an attractive optimization for data flow in such systems.
Decoupling Forwarding from Routing Failures. By placing
the results of routing decisions into packet-carried state, SNAPP
makes it possible to send subsequent packets without depending on
per-hop routing calculations. This greatly improves the availability
of forwarding in the face of routing misconfigurations or malicious
attacks. Even if the routing infrastructure is temporarilybroken,
communicating parties can continue to use established connections.



Efficient Packet Forwarding. SNAPP forwarding requires only
sequential processing of header information, without requiring com-
plex routing table lookups or even high-latency memory lookups.
Such streamlined packet processing enables the construction of high-
speed forwarding nodes. For example, the two largest challenges
in developing optical networks are signal buffering and memory
lookups. By eliminating these steps from the forwarding plane,
SNAPP lowers the barrier for the deployment of purely optical
switching elements.
Sender-Controlled Paths. Systems such as NIRA [29] and Platy-
pus [20] give senders more control over the route their packets take
through the network. These systems typically use a mechanism
such as source routing to provide senders with this control.SNAPP
separates the forwarding plane from the mechanism by which paths
are established, potentially allowingall of these solutions to co-
exist on the same network.
Capability-Based Networks. A drawback of capability-based
designs [19, 28, 30] is their fragility under path changes. Path pin-
ning binds flows to their original paths, so capability-protected com-
munication is not interrupted as long as the physical path remains
intact, thus enhancing the robustness of most existing capability
architectures.
Load Balancing. Fine-grained load balancing is complicated by
protocols such as TCP that perform poorly when packets are re-
ordered [31]. Load balancing techniques therefore often pin paths
to ensure good TCP performance.
Sender Anonymity. In §5.1, we examine a bidirectional variant
of SNAPP, which stores in packets both forward and reverse path
information, to support sender anonymity.
Sender Accountability. Surprisingly, SNAPP can also be used
to create the polar opposite of sender anonymity: a system for as-
signing responsibility for every packet and its contents tothe origi-
nating sender. While we do not necessarily support creatingsuch a
system (and it would require infrastructure in addition to SNAPP),
we believe SNAPP’s ability to support applications at two extremes
of the design space demonstrates its flexibility and suitability as a
basic building block.

In the next section, we review work related to SNAPP. In §3, we
consider the design requirements for a path pinning system.Then,
we describe SNAPP in depth in §4 and present a sampling of the
applications it enables in §5. In §6, we analyze the securityand
performance of SNAPP, and in §7, we discuss additional properties
it provides. Finally, in §8, we present our conclusions.

2. RELATED WORK
This section first examines the network capability systems whose

design inspired SNAPP. It then examines some of the related work
in packet and circuit switching. In §5, we discuss various applica-
tions that SNAPP enables, along with work related to those specific
applications.

2.1 Capability-based Architectures
SNAPP encodes path pinning information into packets in a man-

ner inspired by network capabilities [3, 17, 19, 28, 30]. While ca-
pabilities resemble our path token, the capabilities are used purely
to authorize packet transmission, not to encode per-hop forwarding
information.

As we discuss further in §7, SNAPP complements rate-limiting
and DoS-preventing capability architectures by reducing the prob-
lems they have with route changes. Since both types of systems
use cryptographically encoded information in packets, they would
be ideal candidates to integrate with SNAPP.

2.2 Path Pinning via Virtual Circuits
One effect of a virtual circuit architecture is that connections are

typically pinned to the path they traversed during setup, though in
some systems they may be re-bound, particularly in the case of fail-
ure. Virtual circuits meet many of the requirements we express for
a path pinning system in §3: They are unforgeable, because all of
the intelligence about the path is maintained in the network. They
give the network complete control over the path that is used.Vir-
tual circuits can also be very efficient because of their fastlookups
(e.g., MPLS [22] and Threaded-Indices [10]), and they may require
less space in the packet header than an equivalent packet-switched
network.

However, static virtual circuits must be explicitly preconfigured
by provisioners, typically in response to heavy-weight, oreven out-
of-band, requests from customers, making the overhead prohibitive
for brief, transient communication. With both static and dynamic
virtual circuits, switches typically maintain per-circuit state, even
with lighter-weight IP-based protocols such as RSVP [9]. Aggre-
gation is possible with protocols like MPLS, but MPLS typically
operates within a single domain.

2.3 Packet Switching and Path Pinning
Current IP forwarding tightly couples routing and forwarding.

The router performs a route table lookup for every packet it re-
ceives and then forwards the packet out of the chosen interface.
The need to perform a routing lookup (or calculation) for every
packet limits the complexity of routing algorithms, since the algo-
rithm should not constrain forwarding speed. By closely coupling
routing and forwarding, traditional IP forwarding also couples their
failure modes: routing failures inevitably result in forwarding fail-
ures. Moreover, the sender has no control over the path a packet
traverses.

One frequently discussed alternative to destination-based rout-
ing is source routing, which can provide a pinned path. Unfortu-
nately, traditional IP strict source routing has several shortcomings.
Sources must understand the entire network topology to create a
hop-by-hop path to the destination. Loose source routing mitigates
this requirement, but sacrifices path pinning in the process. Source
routing implicitly trusts sources to construct valid, allowed paths;
routers have little or no control over whether such paths should be
permitted.

Platypus [20] uses a capability-like mechanism to allow endsys-
tems to request routes from ISPs and to enable the routers to verify
that the use of that route is permitted. In contrast, SNAPP’smark-
ings are generated on the path by the routers themselves, requiring
no coordination between routers in an ISP. In addition, Platypus
is explicitly designed to allow endhosts to create arbitrary paths
through the network (loosely constrained by routing policy) and
delegate those paths to other hosts, whereas SNAPP operateswithin
existing routing decisions and prevents sharing or reuse ofpath em-
beddings. Despite these differences, we believe that SNAPPwould
be an effective generic mechanism upon which to build a Platypus-
like system. In fact, the developers of Platypus note that a “[way]
for Platypus routers to cache forwarding directives for traffic flows”
would be a valuable addition to their protocol. SNAPP provides ex-
actly such a mechanism without requiring any state on the router.

A number of projects, such as Platypus, NIRA [29], and RON [2]
have shown that many benefits arise from source-influenced path
selection; we discuss some of these possibilities in more detail in
§5.4. Like Platypus, WRAP [4] uses a form of loose source routing
to specify a domain-level path through the Internet. WRAP routers
explicitly fill in the reverse path as the packet progresses through
the network. Unlike Platypus and SNAPP, WRAP’s header is not



authenticated. Note that while SNAPP enables senders to select
amongst available network paths, it prevents arbitrary source rout-
ing that would violate router policies.

Overlay networks are another popular approach to providingcon-
trol over paths. Routing overlays such as RON [2], the X-Bone[27],
and i3 [24] permit end hosts limited control over forwarding by
sending packets indirectly through other end-hosts. In contrast,
SNAPP is intended to provide router-level path pinning in the for-
warding path. Routing overlays could take advantage of pathpin-
ning in a number of ways (see the discussion in §5.4).

LIRA [25] binds packets to a particular path by computing a
packet label based on the XOR of the IP addresses of the routers
on the path. Since these labels are used within a single ISP, they
are not secured. LIRA also requires per-path router state.

3. DESIGN REQUIREMENTS
At a high level, a dynamic path-pinning system allows routers

to insert information about their routing decisions into each packet
they receive. Senders can then include this information in subse-
quent packets, allowing the routers to forward the packets without
performing a routing calculation. Below, we outline the require-
ments for such a scheme.
Unforgeable Paths. End-hosts should not be able to construct ar-
bitrary network paths, nor to recombine parts of established paths.
While a malicious router can always misdirect a packet, we require
a legitimate router to detect such a deviation and drop the packet.
The first constraint prevents hosts from violating the routing pol-
icy at the routers; the second prevents subverted network elements
from hijacking legitimate flows.
Local Router Operation. Each router should act using only lo-
cal information. That is, the system should require no coordination
between routers. In addition, the system must not require new trust
relationships between an end host and the routers or betweenthe
routers themselves. These requirements ease deployment and im-
prove security, since each router only trusts itself. Furthermore, a
compromised router only affects its own traffic; it cannot influence
another legitimate router.
Dynamic Setup and Maintenance. The path pinning mecha-
nism must not impose additional configuration effort nor require
statically constructed routes. Excessive configuration discourages
adoption and limits the number and types of routes to which the
system would apply.
Controllable Topology Disclosure. The basic building block
should be flexible in terms of the amount of information it reveals
about the network topology. Some applications may wish to keep
the topological information completely opaque, while others may
wish to reveal it, or may simply not care. For example, some ISPs
currently block traceroute traffic or use internal tunnels to hide the
topology of their networks, while other ISPs permit such mapping.
Our primitive should be amenable to either choice.
Minimal Packet Overhead. To conserve bandwidth, the infor-
mation inserted into the packets must not consume excessivespace
in the packets.
No Per-Flow Router State. Eliminating per-flow state at routers
decreases the cost of routers, both because less high-speedmemory
is required (busy routers handle hundreds of thousands of flows
each minute [23]), and because it simplifies the router’s design and
implementation. It also improves the scheme’s scalability.
Efficient Forwarding. A viable forwarding scheme must support
efficient packet forwarding at line rates. The high latency of mem-
ory accesses suggests that we minimize memory lookups. Thisap-
proach will also eliminates one of the largest hurdles for optical
networks, lowering the barrier to their deployment.

Algorithm 1 : Basic Router PseudocodeThese are the two main
functions performed by a router. If the incoming packet p is a
SETUP packet, the router invokes the setuproutine, and if the in-
coming packet contains a path embedding, it invokes the pinned
routine.
1: function setup()
2: r ← CalculateRoute(p)
3: r′ ← EncodeRoute(r)
4: m← ComputeAuthenticator(r′)
5: Add segment embedding(r′, m) to p

6: Forwardp based onr.
7: function pinned()
8: s′ ← LocateMySegmentEmbedding(p)
9: (r′, m)← s′

10: m′ ← ComputeAuthenticator(r′)
11: if m 6= m′ then
12: Authentication failure. Drop packet.
13: r = DecodeRoute(r′)
14: Forwardp based onr.

4. SNAPP
We begin with a high-level description of SNAPP. We then ex-

plain how senders create a pinned path and how routers use the
information in a path pinning to forward packets. Then, we show
in detail how to preserve the integrity of a pinned path. Finally,
we explain how routers maintain and update the pinned paths.For
clarity, our detailed description of the cryptographic mechanisms
underlying SNAPP begins with a simplified version in §4.4, which
we revise through the following subsection to add additional prop-
erties. We present the bit-level details of the fields in a SNAPP
packet’s header in §4.6.

4.1 Protocol Overview
Figure 1 illustrates the SNAPP protocol. A sender initiatespath

pinning by sending a SETUP packet to the receiver. Each router on
the path makes its usual routing calculation and embeds the result
in the setup packet, along with an authenticator. Together,the deci-
sion and the authenticator form a segment embedding. The receiver
returns the accumulated set of segment embeddings, called apath
embedding, to the sender. The sender includes the path embedding
in subsequent packets.

When a router receives a packet containing a path embedding,it
locates its own segment embedding, verifies the authenticator, and
then forwards the packet based on the routing decision encoded in
the segment embedding. Note that SNAPP data can be piggybacked
on top of existing network traffic. For instance, the initialSETUP
packet can accompany the SYN packet sent at the start of TCP’s
three-way handshake.

Below, we discuss these steps in more detail and consider possi-
ble optimizations.

4.2 Path Setup
To create a pinned path, the sender transmits a SETUP packet

to the receiver, and each router along the path adds a segmentem-
bedding to the packet. The accumulated segment embeddings will
form a path embedding.
Basic Setup. To setup a pinned path, the sender creates a new
SNAPP header and sets the packet type to SETUP. When a router
receives a SETUP packet, it first calculates the next hopr. It en-
codes the routing decision (as discussed below) asr′ and computes
an authenticatorm (as discussed in §4.4). It adds its segment em-
bedding(r′, m) to the list of segment embeddings. Finally, it for-
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Figure 1: SNAPP Overview.During the setup phase, each router makes a routing calculation (e.g., Longest Prefix Match – LPM) and
adds the resulting segment embedding to the packet. The receiver returns the resulting collection of segment embeddings (called a path
embedding) to the sender. When a sender includes the path embedding in subsequent packets, the routers can forward the packet without
performing a route table lookup.

wards the packet to the next hop. When the SETUP packet reaches
its destination, the receiver returns the path embedding (consist-
ing of the accumulated segment embeddings) to the sender. These
steps are summarized in the setup function shown in lines 1–6of
Algorithm 1.
Encoding the Routing Decision. When a setup packet arrives,
the router performs a routing calculation to determine the appropri-
ate next hop. To create a segment embedding, we must choose an
encoding for the next hop. We reject the obvious encoding of the IP
address of the next hop. Such an encoding requires 32 bits, while no
router has232 next-hop neighbors. Instead, in general, we encode
the next hop neighbor ID based on the outbound interface chosen
for the packet. For some routers, a single interface may connect
via a shared medium to multiple next-hop neighbors. Such routers
must maintain a small table mapping locally assigned uniqueiden-
tifiers to next hop neighbors. In §4.6, we show how each router
can customize the length of its unique identifiers so that no bits are
wasted, while still accommodating routers with anywhere from two
to thousands of neighbors.
Hiding Topological Information. As described, embedding a
neighbor ID leaks topological information, since an interested party
can map neighbor IDs to the corresponding routers and thus deter-
mine the path traversed by a particular packet. For many applica-
tions, this is perfectly acceptable. For applications thatwish to hide
this topological information, we can instead embed an encrypted
version of the neighbor ID.

To create opaque embeddings, each router maintains a secretkey,
known only to itself. After it selects the appropriate neighbor ID, it
encrypts the ID using its secret key1 and an encryption scheme re-
silient to Chosen-Plaintext Attacks (CPA). A CPA-secure scheme

1For proper cryptographic hygiene, this key should be different
from the key used to compute the segment authenticator, as de-
scribed in §4.4.

will produce a different ciphertext upon every invocation,even if
we encrypt the same plaintext twice. Thus, an adversary willbe
unable to correlate the encrypted neighbor ID with the neighbor to
which the packet is forwarded. Technically, the encryptionscheme
used should be secure against Chosen-Ciphertext Attacks (CCA)
as well, since the router essentially provides a decryptionoracle
by attempting to decrypt the contents of the neighbor ID fieldand
route the packet appropriately. However, as discussed below, by
computing the router’s authenticator over the encrypted version of
the neighbor ID, we can securely achieve CCA security with a
CPA-secure encryption scheme, since the router will only decrypt
the neighbor ID if the authenticator verifies correctly. Bellare and
Namprempre demonstrate the security of this construction [6].

4.3 Forwarding
Having established a path embedding during setup, the sender

can include it in later packets, allowing routers to forwardthe packet
without making extra routing calculations.

To use a path embedding, the sender creates a new SNAPP header,
sets the type field to USE, zeroes the additional fields, and appends
the path embedding to the packet. When a router receives a USE
packet, it locates the current segment embedding(r′, m) indicated
by the segment pointer field. It calculates a new authenticator m′

using the same method it would use for a SETUP packet. If the
two authenticators (m andm′) fail to match, the router discards
the packet. Otherwise, the router updates the packet’s fields (§4.6),
decodesr′ and forwards the packet. Lines 7–14 of Algorithm 1
summarize these steps.

If the path embedding that arrives at the receiver has been mod-
ified (route or key updates, as discussed below, may modify the
path embedding), the receiver must return the new path embed-
ding to the sender. The change in the embedding alerts both the
receiver and the sender that an update has taken place, unlike the



current Internet in which routes can change transparently.If the
path embedding arrives unmodified, the sender can use the same
path embedding for subsequent packets.

4.4 Preserving Path Integrity
To secure the steps described above, SNAPP must enable routers

to verify that the routing decision encoded in a segment embedding
is the same one calculated during path setup. It must also ensure
that endhosts cannot use the segment embeddings to construct arbi-
trary paths through the network, as dictated by our design require-
ments (§3).
Authenticating the Segment Embedding. To prevent another
entity from modifying the encoded routing decision, the router must
also include an authenticator in the segment embedding. Since the
router is the only entity that needs to authenticate its particular rout-
ing decision, the authenticator can use a secret key known only to
the router. Below, we present a naïve version of an authenticator,
which we refine in Equations 2 – 4.

In its simplest form, the authenticator can be a Message-Integrity
Code (MIC) computed over the encoded routing decision,r′, using
the router’s secret key,K. Thus, a simple segment embeddings

would be:

s = (r′, MICK(r′)) (1)

When a packet arrives containing the active segment embedding
(r′, m), the router calculatesMICK(r′) and compares it tom. If
they match, the router forwards the packet to the destination en-
coded asr′. If they fail to match, the router drops the packet.

If the application using SNAPP employs the topologically opaque
next-hop encodings discussed in §4.2, then the MIC described above
should be computed over the encrypted version of the encoding.
We use this technique to convert a CPA-secure encryption scheme
for the encoding into a CCA-secure encryption scheme, sincethe
router will refuse to decrypt an encoding if the MIC does not verify
properly [6].
Enforcing Path Integrity. As presented above, the authentica-
tor for each router is independent of the other routers on thepath.
While this allows each router to verify the authenticity of its own
routing information, it does not ensure the integrity of theentire
path. Endhosts can combine different segment embeddings tocre-
ate new path embeddings, violating one of our key design principles
from §3.

As a first step towards guaranteeing path integrity, we can in-
clude both the source and destination IP addresses from the packet
in the computation of the router’s authenticator. Thus, we can mod-
ify Equation 1 such that a segment embedding of the routing deci-
sionr′ becomes:

s = (r′, MICK(r′||SrcIP||DestIP)) (2)

where || denotes concatenation. This prevents an endhost from
sharing a path embedding with other hosts or reusing the samepath
embedding to communicate with multiple destinations. However,
it does not prevent endhosts from rearranging or mixing the inter-
mediate segment embeddings from multiple path embeddings.

To fully guarantee path integrity, we make each router’s authen-
ticator depend on the previous segment embeddings. Thus, a par-
ticular router’s segment embedding will only authenticateproperly
if the packet has traversed the same path to the router that the
original setup packet followed. More concretely, suppose asetup
packet arrives at a router containing a list of segment embeddings
(s1, s2, . . . , sk) from previous routers,r1, r2, . . . , rk, on the path.
The current router creates a modified version of the segment em-

bedding from Equation 2 as follows:

s = (r′, MICK(r′||SrcIP||DestIP||s1||s2|| . . . ||sk)) (3)

The router can add this new segment embedding to the setup packet
and forward it along. If a subsequent packet containing thisembed-
ded path arrives at the router via a path other thanr1, r2, . . . , rk,
the list of segment embeddings in the packet will differ fromthe
original list (s1, s2, . . . , sk), so the MIC in the packet will not
match the MIC computed by the router.

4.5 Path Maintenance
Occasionally, a router may need to update the segment embed-

ding contained within a USE packet. Security concerns dictate that
each router must periodically rotate the secret key used to compute
authenticators, which will necessarily change the value for those
authenticators. A change in routing policy may also requirea router
to update its segment embedding to reflect a new routing decision.

Unfortunately, computing authenticators based on Equation 3
makes it difficult for routers to update their private keys oral-
ter their routing decisions. If a router updates its key and then
overwrites its segment embedding with the new authenticator, then
the authenticators computed by subsequent routers will notmatch
those in the packet, so it will be dropped. As an alternative,the
router could leave its existing segment embedding unmodified but
start a new list of segment embeddings. This could potentially dou-
ble the packet overhead of SNAPP. Instead, we propose a different
version of the authenticator that only requires a constant amount of
space in the packet header, and we show how to use the modified
authentication scheme to allow routers to perform key and route
updates.
Updateable Authenticators. To facilitate maintenance of pinned
paths without imposing undue overhead, we introduce a modified
version of the authenticator calculation shown in Equation3. To do
so, we add an additional fieldS to the SNAPP header which will
hold a copy of the segment embedding from the previous router.
Thus, during setup, the sender initializesS to 0. When a router
receives a SETUP packet, it calculates an authenticatorm for its
encoded routing decisionr′ as follows:

m = MICK(r′||SrcIP||DestIP||S) (4)

It adds the segment embeddings = (r′, m) to the packet header
and overwrites the contents ofS with s.

This mechanism only requires a constant amount of additional
space in the packet header, but each authenticator depends on all
previous authenticators, so the property of path integrityis still pre-
served. As an additional side benefit, the MIC computation now
occurs over a fixed amount of data, rather than the variable amount
required by Equation 3. Below, we describe how to use this modi-
fied version of the authenticator to perform updates.
Key Updates. To maintain the security of the system, routers
must periodically rotate the key used to create authenticators. Rather
than force the sender to initialize a new SETUP packet, the router
can modify its segment embeddingin situ. After validating the cur-
rent segment embedding(r′, m) using the old keyK, the router
calculates a new authenticatorµ using Equation 4 with a new key
K′, and overwrites its old segment embeddings with the segment
embeddings′ = (r′, µ). After sufficient time, the router can re-
tire the old key and exclusively use the new one. However, instead
of filling in S with s′, it usess. The next router in the path can
use the contents ofS to correctly validate its segment embedding.
However, the discrepancy betweenS and the value of the previ-
ous segment embedding indicates an update has been made, so that
router also updates its authenticator, usings′ for the value ofS in
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Figure 2: SNAPP Header. Fields contained in the header of a
SNAPP packet. Each field’s size in bits is shown in parentheses.
The header contains one segment embedding for each router on
the path. While the length of the segment embedding is fixed, the
relative lengths of the next-hop encoding and the authenticator
are selected by each router to maximize the size of the authenti-
cator, given the number of next-hop neighbors.

the new authenticator calculation. The updates continue until the
packet reaches its destination. The receiver must return this new
path embedding to the sender, so the sender can utilize the updated
path embedding.
Route Updates. The effect that a routing change has on existing
path embeddings depends on an ISP’s policy. An ISP may choose
to apply the route update only to new connections, in which case,
current path embeddings continue to function, and SNAPP there-
fore completely decouples routing and forwarding. The ISP may
instead decide to apply certain types of route updates to existing
connections as well. This decreases the independence of routing
and forwarding, but SNAPP facilitates this type of policy aswell.

When a router wishes to change the routing decision embedded
in a packet, the portion of the path embedding leading to the current
router remains valid, but the subsequent segment embeddings are
no longer accurate. SNAPP updates the remaining entries on the
fly, rather than forcing the sender to create another SETUP packet.
When a packet arrives, the router makes a new route calculation
and encodes it asρ. It calculates a new authenticatorµ using Equa-
tion 4 (replacingr′ with ρ), and overwrites its segment embedding
with s′ = (ρ, µ). The router changes the packet type from USE
to SETUP, telling subsequent routers to follow the setup procedure
outlined in §4.2. The change in packet type also alerts the end-
host that the updated path embedding represents a new route,not
merely the result of a key update. The receiver must return this new
path embedding to the sender, so the sender can use the new path
embedding.

4.6 SNAPP Details
In this section, we present a detailed view of a SNAPP packet,

discuss the important fields, and highlight potential performance
optimizations.

The SNAPP header contains a fixed-length portion with infor-
mation about the packet followed by a variable length list ofaccu-
mulated segment embeddings, each 32 bits wide (see Figure 2). In
the fixed-length portion, a type field indicates whether the packet
is of type SETUP or USE. The segment pointer indicates the cur-
rently active segment embedding. During setup, a router places
its segment embedding at this location and increments the segment

pointer. During forwarding, a router assumes that the active seg-
ment embedding belongs to it. If the segment embedding is au-
thentic, the router increments the segment pointer before forward-
ing the packet. Finally, the header contains the fieldS that holds a
copy of the segment embedding calculated by the previous router
(the sender initializes it to 0). §4.5 explains how this fieldis used
to update segment embeddings in place.

Segment embeddings consist of two parts: an encoded next-hop
neighbor ID and an authenticator. Each segment embedding is32
bits long, but the division of bits between the two parts is variable.
This allows SNAPP to adapt to the fact that many routers only have
a handful of neighbors, but some, such as DSL aggregating routers,
may have tens of thousands of neighbors [16]. The next-hop neigh-
bor encoding may use from 2 to 16 bits, leaving 16 to 30 bits for
the authenticator. Even routers that require all 16 bits to encode
the next-hop neighbor ID still have 16 bits for the authenticator,
which, as we explain in §6.1, will still provide sufficient security.
Since each router decodes its own segment embeddings, SNAPP
does not need to waste bits to indicate the sub-field lengths:once
a router is configured to useℓ bits for the neighbor encoding, it
knows that the remaining bits encode the authenticator.

To reduce space overhead, SNAPP can employ path-embedding
caching nearly identical to the caching scheme used by TVA [30].
The scheme uses constant space at routers to cache the path em-
beddings for the largest flows, in which the overhead is most sig-
nificant. The caching adds a 48-bit flow ID to the header. A sender
chooses a random nonce for the flow ID, and each router includes
the flow ID in the calculation of the authenticator. When a packet
arrives with a valid path embedding, the router caches the flow
ID along with the path embedding. The sender can omit the path
embedding in subsequent packets, adding only the flow ID. This
caching scheme adds complexity, since endhosts must model router
cache evictions, but for some applications, the bandwidth savings
may justify the additional complexity.

5. APPLICATIONS
SNAPP can serve as a building block in a wide range of applica-

tions. This section considers four applications enabled bySNAPP.
We present these applications not as complete or optimal solutions,
but rather as examples of SNAPP’s usefulness and versatility as a
basic primitive.

5.1 Sender Anonymity
With a few changes, SNAPP can provide a system for preserv-

ing sender anonymity. When forwarding a packet, routers embed
both forward and reverse routing decisions using the opaqueem-
beddings described in §4.2. When a SETUP packet arrives at a
destination, it also contains a reverse-path embedding. The receiver
can use this embedding to reply to the initiator without learning
anything about the initiator’s location in the network.

For brevity, we make two simplifying assumptions before detail-
ing the anonymity system. First, while routes between hostsmay
be asymmetric (e.g., because of routing policies), we assume that
the network can, if necessary, provide symmetric routes. Although
this assumption may not hold for some specialized networks,such
as some wireless links, one-way satellite links, or microwave con-
nections, most links are bidirectional in the current Internet. This
assumption could also hold by construction in the design of future
network architectures or overlay networks. Second, we assume that
routers can identify which neighbor sent them a particular packet.
If an interface connects to a broadcast medium with multipleneigh-
bors, packets from these neighbors must be distinguished byaddi-
tional markings or layer 2 header information.



Given these two assumptions, we can design an anonymity sys-
tem based on the SNAPP protocol. When a sender initiates a SETUP
packet, its local router (or potentially a proxy) encrypts the source
IP address using symmetric key encryption based on a secret key
known only to the router. It then embeds the encrypted IP address
in the packet, removes the original source IP address, and forwards
the packet to the next-hop router.

When a SETUP packet arrives at a router, the router records the
neighbor,n, from which it received the packet. It encodes the
neighbor ID asn′ using the opaque encodings discussed in §4.2
and computes a standard authenticator that includesn′. When the
SETUP packet arrives at the recipient, it will contain a series of seg-
ment embeddings that point from the recipient to the sender.The
recipient can include this reverse-path embedding in its response.
Each router will locate its segment embedding and decode therout-
ing informationn′ to obtain the IDn of the appropriate next-hop
neighbor. The router then forwards the packet. Eventually,the
packet will reach the router local to the original sender. That router
decrypts the IP address embedded in the path embedding and for-
wards the packet across the final hop to the sender.

The scheme described above provides efficient initiator-anony-
mous communication. Only the first router knows the true identity
of the sender, which is reasonable in most scenarios, and even this
knowledge can be weakened by using a proxy or other related tech-
niques for anonymity [21,26]. Each router on the path knows only
the previous and next-hop routers; compromising a portion of the
routers will not compromise the sender’s identity. A globalad-
versary, however, could trace a message. Resisting this adversary
requires stronger cryptographic approaches such as DC-nets [11].

5.2 Sender Accountability
Many experts have opined that most current Internet threatscould

be addressed if the source of a packet and its contents could be
reliably identified. The hope is that sender accountabilitywould
provide the foundation for eradicating worms, viruses, Denial-of-
Service attacks, and other forms of Internet threats. Whilethe ef-
fectiveness of such an approach is debatable, we design a scheme
built on top of SNAPP that efficiently provides strong accountabil-
ity guarantees of packet (and packet data) origin. In doing so, we
illustrate the versatility of SNAPP, and in particular demonstrate its
usefulness in enabling very expensive routing calculations.
Requirements. In this application, we use SNAPP to achieve
two properties: 1) Each router can securely and statelesslyidentify
the host responsible foreach packet it forwards, and 2) A packet
recipient can prove to an ISP that a particular sender is responsible
for the packet it received.

These are strong requirements that are difficult to achieve effi-
ciently; so far, researchers have informally suggested that senders
could digitally sign every packet, which would be quite expensive,
especially in terms of the computation required.

The first requirement prevents malicious hosts from masquerad-
ing as legitimate hosts, allowing routers to perform accurate filter-
ing. Attackers must either take responsibility for their traffic or
compromise legitimate hosts. The second requirement allows ISPs
to respond to customer complaints in a fair and accurate manner.

Our scheme achieves these properties while imposing a minimal
computational overhead. Our key insight for designing an efficient
system is to perform a relatively expensive key setup between the
sender and each router on path setup, leverage SNAPP in-packet
state to store the cryptographic information, and use that crypto-
graphic state to efficiently verify subsequent packets. In essence,
we amortize an expensive route establishment over subsequent pack-
ets to achieve a viable sender accountability system.

This scheme does require additional space within the packethead-
ers, but we believe this is a necessary tradeoff to achieve the de-
sired accountability properties in a stateless manner. To provide
accountability, we assume the presence of a Public-Key Infrastruc-
ture (PKI) that routers can access, and leave a PKI-less solution as
an open problem.
Overview. This scheme expands upon the basic SNAPP proto-
col to establish a symmetric session key between a sender andeach
router along a path without requiring per-flow state at the router.
During setup, the sender authenticates to the routers usingan asym-
metric signature. Each router uses the PKI to verify the signature,
generates a symmetric session key based on the sender’s ID using
a pseudo-random permutation, and encrypts the symmetric key un-
der the sender’s public key. The router includes the encrypted key
in the packet, and it uses SNAPP to securely embed the sender’s
identity in the packet.

In later packets, the sender includes the path embedding anda
MIC of the packet’s static contents for each router on the path.
Each router uses SNAPP to verify the integrity of its segmentem-
bedding, regenerate the symmetric session key and verify the MIC
on the packet. Since the segment embedding contains the sender’s
identity, the router can treat the packet appropriately.
Details. Senders prepare a standard SNAPP SETUP packet and
include an asymmetric signature computed over the static portion
of the packet’s header and contents. The signature scheme ischo-
sen such that verification is relatively inexpensive (e.g.,Rabin sig-
natures, ECC signatures, or RSA signatures with a small verifica-
tion exponent). An attacker attempting to use the verification pro-
cess to deny service to other senders will be held accountable if
she uses a valid signature, or, at worst, invalid signatureswill only
hurt the first-hop router, which is in the best position to identify the
attacker.

When a router receives a setup packet, it uses the sender’s pub-
lic signing key to verify the signature and assign the sendera local
IDS . To save space, routers could agree on a canonical identifier
for each sender, so that the sender’s ID would only be included in
the packet header once. Then the router generates a symmetric key
KSRi

= FKi
(IDS) that it will share with the sender, whereF

is pseudo-random permutation keyed by the router’s secret keyKi.
The router then encryptsKSRi

under the sender’s public encryp-
tion key,PKS . The asymmetric encryption scheme is chosen such
that encryption is relatively inexpensive (e.g., RSA or ECCencryp-
tion). Finally, the router creates the following segment embedding
(in a manner similar to the usual SNAPP embedding):

s = (r′, IDS, {KSRi
}PKS

, Auth(r′, IDS)) (5)

wherer′ is the usual SNAPP encoding of the routing decision, and
Auth() is the usual SNAPP authenticator shown in Equation 4, but
with IDS as an additional input. As usual, the receiver returns the
collection of segment embeddings to the sender.

Upon receiving the collection of segment embeddings, the sender
decrypts the symmetric keyKSRi

for each router. To send a new
packet, the sender computes a MIC over the static contents ofthe
packetp using eachKSRi

in turn. The packet must contain each
of these MICs, along with the segment embeddings returned bythe
receiver. Thus, for each router on the path, the sender includes:

s
′ = (r′, IDS, Auth(r′, IDS), MICKSRi

(p)) (6)

When a router receives such a packet, it first verifies the authentica-
tor. Then, it regeneratesKSRi

usingIDS andKi and verifies the
MIC on the packet. If these checks succeed, the router can attribute
the packet and its contents to the sender represented byIDS . Fi-
nally, the router forwards the packet based on the decoding of r′.



If an endhost receives a malicious packet, it can provide the
packet as evidence to the ISP responsible for the router thatfor-
warded the packet. Since the ISP controls the router, it can access
the router’s secret keyKi, verify the packet’s authenticator, regen-
erateKSRi

and verify the MIC on the packet. Presumably, the
ISP trusts its own routers, so it knows that senderIDS must have
originated the packet, and it can blacklist that sender in the future.
While this scheme does not provide infallible legal evidence (since
the ISP can lie), it does allow the party with the most power tofilter
network traffic to accurately identify the traffic to be filtered.

5.3 Traffic Engineering
The goal of traffic engineering (TE) is to balance network load

across different paths to improve the utilization or responsiveness
of the network. A challenge facing traffic engineering is that the
balancing must not split a single flow across multiple paths,be-
cause TCP performs poorly in the face of packet re-ordering [31].
As a result, most TE schemes either operate offline at a granularity
larger than per-flow [12], or pin flows to a particular path [15],
requiring per-flow state in the router doing the splitting. Using
SNAPP, a router can allow established flows to remain bound to
their original path, while directing newly arriving flows toan al-
ternate route. Of course, SNAPP does not ease the task of finding
the right load balancing, but it makes it possible to do so without
per-flow state. If SNAPP were configured to share authentication
keys between routers, the splitting router could even definethe rest
of the path through an ISP, a task currently performed by using
tunnels configured with a protocol such as RSVP-TE [5].

5.4 Sender-Controlled Paths
SNAPP gives senders an appropriate amount of control over the

paths their traffic traverses. SNAPP’s properties explicitly prevent
senders from creating arbitrary paths that would violate router (or
ISP) policies; instead, senders can select amongst paths provided
by the network infrastructure.

Of course, we must assume the existence of a mechanism for
discovering multiple network paths. One simple implementation
might be for senders to periodically send SETUP packets through
the network to a destination and cache the resulting path pinning for
later use. Another common mechanism for finding and using mul-
tiple Internet paths is an overlay network [2, 24, 27]. Conversely,
once an overlay discovers a desirable set of paths (e.g., a set whose
first hops all traversed different links), it could use the path pinning
to ensure that these properties persisted through routing updates.
Finally, an architecture that allowed SNAPP to divulge topologi-
cal information could facilitate finding efficient overlay paths in a
manner similar to “path painting” [14].

6. ANALYSIS
In this section, we analyze the security and performance of the

basic SNAPP protocol presented in §4.

6.1 Security Analysis
We first consider the effects of malicious endhosts and then ex-

amine the impact of malicious routers.
Malicious Endhosts. A malicious endhost may try to attack the
availability of the SNAPP system, recombine segment embeddings
to create unauthorized paths, or subvert the cryptographicprimi-
tives we employ. To attack the availability of the system, anend-
host might attempt to launch a Denial-of-Service (DoS) attack on
a router by forcing it to compute many authenticators. However,
as discussed in the performance analysis below, a SNAPP packet
requires only a single MIC computation over a fixed amount of

data, which can be performed at line speed, making a DoS attack
on the router infeasible. SNAPP itself is not designed to protect re-
cipients from DoS attacks, though it does improve capability-based
systems that do so, as discussed in §7. We also note that by creating
a segment embedding, a router does not give up control over how a
packet is forwarded; it can always reroute a packet.

The design of the segment authenticator prevents an endhost
from modifying the encoded routing decision or recombiningseg-
ment embeddings. Since the authenticator is always computed over
the encoded routing decision, modifying the routing information
will invalidate the authenticator (we discuss attacks on the authen-
ticator itself below). Since the router always checks the authentica-
tor before acting on the routing information, any such modification
will be detected. The final version of the authenticator, shown in
§ 4.4 and 4.5 Equation 4, incorporates the segment embeddingfrom
the previous router. Thus, the authenticators form an authentication
chain, and each new authenticator is based on all of the previous
segment embeddings, preventing recombination.

Changing the value of any one segment embedding necessarily
invalidates the authenticators for the subsequent routers. Suppose
that a malicious endhost has two path embeddings,p andp′, each
consisting of a list of segment embeddings:

p = (s1, s2, . . . , sk)

p
′ = (s′1, s

′

2, . . . , s
′

n)

If the endhost attempts to rearrange the segment embeddingswithin
p, e.g., by swappingsi with si+1, then there will be an authenti-
cation failure at routeri. Routeri − 1 will forward the packet to
routeri as before, but routeri will attempt to authenticate the seg-
ment embedding created by routeri + 1, which will fail with high
probability as discussed below. Thus, routeri will drop the packet.
Now, suppose that the malicious host attempts to splice the two
paths to creatêp = (s1, s2, . . . , si, s

′
j , . . . , s

′
n). If s′j 6= si+1, then

routeri will forward the packet to routeri+1, which will attempt to
authenticate the embeddings′j . This will fail with high probability.
Otherwise, when the packet arrives at routerj, the router will cal-
culate the target authenticator usingsi as the value of the previous
segment embedding and compare it with the existing authenticator
which was calculated using the value ofs′j−1. With high probabil-
ity these two values will not match and the packet will be dropped.
Similarly, attempting to remove segment embeddings from the be-
ginning of pathp to creatêp = (si, . . . , sn) will fail, since the first
router will calculate the target authenticator using0 as the previous
value, whereas the existing authenticator used the value ofsi−1.
A malicious endhost could truncate the path embedding to create
p̂ = (s1, . . . , si), but routersi will forward the packet to router
si+1. When routersi+1 fails to find an appropriate embedding in
the packet header, it will drop the packet.

A malicious endhost could also attempt to subvert the crypto-
graphic authenticator used by SNAPP. Since the authenticator con-
sists of a standard cryptographic MIC, an adversary attempting to
forge a correct authenticator must resort to brute force guessing.
Assume that the router has over 32,000 neighbors and hence only
uses 16 bits for the authenticator, even though most routersare
likely to have far fewer neighbors and therefore use 25 or more bits
for their authenticators. With a 16-bit authenticator, an attacker
will find a correct forgery after computing216−1 = 32, 768 au-
thenticators, in expectation. With a 25-bit authenticator, forging a
single authenticator will require over 33 million attempts. Since the
adversary cannot locally verify the validity of a forgery, he or she
must transmit a packet for every guess, indicating that the adversary
must send over 32,000 packets to find a forgery for a single 16-bit
authenticator. Simultaneously forging two consecutive authentica-



tors would require over a billion attempts. To prevent an adversary
from using TTL values to probe one router at a time, we can in-
corporate the value of the TTL field in the authenticator’s MIC,
forcing the adversary to successfully forge authenticators for the
entire path. The amount of work required for a successful forgery
makes this attack prohibitively expensive, particularly since peri-
odic router key changes will invalidate the work done.
Malicious Routers. Much of the above analysis also applies to
malicious routers. A router might also misroute a packet or alter the
packet’s SNAPP-related data. If a router reroutes a packet,it will
arrive at a legitimate router, but the segment embedding pointed at
by the segment pointer will not belong to that new router. Since
the legitimate router has a different key from the intended next-hop
router, the authenticator will fail to validate with high probability,
and the probability of two successive authenticators validating suc-
cessfully is negligible. When the authenticator fails to validate, the
router will drop the packet. While this is certainly not ideal from
the sender’s perspective, it is also no worse than if the malicious
router decided to drop the packet itself.

A similar analysis applies to modifications of SNAPP data. A
malicious router can cause a packet to be dropped by an earlier
router on the path, but the malicious router could just as easily drop
the packet itself. Modifying an earlier router’s embeddingduring
setup will cause later packets to be dropped when they reach the
earlier router. Similar modifications to non-setup packetswill have
no effect. Modifying a later segment embedding will cause anau-
thentication failure since the authenticator will fail to validate, re-
sulting in a dropped packet. As discussed in §5.4, SNAPP supports
sender-selected paths; such a mechanism would allow the sender to
avoid a path that drops too many packets.

Finally, since SNAPP does not require any trust relationships be-
tween routers, subverting one router does not aid the adversary in
subverting (or otherwise affecting) other legitimate routers.

6.2 Performance Analysis
SNAPP can operate at line-speed and requires a reasonable amount

of space in packet headers, an amount that can be further reduced
to only six bytes through the use of caching.

When a setup packet arrives, the router must perform the usual
routing calculation. It must also compute the MIC shown in Equa-
tion 4 over 112 bits of input. When a packet arrives containing a
path embedding, the router must perform the same MIC computa-
tion and compare the result to the packet contents, but it no longer
needs to perform a routing calculation. Thus, the amount of time
and state required to forward a packet is no longer dependenton
the size of the routing table, but instead depends only on thetime
required to compute a single MIC.

A single MIC can be easily implemented in hardware to provide
line-speed performance. A typical block-cipher-based MICsuch as
CBC-MIC requires two serial invocations of a block cipher such as
AES. ASIC cores for AES can operate at data rates ranging from30
Mbps to 25 Gbps and require between 6,000 and 30,000 gates [13].
We can further optimize the MIC computation by using PMAC, an
alternative mode of operation for block-cipher based MICs that is
fully parallelizable and hence highly efficient to implement in hard-
ware [7]. Thus, the MIC computation will not create a bottleneck
on the router’s throughput.

Examining space overhead, a standard SNAPP header requires
five bytes plus four additional bytes for each router traversed. As
discussed in §4.6, after the initial round, routers can cache the path
embedding, so that the sender need only include a six-byte flow
ID in most of the packets sent, but the routers still use a constant
amount of state.

7. DISCUSSION
This section examines some of the additional useful properties

that SNAPP provides. We also consider an ISP’s control over rout-
ing decisions once SNAPP is deployed. Finally, we discuss the
effectiveness of SNAPP in incremental deployments.
Availability. By allowing forwarding to be decoupled from rout-
ing, SNAPP enhances network availability. As discussed in Sec-
tion 4.5, ISP policy ultimately determines the extent of thedecou-
pling. With a policy of maximal decoupling, an attack on rout-
ing (or a misconfiguration [8,32]) will not interrupt existing flows,
since the routers will continue to forward their packets based on the
earlier routing decision encoded in the packets. As long as asender
possesses a valid path embedding leading to the recipient, its pack-
ets can continue uninterrupted by problems on the routing plane.
Senders can cache recently used path embeddings so that setup is
performed infrequently.
Network Measurement. SNAPP can also facilitate network mea-
surements. A measurement tool could pin a path in place and elimi-
nate path variability as a source of measurement noise and/or error.
Any change in the path (as the result of a routing policy update)
will be reflected in the modified value of the path embedding, so
that the change can be properly factored into the measurements.
The change in the path embedding would also allow a measure-
ment tool immediately know when path changes occur, which may
also provide useful insight into network characteristics.
Capability Systems. SNAPP addresses an important limitation of
capability systems: their fragility under path changes. Capability
systems allow a receiver to provide legitimate senders witha ca-
pability token that authorizes them to send privileged network traf-
fic. Each capability is typically tied to a particular path between
the sender and receiver. Any deviation from the path invalidates
the capability. Using SNAPP, a sender can pin the path in place,
preserving the capability even in the face of routing problems or
transient routing changes.

Since most capability systems require routers to compute and
check an authenticator for information embedded in a packet, the
router functions required for capabilities and for SNAPP overlap
and could be easily combined.
ISP Route Control. By implementing SNAPP, ISPs do not give
up control over how routes are determined. Indeed, the ISP pro-
vides the various routes in the first place, and one of SNAPP’s
explicit design goals (§3) prohibits endhosts from constructing ar-
bitrary paths. Furthermore, even after a path has been pinned in
place, a router may still decide to reroute the flow’s traffic,though
this decision will increase the dependence between forwarding and
routing. As explained in §4.5, our design includes the flexibility to
update the path embedding dynamically in place in order to accom-
modate such changes.
Incremental Deployment. While we primarily envision SNAPP
as a building block for new architectures, we also believe ithas
value in incremental deployments. The effectiveness of a path em-
bedding depends on the number of SNAPP routers along the path,
as well as the stability of routes through the non-SNAPP routers.
The non-SNAPP routers do not embed their routing decision in
setup packets, and hence they may make different routing decisions
for subsequent packets. Thus, path embeddings for paths with a
small fraction of SNAPP routers that make frequent route changes
may prove unstable. Nonetheless, many path embeddings willbe
sufficiently stable over the lifetime of a connection, and SNAPP
routers, particularly those close at the edge of the network, can
still benefit from SNAPP’s decoupling of forwarding from routing,
as well as the amortization of expensive initial route lookups over
subsequent packets.



8. FUTURE WORK AND CONCLUSIONS
We are continuing to investigate techniques for verifiable aggre-

gation of segment embeddings in order to reduce packet overhead.
We also hope to perform Internet-scale simulations to better under-
stand SNAPP’s behavior during routing failures.

In considering architectural primitives for designing a network
architecture, whether for an overlay network or a next-generation
network core, we find that SNAPP represents a versatile building
block for achieving a number of useful properties. SNAPP pro-
vides sufficient flexibility to: 1) decouple forwarding fromrouting
to enhance the availability of paths in the face of routing distur-
bances, 2) provide route-selection control to the sender (to request
multiple routes and select among them), 3) enable applications with
expensive route lookups, 4) provide capability-based systems with
stable paths despite routing changes, 5) enable load balancing at
the sender, 6) provide sender anonymity at the network layer, and
7) provide sender accountability.

SNAPP also provides additional flexibility for implementing routers
and other forwarding devices; for example we can envision a sys-
tem where high-speed switches perform the packet forwarding, and
separate servers are used to aid in path setup. This may lead to an
approach for optical networks, where switching may be feasible in
the all-optical domain, whereas the more complex routing decisions
occur in traditional hardware.
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