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ABSTRACT
The deployment of sensor networks in security- and safety-critical
environments requires secure communication primitives. In this pa-
per, we design, implement, and evaluate a new secure routingpro-
tocol for sensor networks. Our protocol requires no specialhard-
ware and provides message delivery even in an environment with
active adversaries. We adopt a clean-slate approach and design a
new sensor network routing protocol with security and efficiency
as central design parameters. Our protocol is efficient yet highly
resilient to active attacks. We demonstrate the performance of our
algorithms with simulation results as well as an implementation on
Telos sensor nodes.

1. INTRODUCTION
Sensor networks provide economically viable solutions fora wide

variety of applications, including surveillance of critical infrastruc-
ture, safety monitoring, and many health-care applications. As sen-
sor networks are increasingly deployed in such security- and safety-
critical environments, the need for secure communication primi-
tives is self-evident. Likewise, the development of secureprimi-
tives enables the use of sensor networks in new applications.

The central goal of this work is to ensure node-to-node message
delivery, even if the sensor network is under active attack.In the
presence of an attacker, it is an extremely challenging taskto main-
tain correct routing information; the attacker could inject malicious
routing information or alter legitimate routing setup/update mes-
sages. Even when route setup/update messages are authenticated,

†Bryan Parno is supported in part by an NDSEG Fellowship, which
is sponsored by the Department of Defense.
∗This research was supported in part by CyLab at Carnegie Mellon
under grant DAAD19-02-1-0389 from the Army Research Office,
grants CNS-0347807 and CCF-0424422 from the National Science
Foundation, and by a gift from Bosch. The views and conclusions
contained here are those of the authors and should not be inter-
preted as necessarily representing the official policies orendorse-
ments, either express or implied, of ARO, Bosch, CMU, NSF, the
U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT2006 Lisboa, Portugal
Copyright 2006 ACM 1-59593-456-1/06/0012 ...$5.00.

compromised sensor nodes can supply incorrect routing informa-
tion of their own and cripple the routing infrastructure. Aswe
discuss in Section 12, most proposals for sensor network routing
protocols assume a trusted environment and cannot functionunder
attacks [15] (two exceptions are INSENS, which routes only be-
tween nodes and a central basestation [4], and SIGF, which relies
on nodes knowing their geographic location [33]).

In general, there are three main directions for designing secure
routing protocols:prevention, detection / recovery, andresilience.
The preventionapproach seeks to harden the protocol against at-
tacks, typically through cryptographic mechanisms that restrict par-
ticipants’ actions. The prevention approach is generally the most
efficient and effective approach, but it only forestalls known at-
tacks.Detectioninvolves monitoring the real-time behavior of pro-
tocol participants. Once malicious behavior is detected, we resort
to recoverytechniques to eliminate malicious participants and to
restore network order and functionality. The detection approach
can guard against potentially unknown attacks, as long as wecan
distinguish anomalous behavior and correctly attribute itto a mis-
behaving entity. Theresilienceapproach seeks to maintain a cer-
tain level of availability even in the face of (possibly unpredicted)
attacks. Ideally, this approach should provide graceful performance
degradation in the presence of compromised network participants,
i.e., the availability of the network should degrade no faster than a
rate approximately proportional to the percentage of compromised
participants.

Previous secure routing protocols usually rely on a single ap-
proach. The majority of secure routing mechanisms focus exclu-
sively on the prevention approach, since it is the most efficient and
effective against known attacks; an example is the S-BGP proto-
col [16]. Many researchers propose detection and recovery mech-
anisms; for example, the watchdog and pathrater scheme attempts
to identify malicious behavior in ad hoc networks [19], and secure
traceroute mechanisms attempt to locate malicious nodes along a
routing path in the Internet [23]. To provide resilience, many pro-
tocols (e.g., the INSENS protocol [4]) turn to multipath routing,
hoping at least one of the paths will be unaffected by an attacker.

The central contribution of this work is to start from a cleanslate
and systematically design a general-purpose secure routing proto-
col that incorporates all three design principles. Our goalis to de-
sign a highly secure, highly available node-to-node sensornetwork
routing protocol. Point-to-point routing is essential formany sensor
network protocols, including Geographic Hash Tables (GHTs) [29]
and certain key distribution schemes like PIKE [2].

In our routing protocol, we dynamically establish routing tables
and network addresses for each node using techniques that prevent
interference from an active attacker. We then apply resilient routing
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Figure 1: Protocol Overview. During the recursive groupingalgorithm, smaller groups repeatedly merge to form larger groups.
Figure 1(a) shows the resulting groups. The nodes are labeled with their IDs ( A, B, etc.), as well as their resulting network addresses.
Figure 1(b) illustrates how the network addresses grow as groups merge and add bits to differentiate themselves from their merge
partner. The arrows in Figures 1(a) and 1(b) indicate how a message from nodeA to nodeF would be routed. Note that while the
network addresses form a tree, we do not route along the tree.Figure 1(c) shows nodeA’s routing table, which maps progressively
longer network address prefixes to next-hop neighbors.

techniques to transmit packets, while incorporating mechanisms to
detect and eliminate malicious nodes. The memory overhead for
our routing protocol is small: each sensor node stores one routing
entry for each prefix of its address, representing the next-hop neigh-
bor node to move towards the destination area. Most importantly,
however, we can secure every step of our routing protocol against
internal and external attacks and ensure high availabilityfor packet
forwarding.

2. ASSUMPTIONS
In this work, we assume the presence of a network authority

(NA), with public keyKNA and private keyK−1
NA. Each sensor node

must be preloaded with the network authority’s public keyKNA. We
assume each node receives a uniqueIDα (drawn from a total order)
along with a certificate{IDα}K−1

NA
digitally signed by NA. The NA

uses a signature scheme that places the majority of the burden on
the signer, so that verification can be extremely efficient. For ex-
ample, verifying a Rabin signature only requires a single modular
multiplication [20]. As an alternative, the network authority could
construct a hash tree over all of the node IDs and preload eachnode
with the root value and the intermediate values needed to authen-
ticate its ID to other nodes. This would limit the verification cost
to a few hashes, but it would come at the expense of additional
communication overhead.

The NA also provides each node with a set ofκ = O(logn) ran-
domly chosen, verifiable challenge valuesC0, ...,Cκ. These will be
used to detect deviations during the route setup process. Wecan
store the challenges compactly using a standard construction based
on one-way hash chains [4, 35]. We provide each sensor nodeα
with a one-way hash chain,Ψ = {(C0,Cκ) : hκ(Cκ) = C0}, where
hκ(y) signifies applying the hash functionκ times starting with the
valuey. Each initial challengeC0 is signed by the network authority
(giving the node{C0||IDα}K−1

NA
) using the same signature scheme as

before. To provide an authenticated challenge during roundi, node
α can release challengeCi (calculated ashκ−i(Cκ)), along withC0,
IDα and{C0||IDα}K−1

NA
. Other nodes can verify the challenge by

verifying {C0||IDα}K−1
NA

and checking thathi(Ci) = C0.
During the address setup phase of our recursive grouping proto-

col, we assume that the nodes within a group use a reliable broad-
cast mechanism to communicate with one another. This mecha-
nism could take the form of a simplistic flooding protocol, though
in our implementation, we leverage the partial routing information
possessed by each node (see Section 11 for details). As a result, a
malicious node that drops messages (or an adversary that jams par-
ticular network links) will slow the address setup process but will
not subvert it.

Finally, our protocol is designed for networks in which the nodes
are primarily stationary, though we can tolerate occasional periods
of mobility by rerunning our algorithm for establishing routing in-
formation.

3. PROTOCOL OVERVIEW
Our protocol assigns a network address to each node and estab-

lishes routing tables using a recursive grouping algorithm. For a
given topology, the algorithm proceeds entirely deterministically,
preventingattacks on routing information and limiting a subverted
node’s ability to perform malicious actions. When the recursive
grouping algorithm terminates, each node has a unique network
address, as well as a routing table that implicitly maps variable-
length address prefixes to next-hop node neighbors. Figure 1(a)
illustrates the resulting set of recursive groups; the nodes shown all
belong to the same level 3 group, which is subdivided into level
2 subgroups that are in turn divided into level 1 subgroups. Each
time two groups merge, they extend their network addresses with
an additional bit as shown in Figure 1(b). While the resulting net-
work addresses form a binary tree, our routing algorithm does not
perform tree routing (i.e., it does not route along the tree structure,
as evidenced by the fact that the internal “nodes” in the address
tree do not correspond to actual sensor nodes), since tree routing is
typically inefficient.

Instead, our routing design is based on area hierarchies as de-
scribed by Kleinrock and Kamoun [18], and it guarantees thatthe
size of the routing table, the size of the network addresses,and the



length of routing paths (as measured in logical hops throughthe
space of network addresses) will be bounded by⌈log2n⌉, wheren
is the number of nodes in the network.

Our protocol incorporates several techniques (described in Sec-
tion 7) for detectingmalicious behavior. We actively detect at-
tempts by a single node to acquire multiple identities in thenet-
work. We also use a Grouping Verification Tree (GVT) to detect
deviations during the recursive grouping protocol. When a mali-
cious node is detected, we use a Honeybee technique to eliminate it
from the network, allowing the network torecoverfrom intrusions.

Once the routing information has been established, each sensor
can route a packet by forwarding it to the entry in its routingta-
ble with the longest matching prefix (Figure 1(c) provides a sample
routing table for nodeA). The arrows in Figures 1(a) and 1(b) il-
lustrate the path taken when nodeA sends a packet to nodeF . We
addresiliencyto the routing process by providing the sender with a
limited degree of control over the path taken by its packets.This al-
lows a sender to route around both natural and malicious problems
in the network and to choose paths based on additional metrics,
such as energy efficiency.

4. ADDRESS AND ROUTING SETUP
We begin this section with an overview of the recursive grouping

algorithm that we use to establish addressing and routing informa-
tion. Then we describe the necessary initialization steps and the
algorithm itself. Finally, we discuss techniques to handleboth the
removal and the addition of nodes.

4.1 Setup Overview
Our recursive grouping algorithm assigns a unique network ad-

dress to each node in the network, while also populating eachnode’s
routing table. Initially, every sensor node comprises its own group.
Then, the algorithm repeatedly merges groups of nodes into larger
groups. A groupG initiates a merge by sending a merge proposal
to the smallest neighboring groupG′. Choosing the smallest neigh-
bor encourages groups of similar size to merge, thus keepingthe
resulting network address space dense and compact (we analyze
the efficiency of the recursive grouping algorithm in Section 8.2).
If G′ also proposes toG, then the two groups merge to form a new
group. After each merge, the nodes in groupG each add a bit to
their network addresses to differentiate themselves from the nodes
in groupG′, and also add an entry in their routing tables indicat-
ing a neighboring node that is a path to any node in groupG′. The
nodes inG′ make similar changes. This process continues until the
entire network converges into a single group.

At each stage of the grouping algorithm, the groups are assigned
IDs that, along with their sizes, can be authenticated usinga Group-
ing Verification Tree (GVT). We discuss the use of the GVT to
perform authentication and detect deviation from the grouping al-
gorithm in Section 7.1.
Outcome. At the completion of the grouping protocol, each node
will have a unique network address, a routing table that mapsvariable-
length address prefixes to next-hop neighbors, and a merge table
that will be used to secure each step of the algorithm. The network
address will be of the formR = Rr−1||...||R0, where each entry
Ri ∈ {0,1} and r indicates the number of times that node (or the
group containing that node) has merged with another group. Each
node will also have a routing tableT [i] where 0≤ i < r. Each entry
T [i] in a node’s routing table maps an address prefix to a next-hop
neighbor that leads toward a node with a network address matching
the prefix. Finally, each node will have a merge tableM [i] where
0≤ i < r that records the ID and size of each group it merges with.
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(a) Two groups of
size three agree to merge
and refuse merge propos-
als from the larger groups.

6
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(b) The group of size four
and the group of size five
now agree to merge.

Figure 2: Recursive Grouping. Each group is labeled with its
size, and lines connect two groups that can communicate with
each other. The arrows indicate a merge proposal from one
group to another. The figures show two intermediate steps in
the recursive grouping algorithm. After one additional merge
(not shown), the entire network will consist of a single group.

4.2 Initialization
When routing establishment is initiated, each node constitutes

its own group, and the group’s ID corresponds to the node’s unique
ID. Before beginning the recursive grouping described below, the
nodes perform a secure neighbor discovery protocol. Each node
α broadcasts(IDα,{IDα}K−1

NA
) (i.e., its ID and the accompanying

certificate from the network authority) to its neighbors. The neigh-
bors verify the signature and add nodeα to their neighbor lists. An
external adversary cannot inject a manufactured ID, since it will be
unable to produce a proper signature to match it. A compromised
node will be unable to alter its ID without invalidating its signature.

We bound the time allocated for the secure neighbor discovery
protocol and require every node to announce its ID during this pe-
riod.1 After the discovery protocol concludes, nodes in the network
will no longer accept new neighbors, preventing an adversary from
attempting to insert malicious nodes at a later point. We also use a
replication detection algorithm (described in Section 7.2) to detect
an attacker who replays certificates from legitimate nodes.

4.3 Recursive Grouping
Our recursive grouping algorithm proceeds in an asynchronous,

distributed fashion. A groupG first collects information about the
current size of each neighboring group. It then proposes to merge
with the smallest neighborG′ and waits for a response. If that group
does not wish to merge withG, thenG considers the merge a fail-
ure, and restarts its merge process by redetermining its smallest
neighbor. Favoring the smallest neighbor makes it more likely that
groups of similar size will merge, and hence the size of a group
will approximately double during each round. We analyze this ef-
fect more precisely in Section 8.2. IfG′ also proposes to merge
with G, the two groups merge to form a new groupγ (Figure 2
illustrates this process). Below, we describe the protocolin detail.
Determining Neighboring Group Information. Consider a group
G at an intermediate stage of the grouping process. Some portion
of the nodes in groupG have neighboring nodes not in the group.
We refer to these nodes asedge nodes. If all of a node’s neighbors
belong to its group, then we refer to it as aninterior node. The
edge nodes are responsible for communicating with neighboring
groups and forwarding the results of merge agreements to theinte-

1If the nodes are loosely synchronized, the neighbor discovery pe-
riod can have a realtime bound. Otherwise, an authenticatedbroad-
cast from the network authority can signal the end of the protocol.
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Figure 3: Merging Groups. In the figure, α,α′ and β,β′ are
edge nodes for groupsA and B, respectively. Nodesα and β
and nodesα′ and β′ are neighbors. Bothβ and β′ will decide
that group B should merge with groupA, and each will forward
this decision to the rest of groupB. This will only result in
a single broadcast withinB, since internal nodes will suppress
duplicates.

rior nodes (see Figure 3). Since different edge nodes will hear from
different neighboring groups, they must communicate with each
other to decide on a merge target (i.e., the group to which to send a
merge proposal). To facilitate coordination within the group, every
node in the group tracks the current size of the group (|G|) and also
maintains a list of the neighboring group IDs (Γ = {g1,g2, ...,gk}).

To initiate a merge, each edge node floods its group with the size
and ID of each neighboring group it borders. After an edge node
receives|Γ| distinct announcements, it has heard about all of the
neighboring groups.
Exchanging Merge Proposals. Once the edge nodes know about
all of the neighboring groups, they each independently compute the
neighboring groupG′ with the smallest size2 (with a tie broken in
favor of the group with the smallest ID), and any edge node that
bordersG′ will broadcast a merge proposal to that group. If the
merge target refuses to merge (by announcing that it has already
selected another group), then the edge nodes propagate the refusal
to the rest of the group and the edge nodes once again compute the
smallest neighboring group. IfG′ also selectsG as a merge target,
then the two groups will merge.
Merging. If groups G and G′ agree to merge, they will form
a new groupγ. As a result of this merge, all of the nodes inγ
must compute the new groupIDγ, record information about the
group they merged with, add an entry to their network addresses,
and update their routing tables and neighboring group lists.

First, all nodes in the group can independently compute the new
group ID as:

IDγ =

{

h(IDG, |G|, IDG′ , |G′|) IDG < IDG′

h(IDG′ , |G′|, IDG, |G|) IDG > IDG′
(1)

The new group ID incorporates the IDs and sizes of both of the old
groups. The method for computing the new group ID is designed
to avoid collisions in the group ID space. Each node in groupG
also updates its merge table such thatM [i] = (G′, |G′|). This infor-
mation will be used later to authenticate the merge process.

In addition, every node that belonged to groupG must add an
entry to its network address to differentiate itself from the nodes
that belonged toG′ (and vice versa). Each node in groupG updates

2All edge nodes will arrive at the same conclusion, since theyall
have the same information about the sizes and IDs of the neighbor-
ing groups.

its network address such that

Ri =

{

0 IDG < IDG′

1 IDG > IDG′
(2)

where i represents the number of times that particular node has
merged. Nodes inG′ use an analogous equation but withG and
G′ transposed.

As a result of the merge, each node inG (and inG′) adds an entry
to its routing table. For a node inG, the new entry indicates the ID
of the node that informed it aboutG′. In other words, if nodeα
learned aboutG′ from nodeκ, thenα adds an entry to its routing
table such thatT [i] = κ. Nodeκ will serve as nodeα’s next-hop
neighbor when it needs to forward a packet to a node in groupG′.

Finally, each node inG will merge its neighbor listΓ with the
neighbor listΓ′ provided byG′ to obtain the neighbor list̂Γ for the
new group. Thus, each node will always have an updated list ofthe
groups that neighbor its own group.
Post-Merge. After the nodes in the newly formed groupγ have
computed the updates described above, the edge nodes inγ broad-
castIDγ, |γ| andΓ̂ to the neighboring groups, and once again begin
the process of determining the smallest neighboring group.This
grouping process continues until all of the nodes in the network
have merged into a single group.

4.4 Network Maintenance
Node Death. During a sensor network’s lifetime, some nodes
will inevitably fail due to battery exhaustion or other mechanical
problems. To adapt to sensor death, nodes must update their rout-
ing tables, but the network addresses can remain unchanged.In
general, the resilient routing techniques described in Section 5.2
will allow nodes to route around dead companions. However, we
also include a provision allowing nodes to bootstrap replacement
information from their neighbors.

If nodeα decides that its neighborβ j has died, it determines the
indexi of β j ’s position inα’s routing table (β j may appear as a next
hop more than once, but the same protocol applies). Then,α will
broadcast a request to its neighbors, asking for a node otherthan
β j that will route to groupi. Each neighbor will respond unless it
too has no valid entries remaining, in which case it begins a similar
inquiry. If a neighborβk replies with nodeβm, then if βm is one
of α’s neighbors, it will setT [i] = βm; otherwise,α setsT [i] = βk.
Thus, the network routing topology will adapt as nodes die out.
Node Addition. Many applications require the ability to add
nodes to the network after the initial deployment. Since such addi-
tions occur relatively infrequently, we propose periodically rerun-
ning the recursive grouping algorithm. If the nodes are loosely syn-
chronized, then time could be divided into epochs, and the network
would run the recursive grouping algorithm at the beginningof each
epoch. Otherwise, the network authority could use an authenticated
broadcast to indicate the need to rerun the recursive grouping algo-
rithm. Rerunning the algorithm would allow newly added nodes
to acquire network addresses and enable the network to systemati-
cally adapt to the presence of dead nodes and to the current power
levels of previously deployed nodes.

5. FORWARDING
In this section, we describe how nodes use the routing informa-

tion established during the recursive grouping algorithm to forward
packets. We also present a simple modification that adds resilience
to the forwarding process by allowing the sender control over the
forwarding path. Finally, we add an important optimizationfor
providing efficient forwarding.



5.1 Basic Forwarding
In the simplest case, our scheme uses area style forwarding [18]

based on the secure network addresses and routing tables estab-
lished by the recursive grouping algorithm. Each node’s network
address reflects its logical position in the network, and therouting
table entries tell a node how to forward a packet to a group contain-
ing the destination address.

When the grouping algorithm concludes, the network will have
merged into a single group, as Figure 1(a) illustrates. In the figure,
all of the nodes in the network belong to the same level 3 group.
Within the level 3 group, the nodes are divided into two level2
groups (a 0-group and a 1-group, distinguished by the most signifi-
cant entry of their addresses), each of which is further divided into
two level 1 groups. Within the level 1 groups, each node has a level
0 identifier that distinguishes it from the other node in the same
level 1 group. Thus, a node’s full network address is the concate-
nation of its level identifiers, sorted in reverse order by level. For
instance, node 0.0.1 has a level 0 identifier of 1, and an identifier of
0 for levels 1 and 2.

Before describing forwarding in detail, we first provide some
intuition. When a node with network addressN receives a message
destined for addressD, it finds the most significant digit betweenD
andN that differs and sends the message towards the other group at
the corresponding level. For example, ifD = 0.1.0 andN = 0.0.1,
then the fact thatD andN share the same identifier (0) in the most
significant bit of their addresses implies that they are in the same
level 3 group. However, the next bit reveals that within thatgroup,
D resides in the level 2 group with a 1 identifier, whileN resides in
the level 2 group with a 0 identifier. Thus,N will forward the packet
towards the level 2 group with a 1 identifier. Note that multiple
physical hops may be required to reach that group. The first node
in the level 2 group with a 0 identifier that receives this message
will start matching bits at subsequent levels.

In terms of the information established by the recursive grouping
algorithm, suppose a node with addressR = Rr−1||...||R0 wishes
to send a message to a node with addressR ′ = R′

r−1||...||R
′
0. The

sender begins by comparing the most significant digits in thetwo
addresses (i.e., it checksRr−1 againstR′

r−1). If these digits match,
it proceeds to the next most significant digit, until it finds adigit
such thatRi 6= R′

i (this must happen, since the sender is presumably
not sending messages to itself). The sender consults its routing ta-
ble entry for positioni and forwards the message to the next hop
neighbor recorded inT [i]. This ensures that the message will even-
tually reach a node that will match on address digitsR′

r−1, ...,R
′
i.

5.2 Resilient Forwarding
To achieve high availability of message delivery, we leverage

multi-path forwarding. We extend the routing tables established
during the recursive grouping algorithm to include multiple next-
hop nodes at each stage. We then modify the forwarding algorithm
to allow a sender to loosely select amongst the possible paths to
a destination. Thus, the sender can route packets around problem
areas (whether caused by malice or malfunction) in the network.

To add resiliency to our protocol, we can take advantage of the
natural redundancy present in the recursive grouping algorithm to
add additional options to each node’s routing table. As described in
Section 4.3, when two groups merge, each node creates one entry
in its routing table to store the ID of the neighbor from whichit
heard about the merge target. In practice, a group is likely to have
multiple edge nodes that all flood the group with informationabout
the same neighboring group (e.g., in Figure 3, bothβ andβ′ will
inform nodes in groupB about groupA). In this case, each node
may hear about the neighboring group from multiple neighboring

nodes. Instead of only storing the first such neighboring node as
the next hop to reach that group, the node will remember three
entries,L, M andR for each routing table entryT [ j ], with eachL,
M andR representing a different neighboring node that informed
the node of thej th neighboring group that it merged with. These
additional entries will be used by the sender to select a paththrough
the network.

We use the redundant routing table entries to route around both
natural and malicious problems in the network. When a node sends
a packet, by default, each node along the path will forward itto the
M entry in the appropriate routing table entry. However, a sender
can also choose to include a direction string∆ = δ0||δ1||...||δk,δi ∈
{L,M,R}, 0≤ i ≤ k. If the sender’s address differs from the recip-
ient’s address inλ least significant digits, then the path will consist
of λ logical hops, but the sender should setk> λ, since each logical
hop may require multiple physical hops.

When an intermediate node receives the packet, it will forward
the packet using the appropriate entry in its routing table as dic-
tated by the direction string. For example, if the sender includes
the direction string∆ = LMLR, then the first hop along the path
will forward the packet using itsL entry, the second hop will for-
ward the packet using theM entry and so on. By selecting a ran-
dom direction string, the sender can easily choose a new pathfor its
packets. It may decide to choose a new path when it fails to receive
an acknowledgement from the recipient, or if it finds the latency
of a particular path excessive. A node may also choose to use a
secure traceroute protocol, such as the one proposed by Padmanab-
han and Simon [23], to isolate the faulty node and potentially use
the Honeybee technique described in Section 7.3 to eliminate it. As
we show in Section 10.1, a randomly chosen direction vector will
select a path that is largely disjoint from the first path, making it
likely that the sender can successfully route around problem areas.

5.3 Choosing Nearby Edge Nodes
We can also use the redundancy of the recursive grouping al-

gorithm to enhance the efficiency of our forwarding algorithm by
having nodes select entries in their routing tables based ona dis-
tance metric. In other words, given the choice between two next-
hop neighbors, a node will enter the one closest to the targetgroup
in its routing table entry.

As described in Section 4.3, when an internal node hears about
a neighboring group via an edge node, it assigns the first neigh-
bor from which it heard the announcement to its routing tableentry
for that group. However, as mentioned earlier, a group is likely to
have several edge nodes bordering the same neighboring group. In
that case, we can improve routing efficiency by having each inter-
nal node choose a neighbor that will route towards the closest edge
node, rather than the edge node that it hears from first. If a node
selects only the first edge node it hears from, then the edge node
that announces the neighboring group first could become a hotspot
in the network, since all of the internal nodes will use that one edge
node to forward packets to the neighboring group. Furthermore, by
forwarding to the closest edge node, we shorten path lengths, since
we quickly transport the packet to a node that knows more about
the next hop than any of the nodes in the current group. From a
security standpoint, choosing edge nodes based on distancepre-
vents a malicious edge node from rushing its announcement soas
to become the sole link between the two groups.

To measure distance, we use a standard construction based on
one-way hash chains [10]. We provide each sensor node with a
collection of one-way hash chains (in addition to those usedto gen-
erate challenges),Ψ = {(ν,ρ) : hλ(ρ) = ν}, wherehx(y) signifies
applying the hash functionx times starting with the valuey, and



A B C D E F G H

v1 v2

Va

v3 v4

Vb

V

Figure 4: Hash Tree Construction. A hash tree is constructed
by hashing the roots of two subtrees to form the root of a new
subtree. In our protocol, the leaf values will be node IDs, and
the internal nodes will represent group IDs created during the
recursive grouping algorithm, as described in Section 4.

λ is the length of the hash chain. Each final valueν is signed by
the network authority. When a nodeα determines its role as an
edge node, it releases one of its hash chain pairs(ν,ρ) (and the
signature{ν, IDα}K−1

NA
) to the edge nodes in the neighboring group.

Those edge nodes announce the group’s presence by forwarding
the node’s ID, along with the signature,ν, andh(ρ) to their neigh-
bors in the group. At each hop, a node verifies the signature onν
and forwardsν, the signature, and the result of applying the hash
function once again. A node that receives a pair(ν,ρ′), calculates
its distance by applyingh to ρ′ until it arrives atν. If this requiresk
applications, then the node is at a distance ofd = λ−k. The use of
a one-way function prevents an adversary from artificially decreas-
ing the distance to an edge node, since the hash chain can onlybe
traversed in the forward direction.

6. BACKGROUND: HASH TREES
In this section, we review the construction of hash trees, with an

emphasis on the two authentication properties used to secure our
protocol: authentication of any leaf value given the root value, and
authentication of a root value using a challenge-response protocol.

Hash Trees(a.k.a. Merkle hash trees [21]) provide an efficient
mechanism for performing two authentication operations:VerifyLeaf
andVerifyTree. VerifyLeafauthenticates a particular valueθ among
a sequence of valuesA,B, . . ., based on a single authentic root value
V. VerifyTreeuses the leaves in the hash tree to verify the tree itself.

To construct the hash tree, we place the valuesA,B, . . . at the
leaf nodes of a binary tree, as Figure 4 shows. (For simplicity we
assume a balanced binary tree.) The derivation of a parent nodemp
from its left and right child nodesml andmr is

mp = h(ml || mr) (3)

where|| denotes concatenation andh is a cryptographic hash func-
tion providing weak collision resistance [20]. We compute the lev-
els of the tree recursively from the leaf nodes up to the root node.
Figure 4 shows this construction over the eight valuesA,B, . . . ,H,
e.g.,v1 = h(A||B), Va = h(v1||v2), andV = h(Va||Vb).

The VerifyLeaf operation can use the root value of the tree to
authenticate any of the leaf nodes in the tree. To authenticate a leaf
valueθ the sender discloses bothθ and all the sibling nodes of the
internal nodes on the path fromθ to the root node. The receiver
can then use these nodes to recompute the values on the path upto
the root, and if the recomputed root value matches the known root
value, the valueθ is guaranteed to be authentic. For example, to
authenticate valueC in Figure 4 (given the authentic rootV), the

valuesD,v1 andVb are required to verify the equality:

V = h

(

h
(

v1 || h( C || D )
)

||Vb

)

(4)

In contrast, theVerifyTreeoperation uses authenticated leaf nodes
and a challenge-response protocol to probabilistically validate the
hash tree construction. Suppose a challenger wishes to verify a re-
sponder’s hash tree. The responder commits to the tree by sending
the root value and the number of leaf values in the tree to the chal-
lenger (assuming the responder is committing to the tree shown
in Figure 4, the responder would provide(V,8)). The challenger
identifies a random subset of leaf values (either by picking from a
known set of leaf values or by generating a random path through
the tree from the root down to a leaf) and asks the responder to
prove that those values exist in the tree. For each leaf selected, the
responder provides the authenticated leaf value along withthe inter-
mediate values leading to the root of the tree. In the exampleshown
in Figure 4, if the challenger choosesC andE, then the responder
will provide two chains of values:(D,v1,Vb) and(F,v4,Va). The
challenger authenticates the leaf values by recomputing the appro-
priate hashes and checking that they produce a consistent tree. In
the example, the challenger would compute Equation 4 to verify C
and then compute an analogous equation to verifyE. If all of the
leaf values are verified successfully, and if the intermediate hash
values are all consistent and lead to the root value that the respon-
der committed to originally, then the challenger accepts the hash
tree as legitimate. This procedure provides a strong, though prob-
abilistic, guarantee of the correctness of the hash tree. Przydatek,
Song and Perrig use a similar approach for secure information ag-
gregation [27].

7. DETECTION AND RECOVERY
To enhance the security of our routing protocol, we add addi-

tional measures to detect and recover from malicious behavior. We
describe the Grouping Verification Tree (GVT) used to detectat-
tempts to deviate from the recursive grouping algorithm. Wealso
employ a duplicate detection scheme to prevent nodes from claim-
ing multiple identities or attempting to group promiscuously. Fi-
nally, we introduce a Honeybee technique for removing malicious
nodes from the network.

7.1 Detecting Grouping Deviations
To prevent an adversary from tampering with the recursive group-

ing algorithm, we use a Grouping Verification Tree (GVT) to de-
tect deviations or inconsistencies. The GVT construction is based
on the hash trees described in Section 6, and hence the GVTs pro-
vide us with similar authentication properties. At each stage of the
grouping algorithm, a group can use its GVT to authenticate its
group’s size and ID to other nodes (and similarly verify the size
and IDs of neighboring groups).

The GVT for a particular group can be thought of as a hash tree
constructed over the nodes in the group. Each node’s ID is a leaf
value, the group’s ID is the root value and the intermediate group
IDs (from previous merges) are the internal nodes of the hashtree.
For example, consider the hash tree shown in Figure 4. Viewing the
hash tree as a GVT, the leaf values (A,B, . . .) represent the IDs for 8
sensor nodes, while the root valueV is the ID for the entire group.
When nodesA andB merged, they formed a group with an ID ofv1,
and similarly, when they merged with groupv2 (containing nodes
C andD), the combined group of four nodes had an IDVa.

Below, we explain the GVT mechanism in greater detail. Then
we show how two groups that are about to merge can verify each
others’ size and ID using the GVT. They can also use the GVT to



Algorithm 1 : GVT Verification During a Merge. Assuming
groupsG andG′ are about to merge, the steps below illustrate how
G can verify the GVT forG′. G′ would perform an analogous pro-
cedure to verifyG’s GVT.

1: G′ announces its ID and size(IDG′ , |G′|) to G
2: GroupG chooses one of its nodes as a challengerC
3: C selects challengeCk and broadcasts it to nodes inG
4: Nodes inG verify Ck is a correct challenge and edge nodes

forwardCk to G′

5: Based onCk, groupG′ chooses a responder node
6: Responder sends its certificate and merge table toG
7: Nodes inG perform theVerifyTreeoperation to authenticate

the GVT forG′

verify each other’s neighbor list. The final GVT can authenticate
any node’s network address.
GVT Formation. During the recursive grouping algorithm, each
node maintains a GVT for the group that it belongs to. The group
ID is calculated such that it represents the root of the group’s GVT,
with the IDs of the nodes in the group at the leaves (note the sim-
ilarities in the calculation of the intermediate hash tree values in
Equation 3 and the calculation of the group IDs in Equation 1).
Each node also has a merge tableM that records the ID and size
of each group it has merged with. In the example in Figure 4,
nodeA will have three entries in its merge table:M [0] = (B,1),
M [1] = (v2,2), andM [2] = (Vb,4). These values are used for the
authentication operations described below.
GVT Verification During a Merge. When two groups,G and
G′, decide to merge, they use theVerifyTreeoperation described
in Section 6 to authenticate each other’s GVTs. Since the GVTs
incorporate both the group IDs and the group sizes, this implicitly
authenticates the ID and size claimed by each group (hence pre-
venting a malicious node from lying about its group’s size inorder
to influence the grouping process). Algorithm 1 summarizes the
important steps in the verification procedure.

To use theVerifyTreeoperation, groupG will generate a chal-
lenge for its merge targetG′ that will randomly select a leaf node
(i.e., an individual sensor in groupG′) in the GVT. The leaf node
will respond to the challenge on behalf ofG′, by providing its own
node ID (and accompanying certificate) and the intermediatevalues
in the GVT.

To prevent a malicious node from influencing the choice of the
random challenge, groupG selects a challenger nodeC based on
the group ID,IDG. To determine the challenger, each node in the
group computesF(IDG), whereF is a cryptographic hash function
with an even distribution over its range. The node in groupG with
a network address that is a prefix ofF(IDG) will be the group’s
challenger. As we show in Section 8.2, the network addressesin a
group are unique, and no network address is a prefix for any other
network address, so the challenging node will be unique.3

The challenger node then broadcasts its current challenge value
Ck to the group,4 along with{k,{C0||IDC}K−1

NA
}, the authentication

information necessary to validate the challenge (discussed in Sec-
tion 2). Each node in groupG can verify that the challenge was
generated appropriately by the correct node. The edge nodesbor-

3The challenger is also guaranteed to exist, since after eachmerge,
some nodes will have network addresses that start with 0 and some
that start with 1. Combined with the uniqueness result, thisimplies
that we can always find a specific challenger with a network address
that is a prefix ofF(IDG).
4Wherek is the number of times the challenger has merged.

dering groupG′ will forward the challenge valueCk to it.
GroupG′ will use the challengeCk to choose a responder in a

manner similar to the selection of the challenger. Each nodein the
group will compute:

r = F(IDG, |G|, IDG′ , |G′|,Ck) (5)

The node in the group with a network addresses that is a prefix
of r will be the responder forG′. The responder sends its node
ID, certificate, and merge table to the challenging groupG. Since
the merge table contains all of the intermediate values of the GVT
(i.e., the internal nodes of the hash tree) and the certificate serves
to authenticate the responder’s ID, each node in groupG can use
theVerifyTreeoperation to authenticate the intermediate values that
lead to the current size and ID claimed by groupG′. If verification
fails, then the challenging group aborts the merge and begins a new
round by selecting its next smallest neighbor.
Neighbor Verification. We can extend the challenge-response
protocol to allow both groups to verify the neighbor lists provided.
The merge targetG′ forwards groupG’s challengeCk to each of
its neighboring groups. These neighbors select a responderusing a
modified version of Equation 5, such that neighborx calculates:

r = F(IDG, IDG′ , IDx,Ck) (6)

The chosen responder sends its node ID, certificate, and merge table
to G′ which forwards the response toG. Thus,G can verify the
existence ofG′’s neighbors and vice versa. Each edge node in the
combined groupγ will then know how many neighbors it should
expect to hear from the next time the group wishes to initiatea
merge by computing the smallest neighboring group.
Network Address Verification. Eventually, all of the nodes in
the network will fall under a single GVT, and thus they will all
know the root valueV. Thus, we can use theVerifyLeafoperation
to authenticate any node’s network address. To authenticate its net-
work address to another node, nodeA can provide its merge table,
which contains the intermediate values in the GVT. This allows the
verifier to recompute the necessary hashes and verify that the final
result isV.

7.2 Duplicate Detection
We introduce one additional detection step to prevent a malicious

node from claiming multiple IDs (e.g., by replaying legitimate cer-
tificates from other nodes) or trying to merge with several groups si-
multaneously (in order to obtain multiple network addresses). After
the recursive grouping algorithm concludes, each node announces
its node ID and its network address to its neighbors. We use these
pairs of values to run a replication detection algorithm [24] that al-
lows legitimate nodes to detect a node ID that claims multiple net-
work addresses or vice versa. The malicious node can be revoked
using evidence from the replication detection algorithm orvia the
Honeybee technique described below.

7.3 Eliminating Malicious Nodes
If a legitimate node detects malicious behavior using any ofthe

techniques described above, it uses the Honeybee recovery mech-
anism. Essentially, the legitimate node broadcasts a packet impli-
cating the malicious node, and the other legitimate nodes revoke
both nodes involved. By revoking both nodes, we limit the poten-
tial damage of a slander attack (i.e., a subverted node that claims
a legitimate node is malicious), since a malicious node can only
revoke a single legitimate node before being revoked itself.

More specifically, to remove a malicious node from the network,
a legitimate node initiates a full network flood of a special Honey-
bee packet, with the malicious node’s ID, its own ID, and a signa-



ture.5 When another node receives this packet, it will revoke the
malicious node (i.e., cease to communicate with, or on behalf of,
that node). Like its namesake, however, this technique alsorequires
the detecting node to sacrifice itself. Nodes that receive the Hon-
eybee packet revoke the initiator as well. Thus, a subvertednode
could use this technique to revoke a legitimate node, but only at the
cost of revoking itself as well.

The Honeybee technique will successfully eliminate malicious
nodes under two conditions: first, the number of malicious nodes in
the network must be less than the number of legitimate nodes,and
second, legitimate nodes must be capable of accurately identifying
malicious nodes. The first condition is a reasonable assumption – if
the majority of the nodes in the network have been compromised,
then the network already has little chance of successful operation.
The second condition is more stringent, but equally necessary. If
a malicious node can convince a legitimate node that a secondle-
gitimate node is malicious, then the first legitimate node will sting
the second, eliminating two legitimate nodes without disrupting the
malicious node. Thus, we reserve the Honeybee technique forsitu-
ations in which a legitimate node has absolute evidence for stinging
another node (e.g., if it detects a replica after the recursive grouping
algorithm concludes or if a neighbor’s signature repeatedly fails to
verify properly). Additional detection techniques could also make
use of the Honeybee mechanism.

8. ANALYSIS
In this section, we demonstrate the correctness of our routing

algorithm, consider the extent to which the recursive grouping al-
gorithm generates uniform group sizes, and analyze the security of
our scheme.

8.1 Correctness
To demonstrate the correctness of our routing protocol, we estab-

lish that it generates a unique network address for every node in the
network. We also show that no node has an address that is a prefix
of another node’s address. Given these addresses, our forwarding
algorithm behaves analogously to area routing described byKlein-
rock and Kamoun [18]; their paper demonstrates the correctness of
the forwarding algorithm.

We begin by proving the following theorem:
THEOREM 1. The network address of every node in a group is

unique within that group.

Proof of Theorem 1: Initially, when two nodes merge, they each
choose an address entry based on Equation 2. Since the node IDs
are drawn from a total order, each will choose a different entry, and
thus both will have a unique network address. Suppose two groups
G andG′ are about to merge, every node inG has a unique net-
work address withinG, and every node inG′ has a unique network
address withinG′; this implies that naming conflicts can only arise
between two nodes from different groups. Suppose without loss of
generality thatIDG < IDG′ . Then, the most significant bit in the
network address of each node inG will be 0, while the most sig-
nificant bit in the network address of each node inG′ will be 1, so
network addresses from the two groups cannot conflict.

Since the recursive grouping algorithm terminates with allof the
nodes in the network forming a single group, every node in the

5If the nodes are loosely synchronized, the node could useµ-
TESLA [25] to authenticate its broadcast. Otherwise, it could
also use public-key cryptography to sign the Honeybee message.
Public-key signatures are typically expensive, but the legitimate
node will be sacrificed anyway, as part of the Honeybee technique,
so it may as well use its remaining battery to eliminate the intruder.

network must have a unique network address. Furthermore, when
two groups merge, the bit added as the most significant digit of each
node’s network address ensures that no network address inG can
be a prefix of a network address inG′ (and vice versa).

8.2 Performance
In this section, we analyze the size and balance of the groups

created by the recursive grouping algorithm, since these two fac-
tors influence the number of rounds required for the network to
converge into a single group, the length of the resulting network
addresses and the efficiency of packet forwarding. We demonstrate
that most networks will converge within a logarithmic number of
steps. While there are pathological cases that will take longer, it
can be demonstrated that even those cases still converge quickly.

To demonstrate that the recursive grouping algorithm generates
regular groups, we prove the following theorem that appliesto most
non-pathological deployments.

THEOREM 2. If two merging groups share at least one neigh-
boring group, the network will converge into a single group within
a logarithmic number of iterations.

Proof of Theorem 2: Suppose two groupsX andY of size |X|
and|Y| decide merge to form a new groupZ. Also, assume thatX
andY initially share a neighborK. In that case, we must have|K| ≥
max(|X|, |Y|). To show this, we assume without loss of generality
that |X| < |Y| and|K| < |Y|. If this were the case, groupX would
have merged withK instead ofY. If the new groupZ subsequently
merges withK, then the resulting group will have size:

|Z′| ≥ |Z|+max(|X|, |Y|) ≥ |Z|+
|Z|
2

(7)

This implies that the group will grow by a factor of at least 1.5
during each merge. Thus, we expect each group will merge at most
log1.5(n) times before the entire network forms a single group.

This bound ensures that the size of the routing tables and network
addresses will be logarithmic in the number of nodes in the net-
work.

The worst-case scenario for our grouping protocol is a set of
groups arranged in a “flower,” in which a single groupG hasd
neighbors, but none of its neighbors have any neighbors other than
G. In that case, the central groupG will merge with each of its
neighbors, one at a time, creatingd routing entries. However, in
a dense, regularly deployed sensor network, this scenario is highly
unlikely since a dense network implies that a single group cannot
have a large number of neighbors each of whom has no other neigh-
bors. In addition, regardless of the density, it can be shownthat the
size of the group must always grow by at least the size of the smaller
group in the previous merge.

8.3 Security
In this section, we analyze the security properties of our scheme

by illustrating that an adversary cannot (undetectably) subvert the
recursive grouping algorithm by injecting, modifying or dropping
packets. Given the secure network addresses and routing tables cre-
ated by the recursive grouping algorithm, we rely on the resilient
forwarding techniques described in Section 5.2 to react to mali-
cious behavior at that level.

Since the recursive grouping algorithm proceeds deterministi-
cally based on the size and IDs of the groups, an adversary must un-
dermine one or both of these attributes. We prevent (or detect) this
using the secure neighbor discovery procedure to bootstrapgroup
IDs and sizes (since all groups are of size 1). The use of GVTs
prevents malicious tampering in the subsequent rounds.



Since each node initially constitutes its own group, the group ID
is the same as the node ID, and hence the secure neighbor discover
procedure securely establishes the first set of group IDs. Anex-
ternal adversary cannot inject a manufactured ID, since it will be
unable to produce a proper certificate to match it. Similarly, a com-
promised node will be unable to alter its ID without invalidating its
signature. Every node must announce its ID during this period, or
it will be ignored by its neighbors during the rest of the protocol,
and attempts to replay IDs from other nodes will be revealed by the
replication detection algorithm.

In subsequent rounds, the verification of GVTs during each merge
prevents an adversary from modifying or injecting false informa-
tion. During the GVT verification process, the choice of challenger
and responder for each group is deterministic, so an adversary can-
not influence these choices. Since the GVT covers both the group
IDs and the group sizes, theVerifyTreeoperation will detect any at-
tempt to modify either one. The challenge value itself can only be
calculated by the challenger node, and hence the adversary cannot
predict its value. There is a small possibility that a malicious node
is chosen as either the challenger or responder. However, the chal-
lenger’s challenge is verified by the other nodes in its groupand
the responder’s response is verified by both groups. Hence, any at-
tempt to fabricate or alter information about group IDs or sizes will
be detected by the GVT verification procedure.

Since a malicious node cannot fabricate or modify legitimate
messages, its only remaining strategy is to selectively drop (or fail
to initiate) grouping messages. In a relatively dense network, most
groups will have multiple shared edge nodes, as shown in Figure 3.
In that case, if a malicious edge node fails to announce the neigh-
boring group to its own group, the other edge node(s) will still
provide the proper notification, and the malicious node willonly
succeed in removing itself from the routing tables of the internal
nodes. If the malicious node is the only edge node for a group,
then it can prevent its own group from learning about the neighbor-
ing group. However, this only serves to sever the link between the
two groups, and thus they are not actually neighbors. If the mali-
cious node does inform the neighboring group about its own group,
it cannot persuade them to merge with its group without perform-
ing the GVT verification procedure, which will require assistance
from its own group, hence revealing the presence of the neighbor-
ing group. Thus, selectively dropping or omitting messageswill
not undermine the recursive grouping algorithm.

9. ATTACKS AND DEFENSES
In this section, we consider possible attacks on routing protocols,

and we show how our protocol defends against them.

9.1 Routing Attacks
Researchers have identified several severe routing protocol at-

tacks [11,15], which we summarize below.
Routing loop: An attacker injects malicious routing information
that causes other nodes to form a routing loop. Packets injected into
this loop (both by legitimate and malicious nodes) are then sent in
a circle, wasting precious communication and battery resources.
Generally, a routing loop attack is only considered successful if the
loop does not include the attacker.
General Denial-of-Service (DoS) attacks: By injecting mali-
cious information or altering legitimate routing setup messages,
an attacker can prevent the routing protocol from functioning cor-
rectly. For example, an attacker can forge messages to convince
legitimate nodes to route packets in away from the correct desti-
nation. Wood and Stankovic analyze general DoS attacks against
sensor networks [32].

Sybil attack [5]: A malicious node creates multiple fake identi-
ties to perform attacks. In geographic routing protocols, fake iden-
tities can claim to be at multiple locations.
Slander and framing attacks: In systems that route based on
reputation, a malicious node may attempt to slander legitimate nodes
by accusing them of malicious behavior. In a subtler framingat-
tack, an adversary causes a legitimate node to act (or appearto act)
in a way that leads other legitimate nodes to decide it has been
compromised.
Black hole attack: A malicious node advertises a short distance
to all destinations, attracting traffic meant for those destinations.
The attacker can selectively forward messages (although itmay be
difficult for them to leave the black hole).
Wormhole attack [12]: Two nodes use an out-of-band channel
(e.g., a directional antenna) to forward traffic between themselves,
enabling them to mount other attacks.
Replication attack [24]: An adversary may compromise a single
legitimate node and insert copies throughout the network, increas-
ing his presence in the network and thus allowing him to influence
and subvert the network’s performance.
(Selective) Suppression: A malicious node may decide to drop
some or all of the packets that it receives, in an effort to disrupt
routing setup. A malicious node may also drop packets duringreg-
ular routing, but at that point, the attack should be considered an
attack on the forwarding system, and not on routing.
Jamming: An adversary may jam the radios of legitimate nodes
in the network to prevent them from receiving important routing
messages.

9.2 Defending Against Specific Attacks
Since the recursive grouping algorithm functions entirelydeter-

ministically given the network topology, malicious nodes are pre-
vented from manipulating the resulting routing information to in-
troduce routing loops or routing-based denial-of-serviceattacks.
The secure neighbor discovery portion of the algorithm (described
in Section 4.2) prevents an adversary from introducing Sybil nodes
into the network. The Honeybee technique prevents a malicious
node from slandering a legitimate node, unless it is willingto sacri-
fice itself to eliminate the legitimate node. Furthermore, we reserve
the use of the Honeybee technique for cases in which the legitimate
node has proof of malicious behavior, thus preventing framing at-
tacks. Since routes are not chosen based on advertised distances,
we inherently prevent black hole attacks as well.

Several recent studies [26] show how to prevent and/or detect
wormhole attacks in sensor networks, and most could be readily
added to our protocol. Furthermore, our resilient routing tech-
niques allow a legitimate node to route around a wormhole that
drops too much traffic.

In general, the use of GVTs at each stage of the recursive group-
ing algorithm allows us to detect an adversary that interferes with
routing setup. By running a replication detection algorithm after
the recursive grouping algorithm concludes, we can detect and re-
cover from malicious replicas. An adversary’s attempts to modify
the recursive grouping algorithm to attract additional traffic (e.g.,
by merging promiscuously with other groups) will be detected,
since the malicious node will have multiple network addresses.

Finally, our resilient routing techniques allow senders toroute
around malicious nodes that suppress traffic and may also assist
with defending against jamming attacks. During address setup, our
use of resilient broadcasts for group coordination defendsagainst
DoS attacks and localized jamming. Previous research also sug-
gests additional mechanisms to cope with jamming [15,34].



Figure 5: DOI Model. The inner and outer circles represent
rmin and rmax, for the node at the center. The jagged line in-
dicates the node’s communication range, allowing communica-
tion with the solid black nodes.

10. SIMULATIONS
To evaluate and compare our scheme with other protocols, we

developed a simulator and ran a number of experiments. Since,
to our knowledge, no other routing protocol provides securepoint-
to point routing without geographic information, we simulated the
Beacon-Vector Routing (BVR) protocol [6], as a point of compari-
son for routing performance. Unlike geographic routing protocols,
BVR does not require additional hardware, nor does it imposean
impractical amount of state at each node like other recentlypro-
posed protocols for routing without geographic information (e.g.,
NoGeo [28]). While BVR serves as a pertinent baseline for perfor-
mance, we note that it assumes a trustworthy and cooperativeen-
vironment. Security rarely comes for free, so we expect our costs
to exceed those of BVR. In our experiments, we find that while
our setup costs exceed those of BVR, we provide superior loaddis-
tribution, particularly in networks with voids, which translates to
a longer network lifetime. In many applications, the highersetup
overhead is worth the gain in security and load distribution.
Setup. In our simulations, we deployn sensor nodes at ran-
dom within a square planar region (500x500 square units), where
n = 100 or 500. We adjust the radio range of the nodes so that an
average node will have approximately 10 neighbors. To make our
simulations more realistic, we use the DOI (Degree of Irregular-
ity) communication model described by He et al. [8] and depicted
in Figure 5. The communication range of a node is modeled as a
random walk around a disc, bounded by maximum rangermax and
minimum rangermin, resulting in many unidirectional links. For
our simulations, we choosermin = rmax/2, and a DOI of 0.2.

In BVR, a set ofR nodes elect themselves as beacons. All other
nodes establish network addresses based on their distancesfrom
each beacon. Routing a message involves greedy forwarding to
a node with lower minimum distance to the destination. If greedy
forwarding fails, the routing algorithm resorts to “scopedflooding,”
in which a beacon node initiates a flood with a bounded radius to
guarantee delivery. Based on the values suggested in the BVRpa-
per, we set the number of beacons atR = 10 and the number of
beacons used for routing atK = 10.
Experiments. Below, we describe the experiments we simulated.
In all cases, we use the basic version of our forwarding protocol
(i.e., without the resilient routing described in Section 5.2).

Routing Setup Overhead.First, we measure the number of pack-
ets sent per node during routing setup. For BVR, this includes the
packets flooded through the network to allow the nodes to deter-
mine their distances from the beacon nodes. For our protocol, it
includes all of the messages exchanged during the recursivegroup-
ing algorithm (e.g., merge requests, refusals, and status updates).

Figure 6: Sample Irregular Topologies. To generate an irreg-
ular topology, we define a void, and then deploy the nodes at
random within the remaining space. Lines indicate neighbor
connections.

Path Stretch.After the routing infrastructure has been created,
we consider routing between all possible ordered pairs of nodes
(for a total ofn(n−1) pairs). For each pair, we evaluate the path
stretch, i.e., the ratio of the number of physical hops required using
either our scheme or BVR versus the optimal path computed using
Dijkstra’s shortest path algorithm.

Load Distribution.Ideally, a routing protocol should evenly dis-
tribute the overhead of message forwarding across all of thenodes
in the network, since hotspot nodes will quickly exhaust their bat-
tery power. To evaluate load distribution, we measure the number
of packets each node must forward in order to route packets be-
tween every pair of nodes

Load Distribution with Voids.Dealing with irregular topologies
is an important attribute for a general sensor network routing proto-
col, since real-world topologies often include obstacles and voids.
Thus, we ran additional simulations to evaluate load distribution in
the presence of large voids, such as the ones shown in Figure 6.

Path Diversity.Finally, we ran a separate set of experiments to
quantify the performance of our resilient routing techniques (as dis-
cussed in Section 5.2). In these experiments, we first randomly se-
lect a pair of nodes. Then, we compute the intersection of theset of
nodes on the default route between them and the set of nodes ona
route produced by a randomly chosen direction string. We collect
the average and maximum size of the intersection over 10 randomly
chosen direction strings for 100 randomly chosen pairs of nodes.

10.1 Simulation Results
Routing Setup Overhead.As expected, BVR incurs less setup

overhead than our protocol. WithRbeacon nodes, BVR only needs
to flood the networkR times so that nodes can establish their dis-
tance from each beacon. Our protocol requires coordinationwithin
the groups during the recursive grouping algorithm; as a result,
with n = 100, we require each node to send or forward 139 pack-
ets on average (with a maximum of 199 for any one node), and
for n = 500, we require an average of 252 packets per node with
a maximum of 392. We also evaluate the communication required
to perform the recursive grouping algorithm in a trustworthy en-
vironment (i.e., without the GVT and other security mechanisms).
In this setting, the network of 100 nodes requires 83 packetson
average (with a maximum of 111), and the 500 node network re-
quires 132 packets on average with a maximum of 201. This in-
dicates that the security mechanisms do add considerable overhead
to the setup process. Future work will look at further optimizing
setup efficiency. While our protocol still requires a highersetup
overhead than BVR, we note that routing based on BVR’s coordi-
nates can fail to find a direct route to the destination, resulting in a
scoped flood, whereas our protocol provides 100% delivery, even
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Figure 7: Path Stretch. These graphs show the path stretch
plotted as a cumulative distribution function (CDF). Path
stretch measures the ratio of the number of physical hops re-
quired by the routing algorithm versus the length of the ideal
shortest path.

without our using the resilient routing techniques we described in
Section 5.2.

Path Stretch. In Figure 7, we plot the results for our routing
stretch simulations. In the network of 100 nodes, BVR uses 10%
of the nodes as beacons, and thus has fairly minimal stretch.As
the network grows larger, their stretch approaches that of our pro-
tocol. The stretch results do not include paths upon which BVR
routing failed and was forced to revert to flooding. In the 100-node
network, BVR routed 98% of the paths without flooding, and in
the 500-node network it routed 92.6% of the paths without flood-
ing. Our protocol routes successfully on 100% of the paths for both
100- and 500-node networks without flooding.

Load Distribution.As shown in Figures 8(a) and 8(b), our pro-
tocol distributes communication overhead more evenly across the
nodes in the network, despite a larger path stretch, while BVR
demonstrates a heavy tail effect. This is due to BVR messages
that do not reach the destination and need to resort to flooding, thus
imposing a heavier communication burden on the nodes near the
beacons.

Load Distribution with Voids. In general, irregular topologies
have little effect on the performance of our protocol – routing suc-
cess remains at 100% and load remains balanced. BVR has con-
siderably more trouble. Their success rate drops to 94.7% for 100
nodes and 91.5% for 500 nodes without flooding. As a result, BVR
must flood between 5 and 10 percent of the time, making load dis-
tribution even worse than in the uniform deployments. Figures 8(c)
and 8(d) illustrate this effect. Once again, the heavy tail indicates
the presence of hotspots in the network.

Path Diversity.In our experiments to evaluate path disjointness,
we found that for a network of 100 nodes, a path based on a ran-
domly chosen direction string intersected with an average of 60%
of the nodes on the default path. In a network with 500 nodes,
the average intersection was 73%. This indicates that by simply
varying the direction string in a packet, a legitimate node can sig-
nificantly alter the composition of the path.

11. IMPLEMENTATION
To further evaluate the practical issues that arise on real motes,

we have developed an implementation of our routing protocol(as
presented in Sections 4 and 5) in the TinyOS environment and run
it on our testbed of Telos motes. In the future, we plan to extend
our implementation to include the detection techniques presented
in Section 7. In addition to providing more realistic results, the
resource constraints and wireless medium produced a numberof
new challenges.

11.1 Challenges
Reliable Broadcast. During the recursive routing algorithm, each
edge node in a groupG independently calculates the appropriate
merge targetG′. To ensure every edge node arrives at the same
conclusion, they must all have up-to-date information. Thus, infor-
mation about neighboring groups must be reliably broadcastto the
entire group.

While reliable broadcast is a simple concept, it remains a diffi-
cult research problem in wireless sensor networks, and it created
a significant challenge for our implementation. To further compli-
cate the issue, we must perform reliable broadcasts during routing
establishment, when nodes have limited information about the ac-
tual topology.

We achieve reliable broadcasts using the nodes’ network addresses.
As shown earlier, at each stage of the grouping algorithm, the net-
work addresses are unique within each group.

Thus, at any stage of the recursive grouping algorithm, a node
can use its partially established routing table to send a reliable
broadcast to its group while maintaining low per node overhead.
For example, nodeA can start the broadcast by looking through its
neighbor table and choosing two nodes: one nodeB with a net-
work address matching the prefix 0*, and another nodeC with a
network address matching the prefix 1*. NodeB, upon receiving
this packet, chooses two new recipients to propagate the broadcast
by resolving 1 additional address bit 00* and 01*. This protocol
terminates when the length of the network address exceedsr, or if
no matching addresses exist.
Asynchronicity. Motes wake up and execute asynchronously,
which makes the implementation and debugging process more com-
plicated than in simulations. Moreover, because of radio contention,
it is actually undesirable to allow motes to progress synchronously.
To address these issues, we implement the recursive grouping algo-
rithm as an event-driven finite state machine, with radio messages
and timeouts triggering state transitions.
Asymmetric Links. The protocol design assumes bidirectional
links between nodes; however, in real deployments, asymmetric
links are endemic. To resolve this issue, we use the receivedsig-
nal strength indication (RSSI) to discover and agree on neighbors.
During the secure neighbor discovery protocol, each node keeps
RSSI values for every node it hears from. Then, it sends neighbor
invitations to thek nodes with the strongest RSSI values. A nodeα
adds another nodeβ as a neighbor if it receives an invitation from
β, or if its own outgoing invitation is acknowledged byβ.

11.2 Results
We implemented and ran the routing protocol on our sensor net-

work testbed. The testbed consists of 16 Telos motes distributed
across a floor of our building. Each mote was connected to a USB
hub to supply power and to facilitate debugging. We also set up
several motes as base stations to monitor network traffic. Weplan
to deploy our protocol on a larger network upon completion ofour
testbed.

After routing information has been established, we test therout-
ing protocol by trying to route between each pair of motes. Each
mote sends 5 packets to all possible network addresses. The other
motes forward the packets using their routing tables. When apacket
reaches the intended recipient, a reply is generated and sent back to
the original sender. As Table 1 shows, our protocol routes success-
fully 100% of the time on a deployment of 16 motes.

We also measured the memory overhead used by each mote dur-
ing routing establishment. As our results show in Table 1, our pro-
tocol achieves very low memory usage. The code size is a constant
overhead of 21KB. More importantly, our protocol scales well,
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Figure 8: Load Distribution. These graphs show the distribution of communication overhead required to route between all possible
pairs of nodes in the network. We plot the results as a CDF to show the distribution of the load in the network. A protocol wit h a
perfectly even distribution would appear as a vertical line.

Number of Merges Per Node 4
Code Size 21 KB
Data Size 50 bytes
Avg. Num of Packets Sent Per Node 101
Success Rate 100%

Table 1: Implementation Results. This table summarizes the
overhead required to setup the routing information for 16
motes. It also notes the routing success rate.

since the dynamic data does not grow linearly with the network
size. Instead, each node only needs to keep two tables, a routing
table and a neighbor table. The routing table adds an entry for each
merge, and hence grows logarithmically in the number of nodes in
the network. The size of the neighborhood table is constant,given
the network degreed. In general, if the setup requiresm merges,
the memory overhead of our implementation is 10d+5m bytes.

12. RELATED WORK
In this section, we summarize related research on routing intrust-

worthy environments and discuss other work on secure sensornet-
work routing.
Routing in Trustworthy Environments. The idea of creating
a hierarchy of regions has been previously proposed by several re-
searchers [18,30,31]. However, we are not aware of the use ofsuch
hierarchies for either routing in sensor networks or securerouting
in general.

Several approaches to provide efficient routing for node-to-node
communication in sensor networks have been proposed [1,7,9,13,
17,22,28]. However, they all assume a trusted environment without
considering security.

Karlof, Li, and Polastre propose the ARRIVE protocol, a proto-
col resilient to failures, but not against attacks [14].
Secure Sensor Network Routing. Karlof and Wagner describe
attacks on standard (unsecured) sensor network routing protocols
and propose some generic countermeasures, without proposing a
complete protocol [15].

Deng, Han, and Mishra propose INSENS [3, 4]. INSENS pro-
vides routing between nodes and base stations, but not between ar-
bitrary sensor nodes (except by relaying through the base station).
In contrast, we design a general secure routing protocol that can
relay messages between arbitrary nodes.

SIGF, designed by Wood et al., achieves secure routing proper-
ties based on the assumption that nodes know their own geographic
locations [33]. Their scheme prevents spoofing using local keys,
and they add resiliency through nondeterministic selection of for-

warding nodes. Our scheme imposes more complexity but does not
require geographic information.

Some of the security mechanisms we leverage in this paper have
also been used by other researchers. Routing around an area of poor
connectivity and sending messages over multiple paths havebeen
proposed for sensor networks in various contexts [4,14,32,34].

13. FUTURE WORK AND CONCLUSION
To secure networking protocols, researchers often add security

mechanisms to existing protocols that were designed for benign en-
vironments. In the case of routing protocols, this has worked well
in the context of Internet and ad hoc network routing protocols.
Unfortunately, in the context of highly resource-constrained sen-
sor networks, we found that securing existing protocols introduced
either an unacceptable level of complexity or an excessive perfor-
mance penalty. For these reasons, we decided to design a secure
sensor network routing protocol from a clean slate.

By leveraging all three approaches to design secure routingpro-
tocols (prevention, detection and recovery, and resilience), we ob-
tain a secure routing protocol that is highly robust to attack. We
demonstrate the security and performance of our protocol through
theoretical analysis, simulation, and implementation. The perfor-
mance overhead is reasonable given the security achieved.

In the future, we plan to analyze the performance of our protocol
under attack, to investigate techniques to improve its efficiency, and
to develop our implementation into a more robust platform.
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