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ABSTRACT

The deployment of sensor networks in security- and safetical
environments requires secure communication primitiveghis pa-
per, we design, implement, and evaluate a new secure roiting
tocol for sensor networks. Our protocol requires no spdati-
ware and provides message delivery even in an environmeht wi
active adversaries. We adopt a clean-slate approach aighdes
new sensor network routing protocol with security and edficy
as central design parameters. Our protocol is efficient gty
resilient to active attacks. We demonstrate the performafour
algorithms with simulation results as well as an implemgareon
Telos sensor nodes.

1. INTRODUCTION

Sensor networks provide economically viable solutiongfaide
variety of applications, including surveillance of créaldnfrastruc-
ture, safety monitoring, and many health-care applicatids sen-
sor networks are increasingly deployed in such security-safety-
critical environments, the need for secure communicatiomip
tives is self-evident. Likewise, the development of sequnigni-
tives enables the use of sensor networks in new applications

The central goal of this work is to ensure node-to-node ngessa
delivery, even if the sensor network is under active attdokthe
presence of an attacker, it is an extremely challengingttasiain-
tain correct routing information; the attacker could inje@licious
routing information or alter legitimate routing setup/apel mes-
sages. Even when route setup/update messages are aatteehtic
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compromised sensor nodes can supply incorrect routingrivde
tion of their own and cripple the routing infrastructure. #A®
discuss in Section 12, most proposals for sensor networtingu
protocols assume a trusted environment and cannot funatider
attacks [15] (two exceptions are INSENS, which routes omly b
tween nodes and a central basestation [4], and SIGF, whiigs re
on nodes knowing their geographic location [33]).

In general, there are three main directions for designingrse
routing protocols:prevention detection / recoveryandresilience
The preventionapproach seeks to harden the protocol against at-
tacks, typically through cryptographic mechanisms thstiriet par-
ticipants’ actions. The prevention approach is gener&iéyrhost
efficient and effective approach, but it only forestalls knoat-
tacks.Detectioninvolves monitoring the real-time behavior of pro-
tocol participants. Once malicious behavior is detecteal y@gort
to recoverytechniques to eliminate malicious participants and to
restore network order and functionality. The detectionrapph
can guard against potentially unknown attacks, as long asamne
distinguish anomalous behavior and correctly attribute & mis-
behaving entity. Theesilienceapproach seeks to maintain a cer-
tain level of availability even in the face of (possibly uagdicted)
attacks. Ideally, this approach should provide graceftfopmance
degradation in the presence of compromised network paatits,
i.e., the availability of the network should degrade nodaghhan a
rate approximately proportional to the percentage of comised
participants.

Previous secure routing protocols usually rely on a single a
proach. The majority of secure routing mechanisms focutuexc
sively on the prevention approach, since it is the most efitcand
effective against known attacks; an example is the S-BGBpro
col [16]. Many researchers propose detection and recoveshm
anisms; for example, the watchdog and pathrater schemuate
to identify malicious behavior in ad hoc networks [19], aedwwre
traceroute mechanisms attempt to locate malicious nodes &
routing path in the Internet [23]. To provide resilience,nparo-
tocols (e.g., the INSENS protocol [4]) turn to multipath tiog,
hoping at least one of the paths will be unaffected by an letac

The central contribution of this work is to start from a clestate
and systematically design a general-purpose secure gopitoto-
col that incorporates all three design principles. Our go#&b de-
sign a highly secure, highly available node-to-node senstwork
routing protocol. Point-to-point routing is essential fieany sensor
network protocols, including Geographic Hash Tables (GHZ9]
and certain key distribution schemes like PIKE [2].

In our routing protocol, we dynamically establish routiadples
and network addresses for each node using techniques &évainpr
interference from an active attacker. We then apply retilieuting
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Figure 1: Protocol Overview. During the recursive groupingalgorithm, smaller groups repeatedly merge to form larger goups.
Figure 1(a) shows the resulting groups. The nodes are labelevith their IDs ( A, B, etc.), as well as their resulting network addresses.
Figure 1(b) illustrates how the network addresses grow as gups merge and add bits to differentiate themselves from thiemerge
partner. The arrows in Figures 1(a) and 1(b) indicate how a mesage from nodeA to node F would be routed. Note that while the
network addresses form a tree, we do not route along the tredrigure 1(c) shows nodeA’s routing table, which maps progressively

longer network address prefixes to next-hop neighbors.

techniques to transmit packets, while incorporating meisimas to
detect and eliminate malicious nodes. The memory overhaad f
our routing protocol is small: each sensor node stores ouéng
entry for each prefix of its address, representing the negtAeigh-
bor node to move towards the destination area. Most impibytan
however, we can secure every step of our routing protocahaga
internal and external attacks and ensure high availafditpacket
forwarding.

2. ASSUMPTIONS

In this work, we assume the presence of a network authority
(NA), with public keyKya and private key(,g,i. Each sensor node
must be preloaded with the network authority’s public Kgy. We
assume each node receives a unidg (drawn from a total order)
along with a certificate{lDa}Kﬁ digitally signed by NA. The NA

uses a signature scheme that places the majority of the harte
the signer, so that verification can be extremely efficierr éx-
ample, verifying a Rabin signature only requires a singlelahar
multiplication [20]. As an alternative, the network autityicould
construct a hash tree over all of the node IDs and preloadreziz
with the root value and the intermediate values needed tweaut
ticate its ID to other nodes. This would limit the verificatioost

verifying {COHIDQ}KN?% and checking thatt' (Gj) = Co.

During the address setup phase of our recursive groupirtg-pro
col, we assume that the nodes within a group use a reliabslbro
cast mechanism to communicate with one another. This mecha-
nism could take the form of a simplistic flooding protocolptigh
in our implementation, we leverage the partial routing infation
possessed by each node (see Section 11 for details). Aslg eesu
malicious node that drops messages (or an adversary thapam
ticular network links) will slow the address setup process\aill
not subvert it.

Finally, our protocol is designed for networks in which tteelas
are primarily stationary, though we can tolerate occasipaaods
of mobility by rerunning our algorithm for establishing tog in-
formation.

3. PROTOCOL OVERVIEW

Our protocol assigns a network address to each node and estab
lishes routing tables using a recursive grouping algorithfor a
given topology, the algorithm proceeds entirely deterstically,
preventingattacks on routing information and limiting a subverted
node’s ability to perform malicious actions. When the reowg
grouping algorithm terminates, each node has a unique nletwo
address, as well as a routing table that implicitly mapsalde-

to a few hashes, but it would come at the expense of additional |ength address prefixes to next-hop node neighbors. Figae 1

communication overhead.

The NA also provides each node with a sekef O(logn) ran-
domly chosen, verifiable challenge valu&s...,Cx. These will be
used to detect deviations during the route setup processcawe
store the challenges compactly using a standard constnuatised
on one-way hash chains [4, 35]. We provide each sensor aode
with a one-way hash chait¥ = {(Cp,Cx) : h*(C«) = Co}, where
h¥(y) signifies applying the hash functientimes starting with the
valuey. Each initial challeng€y is signed by the network authority
(giving the nod€[Cy |1 DC‘}K@{) using the same signature scheme as
before. To provide an authenticated challenge during roundde
a can release challeng@g (calculated a&*~'(Cx)), along withCo,
IDg and {C0H|Da}K¢- Other nodes can verify the challenge by

illustrates the resulting set of recursive groups; the sad@wn all
belong to the same level 3 group, which is subdivided int@llev
2 subgroups that are in turn divided into level 1 subgroupschE
time two groups merge, they extend their network addresstbs w
an additional bit as shown in Figure 1(b). While the resgltiet-
work addresses form a binary tree, our routing algorithnsdom
perform tree routing (i.e., it does not route along the tteacture,
as evidenced by the fact that the internal “nodes” in the esir
tree do not correspond to actual sensor nodes), since wigegas
typically inefficient.

Instead, our routing design is based on area hierarchies-as d
scribed by Kleinrock and Kamoun [18], and it guarantees ttet
size of the routing table, the size of the network addressesthe



length of routing paths (as measured in logical hops thrahgh
space of network addresses) will be boundedlbg, n], wheren
is the number of nodes in the network.

Our protocol incorporates several techniques (describedkc-
tion 7) for detectingmalicious behavior. We actively detect at-
tempts by a single node to acquire multiple identities in ribe
work. We also use a Grouping Verification Tree (GVT) to detect
deviations during the recursive grouping protocol. Whenadi-m
cious node is detected, we use a Honeybee technique to atanitn
from the network, allowing the network tecoverfrom intrusions.

Once the routing information has been established, eagdosen
can route a packet by forwarding it to the entry in its routtag
ble with the longest matching prefix (Figure 1(c) providesiaple
routing table for nodéd). The arrows in Figures 1(a) and 1(b) il-
lustrate the path taken when noflesends a packet to nodie We
addresiliencyto the routing process by providing the sender with a
limited degree of control over the path taken by its packEiés al-
lows a sender to route around both natural and malicioudqmrab
in the network and to choose paths based on additional ragtric
such as energy efficiency.

4. ADDRESS AND ROUTING SETUP

We begin this section with an overview of the recursive giogp
algorithm that we use to establish addressing and routiiogria-
tion. Then we describe the necessary initialization steysthe
algorithm itself. Finally, we discuss techniques to harimi¢h the
removal and the addition of nodes.

4.1 Setup Overview

Our recursive grouping algorithm assigns a unique netwdrk a
dress to each node in the network, while also populating Badl’s
routing table. Initially, every sensor node comprises s group.
Then, the algorithm repeatedly merges groups of nodesanget
groups. A groufG initiates a merge by sending a merge proposal
to the smallest neighboring gro@. Choosing the smallest neigh-
bor encourages groups of similar size to merge, thus keehing
resulting network address space dense and compact (wezanaly
the efficiency of the recursive grouping algorithm in Sett#?2).

If G’ also proposes t&, then the two groups merge to form a new
group. After each merge, the nodes in grasgach add a bit to
their network addresses to differentiate themselves ffembdes

in groupG’, and also add an entry in their routing tables indicat-
ing a neighboring node that is a path to any node in gi@uprhe
nodes inG' make similar changes. This process continues until the
entire network converges into a single group.

At each stage of the grouping algorithm, the groups are asdig
IDs that, along with their sizes, can be authenticated usiBgoup-
ing Verification Tree (GVT). We discuss the use of the GVT to
perform authentication and detect deviation from the girogal-
gorithm in Section 7.1.

Outcome. Atthe completion of the grouping protocol, each node
will have a unique network address, a routing table that nsapable-
length address prefixes to next-hop neighbors, and a mebge ta
that will be used to secure each step of the algorithm. Theorkt
address will be of the fornrR. = R,_1]|...|]|Ro, where each entry
Ri € {0,1} andr indicates the number of times that node (or the
group containing that node) has merged with another groagh E
node will also have a routing tabiei] where 0<i < r. Each entry
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and refuse merge propos-now agree to merge.
als from the larger groups.

Figure 2: Recursive Grouping. Each group is labeled with its
size, and lines connect two groups that can communicate with
each other. The arrows indicate a merge proposal from one
group to another. The figures show two intermediate steps in
the recursive grouping algorithm. After one additional merge
(not shown), the entire network will consist of a single grop.

4.2 |Initialization

When routing establishment is initiated, each node carstt
its own group, and the group’s ID corresponds to the nodetuen
ID. Before beginning the recursive grouping described wgetbe
nodes perform a secure neighbor discovery protocol. Eade no
a broadcastiIDm{lDa}KNfi) (i.e., its ID and the accompanying

certificate from the network authority) to its neighbors eTieigh-
bors verify the signature and add naaléo their neighbor lists. An
external adversary cannot inject a manufactured ID, sineélibe
unable to produce a proper signature to match it. A compreanis
node will be unable to alter its ID without invalidating itigsature.

We bound the time allocated for the secure neighbor disgover
protocol and require every node to announce its ID during ple-
riod.! After the discovery protocol concludes, nodes in the networ
will no longer accept new neighbors, preventing an advgifsam
attempting to insert malicious nodes at a later point. We afe a
replication detection algorithm (described in Sectior) ToXletect
an attacker who replays certificates from legitimate nodes.

4.3 Recursive Grouping

Our recursive grouping algorithm proceeds in an asynchusno
distributed fashion. A grouf first collects information about the
current size of each neighboring group. It then proposeseimen
with the smallest neighbd®’ and waits for a response. If that group
does not wish to merge witB, thenG considers the merge a fail-
ure, and restarts its merge process by redetermining itdesha
neighbor. Favoring the smallest neighbor makes it moréyfitteat
groups of similar size will merge, and hence the size of a grou
will approximately double during each round. We analyzs #fi
fect more precisely in Section 8.2. @& also proposes to merge
with G, the two groups merge to form a new groygFigure 2
illustrates this process). Below, we describe the prototdetail.
Determining Neighboring Group Information. Consider a group
G at an intermediate stage of the grouping process. Someporti
of the nodes in grou have neighboring nodes not in the group.
We refer to these nodes adge nodeslf all of a node’s neighbors
belong to its group, then we refer to it as emerior node The
edge nodes are responsible for communicating with neigdpor

7 [i] in a node’s routing table maps an address prefix to a next-hop 9roups and forwarding the results of merge agreements tiotize

neighbor that leads toward a node with a network addresshingtc
the prefix. Finally, each node will have a merge taffgi] where
0 <i <r that records the ID and size of each group it merges with.

1if the nodes are loosely synchronized, the neighbor disyqve-
riod can have a realtime bound. Otherwise, an authentidatesti-
cast from the network authority can signal the end of theqoait
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Figure 3: Merging Groups. In the figure, a,a’ and B,B’ are
edge nodes for groupsA and B, respectively. Nodesx and 3
and nodesa’ and B’ are neighbors. Bothp and B’ will decide
that group B should merge with groupA, and each will forward
this decision to the rest of groupB. This will only result in
a single broadcast withinB, since internal nodes will suppress
duplicates.

rior nodes (see Figure 3). Since different edge nodes walt frem
different neighboring groups, they must communicate wabhe
other to decide on a merge target (i.e., the group to whicknd &
merge proposal). To facilitate coordination within thegwpevery
node in the group tracks the current size of the grg@p) @nd also
maintains a list of the neighboring group 105 {91,092, ...,k })-

To initiate a merge, each edge node floods its group with #tee si
and ID of each neighboring group it borders. After an edgesnod
receives|’| distinct announcements, it has heard about all of the
neighboring groups.

Exchanging Merge Proposals. Once the edge nodes know about
all of the neighboring groups, they each independently egmihe
neighboring groups’ with the smallest siZe(with a tie broken in
favor of the group with the smallest ID), and any edge nodé tha
bordersG’ will broadcast a merge proposal to that group. If the
merge target refuses to merge (by announcing that it haadgire
selected another group), then the edge nodes propagateftisalr

to the rest of the group and the edge nodes once again conhygute t
smallest neighboring group. & also select$ as a merge target,
then the two groups will merge.

Merging. If groups G and G’ agree to merge, they will form

a new groupy. As a result of this merge, all of the nodesyin
must compute the new grouDy, record information about the
group they merged with, add an entry to their network adexsess
and update their routing tables and neighboring group lists

First, all nodes in the group can independently compute ¢iae n
group ID as:

IDg < IDg

ID
v IDg > IDg

= @)

h(IDG7 |G‘7|DG’7 |G/D
h(IDG’7 |G/|7 IDG7 |GD

The new group ID incorporates the IDs and sizes of both of lthe o
groups. The method for computing the new group ID is designed
to avoid collisions in the group ID space. Each node in grGup
also updates its merge table such thefi] = (G',|G'|). This infor-
mation will be used later to authenticate the merge process.

In addition, every node that belonged to gra@mmust add an
entry to its network address to differentiate itself frone thodes
that belonged t&’ (and vice versa). Each node in groBppdates

2All edge nodes will arrive at the same conclusion, since #iey
have the same information about the sizes and IDs of the beigh
ing groups.

its network address such that

0
- {3

wherei represents the number of times that particular node has
merged. Nodes ii6’ use an analogous equation but wihand
G’ transposed.
As a result of the merge, each nodédifand inG’) adds an entry
to its routing table. For a node 1B, the new entry indicates the 1D
of the node that informed it abo@’. In other words, if nodex
learned abou6’ from nodek, thena adds an entry to its routing
table such that [i] = k. Nodek will serve as nodex’s next-hop
neighbor when it needs to forward a packet to a node in g@&up
Finally, each node iiG will merge its neighbor lisT with the
neighbor list™’ provided byG’ to obtain the neighbor ligt for the
new group. Thus, each node will always have an updated likeof
groups that neighbor its own group.
Post-Merge. After the nodes in the newly formed groyphave
computed the updates described above, the edge nogésaad-
castlDy, |y| and[" to the neighboring groups, and once again begin
the process of determining the smallest neighboring grotims
grouping process continues until all of the nodes in the agtw
have merged into a single group.

IDg < IDx

2
IDg > IDg )

4.4 Network Maintenance

Node Death. During a sensor network’s lifetime, some nodes
will inevitably fail due to battery exhaustion or other maaical
problems. To adapt to sensor death, nodes must update aheir r
ing tables, but the network addresses can remain unchariged.
general, the resilient routing techniques described ini@e&.2
will allow nodes to route around dead companions. However, w
also include a provision allowing nodes to bootstrap regtaent
information from their neighbors.

If nodea decides that its neighbd¥j has died, it determines the
indexi of B;’s position ina’s routing table B; may appear as a next
hop more than once, but the same protocol applies). Tdnevi|l
broadcast a request to its neighbors, asking for a node tithar
B; that will route to groug. Each neighbor will respond unless it
too has no valid entries remaining, in which case it begirimda
inquiry. If a neighborBy replies with node3y, then if By, is one
of a’s neighbors, it will setr [i] = Bm; otherwisea sets7 [i] = P.
Thus, the network routing topology will adapt as nodes die ou
Node Addition. Many applications require the ability to add
nodes to the network after the initial deployment. Sincésaddi-
tions occur relatively infrequently, we propose periotliceerun-
ning the recursive grouping algorithm. If the nodes aredbosyn-
chronized, then time could be divided into epochs, and thear&
would run the recursive grouping algorithm at the beginmihgach
epoch. Otherwise, the network authority could use an atitaad
broadcast to indicate the need to rerun the recursive gnguago-
rithm. Rerunning the algorithm would allow newly added node
to acquire network addresses and enable the network tasgste
cally adapt to the presence of dead nodes and to the curreet po
levels of previously deployed nodes.

5. FORWARDING

In this section, we describe how nodes use the routing irderm
tion established during the recursive grouping algoritbrfotward
packets. We also present a simple modification that addgeres
to the forwarding process by allowing the sender control ohe
forwarding path. Finally, we add an important optimizatifmm
providing efficient forwarding.



5.1 Basic Forwarding

In the simplest case, our scheme uses area style forwartihg [
based on the secure network addresses and routing tabéds est
lished by the recursive grouping algorithm. Each node’svoek
address reflects its logical position in the network, andrtiuting
table entries tell a node how to forward a packet to a groupaton
ing the destination address.

When the grouping algorithm concludes, the network willdhav
merged into a single group, as Figure 1(a) illustrates. érfigure,
all of the nodes in the network belong to the same level 3 group
Within the level 3 group, the nodes are divided into two leXel
groups (a 0-group and a 1-group, distinguished by the mgsifii
cant entry of their addresses), each of which is furthedeiiinto
two level 1 groups. Within the level 1 groups, each node hasel |
0 identifier that distinguishes it from the other node in thene
level 1 group. Thus, a node’s full network address is the atmc
nation of its level identifiers, sorted in reverse order byele For
instance, node 0.0.1 has a level O identifier of 1, and aniftemf
0 for levels 1 and 2.

Before describing forwarding in detail, we first provide som
intuition. When a node with network addrddseceives a message
destined for addreds, it finds the most significant digit betwe&n

nodes. Instead of only storing the first such neighboringenasi

the next hop to reach that group, the node will remember three
entries,L, M andR for each routing table entry [j], with eachL,

M andR representing a different neighboring node that informed
the node of thg!" neighboring group that it merged with. These
additional entries will be used by the sender to select atbatlugh

the network.

We use the redundant routing table entries to route aroutid bo
natural and malicious problems in the network. When a noddsse
a packet, by default, each node along the path will forwaral tihe
M entry in the appropriate routing table entry. However, adsen
can also choose to include a direction stifng dp||01]]...||Ok, 8 €
{L,M,R}, 0<i < k. If the sender’s address differs from the recip-
ient's address in least significant digits, then the path will consist
of A logical hops, but the sender should ket A, since each logical
hop may require multiple physical hops.

When an intermediate node receives the packet, it will fodwa
the packet using the appropriate entry in its routing tallelia-
tated by the direction string. For example, if the sendeluthes
the direction stringd = LMLR, then the first hop along the path
will forward the packet using it entry, the second hop will for-
ward the packet using thd entry and so on. By selecting a ran-

andN that differs and sends the message towards the other group agom direction string, the sender can easily choose a newfqritis

the corresponding level. For examplepif=0.1.0 andN = 0.0.1,
then the fact thab andN share the same identifier (0) in the most
significant bit of their addresses implies that they are axghme
level 3 group. However, the next bit reveals that within tiatup,
D resides in the level 2 group with a 1 identifier, wheresides in
the level 2 group with a 0 identifier. Thud,will forward the packet
towards the level 2 group with a 1 identifier. Note that mutip
physical hops may be required to reach that group. The fiidé no
in the level 2 group with a O identifier that receives this rages
will start matching bits at subsequent levels.

In terms of the information established by the recursiveigiag
algorithm, suppose a node with address= R;_1]||...||Rp wishes
to send a message to a node with address- R _, ||...||R;. The
sender begins by comparing the most significant digits irntuie
addresses (i.e., it check_; againstR _,). If these digits match,
it proceeds to the next most significant digit, until it findsligit
such thaR; # R (this must happen, since the sender is presumably
not sending messages to itself). The sender consults itisgaa-
ble entry for position and forwards the message to the next hop
neighbor recorded i [i]. This ensures that the message will even-
tually reach a node that will match on address digts;, ..., R

5.2 Resilient Forwarding

To achieve high availability of message delivery, we legera
multi-path forwarding. We extend the routing tables esshield
during the recursive grouping algorithm to include mukiplext-
hop nodes at each stage. We then modify the forwarding &hgori
to allow a sender to loosely select amongst the possiblesgath
a destination. Thus, the sender can route packets aroubtepro
areas (whether caused by malice or malfunction) in the nétwo

To add resiliency to our protocol, we can take advantage ef th
natural redundancy present in the recursive grouping idhgorto
add additional options to each node’s routing table. Asrilesd in
Section 4.3, when two groups merge, each node creates aie ent
in its routing table to store the ID of the neighbor from whith
heard about the merge target. In practice, a group is likehave
multiple edge nodes that all flood the group with informatidout
the same neighboring group (e.g., in Figure 3, tptind B’ will
inform nodes in grouf about groupA). In this case, each node
may hear about the neighboring group from multiple neigimgpr

packets. It may decide to choose a hew path when it fails tivec

an acknowledgement from the recipient, or if it finds theage

of a particular path excessive. A node may also choose to use a
secure traceroute protocol, such as the one proposed byaRatim

han and Simon [23], to isolate the faulty node and potegtiadle

the Honeybee technique described in Section 7.3 to elimihads

we show in Section 10.1, a randomly chosen direction vecttbr w
select a path that is largely disjoint from the first path, gkt

likely that the sender can successfully route around prolaeeas.

5.3 Choosing Nearby Edge Nodes

We can also use the redundancy of the recursive grouping al-
gorithm to enhance the efficiency of our forwarding algarithy
having nodes select entries in their routing tables basea dis-
tance metric. In other words, given the choice between twat-ne
hop neighbors, a node will enter the one closest to the tgrgep
in its routing table entry.

As described in Section 4.3, when an internal node hearstabou
a neighboring group via an edge node, it assigns the firshneig
bor from which it heard the announcement to its routing tabley
for that group. However, as mentioned earlier, a group &lyiko
have several edge nodes bordering the same neighboring.drou
that case, we can improve routing efficiency by having eatdr-in
nal node choose a neighbor that will route towards the clesize
node, rather than the edge node that it hears from first. Ifde no
selects only the first edge node it hears from, then the edde no
that announces the neighboring group first could becomespbibt
in the network, since all of the internal nodes will use tha edge
node to forward packets to the neighboring group. Furtheeptay
forwarding to the closest edge node, we shorten path lengjtite
we quickly transport the packet to a node that knows more tabou
the next hop than any of the nodes in the current group. From a
security standpoint, choosing edge nodes based on dispaaee
vents a malicious edge node from rushing its announcemeas so
to become the sole link between the two groups.

To measure distance, we use a standard construction based on
one-way hash chains [10]. We provide each sensor node with a
collection of one-way hash chains (in addition to those usegn-
erate challengesW¥ = {(v,p) : i*(p) = v}, whereh*(y) signifies
applying the hash functior times starting with the valug, and



Figure 4: Hash Tree Construction. A hash tree is constructed
by hashing the roots of two subtrees to form the root of a new
subtree. In our protocol, the leaf values will be node IDs, ad
the internal nodes will represent group IDs created during he
recursive grouping algorithm, as described in Section 4.

A is the length of the hash chain. Each final valuis signed by
the network authority. When a node determines its role as an
edge node, it releases one of its hash chain d&irg) (and the
signature{v,IDa}Kﬁ;) to the edge nodes in the neighboring group.

Those edge nodes announce the group’s presence by forgiardin
the node’s ID, along with the signatune,andh(p) to their neigh-
bors in the group. At each hop, a node verifies the signature on
and forwardsv, the signature, and the result of applying the hash
function once again. A node that receives a [fajp’), calculates

its distance by applying to p’ until it arrives atv. If this requires
applications, then the node is at a distancd ef A — k. The use of

a one-way function prevents an adversary from artificiadigreéas-

ing the distance to an edge node, since the hash chain cabenly
traversed in the forward direction.

6. BACKGROUND: HASH TREES

In this section, we review the construction of hash treet) am
emphasis on the two authentication properties used to eexur
protocol: authentication of any leaf value given the rodtigaand
authentication of a root value using a challenge-resporweqgol.

Hash Treeqa.k.a. Merkle hash trees [21]) provide an efficient
mechanism for performing two authentication operatiofeifyLeaf
andVerifyTree VerifyLeafauthenticates a particular valé@among
a sequence of valués B, ... ., based on a single authentic root value
V. VerifyTreeuses the leaves in the hash tree to verify the tree itself.

To construct the hash tree, we place the valdeB, ... at the
leaf nodes of a bhinary tree, as Figure 4 shows. (For simplheé
assume a balanced binary tree.) The derivation of a pareletmg
from its left and right child nodesy andmy is

®)

where|| denotes concatenation ahds a cryptographic hash func-
tion providing weak collision resistance [20]. We comptite kev-
els of the tree recursively from the leaf nodes up to the rooden
Figure 4 shows this construction over the eight vald€eB, ... H,
e.g.,v1 = h(A[|B), Va = h(v1[|v2), andV = h(Va||Vp).

The VerifyLeaf operation can use the root value of the tree to
authenticate any of the leaf nodes in the tree. To authe¢eatickeaf
value6 the sender discloses bditand all the sibling nodes of the
internal nodes on the path frofhto the root node. The receiver
can then use these nodes to recompute the values on the path up
the root, and if the recomputed root value matches the knoeth r
value, the valud® is guaranteed to be authentic. For example, to
authenticate valu€ in Figure 4 (given the authentic rowf), the

mp = h(m || my)

valuesD, v; andV,, are required to verify the equality:

v:h(h(vlwcum) Hvb)

In contrast, th&/erify Treeoperation uses authenticated leaf nodes
and a challenge-response protocol to probabilisticallidate the
hash tree construction. Suppose a challenger wishes fy wene-
sponder’s hash tree. The responder commits to the tree yngen
the root value and the number of leaf values in the tree tolthé c
lenger (assuming the responder is committing to the treaisho
in Figure 4, the responder would provi@é,8)). The challenger
identifies a random subset of leaf values (either by pickiogfa
known set of leaf values or by generating a random path tlroug
the tree from the root down to a leaf) and asks the responder to
prove that those values exist in the tree. For each leafteeleihe
responder provides the authenticated leaf value alongtihdtmter-
mediate values leading to the root of the tree. In the exastmean
in Figure 4, if the challenger choos€sandE, then the responder
will provide two chains of values(D,v1,V;) and(F,v4,Va). The
challenger authenticates the leaf values by recomputiegjipro-
priate hashes and checking that they produce a consiseent
the example, the challenger would compute Equation 4 tdyeri
and then compute an analogous equation to véifyf all of the
leaf values are verified successfully, and if the intermtedrash
values are all consistent and lead to the root value thatetsigon-
der committed to originally, then the challenger accepésttash
tree as legitimate. This procedure provides a strong, thqugb-
abilistic, guarantee of the correctness of the hash treeydBtek,
Song and Perrig use a similar approach for secure informatje
gregation [27].

DETECTION AND RECOVERY

To enhance the security of our routing protocol, we add addi-
tional measures to detect and recover from malicious behawe
describe the Grouping Verification Tree (GVT) used to detct
tempts to deviate from the recursive grouping algorithm. alée
employ a duplicate detection scheme to prevent nodes framme€l
ing multiple identities or attempting to group promiscugug-i-
nally, we introduce a Honeybee technique for removing naie
nodes from the network.

7.1 Detecting Grouping Deviations

To prevent an adversary from tampering with the recursivegyr
ing algorithm, we use a Grouping Verification Tree (GVT) te de
tect deviations or inconsistencies. The GVT constructfobased
on the hash trees described in Section 6, and hence the G¥Ts pr
vide us with similar authentication properties. At eaclystaf the
grouping algorithm, a group can use its GVT to authenticege i
group’s size and ID to other nodes (and similarly verify tiees
and IDs of neighboring groups).

The GVT for a particular group can be thought of as a hash tree
constructed over the nodes in the group. Each node’s ID isfa le
value, the group’s ID is the root value and the intermediately
IDs (from previous merges) are the internal nodes of the tragh
For example, consider the hash tree shown in Figure 4. Vigthia
hash tree as a GVT, the leaf valuésB, .. .) represent the IDs for 8
sensor nodes, while the root vaMes the ID for the entire group.
When node#\ andB merged, they formed a group with an ID\af
and similarly, when they merged with group (containing nodes
C andD), the combined group of four nodes had anrMpD

Below, we explain the GVT mechanism in greater detail. Then
we show how two groups that are about to merge can verify each
others’ size and ID using the GVT. They can also use the GVT to

4)
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Algorithm 1 : GVT Verification During a Merge. Assuming
groupsG andG' are about to merge, the steps below illustrate how
G can verify the GVT forG'. G’ would perform an analogous pro-
cedure to verifyG's GVT.

1: G’ announces its ID and siZéD g/, |G/|) to G

2. GroupG chooses one of its nodes as a challeri@@er

3. C selects challeng& and broadcasts it to nodes@

4: Nodes inG verify Cy is a correct challenge and edge nodes
forwardC, to G/

: Based or€y, groupG’ chooses a responder node

: Responder sends its certificate and merge tali& to

: Nodes inG perform theVerifyTreeoperation to authenticate
the GVT forG’

~N o o1

verify each other’s neighbor list. The final GVT can autheat
any node’s network address.

GVT Formation. During the recursive grouping algorithm, each
node maintains a GVT for the group that it belongs to. The grou
ID is calculated such that it represents the root of the gsoBp/T,
with the IDs of the nodes in the group at the leaves (note the si
ilarities in the calculation of the intermediate hash tre&ugs in
Equation 3 and the calculation of the group IDs in Equation 1)
Each node also has a merge tablethat records the ID and size
of each group it has merged with. In the example in Figure 4,
nodeA will have three entries in its merge tabler [0] = (B, 1),

M [1] = (vo,2), anda [2] = (Vp,4). These values are used for the
authentication operations described below.

GVT Verification During a Merge.  When two groupsG and

G/, decide to merge, they use tMerifyTreeoperation described
in Section 6 to authenticate each other's GVTs. Since the &SVT
incorporate both the group IDs and the group sizes, thisiaitlyl
authenticates the ID and size claimed by each group (herese pr
venting a malicious node from lying about its group’s sizelider

to influence the grouping process). Algorithm 1 summaribes t
important steps in the verification procedure.

To use theVerifyTreeoperation, grougs will generate a chal-
lenge for its merge targe®’ that will randomly select a leaf node
(i.e., an individual sensor in grou@’) in the GVT. The leaf node
will respond to the challenge on behalf@f, by providing its own
node ID (and accompanying certificate) and the intermeddtees
in the GVT.

To prevent a malicious node from influencing the choice of the
random challenge, grou@ selects a challenger no@based on
the group ID,IDg. To determine the challenger, each node in the
group compute& (IDg), whereF is a cryptographic hash function
with an even distribution over its range. The node in gr@upith
a network address that is a prefix BfIDg) will be the group’s
challenger. As we show in Section 8.2, the network addrassas
group are unique, and no network address is a prefix for arer oth
network address, so the challenging node will be unfjue.

The challenger node then broadcasts its current challesge v
Cy to the group along with{k, {Co\||Dc}K§;}, the authentication
information necessary to validate the challenge (disclss&ec-
tion 2). Each node in grou@ can verify that the challenge was
generated appropriately by the correct node. The edge romies

3The challenger is also guaranteed to exist, since aftermache,
some nodes will have network addresses that start with O@me s
that start with 1. Combined with the uniqueness result,ithfdies
that we can always find a specific challenger with a networkessd
that is a prefix oF (IDg).

4Wherek is the number of times the challenger has merged.

dering groupG’ will forward the challenge valu€y to it.

Group G’ will use the challeng€, to choose a responder in a
manner similar to the selection of the challenger. Each notee
group will compute:

r=F(IDg,|G|,IDg, |G'],Cy) ®)

The node in the group with a network addresses that is a prefix
of r will be the responder fos'. The responder sends its node
ID, certificate, and merge table to the challenging gr@uipSince

the merge table contains all of the intermediate valuesof3RT
(i.e., the internal nodes of the hash tree) and the certfisatves

to authenticate the responder’s ID, each node in g@uwan use

the VerifyTreeoperation to authenticate the intermediate values that
lead to the current size and ID claimed by grds(p If verification
fails, then the challenging group aborts the merge and begirew
round by selecting its next smallest neighbor.

Neighbor Verification. We can extend the challenge-response
protocol to allow both groups to verify the neighbor listeyided.

The merge targe®’ forwards groupG's challengeCy to each of

its neighboring groups. These neighbors select a respasiteg a
modified version of Equation 5, such that neighkealculates:

r =F(IDg,|Dg,1Dx,Cx) (6)

The chosen responder sends its node ID, certificate, ancertedyig
to G’ which forwards the response @. Thus,G can verify the
existence of5'’'s neighbors and vice versa. Each edge node in the
combined groupy will then know how many neighbors it should
expect to hear from the next time the group wishes to initate
merge by computing the smallest neighboring group.

Network Address Verification. Eventually, all of the nodes in
the network will fall under a single GVT, and thus they will al
know the root valu&/. Thus, we can use théerifyLeaf operation
to authenticate any node’s network address. To autheatitsatet-
work address to another node, nodlean provide its merge table,
which contains the intermediate values in the GVT. Thisvedlthe
verifier to recompute the necessary hashes and verify tadirtal
resultisVv.

7.2 Duplicate Detection

We introduce one additional detection step to prevent acioals
node from claiming multiple IDs (e.g., by replaying legitite cer-
tificates from other nodes) or trying to merge with severalgs si-
multaneously (in order to obtain multiple network addre¥sAfter
the recursive grouping algorithm concludes, each nodelares
its node ID and its network address to its neighbors. We usseth
pairs of values to run a replication detection algorithm] [t al-
lows legitimate nodes to detect a node ID that claims mtiygt-
work addresses or vice versa. The malicious node can beedvok
using evidence from the replication detection algorithnviarthe
Honeybee technique described below.

7.3 Eliminating Malicious Nodes

If a legitimate node detects malicious behavior using anthef
techniques described above, it uses the Honeybee recowty-m
anism. Essentially, the legitimate node broadcasts a pauiodi-
cating the malicious node, and the other legitimate nodeskes
both nodes involved. By revoking both nodes, we limit theepet
tial damage of a slander attack (i.e., a subverted node thiats<
a legitimate node is malicious), since a malicious node agadyn o
revoke a single legitimate node before being revoked itself

More specifically, to remove a malicious node from the nekwor
a legitimate node initiates a full network flood of a speciaindy-
bee packet, with the malicious node’s ID, its own ID, and aaig



ture® When another node receives this packet, it will revoke the
malicious node (i.e., cease to communicate with, or on lhetal
that node). Like its namesake, however, this techniqueratgares
the detecting node to sacrifice itself. Nodes that receigeHbn-
eybee packet revoke the initiator as well. Thus, a subveroet
could use this technique to revoke a legitimate node, bytairthe
cost of revoking itself as well.

The Honeybee technique will successfully eliminate maltisi
nodes under two conditions: first, the number of malicioudasan
the network must be less than the number of legitimate neaeks,
second, legitimate nodes must be capable of accuratelsifiglag
malicious nodes. The first condition is a reasonable assamypif
the majority of the nodes in the network have been compraiise
then the network already has little chance of successfulabipe.
The second condition is more stringent, but equally necgsst
a malicious node can convince a legitimate node that a sdeend
gitimate node is malicious, then the first legitimate nodk sting
the second, eliminating two legitimate nodes without giting the
malicious node. Thus, we reserve the Honeybee techniqusitier
ations in which a legitimate node has absolute evidencdifagiag
another node (e.qg., if it detects a replica after the receigriouping
algorithm concludes or if a neighbor’s signature repegtéails to
verify properly). Additional detection techniques couldamake
use of the Honeybee mechanism.

8. ANALYSIS

In this section, we demonstrate the correctness of ournguti
algorithm, consider the extent to which the recursive gigi@l-
gorithm generates uniform group sizes, and analyze theigeofi
our scheme.

8.1 Correctness

To demonstrate the correctness of our routing protocol,stabe
lish that it generates a unique network address for everg irothe
network. We also show that no node has an address that is & prefi
of another node’s address. Given these addresses, ourrfinga
algorithm behaves analogously to area routing describdtdin-
rock and Kamoun [18]; their paper demonstrates the coresstof
the forwarding algorithm.

We begin by proving the following theorem:

THEOREM 1. The network address of every node in a group is
unique within that group.

Proof of Theorem 1: Initially, when two nodes merge, they each

network must have a unique network address. Furthermorenwh
two groups merge, the bit added as the most significant digéch
node’s network address ensures that no network addréS<an
be a prefix of a network address®4 (and vice versa).

8.2 Performance

In this section, we analyze the size and balance of the groups
created by the recursive grouping algorithm, since thesefae-
tors influence the number of rounds required for the network t
converge into a single group, the length of the resultingvoek
addresses and the efficiency of packet forwarding. We detratas
that most networks will converge within a logarithmic numié
steps. While there are pathological cases that will takgeqnit
can be demonstrated that even those cases still convergidyqui

To demonstrate that the recursive grouping algorithm geasr
regular groups, we prove the following theorem that appbesost
non-pathological deployments.

THEOREM 2. If two merging groups share at least one neigh-
boring group, the network will converge into a single grouithin
a logarithmic number of iterations.

Proof of Theorem 2: Suppose two groupX andY of size|X]
and|Y| decide merge to form a new grodp Also, assume thaX
andY initially share a neighboK. In that case, we must haji€| >
max(|X|,|Y|). To show this, we assume without loss of generality
that|X| < |Y| and|K| < |Y|. If this were the case, grouy would
have merged witk instead ofY. If the new groupZ subsequently
merges withK, then the resulting group will have size:

K
" ™

This implies that the group will grow by a factor of at leasb 1
during each merge. Thus, we expect each group will merge st mo
log, 5(n) times before the entire network forms a single groull

Z'| = |Z| + max(|X], Y]) > 2| +

This bound ensures that the size of the routing tables aneorlet
addresses will be logarithmic in the number of nodes in thte ne
work.

The worst-case scenario for our grouping protocol is a set of
groups arranged in a “flower,” in which a single groGphasd
neighbors, but none of its neighbors have any neighbors tthe
G. In that case, the central gro@ will merge with each of its
neighbors, one at a time, creatidgrouting entries. However, in
a dense, regularly deployed sensor network, this scersmhighly
unlikely since a dense network implies that a single groumoa

choose an address entry based on Equation 2. Since the nede IDhave a large number of neighbors each of whom has no othér-neig

are drawn from a total order, each will choose a differentyeand
thus both will have a unique network address. Suppose twapgro
G andG' are about to merge, every node@has a unique net-
work address withirs, and every node i@’ has a unique network
address withirG'; this implies that naming conflicts can only arise
between two nodes from different groups. Suppose with@as ¢f
generality thalDg < ID. Then, the most significant bit in the
network address of each node@will be 0, while the most sig-
nificant bit in the network address of each nodé&irwill be 1, so
network addresses from the two groups cannot conflict. Il

Since the recursive grouping algorithm terminates wittoaihe
nodes in the network forming a single group, every node in the

5If the nodes are loosely synchronized, the node could puse
TESLA [25] to authenticate its broadcast. Otherwise, itldou
also use public-key cryptography to sign the Honeybee nyessa
Public-key signatures are typically expensive, but thétitegte
node will be sacrificed anyway, as part of the Honeybee tecieni
so it may as well use its remaining battery to eliminate theidter.

bors. In addition, regardless of the density, it can be shinanthe
size of the group must always grow by at least the size of tfedlem
group in the previous merge.

8.3 Security

In this section, we analyze the security properties of obhestwe
by illustrating that an adversary cannot (undetectablyvett the
recursive grouping algorithm by injecting, modifying oro@ping
packets. Given the secure network addresses and routieg tak-
ated by the recursive grouping algorithm, we rely on thelissgi
forwarding techniques described in Section 5.2 to react ati-m
cious behavior at that level.

Since the recursive grouping algorithm proceeds detestitini
cally based on the size and IDs of the groups, an adversaryunus
dermine one or both of these attributes. We prevent (or tjetes
using the secure neighbor discovery procedure to bootgnayp
IDs and sizes (since all groups are of size 1). The use of GVTs
prevents malicious tampering in the subsequent rounds.



Since each node initially constitutes its own group, thaigrtd
is the same as the node ID, and hence the secure neighbovetisco
procedure securely establishes the first set of group IDseXAn
ternal adversary cannot inject a manufactured ID, sincelitbe
unable to produce a proper certificate to match it. Simijarlgom-
promised node will be unable to alter its ID without invalidg its
signature. Every node must announce its ID during this dedo
it will be ignored by its neighbors during the rest of the picil,
and attempts to replay IDs from other nodes will be revealetthe
replication detection algorithm.

In subsequent rounds, the verification of GVTs during eactyene
prevents an adversary from modifying or injecting falseinia-
tion. During the GVT verification process, the choice of tdwager
and responder for each group is deterministic, so an adyecaa-
not influence these choices. Since the GVT covers both theggro
IDs and the group sizes, tMerifyTreeoperation will detect any at-
tempt to modify either one. The challenge value itself caly be
calculated by the challenger node, and hence the adveraanpt
predict its value. There is a small possibility that a malis node
is chosen as either the challenger or responder. Howewechifi-
lenger’s challenge is verified by the other nodes in its grang
the responder’s response is verified by both groups. Hengeata
tempt to fabricate or alter information about group IDs aesiwill
be detected by the GVT verification procedure.

Since a malicious node cannot fabricate or modify legitamat
messages, its only remaining strategy is to selectivelp ¢oo fail
to initiate) grouping messages. In a relatively dense netwoost
groups will have multiple shared edge nodes, as shown irr&igu
In that case, if a malicious edge node fails to announce tlghne
boring group to its own group, the other edge node(s) will sti
provide the proper natification, and the malicious node wiilly
succeed in removing itself from the routing tables of theiinal
nodes. If the malicious node is the only edge node for a group,
then it can prevent its own group from learning about the m=dg-
ing group. However, this only serves to sever the link betwibe
two groups, and thus they are not actually neighbors. If taé-m
cious node does inform the neighboring group about its owomr
it cannot persuade them to merge with its group without perfo
ing the GVT verification procedure, which will require asarxe
from its own group, hence revealing the presence of the beigh
ing group. Thus, selectively dropping or omitting messagéks
not undermine the recursive grouping algorithm.

9. ATTACKS AND DEFENSES

In this section, we consider possible attacks on routingpgas,
and we show how our protocol defends against them.

9.1 Routing Attacks

Researchers have identified several severe routing ploadco
tacks [11, 15], which we summarize below.
Routing loop: An attacker injects malicious routing information
that causes other nodes to form a routing loop. Packetsé@ujétto
this loop (both by legitimate and malicious nodes) are thet m
a circle, wasting precious communication and battery nessu
Generally, a routing loop attack is only considered sudoegshe
loop does not include the attacker.
General Denial-of-Service (DoS) attacks: By injecting mali-
cious information or altering legitimate routing setup seges,
an attacker can prevent the routing protocol from functigrgor-
rectly. For example, an attacker can forge messages torwmvi
legitimate nodes to route packets in away from the corresti-de
nation. Wood and Stankovic analyze general DoS attacksistgai
sensor networks [32].

Sybil attack [5]: A malicious node creates multiple fake identi-
ties to perform attacks. In geographic routing protocakefiden-
tities can claim to be at multiple locations.

Slander and framing attacks: In systems that route based on
reputation, a malicious node may attempt to slander legittmodes
by accusing them of malicious behavior. In a subtler franahg
tack, an adversary causes a legitimate node to act (or afgpaet)

in a way that leads other legitimate nodes to decide it has bee
compromised.

Black hole attack: A malicious node advertises a short distance
to all destinations, attracting traffic meant for those idesions.
The attacker can selectively forward messages (althounhytbe
difficult for them to leave the black hole).

Wormhole attack [12]: Two nodes use an out-of-band channel
(e.g., a directional antenna) to forward traffic betweemiselves,
enabling them to mount other attacks.

Replication attack [24]: An adversary may compromise a single
legitimate node and insert copies throughout the netwodceas-
ing his presence in the network and thus allowing him to imftge
and subvert the network’s performance.

(Selective) Suppression: A malicious node may decide to drop
some or all of the packets that it receives, in an effort tougis
routing setup. A malicious node may also drop packets duggg
ular routing, but at that point, the attack should be considan
attack on the forwarding system, and not on routing.

Jamming: An adversary may jam the radios of legitimate nodes
in the network to prevent them from receiving important nogit
messages.

9.2 Defending Against Specific Attacks

Since the recursive grouping algorithm functions enticdyer-
ministically given the network topology, malicious nodee are-
vented from manipulating the resulting routing informatio in-
troduce routing loops or routing-based denial-of-senattcks.
The secure neighbor discovery portion of the algorithm ¢dbed
in Section 4.2) prevents an adversary from introducing ISyddes
into the network. The Honeybee technique prevents a makcio
node from slandering a legitimate node, unless it is wiltmgacri-
fice itself to eliminate the legitimate node. Furthermore,reserve
the use of the Honeybee technique for cases in which thénegi
node has proof of malicious behavior, thus preventing franait-
tacks. Since routes are not chosen based on advertisedadista
we inherently prevent black hole attacks as well.

Several recent studies [26] show how to prevent and/or tletec
wormhole attacks in sensor networks, and most could belyeadi
added to our protocol. Furthermore, our resilient routiaght
niques allow a legitimate node to route around a wormholé tha
drops too much traffic.

In general, the use of GVTs at each stage of the recursivepgrou
ing algorithm allows us to detect an adversary that integavith
routing setup. By running a replication detection algamthfter
the recursive grouping algorithm concludes, we can detettre-
cover from malicious replicas. An adversary’s attempts talify
the recursive grouping algorithm to attract additionafficge.qg.,
by merging promiscuously with other groups) will be detdgte
since the malicious node will have multiple network addesss

Finally, our resilient routing techniques allow sendersdate
around malicious nodes that suppress traffic and may alsst ass
with defending against jamming attacks. During addressgsetur
use of resilient broadcasts for group coordination defagisnst
DoS attacks and localized jamming. Previous research algo s
gests additional mechanisms to cope with jamming [15, 34].



Figure 5: DOI Model. The inner and outer circles represent
rmin @nd rmay, for the node at the center. The jagged line in-
dicates the node’s communication range, allowing communé:

tion with the solid black nodes.

10. SIMULATIONS

To evaluate and compare our scheme with other protocols, we
developed a simulator and ran a number of experiments. Since
to our knowledge, no other routing protocol provides sepaiat-
to point routing without geographic information, we sinteld the
Beacon-Vector Routing (BVR) protocol [6], as a point of carip
son for routing performance. Unlike geographic routingtpcols,
BVR does not require additional hardware, nor does it imp@se
impractical amount of state at each node like other receprtly
posed protocols for routing without geographic informat{e.g.,
NoGeo [28]). While BVR serves as a pertinent baseline fofgoer
mance, we note that it assumes a trustworthy and cooperaiive
vironment. Security rarely comes for free, so we expect osts
to exceed those of BVR. In our experiments, we find that while
our setup costs exceed those of BVR, we provide superiord@ad
tribution, particularly in networks with voids, which trslates to
a longer network lifetime. In many applications, the highetup
overhead is worth the gain in security and load distribution
Setup. In our simulations, we deploy sensor nodes at ran-
dom within a square planar region (500x500 square unitsg¢revh
n= 100 or 500. We adjust the radio range of the nodes so that an
average node will have approximately 10 neighbors. To make o
simulations more realistic, we use the DOI (Degree of Irtagu
ity) communication model described by He et al. [8] and disgic
in Figure 5. The communication range of a node is modeled as a
random walk around a disc, bounded by maximum rangg and
minimum rangermin, resulting in many unidirectional links. For
our simulations, we chooSgin = rmax/2, and a DOI of @.

In BVR, a set ofR nodes elect themselves as beacons. All other
nodes establish network addresses based on their distanoes
each beacon. Routing a message involves greedy forwarding t
a node with lower minimum distance to the destination. Ifegke
forwarding fails, the routing algorithm resorts to “scogkxding,”
in which a beacon node initiates a flood with a bounded radius t
guarantee delivery. Based on the values suggested in thed@VR
per, we set the number of beaconsRat 10 and the number of
beacons used for routing kt= 10.

Experiments. Below, we describe the experiments we simulated.
In all cases, we use the basic version of our forwarding pato
(i.e., without the resilient routing described in Sectio)5

Routing Setup Overhea#irst, we measure the number of pack-
ets sent per node during routing setup. For BVR, this indutie
packets flooded through the network to allow the nodes tordete
mine their distances from the beacon nodes. For our pratécol
includes all of the messages exchanged during the recugsivp-
ing algorithm (e.g., merge requests, refusals, and stitistes).

Figure 6: Sample Irregular Topologies. To generate an irreg
ular topology, we define a void, and then deploy the nodes at
random within the remaining space. Lines indicate neighbor
connections.

Path Stretch.After the routing infrastructure has been created,
we consider routing between all possible ordered pairs deso
(for a total ofn(n— 1) pairs). For each pair, we evaluate the path
stretch, i.e., the ratio of the number of physical hops negliising
either our scheme or BVR versus the optimal path computetjusi
Dijkstra’s shortest path algorithm.

Load Distribution.ldeally, a routing protocol should evenly dis-
tribute the overhead of message forwarding across all afidides
in the network, since hotspot nodes will quickly exhaustrtbat-
tery power. To evaluate load distribution, we measure thebar
of packets each node must forward in order to route packets be
tween every pair of nodes

Load Distribution with VoidsDealing with irregular topologies
is an important attribute for a general sensor network ngupiroto-
col, since real-world topologies often include obstacles zoids.
Thus, we ran additional simulations to evaluate load distion in
the presence of large voids, such as the ones shown in Figure 6

Path Diversity. Finally, we ran a separate set of experiments to
quantify the performance of our resilient routing techig|(as dis-
cussed in Section 5.2). In these experiments, we first ralydeen
lect a pair of nodes. Then, we compute the intersection cf¢hef
nodes on the default route between them and the set of nodes on
route produced by a randomly chosen direction string. Wiecol
the average and maximum size of the intersection over 1@raltyd
chosen direction strings for 100 randomly chosen pairs déso

10.1 Simulation Results

Routing Setup OverheadAs expected, BVR incurs less setup
overhead than our protocol. Wikhbeacon nodes, BVR only needs
to flood the networlR times so that nodes can establish their dis-
tance from each beacon. Our protocol requires coordinatithin
the groups during the recursive grouping algorithm; as alties
with n = 100, we require each node to send or forward 139 pack-
ets on average (with a maximum of 199 for any one node), and
for n =500, we require an average of 252 packets per node with
a maximum of 392. We also evaluate the communication reduire
to perform the recursive grouping algorithm in a trustwgrém-
vironment (i.e., without the GVT and other security mecbkers).

In this setting, the network of 100 nodes requires 83 pachets
average (with a maximum of 111), and the 500 node network re-
quires 132 packets on average with a maximum of 201. This in-
dicates that the security mechanisms do add considerabtbead

to the setup process. Future work will look at further opiimg
setup efficiency. While our protocol still requires a higlsetup
overhead than BVR, we note that routing based on BVR’s ceordi
nates can falil to find a direct route to the destination, tewpin a
scoped flood, whereas our protocol provides 100% delivesn e
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Figure 7: Path Stretch. These graphs show the path stretch
plotted as a cumulative distribution function (CDF). Path
stretch measures the ratio of the number of physical hops re-
quired by the routing algorithm versus the length of the ided
shortest path.

without our using the resilient routing techniques we désct in
Section 5.2.

Path Stretch. In Figure 7, we plot the results for our routing
stretch simulations. In the network of 100 nodes, BVR usés 10
of the nodes as beacons, and thus has fairly minimal streash.
the network grows larger, their stretch approaches thatiopoo-
tocol. The stretch results do not include paths upon whiciRBV
routing failed and was forced to revert to flooding. In the-h@@e
network, BVR routed 98% of the paths without flooding, and in
the 500-node network it routed 92.6% of the paths withoutdfoo
ing. Our protocol routes successfully on 100% of the pathbdth
100- and 500-node networks without flooding.

Load Distribution. As shown in Figures 8(a) and 8(b), our pro-
tocol distributes communication overhead more evenly sscthe
nodes in the network, despite a larger path stretch, whil&kBV

demonstrates a heavy tail effect. This is due to BVR messages

that do not reach the destination and need to resort to flgpthins

imposing a heavier communication burden on the nodes near th

beacons.
Load Distribution with Voids.In general, irregular topologies
have little effect on the performance of our protocol — regtsuc-

11.1 Challenges

Reliable Broadcast. During the recursive routing algorithm, each
edge node in a grou@ independently calculates the appropriate
merge targeG’. To ensure every edge node arrives at the same
conclusion, they must all have up-to-date information. & hiafor-
mation about neighboring groups must be reliably broadcette
entire group.

While reliable broadcast is a simple concept, it remaindfa di
cult research problem in wireless sensor networks, anceéted
a significant challenge for our implementation. To furthempli-
cate the issue, we must perform reliable broadcasts duoiming
establishment, when nodes have limited information abveitac-
tual topology.

We achieve reliable broadcasts using the nodes’ networleases.
As shown earlier, at each stage of the grouping algoritheantt-
work addresses are unique within each group.

Thus, at any stage of the recursive grouping algorithm, a@nod
can use its partially established routing table to send ialilel
broadcast to its group while maintaining low per node ovadhe
For example, nod@ can start the broadcast by looking through its
neighbor table and choosing two nodes: one nBdgith a net-
work address matching the prefix 0*, and another nGdsith a
network address matching the prefix 1*. NoBeupon receiving
this packet, chooses two new recipients to propagate trealbast
by resolving 1 additional address bit 00* and 01*. This pcolo
terminates when the length of the network address exagemntsf
no matching addresses exist.

Asynchronicity.  Motes wake up and execute asynchronously,
which makes the implementation and debugging process mate ¢
plicated than in simulations. Moreover, because of radidertion,

it is actually undesirable to allow motes to progress syomcbusly.

To address these issues, we implement the recursive ggpalgo-
rithm as an event-driven finite state machine, with radiosagss
and timeouts triggering state transitions.

Asymmetric Links.  The protocol design assumes bidirectional
links between nodes; however, in real deployments, asynunet
links are endemic. To resolve this issue, we use the recsiged
nal strength indication (RSSI) to discover and agree onhieics.

cess remains at 100% and load remains balanced. BVR has conPuring the secure neighbor discovery protocol, each nogpske

siderably more trouble. Their success rate drops to 94.7%0(0
nodes and 91.5% for 500 nodes without flooding. As a resulRBV

RSSI values for every node it hears from. Then, it sends beigh
invitations to thek nodes with the strongest RSSI values. A nade

must flood between 5 and 10 percent of the time, making load dis adds another nodg as a neighbor if it receives an invitation from

tribution even worse than in the uniform deployments. Fégu8(c)
and 8(d) illustrate this effect. Once again, the heavy talldates
the presence of hotspots in the network.

Path Diversity.In our experiments to evaluate path disjointness,

B, or if its own outgoing invitation is acknowledged By

11.2 Results

We implemented and ran the routing protocol on our senser net

we found that for a network of 100 nodes, a path based on a ran-work testbed. The testbed consists of 16 Telos motes digtdb

domly chosen direction string intersected with an averdg@é6

across a floor of our building. Each mote was connected to a USB

of the nodes on the default path. In a network with 500 nodes, hub to supply power and to facilitate debugging. We also pet u

the average intersection was 73%. This indicates that bplgim
varying the direction string in a packet, a legitimate node sig-
nificantly alter the composition of the path.

11. IMPLEMENTATION

To further evaluate the practical issues that arise on reatsn
we have developed an implementation of our routing prot¢asl
presented in Sections 4 and 5) in the TinyOS environment amd r
it on our testbed of Telos motes. In the future, we plan torekte
our implementation to include the detection techniquesented
in Section 7. In addition to providing more realistic resulthe
resource constraints and wireless medium produced a nuafiber
new challenges.

several motes as base stations to monitor network trafficplére
to deploy our protocol on a larger network upon completioowf
testbed.

After routing information has been established, we testaog
ing protocol by trying to route between each pair of moteschEa
mote sends 5 packets to all possible network addresses. thiée o
motes forward the packets using their routing tables. Whmathket
reaches the intended recipient, a reply is generated ahbaekto
the original sender. As Table 1 shows, our protocol routesess-
fully 100% of the time on a deployment of 16 motes.

We also measured the memory overhead used by each mote dur-
ing routing establishment. As our results show in Table t poo-
tocol achieves very low memory usage. The code size is aaunst
overhead of 21KB. More importantly, our protocol scaleslwel
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perfectly even distribution would appear as a vertical line

Number of Merges Per Node 4
Code Size 21 KB
Data Size 50 bytes

Avg. Num of Packets Sent Per Node 101
Success Rate 100%

Table 1: Implementation Results. This table summarizes the
overhead required to setup the routing information for 16
motes. It also notes the routing success rate.

since the dynamic data does not grow linearly with the nédtwor
size. Instead, each node only needs to keep two tables, iagout
table and a neighbor table. The routing table adds an enteafth
merge, and hence grows logarithmically in the number of adde
the network. The size of the neighborhood table is constaven
the network degred. In general, if the setup requir@s merges,
the memory overhead of our implementation isl 406m bytes.

12. RELATED WORK

In this section, we summarize related research on routitrgst-
worthy environments and discuss other work on secure seesor
work routing.

Routing in Trustworthy Environments.  The idea of creating
a hierarchy of regions has been previously proposed by aleneer
searchers [18,30, 31]. However, we are not aware of the usacbf
hierarchies for either routing in sensor networks or secouéing
in general.

Several approaches to provide efficient routing for nodeetde
communication in sensor networks have been proposed [113,9
17,22,28]. However, they all assume a trusted environméhbut
considering security.

Karlof, Li, and Polastre propose the ARRIVE protocol, a prot
col resilient to failures, but not against attacks [14].

Secure Sensor Network Routing. Karlof and Wagner describe
attacks on standard (unsecured) sensor network routirtgquis
and propose some generic countermeasures, without pngpasi
complete protocol [15].

Deng, Han, and Mishra propose INSENS [3, 4]. INSENS pro-
vides routing between nodes and base stations, but not betve
bitrary sensor nodes (except by relaying through the bas®s}.
In contrast, we design a general secure routing protocoldia
relay messages between arbitrary nodes.

SIGF, designed by Wood et al., achieves secure routing prope
ties based on the assumption that nodes know their own gatgra
locations [33]. Their scheme prevents spoofing using loegkk
and they add resiliency through nondeterministic selaatibfor-

warding nodes. Our scheme imposes more complexity but dies n
require geographic information.

Some of the security mechanisms we leverage in this paper hav
also been used by other researchers. Routing around anf ai@a o
connectivity and sending messages over multiple paths bese
proposed for sensor networks in various contexts [4, 18482,

13. FUTURE WORK AND CONCLUSION

To secure networking protocols, researchers often addigecu
mechanisms to existing protocols that were designed faghem-
vironments. In the case of routing protocols, this has wibnkell
in the context of Internet and ad hoc network routing prot®co
Unfortunately, in the context of highly resource-consteai sen-
sor networks, we found that securing existing protocoloniiced
either an unacceptable level of complexity or an excessivéop
mance penalty. For these reasons, we decided to design i@ secu
sensor network routing protocol from a clean slate.

By leveraging all three approaches to design secure ropting
tocols (prevention, detection and recovery, and resiégnee ob-
tain a secure routing protocol that is highly robust to &tad/e
demonstrate the security and performance of our protocoligh
theoretical analysis, simulation, and implementatione Pperfor-
mance overhead is reasonable given the security achieved.

In the future, we plan to analyze the performance of our palto
under attack, to investigate techniques to improve itsieffixy, and
to develop our implementation into a more robust platform.
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