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Abstract
We envision a future where Web, mobile, and desktop

applications are delivered as isolated, complete software
stacks to a minimal, secure client host. This shift imbues
app vendors with full autonomy to maintain their apps’
integrity. Achieving this goal requires shifting complex
behavior out of the client platform and into the vendors’
isolated apps. We ported rich, interactive POSIX apps,
such as Gimp and Inkscape, to a spartan host platform.
We describe this effort in sufficient detail to support re-
producibility.

1 Introduction
Numerous academic systems [5, 11, 13, 15, 19, 22,

25–28, 31] and deployed systems [1–3, 23] have started
pushing towards a world in which Web, mobile, and
desktop applications are strongly isolated by the client
kernel. A common theme in this work is that guarantee-
ing strong isolation requires simplifying the client, since
complexity tends to breed vulnerability.

Complexity evicted from the client kernel takes up res-
idence in the apps themselves. This shift is beneficial: It
lets each app vendor decide independently which com-
plexity is worth the risk of vulnerability, and one ven-
dor’s decision in favor of complexity does not undermine
another’s decision to favor security. Of course, requiring
each app vendor to implement a complete software stack
is impractical, so we expect this complexity to migrate to
app frameworks that app vendors can choose among, just
as web developers choose among an ever evolving set of
app frameworks on the server.

The minimality of the client interface must not inhibit
the richness required by applications such as desktop
productivity apps. New client application models often
fail due to the burden of migrating every app–and ev-
ery library–to run under a new model. Thus, we argue
that shifting app delivery to a minimal-client model re-
quires an inexpensive app migration path from complex-
host frameworks such as POSIX and Windows.

On the other hand, support for richness should not sac-
rifice the small size and tight specification of the isolation
interface. The web’s current client execution interface
has repeatedly failed to achieve strong app isolation, due
to an interface bloated with HTML, DOM, JPG, PNG,
JavaScript, Flash, etc. in pursuit of richness.

The recent Embassies system provides a concrete ex-
ample of how to achieve both security and richness si-

Libraries
Application Function # Examples
Abiword word processor 63 Pango,Freetype
Gimp raster graphics 55 Gtk,Gdk
Gnucash personal finances 101 Gnome,Enchant
Gnumeric spreadsheet 54 Gtk,Gdk
Hyperoid video game 6 svgalib
Inkscape vector drawing 96 Magick,Gnome
Marble 3D globe 73 KDE, Qt
Midori HTML/JS renderer 74 webkit

Table 1: A variety of rich, functional apps transplanted
to run in a minimal native picoprocess. While these
apps are nearly fully functional, plugins that depend on
fork() are not yet supported (§3.9).

multaneously [16]. It pushes the minimal client host in-
terface to an extreme, proposing a client host without
TCP, a file system or even storage, and with a UI con-
strained to simple pixel blitting (i.e., copying pixel arrays
to the screen). In support of rich apps, Embassies’s mini-
mal interface specifies execution of native binary code.
Native code is an important practical choice, because,
we assert, it is the lack of native code that has forced
each prior system based on language safety to evolve a
complex trusted interface that provides access to native
libraries [8, 10, 17, 20]. This complexity undermines the
intent to provide strong security.

While native code is a target that every compiler can
hit, it seems daunting to port arbitrary POSIX apps to
such a minimal interface. Such apps expect to run on a
complex host with hundreds of system calls and dozens
of system services, reflecting decades of development.

However, our experience suggests this task is far eas-
ier than one might expect. Interactive apps use relatively
little of the complexity available in modern host plat-
forms. More importantly, rather than alter the app, the
functions that are required can often be emulated behind
the POSIX interface. This technique works without even
recompiling the hundreds of libraries involved. The em-
ulation work can be shared easily across many applica-
tions, making the porting work scalable. The broad se-
lection of rich apps that our system supports (see Table 1)
demonstrates the generality of the approach.

Contributions. This paper demonstrates the tractability
of porting rich POSIX apps to a minimal environment,
thus enabling them to run on a multitude of minimal
client hosts [13, 16, 18, 22, 31]. We give a full account-



ing of the porting task, including which functionality is
required and where corners can be cut. This includes
low-level details, such as an exhaustive list of syscalls
handled, to enable reproducibility and to eliminate any
ambiguity about complexity hidden under the hood. Ul-
timately, we hope that this will expedite other efforts to
adopt these techniques and hence achieve rich applica-
tions atop minimal, strongly-isolating client kernels.

2 Background: Minimal Client Facilities
In this work, we aim to transplant apps from a rich

POSIX interface to a minimal client kernel. To ground
the discussion, we target the minimal Embassies pico-
process interface [16], since it takes minimality to an
extreme. If we can port an app to Embassies, we can
certainly port it to a client with a richer interface.

The Embassies application binary interface (ABI) pro-
vides execution primitives that support an app’s internal
computation, cryptographic primitives to facilitate pri-
vacy and integrity, primitives for IPC and network com-
munication, and user interface (UI) primitives for user
interaction.
Execution. The execution primitives include:

• Calls to allocate memory and free memory.
To simplify the specification and to make the ABI
portable to most host environments, the app speci-
fies only the amount of memory required; it has no
control over the addresses returned by the allocator.

• create thread accepts only the thread’s initial
program counter and stack pointer; the application
provides the stack and any execution context.

• exit thread destroys the current thread.
• A simplified futex-like [6] synchronization schedul-

ing primitive, the zutex. zutex wake is a race-
free scheduling primitive that supports app-level ef-
ficient synchronization primitives. The correspond-
ing zutex wait is the only blocking call in the
ABI; it allows an app to yield the processor.

• clock returns a rough notion of wall-clock time.
• set timer sets a timer, in clock coordinates, that

wakes a zutex on its expiration. Each picoprocess
has only one timer; the app must multiplex it.

• get alarms returns a list of three distin-
guished zutexes representing external events, one
for each of receive packet, ui event, and
timer expired. Waiting on these zutexes is how
threads block on external activity.

• A call to create a new picoprocess.

Cryptographic Infrastructure.
• random provides a supply of cryptographically

strong entropy.
• app key provides a machine-specific, application-

specific secret. Apps use this key, along with cryp-
tographic libraries, to store and recover private in-
formation despite starting from a public binary.

Communication. All communication outside the pro-
cess, whether IPC to another process on the local ma-
chine, or remote to an Internet host, follows IP seman-
tics: Data is transferred by value (a logical copy), so
that the suspicious recipient needn’t worry about concur-
rent modification; addressing is non-authoritative; deliv-
ery admits loss and duplication; packet privacy and in-
tegrity are not guaranteed. Just like servers on the Inter-
net, apps build up integrity and privacy themselves using
cryptography. To underscore these semantics, all com-
munication in Embassies–remote or local–is done via IP.

• get addresses assigns the process one IPv4
and one IPv6 address.

• allocate packet allocates memory for an out-
going packet; this allocation is distinguished from
allocate memory to enable zero-copy transfer.

• send packet delivers a packet, interpreting its
argument as an IP header and payload.

• receive packet returns an allocated and de-
queued packet, or NULL if the queue is empty.

• free packet frees an allocated packet.
User Interface.

• ui event returns a dequeued UI event (keystroke
or pointer motion), or NULL if the queue is empty.

• Some calls that manage viewports, letting them be
transferred among applications, or letting one ap-
plication sublet a region of its viewport to another
application. In every case, even where nested, each
viewport is owned by a single app; no app can in-
spect or modify the pixels of another app’s view-
port. Details can be found elsewhere [16].

• map canvas allocates a framebuffer to back a
viewport. This allocation is distinguished from
allocate memory to enable fast pixel blitting.

• update canvas informs the client kernel that a
region of the framebuffer has been updated, and that
its pixels should be blitted to the display.

These calls comprise the entire Embassies ABI; all of
the functionality described in the rest of the paper is im-
plemented in terms of these primitives.

3 The POSIX Emulator
A conventional POSIX application employs dozens of

libraries, access to a rich system call interface, and by
way of those system calls, access to other rich services,
such as the X server’s graphics functions and the dbus
desktop configuration object broker.

To execute applications expecting this rich POSIX en-
vironment, our POSIX emulator cleverly repurposes ex-
isting libraries and programs atop the execution environ-
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Figure 1: The POSIX Emulator. To Embassies, the emulator (the large, L-shaped boundary) is a binary string whose entry point
is its first byte, and which may call back into a set of low-level interfaces provided by the Embassies ABI. Internally, the emulator
loads the app’s read-only image, maps it into a virtual filesystem, and calls into a copy of ld-linux.so. That loader, using
the emulated POSIX ABI, reads the app executable and additional ELF libraries into memory. The glibc libraries’ syscalls are
redirected to the emulator’s POSIX interface. Non-POSIX hooks provide connections for UI and TCP services implemented outside
of the emulator (Figure 2).

ment’s minimal services (§2). Figure 1 gives a structural
overview of how the emulator maps the entire POSIX in-
terface down to Embassies’s picoprocess interface.

Below, we provide a functional exposition of this em-
ulation, starting with application launch.

3.1 Application Launch
Embassies provides minimal support for app launch,

merely loading and starting a vendor-specified boot block
of code. Specifically, the host (1) maps the applications’
boot block into an arbitrary region of address space, (2)
sets up a minimal stack, and (3) places in a register the
address of a dispatch table for the Embassies ABI (§2).

Within its boot block, the POSIX emulator (1) re-
locates its symbols, using a small piece of position-
independent code, (2) allocates an adequate stack, and
(3) establishes a dispatch function to emulate the POSIX
syscall interface (§3.2) and virtual file system (§3.3).

Next, the emulator must load the app and its libraries
into memory. In a full Linux implementation, the kernel
would interpret the app’s ELF binary format, map the
app binary into memory, map the loader ld-linux.so
into memory, and then jump to the loader. The loader
would then enumerate dynamic library references within

the ELF image, map these libraries into memory, link
the images together (resolving symbolic references), and
then jump to the app’s entry point.

Embassies, however, provides neither a file system
from which to map files nor a kernel willing to parse ELF
binaries. Thus, our emulator must perform these tasks,
which it does by invoking ld-linux.so, an image of
which is included in the emulator’s boot block. The em-
ulator calls ld-linux.so and passes the app’s path as
an argument, which instructs the loader to map the app
(and its libraries) into memory. POSIX calls made by
ld-linux.so are serviced by the emulator (§3.2).

To call the loader, the emulator creates a suitable
argv (naming the ELF executable), an envp (e.g.
pointing DISPLAY at 127.0.0.1:6), and an auxv (some
constants to convince libraries they’re running on Linux).

3.2 Intercepting System Calls
The loader, as well as other libraries in the glibc suite,

are at the bottom of the library stack; these are the li-
braries that make actual POSIX syscalls. In principle,
other libraries could also include direct syscall instruc-
tions, but in practice, we have never observed this; in-
stead, they simply use libc’s syscall symbol.
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We want to exploit the functionality of the glibc suite,
but glibc’s system calls will fail in an Embassies process;
they must be intercepted and replaced with calls to the
syscall emulation layer. In principle this can be achieved
by creating an alternate “sysdep” personality for glibc.
In practice, at least for the x86 architecture, we found
it easiest to apply a binary rewriting pass to each of the
libraries in the glibc suite, patching every system call in-
vocation (i.e., each occurrence of int $0x80) with a
call to a dispatch function that we inserted at the end of
the library.

The dispatch function in each library must, in turn, be
patched dynamically to call into the emulator’s syscall
dispatcher. To identify libraries in need of such dynamic
patching, we modified the libraries’ ELF headers to label
the dispatch function. As libraries are mmaped into the
app’s address space, a filter file system in the VFS layer
(§3.3) detects the modified ELF signature and transpar-
ently updates the dispatch function to point at the emula-
tor’s syscall dispatcher.

3.3 Virtual File System
Much of the POSIX ABI concerns file naming and file

descriptors, which provide access to a variety of func-
tions. Thus, like a Unix POSIX implementation, the em-
ulator contains a virtual file system (VFS) abstraction.

VFS components include a read-only app image, a
RAM-based writable temporary filesystem (tmpfs) that
implements POSIX scratch directories like /tmp, and
named pipes (Unix-domain sockets). The writable
tmpfs directories provide the namespace for the Unix-
domain sockets. There are also the virtual files that em-
ulate POSIX special files. These comprise the /proc
files of Section 3.8.1 and an emulated /dev/random
which passes entropy up from the client kernel’s
random facility.

The emulated VFS contains an overlay mount table to
weave these file systems together.
3.3.1 The Read-Only Application Image

The most important VFS component is the read-only
binary image, whence libraries and data files are fetched.

A Linux app expects to fetch its libraries and read-only
data files by name from a (shared) file system via read
and mmap. In Embassies, such files come from a private
app image whose integrity has been verified.

To support this, the developer packages every file the
app requires into a single tar-style image file. The emu-
lator fetches this file from an untrusted cache on the local
machine, delegating to the cache the complexity of fetch-
ing the image from an upstream cache or origin server
and exploiting commonality with other apps [14]. The
reply appears in memory as a single (jumbo) IP packet.
The emulator ensures integrity by comparing the image’s
hash to a fixed hash value embedded in the boot block.

accept recvfrom
bind recvmsg
connect send
getpeername sendmsg
getsockname sendto
getsockopt setsockopt
listen shutdown
recv socket

Table 2: Socket Calls. These calls are plumbed through the
VFS interface to either the Unix named pipes implementation
or the TCP stack.

The image file transmission protocol supports partial
fetches, so that the app can start with only a subset of the
image, and then later page in additional components.
3.3.2 Supported Interfaces

POSIX defines a wide, complex interface for interact-
ing with the file system, so implementing the entire in-
terface would be quite labor intensive. Fortunately, to
support the varied applications from Table 1, it suffices
for the VFS to support the following functions.

First, there is the core interface open, close,
ftruncate, and ftruncate64; and the metadata
interface stat, lstat, fstat, and access. VFS
file descriptors track file pointers for read, write,
writev, and lseek. Directory functions mkdir,
getdents, getdents64, (hard) link, and unlink
are only implemented in the tmpfs. The socket calls
(Table 2) are routed through the VFS to the Unix pipe
and TCP (§4.2) implementations.

The emulator also implements file handle functions
dup, dup2, pipe, and pipe2. pipe connects two file
descriptors with a blocking pipe with no presence in the
VFS namespace. Functions fsync and fdatasync
are no-ops. Most of fcntl and fcntl64 are no-ops,
except F DUPFD, which calls the dup implementation.

3.4 Mmap Support
POSIX mmap is versatile, but in practice it is used in

only a few idiomatic ways.
First, mmap(MAP ANONYMOUS) is used to allocate

blank memory at an address chosen by the kernel. The
emulator transforms these calls into Embassies memory
allocations.

Second, apps use mmap explicitly to map in non-
executable data files. These calls also give the emulator
freedom to choose the target address, so the emulator al-
locates fresh memory and uses a memcpying read im-
plementation to simulate the effect of the mmap.

Finally, apps use mmap implicitly when they dynam-
ically link executable libraries, either at load time via
ld-linux.so or at runtime via dlopen. Some of
these calls do expect to control the resulting data place-
ment, a degree of control that Embassies does not pro-
vide when allocating memory.
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Fortunately, the loader does not really care where a
given library ends up; it just requires that the data seg-
ment of the library appears at the correct offset from
the text segment. To this end, the loader’s first mmap
call does not specify a target address; instead, it speci-
fies a length sufficient to reserve enough address space
to cover all the segments in the file. The loader’s subse-
quent mmap calls (e.g., for the data segment) do specify
a target address, but the target address is always within
the memory range allocated by the initial mmap call.

Thus, the emulator can support this final class of mmap
calls by simply using the Embassies interface to allo-
cate the initial memory region (which does not specify a
particular address), and then confirming that subsequent
mmaps (that do specify an address) fall within the initial
memory allocation. As long as they do, the emulator can
take the appropriate action, e.g., it can zero-fill the spec-
ified region for the binary’s .bss section or copy in the
contents of the mmaped file.

This approach is clearly “less portable”, in the sense
that a POSIX app could in theory call mmap with an ad-
dress outside of any preexisting allocation. Fortunately,
we have not yet encountered any applications that rely on
this functionality.
3.4.1 Fast mmap

The approach above is adequate for correct POSIX
emulation, but for the apps we tested, where the bulk
of the image comprises mmap-loaded libraries, it incurs
many megabytes of memcpys, adding noticeable delay
(150 ms) to the app start time. We corrected this perfor-
mance problem by page-aligning mmapable libraries in
the image tar file (§3.3.1), and servicing mmap requests
by yielding the memory region from the VFS to the app.

Of course, this means that the region can not be read
or mmaped later in the program’s execution; if a program
needs to map a file multiple times, we either store mul-
tiple copies in the image file (often worth the space), or
mark the region “precious”, inhibiting the optimization.

Fast-mmap files must be stored in the image in their
in-memory layout, not their on-disk ELF layout, includ-
ing necessary blank space to position the data and bss
segments. The blank spaces are, of course, easy to com-
press during transmission.
3.4.2 Other Memory Calls

Most POSIX memory allocations appear as anony-
mous mmap calls. The emulator tracks such requested re-
gions, freeing the underlying Embassies allocation once
the entire region has been munmapped.

Embassies provides no read/write/execute memory
protections, so the emulator simply ignores mprotect,
madvise, and msync. It also rejects mremap.

Unfortunately, ld-linux.so and libc both make
initial memory allocations with the ancient brk inter-

face. Why? We cannot say; the best solution would
be to eradicate these deprecated calls. Instead, as a
workaround, the emulator assumes that virtual mem-
ory has no cost, generously over-allocates on the initial
brk(0) call, and services each subsequent brk exten-
sion by releasing more of the initial allocation.

3.5 Clock and Timers
The emulator provides the various flavors of POSIX

time: time, gettimeofday, and clock gettime.
It translates all of these from the nanosecond precision
clock supplied by the client kernel. That clock provides
rate but no offset information; hence all of our apps think
the current time is 2011. We use ntpdate to acquire a
clock offset, although we have not yet attended to the
security implications.

Embassies supplies the process with a single timer,
which signals the process by firing a zutex, and thus can
be reset in a race-free way. The emulator has the respon-
sibility to multiplex this one timer into as many alarms
as it needs to implement POSIX timeout interfaces. It
does so using a tree of upcoming deadlines, for scalabil-
ity. We found the clock multiplexer to be surprisingly
subtle, with many race conditions that lead to deadlocks.
It was helpful to diagram the detailed mapping between
the host timer state and the state of the guest timer list.

3.6 Synchronization Primitives
The Embassies client kernel provides a single uni-

fied synchronization abstraction, the zutex, that is used
both for internal waiting on other threads and waiting on
external events (the network or the clock). This central
abstraction is a simplified futex [6]. Like the futex,
the zutex is actually a race-free scheduling primitive in
support of efficient synchronization.

The basic POSIX futex maps readily onto the zu-
tex, with the emulator folding in timeout behavior (§3.5).
Many extra POSIX behaviors are neutered. For example
highly concurrent servers use FUTEX CMP REQUEUE
to avoid convoys, but our emulator simply wakes
the requested threads and lets them requeue them-
selves. The emulator rejects FUTEX WAKE OP
and FUTEX WAIT BITSET with an error, alerting
libpthread to revert to the basic behavior.

The nanosleep call and POSIX multiple-wait prim-
itives select, newselect, and poll are all mapped
into zutex wait operations, again with timeout behav-
ior constructed by the emulator. POSIX blocking oper-
ations, like a read on an empty pipe, wait on zutex-
signaled events.

3.7 Network Multiplexing
Embassies provides each process with a single zutex

to signal the arrival of IP traffic. Thus, the emulator
must collect incoming IP packets and multiplex them
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inside the app. The emulator itself uses IP to fetch its
image (§3.3) and for querying time servers (§3.5). The
emulator’s network stack demultiplexes IP and UDP, and
delivers TCP packets to the LWIP library (§4.2).

3.8 Threads
POSIX uses clone to express both thread creation

and process fork (§3.9). The emulator pattern-matches
the thread-creation idiom and sets up the new thread’s
initial thread-local store (TLS). Because Embassies’
create thread conveys only a stack pointer, the em-
ulator constructs a stub stack to pass the POSIX param-
eters and the caller’s designated stack to the new thread.
It records metadata about the new thread to correctly
implement CLONE CHILD CLEARTID upon POSIX’s
thread-exit call.

The POSIX process-exit call, exit group, signals
the zone host (§4) that a zone has exited.
3.8.1 Supplying the Stack Address

Several applications rely on garbage collection li-
braries that need to know the address of the top (but not
the bottom) of the current thread’s stack. This is exposed
in Linux POSIX through pseudofiles in /proc.

At first blush, it appears that the stack bottom address
is also needed. For example, Libwebkit’s JavaScriptCore
garbage collector queries libpthreads for the stack
bottom address. However, the GC does not use the bot-
tom address directly; instead, it adds RLIMIT STACK to
yield the top address. Since libpthreads determines
the bottom address by subtracting RLIMIT STACK from
the top address it obtains from /proc/self/maps,
any sane value for RLIMIT STACK will work correctly.
We used 8 MB.

The stack top value returned by /proc/self
/maps, on the other hand, does matter: It is how a con-
servative garbage collector learns the extent of the stack.
Another garbage collector, libgc, looks for the stack
top in /proc/stat/self. We install special VFS
nodes at those names which return the appropriate stack
top value for the current thread.

To identify which thread is querying the interface, the
emulator snoops the app’s thread-local store (TLS) reg-
ister; that is, it uses grey-box assumptions about how
glibc manages the TLS. For all threads other than the
main thread, the emulator records each stack address as
its thread is created by the clone syscall. For the main
thread, the emulator allocated the stack (§3.1) and thus
knows its address.

3.9 Unimplemented: Fork
Some apps employ the fork/exec pattern; e.g.,

Inkscape uses it for its plug-in modules. This pattern
does not translate well to the minimal Embassies envi-
ronment, since Embassies’s memory management facili-
ties are far too simple. The current emulator implemen-

chmod sched setparam
chown sigaction
fchmod sigprocmask
rename umask
sched get priority max sched setscheduler
sched get priority min

Table 3: Failure-oblivious calls return either EINVAL or
ENOSYS, which the caller handles gracefully.

fchown set tid address
flock setitimer
fstatfs setpriority
inotify init setrlimit
inotify init1 shmget
ioctl statfs
ipc sysfs
readlink times
sched getaffinity xi sched yield
set robust list xi timer create
xi sched rr get interval

Table 4: Neutered calls simply return 0 (success).

tation does not support fork at all, leaving Inkscape’s
plug-ins inoperative.

An expedient approach, if the code is sufficiently id-
iomatic, is to emulate the fork with a thread, and perhaps
intercept and neuter close calls from the child “pro-
cess” preparing to exec. The exec call would launch a
new zone (§4), or if fault-containment is desired, a new
picoprocess (§2).

Alternatively, since the fork/exec pattern is usu-
ally implemented in a widely-used library, such as glib’s
g spawn, one could modify this higher-level library to
map fork’s semantics cleanly onto the creation of a new
zone or picoprocess.

3.10 Neutered System Calls
The remaining syscalls are either unused by interactive

apps, or can be simply rejected or neutered. This section
identifies such syscalls in the interest of completeness.

Many calls (Table 3) can be rejected, returning
ENOSYS or EINVAL, and the libraries that call them ei-
ther handle the failure gracefully, fall back to an alternate
POSIX mechanism, or ignore the result and trundle along
obliviously [24].

Other syscalls can be neutered with brazen lies: When
the caller actually checks the return code, we may need
to return 0 (“success”) even if we don’t actually emu-
late the promised semantics (Table 4). Other functions
require slightly more credible lies: The emulator fills in
some plausible constant values to placate the caller (Ta-
ble 5). For instance, the clock getres call should
provide some information about clock quality (§3.5), but
we just claim a 500 ms resolution. As another exam-
ple, we found no software that used chdir, so getcwd
simply returns “/”.
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clock getres getpid
getcwd getppid
getegid getresgid32
getegid32 getresuid32
geteuid getrusage
geteuid32 getuid
getgid getuid32
getgid32 sched getparam
getpgrp uname
sched getscheduler

Table 5: Deluded calls return slightly fancier lies than 0.

3.11 Additional Program Requirements
Emulating the POSIX ABI is minimally intrusive to

the apps, but a few conflicts remain.
3.11.1 Address Freedom

We have already seen that Embassies’s refusal to let
apps specify specific locations for allocated memory re-
quires the boot block to relocate itself (§3.1) and requires
a delicate hand in servicing mmap (§3.4).

It also means that every executable must be relocat-
able or position independent. Every Linux shared li-
brary is relocatable, but for no discernible reason, ex-
ecutables are not relocatable by default. We address
this by rebuilding each app’s top-level executable with
the -pie (“position-independent executable”) compiler
flag. Although this requires tampering with the app’s
build system (§6.1), it is required only for the top-level
application, not any libraries; and in most cases, passing
DEB CFLAGS=-pie to dpkg-buildpackage does
the job. The change is nowhere near as invasive as trying
to change to static linkage (§6.1).
3.11.2 The TLS Register

On the architecture we experimented on, the arcane
x86-32 instruction set architecture, a paucity of general-
purpose registers leads POSIX compilers to employ a
disused segment register %gs as a thread-local stor-
age (TLS) pointer. This usage gets compiled into ev-
ery library and application binary. Since the idiom has
no security-sensitive semantics, we opted to provide a
store-gs call in the x86-32 Embassies ABI; the emu-
lator uses it to implement set thread area.

A better solution would be to either recompile or bi-
nary rewrite every binary to eliminate %gs references.

4 Zones: Programs as Libraries
Besides kernel services, POSIX apps often expect ac-

cess to higher-level services provided by daemon pro-
grams like X windows, a window manager (e.g., twm),
or a configuration manager, like the dbus desktop bus.
We satisfy such apps by including these services inside
the apps that need them, rather than in the client kernel’s
TCB (which would add them to every app’s TCB).
X, twm, and dbus are designed as independent

X twm gimp
stack
allocations

heap
allocations

LWIP

zone host

POSIX emulator
VFS hook
IP hook

UI ifc.

pi
pe

Figure 2: Multiple POSIX apps coexist in one picoprocess
as zones. Each zone comprises a noncontiguous partition of
the address space. Each has its own copies of libraries, like
libc, and its own stack and heap allocations. Programs that
expect POSIX pipe IPC, such as an X session, see the same
behavior within the picoprocess.

POSIX processes. Rather than convert them into li-
braries, we found it expedient to create a general mecha-
nism for loading multiple programs into a single picopro-
cess. This is easier than it sounds, because each program
separately allocates memory and file descriptors, which
carves the resource namespaces into interleaving parti-
tions. We call such partitions “zones” (Figure 2).

Embassies’s refusal to allow memory allocations at
specific addresses works to our advantage when imple-
menting zones, since it precludes zones from demanding
overlapping allocations. It is zones that use the emulated
Unix pipes (§3.3). For example, the X zone listens on
/tmp/.X11unix/X0, and the xlib client library in the
main application zone binds to it there.

The vestigial brk interface (§3.4.2), however,
presents a hurdle. Two threads in different zones may
concurrently extend different brk heaps. The brk inter-
face assumes hidden per-process state, which becomes
per-zone state. The good news is that we can infer
which zone is making the request, and hence which per-
zone state to consult, because each request should appear
within the address space set aside for that zone’s brk.

The bad news is that, on 32-bit hardware, virtual
address space is scarce enough to warrant preserving,
which means allocating only appropriately-sized brk re-
gions for each zone. This is tricky because the initial
call from each zone is a stateless brk(0), from which
the emulator cannot infer the identity of the calling zone.
Our expedient solution forces the zones to start up se-
quentially. A more elegant solution would identify the
calling zone by its TLS or stack pointer, or (better yet)
eliminate brk calls from libc.
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4.1 Example Zones
The X server presents a complex security boundary,

and this complexity conflicts with Embassies’s goal of a
minimal client kernel TCB. Therefore we use X only in-
side the picoprocess, in a zone, disregarding its security-
sensitive multiplexing functions and exploiting only its
rasterization function. The rendered frame buffer that
X produces is blitted to the user’s display through Em-
bassies’s pixel-level UI interface.

Some apps, like Gimp, use a plethora of palette win-
dows. For expediency, we add a twm window man-
ager zone into such apps, to allow manipulation of the
palettes within the surface of the app’s single display re-
gion. With more effort, one could coordinate multiple
windows via Embassies’s window management, perhaps
using a technique like Nitpicker’s [9].

Gnome desktop apps expect to connect to the dbus
daemon to find other components and learn configura-
tion settings. This tight coupling among applications has
no cost in a trusted-everything system, but is too risky
for mutually untrusting apps. Hence we do not repro-
duce the connected dbus; instead, we link a copy of the
daemon into each app to expediently satisfy the client
library. With more effort, one could strip the dbus de-
pendencies out of each app.

4.2 Extension Hooks
The emulator sits below libc, and hence cannot ex-

ploit libc. Coding without libc is painful; thus where
possible, we push functionality out of the emulator into
layers above. To facilitate this modularity, the emulator
exports four hooks via unused syscall numbers.

Specifically, as alluded to above, we use an X zone
to translate app UIs into easily blitted pixel regions.
A modified X server within the zone supplies the
graphical user interface. It uses one extension hook,
ex get dispatch table, to gain access to the raw
Embassies UI functions. It uses a second extension hook,
ex open zutex as fd, to wrap the UI notification
zutex in a POSIX file descriptor, enabling the extension
to smoothly integrate into X’s existing poll loop.

All unhandled IP traffic, including TCP traffic, is
handed off to a TCP stack based on lwIP [7] that re-
sides in the zone host. The lwIP stack is a loadable
module, attaching to the emulator’s IP multiplexer via
ex add default handler and servicing requests
for SOCK STREAM sockets via ex mount vfs.

5 Debugging Strategies
The key premise of this work is that most apps use

only a fraction of POSIX functionality. This paper cata-
logs these functions in detail precisely because the chal-
lenge is in discovering which functions matter.

Most of the effort in emulating the right subset of

POSIX involves figuring out why a segfault occurred in a
library dozens of layers below the app. To assist the prac-
titioner who wishes to extend this approach, this section
identifies our most valuable debugging strategies.

It is important to plumb error messages out of the pi-
coprocess. Our insecure debug-mode Embassies monitor
offers an extended ABI with debug channels that record
to files. The emulator routes stdout and stderr to them.

Since most of our changes occur behind the POSIX in-
terface, it is very effective to compare system call traces;
divergences often identify root causes. We capture a ref-
erence trace in Linux with strace, and add a corre-
sponding debug facility at the emulator’s entry point. It
emits a trace file using another debug output channel.

Of course, a debugger is invaluable. Our debug-mode
monitor runs apps as Linux processes. It routes Em-
bassies syscalls out through a pipe to a coordinating pro-
cess, but leaves the conventional POSIX syscall interface
intact, enabling gdb to connect to the process.

However, gdb has no access to symbols. The emu-
lator does not use POSIX mmap to map in ELF files,
so gdb’s inspection of Linux-provided metadata in
/proc/pid/maps is fruitless. To bridge this gap, the
emulator records a trace of file open and mmap opera-
tions via another debug channel. A script transforms the
trace into a gdb add-symbol-file script, solving
the symbol problem.

Similarly, gdb’s usual mechanism for discovering
new threads fails when thread creation is handled by the
emulator. Thus, the debug monitor provides another ex-
tension by which the emulator signals thread creation,
and the debug monitor generates the appropriate trap
(int $0x3) to alert gdb.

We haven’t yet implemented gdb stubs for our secure
monitors, because once an app runs correctly in the de-
bug monitor, it rarely fails in the secure monitors. In the
rare failure cases, we found it sufficient to study a core
file (a snapshot at the moment of failure). Each secure
monitor has a debug mode in which a picoprocess ex-
ception generates an ELF-format core dump.

The debug monitor also provides an extension to query
CPU time (POSIX times()), and a sampling profiler,
for diagnosing performance problems. An example dis-
covery was that the emulator was returning bogus stat
values, causing a font library to deem its cache file in-
valid, causing it to re-scan thousands of individual font
files at app start.

Finally, gathering the appropriate file set for the read-
only app image is tedious. To expedite, the emulator can
start in “gullible mode”, where rather than fetch an im-
age, it passes every open request path out to a lookup
server located on the development machine where the
original POSIX app is installed. That server hashes the
corresponding file, injects the file contents into the cache,
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and returns the path to the emulator. By this means, the
emulator demand-loads the app’s required files; it also
captures a trace of these loads, which serves as a mani-
fest for generating the app image.

6 Discussion
Our goal is to reuse conventional interactive desk-

top applications in a new minimal runtime environment.
Ideal reuse would use unmodified binaries; required
modifications can be ranked based on their invasiveness.

Transparently emulating required behavior below the
POSIX interface has proven to be very inexpensive; the
main cost is discovering which features actually warrant
implementation (§5). Our experience suggests that the
emulator is asymptotically nearing completeness.

The choice to give apps no control over their memory
layout, which makes Embassies implementable on any
host, is slightly invasive; it requires relinking the top-
level app binary, which is easy in practice (§3.11.1).

The Embassies environment demands some point
changes higher in the software stack, including the bind-
ing of X to the Embassies UI interface (§4.1) and the
replacement of implicit kernel communication with ex-
plicit protocols (§6.3). Such changes do require source
modification of specific packages, but very few such
changes are required, compared with the hundreds of li-
brary packages ported.

The Embassies impositions do preclude running some
unmodified binaries, such as closed-source apps. Closed-
source libraries with Embassies-compatible semantics,
such as a PDF-rendering library, may be usable, though.

6.1 Dynamic vs. Static Linking
In our previous experience with the Xax project [13],

we found that modifying a package’s build system was
frustratingly difficult, generally much harder than modi-
fying the source code and using the package’s build sys-
tem to remake it. Most packages use common source
languages such as C or C++, but it seems every package
uses a different build scheme.

Engineering choices in Xax required statically linking
each app with all of its libraries. Because that changed
how apps and libraries build, the task ranged from dif-
ficult to all-but-impossible, and required new work for
nearly every package.

Thus, in the present work, we elected instead to
keep applications dynamically linked, and to press
ld-linux.so into service for runtime linking. We
found that this expedient substantially reduces the inva-
siveness of porting, as essentially every intermediate li-
brary is readily usable in binary form.

6.2 Limitations
Our experience iterating the emulator to support sev-

eral apps suggests that the emulator is asymptotically
nearing completeness, ready to support most desktop
productivity apps. In most cases where we have intro-
duced a lie or neutered behavior into the emulator, it is
because we have examined the corresponding call site
in libc, and we were able to conclude that the lie com-
pletely satisfies that code path. This approach occasion-
ally backfires when a different call site finds the lie un-
convincing, but these occurrences are rare.

System configuration tools are unlikely to port well,
since our approach destroys tight application coupling,
for example by neutering dbus. We accept this limita-
tion as fundamental to Embassies’s goal of making apps
more autonomous.

Embassies presently has only paper designs for audio
and GPU facilities. Apps that integrate multiple pro-
grams with fork() are not currently supported (§3.9).

6.3 Inter-Application Protocols
This paper focuses on moving apps from a rich, trust-

ing, shared environment to the isolated picoprocess.
However, interesting apps still communicate with the
outside world. Some inter-app communication is already
based on IP: The apps we used discover printers and send
jobs with the Internet Printing Protocol [12], so printing
works correctly without special support.

However, how should apps replace communication
patterns once done locally? For example, suppose one
app produces data another app wishes to read. We ex-
pect such communications, once supplied by a complex
trusted platform (e.g., the OS), to be replaced by IP-
based protocols. Just as in the Internet, IP-based pro-
tocols are bilateral: Both participants have the opportu-
nity to decide how much of the protocol they are willing
to implement, and to select vulnerability-resistant im-
plementations. The Embassies paper [16] addresses this
question in greater detail.

7 Evaluation
7.1 Porting Effort

The most salient proof of effectiveness for our tech-
niques is in the results: We are able to run many rich
apps without even recompiling them (Figure 3). Instead,
we binary-rewrite glibc to redirect the POSIX interface,
use libraries as unmodified binaries, and relink the top-
most executable to make it relocatable. That such non-
invasive techniques are successful with eight interactive
apps built on disparate library stacks is strong evidence
that they will generalize easily to most interactive apps.

Figure 4 shows lines of code [30] in the components
and patches to existing programs. Most of the effort is in
the VFS implementation in the emulator.
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Figure 3: POSIX emulation handles diverse, rich applications, e.g., the Midori Web renderer,
Gimp, Marble, Inkscape, and Gnumeric. Not shown are Abiword, Gnucash, and Hyperoid.

component SLOC
emulator 29156
zone host 1328
lwIP patches 477
X patches 660
twm patches 0

Figure 4: Lines of code
in system components.

7.2 Performance
For compute-bound tasks, the emulator is not in-

volved, and apps run at native speeds. We verified this
by running, on both Linux and Embassies, image rota-
tions in Gimp and a subset of the SunSpider JavaScript
benchmark [29] in Midori. As anticipated, in both cases
the difference is negligible, within 2% (cv = 1%).

Informally, we have observed some emulated activi-
ties run faster than their Linux equivalents. For example,
filesystem interactions with temporary files outperform
Linux because they avoid a kernel-mode transition.

The application launch mechanism precludes the use
of the OS buffer cache, but we recapture much of that
performance in the Embassies environment [14, Fig. 14].
App starts are 50–100 ms slower than Linux; the largest
bottleneck is verifying the integrity of fetched content.

7.3 Coverage
We have demonstrated a layer that emulates a small

subset of Posix behavior, and we have shown this to be
sufficient to run a diverse set of productivity apps. How-
ever, perhaps exercising the apps more aggressively or
running additional productivity apps would require sub-
stantially more Posix-level emulation. To bound the de-
gree to which more emulation could be required, we
compare the set of syscalls visited dynamically with the

set reachable statically. This analysis is approximate,
because some syscalls (e.g., ioctl) aggregate multiple
behaviors, and our static analysis tool is rather coarse.

Figure 5 shows the results. Columns are syscall num-
bers (sorted for contiguity); rows are applications. The
upper eight apps are those we support (Table 1); the
lower eight are other Linux apps to aid extrapolation.
System calls in region (d) are supported as described in
this paper: as meaningful, failure-oblivious, neutered, or
deluded calls. Syscalls in region (x) are observed dynam-
ically when the app is run on Linux but not when run on
our emulator. For example, because shmget is neutered
in the emulator, shmat and shmctl never appear dy-
namically. If the lower eight apps in Figure 5 were run on
our emulator, these syscalls might be obviated for analo-
gous reasons, but we do not know this for certain.

The 27 syscalls in region (s) are reachable statically,
but not observed dynamically. Five are never called be-
cause a better version is emulated (stat64 for stat).
Another 7 are trivial variations of existing emulation
(ppoll for poll), and 12 (those unique to muse and
stella) are neuterable (mlock, setgid32). We saw 3
calls in the lower eight apps that likely require imple-
mentation: utimes, symlink, and mknod.

Our static analysis is imperfect, as evidenced by ten
calls reached dynamically but not discovered statically.
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Figure 5: An approximate static coverage check validates
that emulating most Linux system calls is not necessary.

Nonetheless, the broad agreement between static analy-
sis and dynamic observation suggests that our emulation
is largely complete. Of Linux’s 333 syscalls, 203 are
observed neither by dynamic tracing nor by static analy-
sis. This lends credence to our claim that a broad range
of productivity apps can be supported without emulating
the majority of Linux functionality.

8 Related Work
8.1 Application Models

Java was offered as an alternative to the clunky mid-
1990s web programming interface [10]. Absent native
code, Java had to either rewrite every framework an app
could want, or import and abstract existing frameworks
as native libraries. Practicality demanded applying the
latter technique; even the early UI toolkit AWT [33] ab-
stracted over the host UI at a high level. The result was
a Java client with a complex implementation that shared
the host’s vulnerabilities, and isolation that depended on
a complex and growing security interface [21].

As Java largely failed to replace the HTML web app
model, HTML thrived, evolving a notion of isolation
[15, 32] fundamental to web apps. However, pressure
to enhance functionality has progressively grown client
complexity, undermining the promise of isolation [16].

The Slinky system proposed distributing POSIX apps
as static binaries, enabling app developers to precisely
specify their dependencies [4]. They extended the Linux
kernel to detect and exploit implicit page sharing while
preserving the semantics of static executables. Their ap-
proach treats shared libraries as a configuration problem.
It inspired our work; we extend the Slinky insight to
autonomy-preserving isolation against adversarial neigh-
boring apps. This not only requires avoiding late-bound
library sharing, but also demands eliminating the com-

plex shared graphics stack (X or an HTML DOM ren-
derer). Since simplicity is a priority, we eliminate even
the shared buffer cache, requiring a sharing implementa-
tion different than that used in Slinky [14].

8.2 Porting Applications
Several years ago, our Xax project [13] demonstrated

that rich stacks of libraries could be readily transplanted
from a conventional operating system environment to
provide useful functionality even from inside a pico-
process attached to a web browser. This paper reports
on a more thorough implementation that supports com-
plete, rich, interactive applications. Xax gave a high-
level overview of the porting effort, enumerating five cat-
egories of techniques used to emulate the missing OS or
to trigger alternative behavior in the transplanted library.
This paper aims to completely demystify the process.

The Drawbridge effort demonstrated that similar tech-
niques could be used for code based on the Windows
commodity OS stack [22]; that project required intro-
ducing additional techniques, such as hoisting the GDI
graphics rasterizing library from the OS kernel to be-
come a library inside the picoprocess. The Drawbridge
system assumes a non-minimal host that includes a file
system, buffer cache, and TCP stack.

The task at hand is reminiscent of the Exoker-
nel’s motto, “exterminate all operating system abstrac-
tions” [18]. Like Exokernel, Embassies minimizes ab-
stractions in the host platform; but where the Exoker-
nel evicted abstractions to expose new performance op-
portunities, Embassies aims to produce a simple, rarely-
changing host with a minimal attack surface. Therefore,
Exokernel techniques, such as those for sharing storage,
do not translate well to Embassies apps.

Google’s Native Client system [31] includes ports of
dozens of libraries, but does not support complete inter-
active applications. The difference in target assumption–
that applications will run as web plug-ins, rather than re-
placing web apps altogether–has led the project to a dif-
ferent ABI, security model, and execution model. These
choices necessitate a modified C compiler, which in turn
requires fussing with libraries’ build environment (§6.1),
a task we found difficult to scale. However, once those
issues are resolved, the approach in the present paper
should readily enable the conversion of POSIX apps into
NaCl plug-ins.

9 Conclusion
This paper showed how to support rich POSIX appli-

cations on top of a minimal picoprocess interface. Such
support can be achieved by providing a POSIX emula-
tion layer and by binding existing programs, like lwIP,
X, and twm into the application itself. The POSIX em-
ulation layer is not nearly as complicated as a conven-
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tional POSIX implementation (e.g., Linux); in fact, this
paper exhaustively lists every syscall emulated and every
program adaptation required. Such emulation is possible
in part because many POSIX functions exist to support
scalability and performance more relevant to server ap-
plications (e.g., databases and web servers) and hence
are unused by interactive apps. Thus, not only is it feasi-
ble to adapt POSIX applications to a sparse environment,
it is reproducible. We hope these results will encourage
others to adapt the existing world of rich POSIX-based
applications to even the most minimal of client execu-
tion environments.
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NEY, T., GRIMM, R., JANNOTTI, J., AND MACKENZIE,
K. Application performance and flexibility on Exokernel
systems. In SOSP (1997).

[19] MICKENS, J., AND DHAWAN, M. Atlantis: Robust, ex-
tensible execution environments for Web applications. In
SOSP (2011).

[20] MICROSOFT. Silverlight. http://www.
microsoft.com/silverlight/.

[21] NEVILLE, P. S. Mastering Java security policies and
permissions. http://www2.sys-con.com/itsg/
virtualcd/java/archives/0501/neville/
index.html, 2004.

[22] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J.,
OLINSKY, R., AND HUNT, G. C. Rethinking the library
OS from the top down. In ASPLOS (2011).

[23] REIS, C., AND GRIBBLE, S. D. Isolating Web Pro-
grams in Modern Browser Architectures. In ACM Eu-
roSys (2009).

[24] RINARD, M., CADAR, C., DUMITRAN, D., ROY,
D. M., LEU, T., , AND BEEBEE, JR., W. S. Enhancing
server availability and security through failure-oblivious
computing. In OSDI (2004).

[25] TANG, S., MAI, H., AND KING, S. T. Trust and Protec-
tion in the Illinois Browser Operating System. In OSDI
(2010).

[26] WANG, H. J., FAN, X., JACKSON, C., AND HOWELL,
J. Protection and communication abstractions for web
browsers in MashupOS. In SOSP (Oct. 2007).

[27] WANG, H. J., GRIER, C., MOSHCHUK, A., KING,
S. T., CHOUDHURY, P., AND VENTER, H. The multi-
principal OS construction of the Gazelle web browser. In
USENIX Security Symposium (2009).

[28] WANG, H. J., MOSHCHUK, A., AND BUSH, A. Conver-
gence of desktop and web applications on a multi-service
OS. In USENIX HotSec Workshop (2009).

[29] WEBKIT. SunSpider JavaScript Benchmark. Ver-
sion 0.9.1 at http://www.webkit.org/perf/
sunspider/sunspider.html, 2012.

[30] WHEELER, D. A. SLOCCount. Software distribution.
http://www.dwheeler.com/sloccount/.

[31] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH,
R., ORMANDY, T., OKASAKA, S., NARULA, N., AND

FULLAGAR, N. Native client: A sandbox for portable,
untrusted x86 native code. In IEEE Symposium on Secu-
rity & Privacy (2009).

[32] ZALEWSKI, M. Browser security handbook: Same-
origin policy. Online handbook. http://code.
google.com/p/browsersec/wiki/Part2.

[33] ZUKOWKSI, J. Java AWT Reference. O’Reilly, 1997.

12


