
Blockchains Enable Non-Interactive MPC

Vipul Goyal1,2, Elisaweta Masserova1, Bryan Parno1, and Yifan Song1

1 Carnegie Mellon University
2 NTT Research

Abstract. We propose to use blockchains to achieve MPC which does
not require the participating parties to be online simultaneously or in-
teract with each other. Parties who contribute inputs but do not wish to
receive outputs can go offline after submitting a single message. In ad-
dition to our main result, we study combined communication and state
complexity in MPC, as it has implications for the efficiency of our main
construction. Finally, we provide a variation of our main protocol which
additionally provides guaranteed output delivery.

1 Introduction

Secure Multiparty Computation (MPC) [Yao82,GMW87] enables parties to eval-
uate an arbitrary function in a secure manner, i.e., without revealing anything
besides the outcome of the computation. MPC is increasingly important in the
modern world and allows people to securely accomplish a number of difficult
tasks. Obtaining efficient MPC protocols is thus a relevant problem and it has
indeed been extensively studied [Yao82,GMW87,GMPP16]. One important ques-
tion is the round complexity of MPC schemes. In the semi-honest case, in 1990,
Beaver et al. [BMR90] gave the first constant-round MPC protocol for three or
more parties. A number of works [KOS03,Pas04,Goy11] aiming to analyze and
reduce round complexity followed, both in the semi-honest and fully malicious
models. In 2016, Garg et al. [GMPP16] proved that four rounds are necessary to
achieve secure MPC in the fully malicious case in the plain model. Four round
MPC protocols have been recently proposed [BHP17,BGJ+18,CCG+20], resolv-
ing the questions of round complexity.

Unfortunately, solutions that achieve even the optimal round complexity are
still problematic for many applications since these solutions typically require
synchronous communication from the participants – imagine for example the
U.S. voting process. If the voting is conducted via secure multi-party computa-
tion, all participants are required to be online at the same time. It is unrealistic
to assume that all of the eligible U.S. voters can be persuaded to be online at the
same time on the Election Day. In this work, we rely on blockchains to achieve
MPC that does not require participants to be online at the same time or interact
with each other.

Such non-interactive solutions advance the state of the art of secure multi-
party computation, opening up a whole new realm of possible applications. For
example, passive data collection for privacy preserving collaborative machine

learning becomes possible. Federated learning is already used to train machine
learning models for the keyboards of mobile devices for the purposes of au-
tocorrect and predictive typing [Go17]. Unfortunately, using off-the-shelf MPC
protocols to perform such training securely is not straight-forward. Not all smart-
phones are online at the same time and it might even be unknown how many
devices will end up participating. In contrast, off-the-shelf MPC protocols typ-
ically assume that all (honest) participants are indeed online during some time
period, and the number of participants is known. This leads us to the following
question:

Can we construct a secure MPC protocol which does not require the parties to
be online at the same time and guarantees privacy and correctness even if all
but one of the parties are fully malicious? Is it possible to design a protocol

which requires only a single round of participation from the parties supplying
the inputs, and allows the parties to go offline after the first round if they are

not interested in learning the output?

Consider such a protocol in the use case outlined above – each smartphone
could independently send a single message to a server, and at the end of the
collection period the server would obtain the model trained on the submitted
inputs, all while preserving the privacy of the gathered inputs.

1.1 Our Results

In our work, we provide a solution for MPC which achieves the property that
each MPC participant who supplies inputs but does not wish to receive the
output can go offline after the first round. The participants are not required to
interact with each other. We additionally provide variations of our protocol that
offer further desirable properties.

Before we provide the formal theorem statements, we discuss the protocol
execution model and the notation.

In our work, we assume the existence of append-only bulletin boards that
allow parties to publish data and receive an unforgeable confirmation that the
data was published in return. Furthermore, we assume a public key infrastruc-
ture (PKI). Finally, we rely on conditional storage and retrieval systems (CSaRs,
see Section 2.4 for details). Roughly, CSaR systems allow a user to submit a se-
cret along with a release condition. Later, if a (possibly different) user is able
to satisfy this release condition, the secret is privately sent to this user. Intu-
itively, during the process, the secrets cannot be modified and no information
is leaked about the secrets. We require that CSaRs are used as ideal function-
alities. We note that due to the fact that the existing CSaR system [GKM+20]
relies on blockchains, and bulletin boards can be realized using blockchains as
well [GG17,CGJ+17,KGM20], relying on bulletin boards in our construction ef-
fectively does not add extra assumptions. In the following, for simplicity, we will
state that we design our protocols in the blockchain model. Finally, we assume
IND-CCA secure public key encryption, and digital signatures.

2

In our construction, we distinguish between parties who supply inputs (dubbed
MPC contributors) and parties who wish to receive outputs (dubbed evaluators).
Our construction is a protocol transforming an MPC scheme π into another
scheme π′. The contributors in π′ are exactly the participants in π. The eval-
uators can (but do not have to) be entirely different parties from those who
contribute inputs in π.

We are now ready to introduce our first result:

Theorem 1. (Informal) Any MPC protocol π secure against fully-malicious
adversaries can be transformed into another MPC protocol π′ in the blockchain
model that provides security with abort against fully-malicious adversaries and
does not require participants to be online at the same time. The MPC contribu-
tors are required to participate for only a single round (the evaluators might be
required to participate for multiple rounds). The adversary is allowed to corrupt
as many MPC contributors in π′ as it is allowed to corrupt participants in π.
The adversary is allowed to corrupt any number of evaluators.

In addition to this result, we discuss ways to optimize our construction. To
this end, we explain why the combined communication and state complexity
(where state complexity is the amount of data that parties maintain between
the different rounds of the protocol execution) of the underlying MPC protocol
is of a particular importance in our construction. Briefly, both the communica-
tion and state complexities of the underlying MPC translate directly into the
number of CSaR storage and retrieval requests in our overall construction. We
describe a protocol in the plain model which relies on multi-key fully homomor-
phic encryption (MFHE). Its combined communication and state complexity is
independent of the function that we are computing. While optimizing communi-
cation complexity has received considerable attention in the community in the
past few years, optimizing internal state complexity has been largely overlooked.
We believe that this particular problem might be exciting on its own. In our con-
struction which optimizes the combined communication and state complexity,
we assume multi-key fully homomorphic encryption, and collision-resistant hash
functions. The result that we achieve here is the following:

Theorem 2. (Informal) Let f be an N -party function. Protocol 6 is an MPC
protocol computing f in the standard model and secure against fully malicious
adversaries corrupting up to t < N parties. Its combined communication and
state complexity depends only on the security parameter, number of parties, and
input and output sizes. In particular, the combined communication and state
complexity is independent of the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication and state complexity, we achieve
the following:

Corollary 1. (Informal) There exists an MPC protocol π′ in the blockchain
model which provides security with abort against fully-malicious adversaries and

3

does not require participants to be online at the same time. The MPC contributors
are required to participate for a single round (the evaluators might be required
to participate for multiple rounds). Furthermore, the number of calls to CSaR
in this protocol is independent of the function that is being computed using this
MPC protocol 3.

Finally, we achieve an MPC protocol which requires only a single round of
participation from MPC contributors with the additional property of guaranteed
output delivery, meaning that adversarial parties cannot prevent honest par-
ties from receiving the output. For this, we in particular rely on the underlying
protocol having guaranteed output delivery as well (and thus requiring the ma-
jority of the MPC contributors to be honest). We rely on the same assumptions
(PKI, CSaRs, append-only bulletin boards etc.) as the ones used in our main
construction. The formal result that we achieve is the following:

Theorem 3. (Informal) Any MPC protocol π that is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security with
guaranteed output delivery against fully-malicious adversaries and does not re-
quire participants to be online at the same time. The MPC contributors are
required to participate for only a single round (the evaluators might be required
to participate for multiple rounds). The adversary is allowed to corrupt as many
MPC contributors in π′ as it is allowed to corrupt participants in π. The adver-
sary is allowed to corrupt any number of evaluators.

1.2 Technical Overview

In this work, we propose an MPC protocol that does not require participants to
be present at the same time. In order to do so, we rely on the following cryp-
tographic building blocks – garbled circuits [Yao82,Yao86,BHR12b], a primitive
which we dub conditional storage and retrieval systems (CSaRs) and bulletin
boards with certain properties. Before we introduce the construction idea, we
elaborate on each of these primitives.

Roughly, a garbling scheme allows one to “encrypt” (garble) a circuit and its
inputs such that when evaluating the garbled circuit only the output is revealed.
In particular, no information about the inputs of other parties or intermediate
values is revealed by the garbled circuit or during its evaluation. In our construc-
tion we use Yao’s garbled circuits [Yao82,Yao86].

In our construction, we rely on bulletin boards which allow parties to pub-
lish strings on an append-only log. It must be hard to modify or erase con-
tents from this log. Additionally, we require that parties receive a confirma-
tion (“proof of publish”) that the string was published and that other par-
ties can verify this proof. Such bulletin boards have been extensively used in
prior works [GG17,CGJ+17,KGM20] and as pointed out by these works can

3 A prior version of this paper erroneously stated that the communication complexity
(instead of the number of CSaR calls) is independent of the function being computed.

4

be realized both from centralized systems such as the Certificate Transparency
project [tra20] and decentralized systems such as proof-of-stake or proof-of-work
blockchains.

Finally, we define a primitive which we call conditional storage and retrieval
systems (CSaRs). Roughly, this primitive allows for the distributed and secure
storage and retrieval of secrets and realizes the following ideal functionality:

– Upon receiving a secret along with a release condition and an identifier, if
the identifier was not used before, the secret is stored and all participants
are notified of a valid secret storage request. The release condition is simply
an NP statement.

– Upon receiving an (identifier, witness) from a user, the ideal functionality
checks whether a secret with this identifier exists and if so, whether the given
witness satisfies the release condition of this secret record. If so, the secret
is sent to the user who submitted the release request.

While systems that provide a similar primitive has been proposed in the
past [GKM+20,BGG+20] we provide a clean definition that captures the essence
of this functionality. We instantiate the CSaR with eWEB [GKM+20], which
stands for “Extractable Witness Encryption on a Blockchain”. Roughly, it allows
users to encode a secret along with a release condition and store the secret on a
blockchain. Once a user proves that they are able to satisfy the release condition,
blockchain miners jointly and privately release the secret to this user. Along the
way, no single party is able to learn any information about the secret.

Our construction. By relying on bulletin boards, Yao’s garbled circuits and
CSaRs, we are able to transform any secure MPC protocol π into another
secure MPC protocol π′ that provides security with abort and does not require
participants to be online at the same time. At a high level, our idea is as fol-
lows: first, each contributor (party who supplies inputs in the protocol) P in the
MPC protocol π garbles the next-message function for each round of π. Then,
P stores the garbled circuits as well as the garbled keys with a CSaR using
carefully designed release conditions. Note that each party P is able to do so
individually, without waiting for any information from other parties and can go
offline afterwards. Once all contributors have stored their data with the CSaR,
one or more “evaluators” (parties who wish to receive the output) interact with
the CSaR and use the information stored by the MPC contributors in order to
retrieve the garbled circuits and execute the original protocol π. The group of
the contributors and the group of evaluators do not need to be the same – in
fact, these groups can even be disjoint. The evaluators might change from round
to round.

Note that while the high-level overview is simple, there are a number of
technical challenges that we must overcome in the actual construction due to
its non-interactive nature. For example, since the security of Yao’s construction
relies on the fact that for each wire only a single key is revealed, we must ensure
that each honest garbled circuit is executed only on a single set of inputs. The
adversary also must not trick a garbled circuit of some honest party A into

5

thinking that a message broadcast by some party C is message m, and tricking
a garbled circuit of another honest party B into thinking that C in fact broadcast
message m′ 6= m. Furthermore, we must ensure that it is hard to execute the
protocol “out of order”, i.e., an adversary cannot execute some round i prior to
round j where i > j. Such issues do not come up in the setting where parties are
online during the protocol execution and able to witness messages broadcast by
other parties.

We solve these issues by utilizing bulletin boards, carefully constructing the
release conditions for the garbled circuits and the wire keys, and modifying the
next-message functions which must be garbled by the contributors.

Note that the next-message functions from round two onward take as inputs
messages produced by the garbled circuits in prior rounds. At the time when
the MPC contributors are constructing their circuits, the inputs of other parties
are not known, and thus it is not possible to predict which wire key (the one
corresponding to 0 or the one corresponding to 1) will be needed during the
protocol execution. At the same time, one cannot simply make both wire keys
public since the security of the garbled circuit crucially relies on the fact that
for each wire only a single wire key can be revealed. We solve this problem by
storing both wire keys with the CSaR, utilizing bulletin boards, and requiring
the evaluators to publish the output of the garbled circuits of each round. Then,
(part of) the CSaR release condition for the wire key corresponding to bit b on
some wire w of some party’s garbled circuit for round i is that the message from
round i − 1 is published and contains bit b at position w. This way we ensure
that while both options for wire w are “obtainable”, only the wire key for bit b
(the one that is needed for the execution) is revealed.

Next, note that in our construction we specifically rely on Yao’s garbled
circuits. Yao’s construction satisfies the so-called “selective” notion of security,
which requires the adversary to choose its inputs before it sees the garbled circuit
(in contrast to the stronger “adaptive” notion of security which would allow the
adversary to choose its inputs after seeing the garbled circuits [BHR12a]). We
ensure that the selective notion of security is sufficient for our construction by
requiring that not only the wire keys, but also the garbled circuits are stored with
the CSaR. The release conditions both for the garbled circuit for some round i
and all its wire keys require a proof that all messages for rounds 1 up to and
including round i− 1 are published by the evaluators. This way, the evaluators
are required to “commit” to the inputs before receiving the selectively secure
garbled circuits, which achieves the same effect as adaptive garbled circuits.

As outlined above, we must ensure that it is hard for the adversary to trick
the garbled circuit produced by some honest party A into accepting inputs from
another honest party B that were not produced by B’s circuits. We accomplish
this by modifying the next-message function of every party A as follows: in
addition to every message m that is produced by some party B, the next-message
function takes as input a signature σ on m as well and verifies that the signature
is correct. If this is not the case for any of the input messages, the next-message
function outputs ⊥. Otherwise, the next-message function proceeds as usual and

6

in addition to outputting the resulting message it outputs the signature of party
A on this message.

Our end goal is to reduce the security of our construction to the security of
the underlying MPC protocol π. While utilizing bulletin boards and introducing
signatures is a good step forward, we must be careful when designing the CSaR
release conditions. The adversary could sign multiple messages for each corrupted
contributor in π, publish these messages on the bulletin board and thus receive
multiple keys for some wires. To prevent this, the CSaR release condition must
consider only the very first message published for round i − 1 on the bulletin
board. This way, we ensure that there is only a single instance of the MPC
running (only a single wire key is released for each circuit): even if the adversary
is able to sign multiple messages on behalf of various MPC contributors, only
the very first message published on the bulletin board for a specific round will
be used by the CSaR system to release the wire keys for the next round.

The ideas outlined above are the main ideas in our protocol. We now elabo-
rate on a few additional details:

The next-message function of the protocol typically outputs not only the
message for the next round, but also the state which is used in the next round.
It is assumed that this state is kept private by the party. In our case, the output
of the next-message function will be output by the garbled circuit and thus made
available to the evaluator. To ensure that the state is kept private, we further
modify the next-message function to add an encryption step at the end: the
state is encrypted under the public key of the party who is executing this next-
message function. To ensure that the state can be used by the garbled circuit
of the party in the next round, we add a state decryption step at the beginning
of the next-message function of that round. Similar to the public output of the
next-message function, we compute a signature on the encryption of the state
and verify this signature in the garbled circuit of the next round.

Note that in the construction outlined above, we use some secret information
which does not depend on the particular execution but still must be kept private
(secret keys of the parties used for the decryption of the state, signing keys used
to sign the output of the next-message function etc.). This information is hard-
coded in the garbled circuits. We explain how this can be done in Section 3.

Finally, note that we require the following property from the underlying
protocol π: given a transcript of execution of π, the output of π can be publicly
computed. As we note in Section 3, this property can be easily achieved by
slightly modifying the original protocol π.

We provide all protocol details and outline optimizations in Section 3 and give
the formal construction in Protocols 1, 2 and 3. The formal security proof is done
by providing a simulator for the construction and proving that an interaction
with the simulator in the ideal world is indistinguishable from the interaction
with an adversary in the real world.

To summarize, using the construction sketched above we achieve the following
result:

7

Theorem 4. (Informal) Protocols 1, 2 and 3 transform any MPC protocol
π secure against fully-malicious adversaries into another MPC protocol π′ in
the blockchain model that provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time.
The MPC contributors are required to participate for only a single round (the
evaluators might be required to participate for multiple rounds). The adversary
is allowed to corrupt as many MPC contributors in π′ as it is allowed to corrupt
participants in π. The adversary is allowed to corrupt any number of evaluators.

In addition to our main protocol that requires only one message from the
MPC contributors and does not require any additional functionality from the
CSaR participants apart from the core CSaR functionality itself (storing and
releasing secrets), we provide a number of variations that have further desirable
properties, such as guaranteed output delivery. We now outline these further
contributions.

Improving Efficiency The efficiency of our construction is strongly tied to the
efficiency of the underlying MPC protocol π. Note that in our construction each
input wire key of each garbled circuit is stored with the CSaR, and the inputs of
the garbled circuits are exactly messages exchanged between the parties as well
as the state information passed from previous rounds. Thus, the communication
and state complexities translate directly into the number of CSaR store and
release operations that the MPC contributors, as well as later the evaluators,
must make. In order to reduce the number of CSaR invocations, we describe an
MPC protocol which optimizes the combined communication and internal-state
complexity. While communication complexity is typically considered to be one
of the most important properties of an MPC protocol, state complexity receives
relatively little attention. Our main construction shows that there are indeed
use cases where both the communication and the state complexity matter, and
we initiate a study of the combined state and communication complexity.

Specifically, we introduce an MPC protocol in which the combined commu-
nication and state complexity is independent of the function we are computing.
We achieve it in two steps: we start with a protocol secure against semi-malicious
adversaries 4 which at the same time has communication and state complexity
which is independent of the function that is being computed. Then, we extend
it to provide fully malicious security while taking care to retain the attractive
communication and state complexity properties in the process.

In more detail, we start with the MPC construction by Brakerski et al. [BHP17]
which is based on multi-key fully homomorphic encryption (MFHE) and achieves
semi-malicious security. We note that the communication and state complexity
of this construction depends only on the security parameters, the number of par-
ties, and the input and output sizes. In particular, note that the construction’s
combined communication and state complexity is independent of the function
we are computing.

4 Intuitively, semi-malicious adversaries can be viewed as semi-honest adversaries
which are allowed to freely choose their random tapes.

8

Our next step is to extend this construction so that it provides security
against malicious adversaries. For this, we propose to use the zero-knowledge
protocol proposed by Kilian [Kil92] that relies on probabilistically checkable
proofs (PCPs) and allows a party P to prove the correctness of some statement
x to the prover V using a witness w. Along the way, we need to make minor
adjustments to Kilian’s construction because its state complexity is unfortu-
nately too high for our purposes – in particular, in the original construction,
the entire PCP string is stored by the prover to be used in later rounds. After
making a minor adjustment – recomputing the PCP instead of storing it – to
the construction to address this issue, we use this scheme after each round of
the construction by Brakerski et al. in order to prove the correct execution of
the protocol by the parties. The resulting construction achieves fully malicious
security, and its communication and state complexities are still independent of
the function that we are computing.

We provide the details of the construction and analyse its security and com-
munication/state complexity properties in Section 5 with the formal protocol
description in Protocol 6. In this protocol, we assume the existence of an MFHE
scheme with circular security and the existence of a collision-resistant hash func-
tions. We are able to achieve the following result which may be of independent
interest:

Lemma 1. (Informal) Let f be an N -party function. Protocol 6 is an MPC
protocol computing f in the plain (authenticated broadcast) model and secure
against fully malicious adversaries corrupting up to t < N parties. Its commu-
nication and state complexity depend only on security parameters, number of
parties, and the input and output sizes. In particular, the communication and
state complexity of Protocol 6 is independent of the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication and state complexity, we achieve
the following:

Corollary 2. (Informal) There exists an MPC protocol π′ in the blockchain
model that has adversarial threshold t < N , provides security with abort against
fully-malicious adversaries and does not require participants to be online at the
same time. Only a single message is required from the MPC contributors (the
evaluators might be required to produce multiple messages). Furthermore, the
number of calls to CSaR of this protocol is independent of the function that is
being computed using this MPC protocol.

Non-Interactive MPC with Guaranteed Output Delivery (GoD). We need to
modify our construction in order to provide guaranteed output delivery. In order
to achieve GoD, we require the protocol π to have the GoD property as well,
and thus the majority of the participants in π (recall that these are exactly the
contributors in π′) must be honest 5. While making this change (in addition to a

5 Note that there is no such restriction on the evaluators in π′.

9

few minor adjustments) would be enough to guarantee GoD in our construction
in the setting with only a single evaluator, it is certainly not sufficient when there
are multiple evaluators, some of them dishonest. This is due to the following is-
sue: since we must prevent an adversary from executing honest garbled circuits
on multiple different inputs, we cannot simply allow each evaluator to execute
garbled circuits on the inputs of its choosing. In particular, the CSaR release
conditions must ensure that for each wire only a single key is revealed. In our
first construction this results in the malicious evaluator being able to prevent
an honest evaluator from executing the garbled circuits as intended by submit-
ting an invalid first message for any round. Thus, to ensure guaranteed output
delivery while maintaining secrecy, we must ensure that a malicious evaluator
posting a wrong message does not prevent an honest evaluator from posting a
correct message and using it for the key reveal. In particular, we will ensure that
only a correct (for a definition of “correctness” explained below) message can be
used for the wire key reveal.

Note that the inputs to the garbled circuits depend on the evaluators’ outputs
from the previous rounds. Checking the “correctness” of the evaluators’ outputs
is not entirely straight-forward since an honest execution of a garbled circuit
which was submitted by a dishonest party might produce outputs which look
incorrect (for example, have invalid signatures). Thus, simply letting the CSaR
system check the signatures on the messages supplied by the evaluators might
result in an honest evaluator being denied the wire keys for the next round.

In our GoD construction we overcome this issue largely using the following
adjustments:

– all initial messages containing garbled circuits and wire keys are required to
be posted before some deadline.

– we use a CSaR with public release (whenever a secret is released, it is released
publicly and the information can be viewed by anyone).

– we ensure that it is possible to distinguish between the case where the eval-
uator is being dishonest, and the case where the evaluator is being honest,
but the contributor in π supplied invalid garbled circuits or keys, or did not
supply some required piece of information.

We achieve the last point by designing the CSaR release condition in a way that
it verifies that the evaluator’s output can be explained by the information stored
by the contributors in π. In particular, as part of the CSaR’s release condition, we
require a proof of correct execution for the garbled circuit outputs. The relation
that the CSaR system is required to check in this case is roughly as follows:
“The execution of the garbled circuit GC on the wire keys {ki}i∈I results in the
output provided by E. Here, the garbled circuit GC is the circuit, and {ki}i∈I
are the keys for this circuit reconstructed using the values published by the CSaR
which are present on the proof of publish supplied by E”. Note that due to the
switch to the CSaR with public release, the wire keys used for the computation
are indeed accessible to the CSaR system after their first release.

Similar to our first construction, we eventually reduce the security of the
new protocol to the security of the original protocol. In addition to our first

10

construction however, since the CSaR system is now able to verify messages
submitted by the evaluators, honest evaluators are always able to advance in the
protocol execution. This insight allows us to ensure that honest evaluators do
not need to abort with more than a negligible probability along the way. Thus,
if the underlying protocol π achieves guaranteed output delivery, the protocol
we propose achieves guaranteed output delivery as well.

We give full details of the GoD construction in Section 6. The statement
about our GoD construction is given below.

Lemma 2. (Informal) Any MPC protocol π which is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security with
guaranteed output delivery against fully-malicious adversaries and does not re-
quire participants to be online at the same time. The MPC contributors are
required to participate for only a single round (the evaluators might be required
to participate for multiple rounds). The adversary is allowed to corrupt as many
MPC contributors in π′ as it is allowed to corrupt participants in π. The adver-
sary is allowed to corrupt any number of evaluators.

1.3 Related Work

Closest to our work is the line of research that studies non-interactive multiparty
computation [HIJ+17,FKN94,HLP11], initiated in 1994 by Feige et al. [FKN94],
in which a number of parties submit a single message to a server (evaluator)
that, upon receiving all of the messages, computes the output of the function.
In their work, Feige et al. allow the messages of the parties to be dependent
on some shared randomness that must be unknown to the evaluator. Unfortu-
nately, this means that if the evaluator is colluding with one or more of the
participants, the scheme becomes insecure. Overcoming this restriction, Halevi
et al. [HLP11] started a line of work on non-interactive collusion-resistant MPC.
Their model of computation required parties to interact sequentially with the
evaluator (in particular, the order in which the clients connect to the evaluator
is known beforehand). Beimel et al. [BGI+14] and Halevi et al. [HIJ+16] sub-
sequently removed the requirement of sequential interaction. Further improving
upon these results, the work of Halevi et al. [HIJ+17] removed the requirement of
a complex correlated randomness setup that was present in a number of previous
works [BGI+14,HIJ+16,GGG+14]. Halevi et al. [HIJ+17] work in a public-key in-
frastructure (PKI) model in combination with a common random string. As the
authors point out, PKI is the minimal possible setup that allows one to achieve
the best-possible security in this setting, where the adversary is allowed to cor-
rupt the evaluator and an arbitrary number of parties and learn nothing more
than the so-called “residual function”, which is the original function restricted
to the inputs of the honest parties. In particular, this means that the adversary
is allowed to learn the outcome of the original function on every possible choice
of adversarial inputs.

11

Our work differs from the line of work on non-interactive MPC described
above in a number of aspects. In contrast to those works, our construction is not
susceptible to the adversary learning the residual function – roughly because the
adversary must effectively “commit” to its input, and the CSaR system ensures
that the adversary only receives a single set of wire keys per honest garbled
circuit (the set of wire keys that aligns with the adversarial input). Additionally,
in our work the parties do not need to directly communicate with the evaluator.
In fact, in our construction that ensures guaranteed output delivery, any party
can spontaneously decide to become an evaluator and still receive the result –
there is no need to rerun the protocol in this case.

Related to us are also the works on reusable non-interactive secure compu-
tation (NISC) [AMPR14,BGI+17,BJOV18,CDI+19,CJS14], initiated by Ishai et
al. [IKO+11]. Intuitively, reusable NISC allows a receiver to publish a reusable
encoding of its input x in a way that allows any sender to let the receiver obtain
f(x, y) for any f by sending only a single message to the receiver. In our work,
we focus on a multi-party case, where a party that does not need the output is
not required to wait for other parties to submit their inputs.

Recently, Benhamouda and Lin [BL20] proposed a model called multiparty
reusable Non-Interactive Secure Computation (mrNISC) Market that beauti-
fully extends reusable NISC to the multiparty setting. In this model, parties
first commit their inputs to a public bulletin board. Later, the parties can com-
pute a function on-the-fly by sending a public message to an evaluator. An
adversary who corrupts a subset of parties learns nothing more about the secret
inputs of honest parties than what it can derive from the output of the computa-
tion. Importantly, the bulletin board commitments are reusable, and the security
guarantee continues to hold even if there are multiple computation sessions. In
their work, Benhamouda and Lin mention that any one-round construction is
susceptible to the residual attacks and thus slightly relax the non-interactive
requirement in order to solve this problem. Indeed, their construction can be
viewed as a 2-round MPC protocol with the possibility to reuse messages of
the first round for multiple computations. Our scheme shows that when using
blockchains it is indeed possible to provide a construction that requires only a
single round of interaction from the parties supplying the input and is nonethe-
less not susceptible to residual attacks.

Concurrent to our work, Almashaqbeh et al. [ABH+21] recently published
a manuscript which focuses on designing non-interactive MPC protocols which
use blockchains to provide short term security without residual leakage. They
focus on the setting where the inputs of all but one of the parties are public. In
this setting, designing one-round MPC can be done easily by having all parties
send their input to the only party which holds the secret input. This party can
then compute the output and distribute it to other parties. The authors are able
to extend the setting to the two-party semi-honest private input setting where
one round protocols for the party not getting the output can be easily designed
as well. While our protocol provides a worst-case security guarantee, they focus
on an incentive-based notion of security. While both constructions bypass the

12

residual leakage issue, their security guarantees might degrade with time. The
key challenge in their setting is fairness / guaranteed output delivery which they
solve using an incentive-based model of security. Hence their work is essentially
unrelated to ours.

Finally, recently two works ([CGG+21] and [GHK+21]) appeared which are
inspired by blockchains and focus on improving the flexibility of the MPC proto-
cols. Choudhuri et al. [CGG+21] proposed the notion of fluid MPC which allows
parties to dynamically join and leave the computation. Gentry et al. [GHK+21]
proposed the YOSO (“You Only Speak Once”) model which focuses on stateless
parties which can only send a single message. Similar to us, their constructions
allow the MPC participants to leave after the first round if they are not in-
terested in learning the output. However, to execute the MPC protocol both
Choudhuri et al. and Gentry et al. require a number of committees of different
parties which interact with each other, and each committee must provide hon-
est majority. Our protocol preserves privacy of inputs even if there is a single
evaluator who is dishonest.

2 Preliminaries

In this section we briefly discuss cryptographic building blocks used in our sys-
tem.

2.1 MPC

In our work we consider MPC that allow a set of parties P = {P1, . . . , Pn} to
securely compute the output of some function f . We specifically consider MPC
protocols in the broadcast model 6, where all parties have access to a broadcast
channel and each round consists of parties broadcasting messages to other parties
that participate in the protocol. An MPC protocol specifies for each party and
each round the so-called next-message function, which defines the computation
that is performed by that particular party in that round, as well as the message
that the party broadcasts in that round and the state that is passed to the next
round. More formally:

Definition 1. Given an interactive broadcast-only d-round MPC protocol, the
next-message function for round i of party Pj is the function (mi

j , s
i
j) ←

f(xj , r
i
j ,m

i, si−1j), where xj is Pj’s input in the MPC protocol, rij is the local

randomness used by party Pj in round i, mi = mi−1
1 ‖mi−1

2 ‖ . . . ‖mi−1
n is the

concatenation of messages received by each party in round i− 1 (note that since
we consider a broadcast protocol all parties receive the same message), sij is an

auxiliary state information output by Pj in round i (s0j = ⊥), and mi
j is the

message output by Pj in round i.

6 Note that we will relax this requirement later, also allowing MPC protocols which
use secure point-to-point channels. See Section 3 for details.

13

Note: we assume that if a message from round k < i− 1 is needed in round
i, it is incorporated in all of Pj ’s state messages from sk+1

j to si−1j .
Regarding the security of the MPC protocol, we consider the standard simulation-

based notion. In the ideal world parties interact with the ideal functionality
FMPC, described in Functionality 1. In the real world, parties engage in the
real-world MPC protocol π in the presence of an adversary A, who is allowed
to corrupt a set I ⊂ [n] of parties and may follow an arbitrary polynomial-time
strategy. Security of π is defined as follows:

Definition 2. A protocol π is said to securely compute F with abort if for every
PPT adversary A in the real world, there exists a PPT adversary S, such that
for any set of corrupted parties I ⊂ [n] with |I| ≤ t (where t is the adversarial
threshold), every initial input vector (x1, . . . , xn), and every security parameter
λ, it holds that

{IDEALf,S(z),I(1λ, (x1, . . . , xn))} =c {REALπ,A(z),I(1
λ, (x1, . . . , xn))},

where z ∈ {0, 1}∗ is the auxiliary input, IDEALf,S(z),I denotes the output of
the interaction of the adversary S(z) (who corrupts parties in I) with the ideal
functionality (this output consists of the output of the adversary S(z) as well as
the outputs of the honest parties), and REALπ,A(z),I denotes the output of protocol
π given the adversary A(z) who corrupts parties in I (this output consists of the
output of the adversary A(z) as well as the outputs of the honest parties).

Finally, in our constructions we additionally assume that the underlying pro-
tocol π has the property that given the transcript of the protocol execution, the
output can be publicly computed (as defined in [JMS20]):

Definition 3 (Publicly Recoverable Output). Given a transcript τ of an
execution of a protocol π, there exists a function Eval such that the output of the
protocol π for all parties is given by y = Eval(τ).

In one of our constructions, we consider MPC protocols which provide guaranteed
output delivery. In that case the security of protocol π is defined the same way
as before, except that the ideal functionality is now FMPC-GoD, described in
Functionality 2.

2.2 Yao’s Grabled Circuits

One of the core building blocks in our construction are Yao’s garbled circuits
that allow secure two-party computation [Yao82,Yao86]. In the following, we
provide definitions for the garbling process as well as the security of garbling
scheme (taken verbatim from [CCG+20]):

Definition 4 (Garbling scheme). A garbling scheme for circuits is a tuple of
PPT algorithms GC := (Gen, Garble, Eval) such that:

14

Functionality 1. FMPC

1. Let the set of MPC participants be P = {P1, . . . , Pn}.
2. Let xi denote the input of the party Pi ∈ P.
3. The adversary S selects a set I ⊂ [n] of corrupted parties.
4. Each honest party Pi sends its input x∗i = xi to FMPC. For each corrupted

party Pj , the adversary may select any value x∗j and send it to FMPC.
5. FMPC computes F (x∗1, . . . , x

∗
n) = (y1, . . . , yn) and sends {yi}i∈I to the adver-

sary.
6. The adversary sends either abort or continue to FMPC.

– If the adversary sent abort, FMPC sends ⊥ to each honest party.
– Otherwise, FMPC sends yi to each honest party Pi.

7. Each honest party Pi outputs the message it received from FMPC. Each ad-
versarial party can output an arbitrary PPT function of the adversary’s view.

Functionality 2. FMPC-GoD

1. Let the set of MPC participants be P = {P1, . . . , Pn}.
2. Let xi denote the input of the party Pi ∈ P.
3. The adversary S selects a set I ⊂ [n] of corrupted parties.
4. Each honest party Pi sends its input x∗i = xi to FMPC-GoD. For each corrupted

party Pj , the adversary may select any value x∗j and send it to FMPC-GoD.
5. FMPC computes F (x∗1, . . . , x

∗
n) = (y1, . . . , yn), substituting each missing value

by some default value.
6. FMPC-GoD sends yi to each party Pi.
7. Each honest party Pi outputs the message it received from FMPC-GoD. Each

adversarial party can output an arbitrary PPT function of the adversary’s
view.

– ({labw,b}w∈inp,b∈{0,1}) ← Gen(1λ, inp) : Gen takes the security parameter

1λ and length of input for the circuit as input and outputs a set of input
labels {labw,b}w∈inp,b∈{0,1}.

– C̄ ← Garble(C, ({labw,b}w∈inp,b∈{0,1}) : Garble takes as input a circuit

C : {0, 1}inp → {0, 1}out and a set of input labels {labw,b}w∈inp,b∈{0,1} and
outputs the garbled circuit C̄.

– y ← Eval(C̄, labx) : Eval takes as input the garbled circuit C̄, input labels
labx corresponding to the input x ∈ {0, 1}inp and outputs y ∈ {0, 1}out.

The garbling scheme satisfies the following properties:

15

1. Correctness: For any circuit C and input x ∈ {0, 1}inp,

P r[C(x) = Eval(C̄, labx)] = 1,

where ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp) and C̄ ← Garble(C, {labw,b}w∈inp,b∈{0,1}).
2. Selective Security: There exists a PPT simulator SimGC such that, for any

PPT adversary A, there exists a negligible function µ(·) such that

|Pr[ExperimentA,SimGC(1
λ, 0) = 1]−Pr[ExperimentA,SimGC(1

λ, 1) = 1]| ≤ µ(λ)

where the experiment ExperimentA,SimGC(1
λ, b) is defined as follows:

(a) The adversary A specifies the circuit C and an input x ∈ {0, 1}inp and
gets C̄ and ˆlab, which are computed as follows:
– If b = 0:
• ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp)

• C̄ ← Garble(C, ({labw,b}w∈inp,b∈{0,1})
– If b = 1:
• (C̄, ˆlab)← SimGC(1

λ, C(x))
– The adversary outputs a bit b′, which is the output of the experiment.

We note that Yao’s protocol achieves selective security. Very roughly, the
security of the party producing the garbled circuit relies on the fact that for
each wire of the circuit, only a single garbled key is revealed, and thus the only
information the other party gets is the (garbled) output. We refer to the work
of Lindell and Pinkas for the details of the construction as well as the security
proof [LP09].

2.3 Append-only Bulletin Boards

In our construction, we rely on public bulletin boards. Specifically, we require
that the bulletin boards allows parties to publish arbitrary strings and receive
a confirmation (dubbed “proof of publish”) that the string was published in
return.

Following the approach of Kaptchuk et al [KGM20], we assume that parties
publish their strings as part of a public chain of values, and abstract the bulletin
board syntax as follows:

– (post, σ)← Post(M). Intuitively, when a party wishes to post some data M
on the public chain, the Post function is called. This call results in post

(which consists of M , as well as additional data which identifies this data
record on the chain) being appended to the chain. The tuple (post, σ), where
σ is the proof of publish, is returned. We assume that a proof of publish is
public and can be retrieved for already published posts as well.

– {0, 1} ← Verify(post, σ). The public verification algorithm takes as input a
supposedly published record post as well as a proof of publish σ, and verifies
that the record post has indeed been published.

16

Security-wise, we require that the contents of the bulletin board are hard
to erase or modify and that the proof of publish is unforgeable. Specifically, we
require that up to a negligible probability it is impossible to come up with a pair
(post, σ) such that Verify(post, σ) = 1, unless this pair has been generated
through a call to the Post algorithm. This property holds even if the adversary
is given an oracle that posts arbitrary strings on the bulletin board on the behalf
of the adversary.

Such bulletin boards have been extensively investigated in prior works [GG17,CGJ+17,KGM20].
While specific syntax details of the bulletin board abstraction slightly vary
throughout these works, they all ensure that parties are able to post arbitrary
strings on an append-only log, and the proof of publish cannot be forged. These
works also point out that bulletin boards with the properties described above
already exist in practice. They can be realized from centralized systems such as
the Certificate Transparency project [tra20], and from the decentralized systems
such as proof-of-work or proof-of-stake blockchains.

2.4 CSaRs

In our work, we rely on what we call conditional storage and retrieval systems
(CSaRs) that allow for a secure storage and retrieval of secrets. In more detail,
the user who stores the secret with a CSaR specifies a release condition, and the
secret is released if and only if this condition is satisfied. While such systems
could be realised via a trusted third party, they can also be realised using a set
of parties with the guarantee that some sufficiently large subset of these parties
is honest. A user can then distribute its secret between the set of parties, and the
CSaR’s security guarantee ensures that no subset of parties that is smaller than
a defined threshold can use its secret shares to gain information about the secret.
Recently, multiple independent works appeared that use blockchains to provide
such functionality [GKM+20,BGG+20]. We provide a clean definition of the core
functionality that these works aim to provide (without fixating on blockchains)
and outline why the eWEB system [GKM+20] satisfies this definition.

Formally, the ideal CSaR functionality is described in Figure 3. The security
of a CSaR system is then defined as follows:

CSaR Security For any PPT adversary A there exists a PPT simulator S with
access to our security model IdealCSaR (described in Ideal CSaR), such that the
view of A interacting with S is computationally indistinguishable from the view
in the real execution.

2.5 MPC in the Presence of Contributors and Evaluators

In the following, we formally define the security of the functionality which we
want to achieve. Recall that we consider two sets of parties – MPC contributors
who supply inputs and MPC evaluators who wish to obtain the output.

We consider the simulation-based notion of security. In the ideal world, par-
ties interact with the ideal functionality Feval-MPC, described in Figure 4. Note

17

Fig. 3. Ideal CSaR: IdealCSaR

1. SecretStore Upon receiving an (identifier, release condition, secret) tuple
τ = (id, F, s) from a client P , IdealCSaR checks whether id was already used. If
not, IdealCSaR stores τ and notifies all participants that a valid storage request
with the identifier id and the release condition F has been received from a
client P . Here, the release condition is an NP statement.

2. SecretRelease Upon receiving an (identifier, witness) tuple (id, w) from some
client C, IdealCSaR checks whether there exists a record with the identifier id.
If so, IdealCSaR checks whether F (w) = true, where F is the release condition
corresponding to the secret with the identifier id. If so, IdealCSaR sends the
corresponding secret s to client C.

that the difference to the standard ideal functionality for MPC with abort (de-
scribed in Figure 1) is that we distinguish between contributors and evaluators.

In the real world, parties execute the protocol π in the presence of an adver-
sary A. The adversary A is allowed to corrupt a set of contributors I ⊂ [n] as
well as a set of evaluators I ′ ⊂ [n′]. A is allowed to send messages in place of
corrupted parties and can follow an arbitrary polynomial-time strategy.

Security of π is defined as follows:

Definition 5. A protocol π is said to securely compute F with abort in the
presence of contributors and evaluators if for every PPT adversary A in the
real world, there exists a PPT adversary S, such that for any set of corrupted
evaluators I ′ ⊂ [n′], any set of contributors I ⊂ [n] with |I| ≤ t (where t is the
adversarial threshold), every initial input vector (x1, . . . , xn), and every security
parameter λ, it holds that

{IDEALf,S(z),I(1λ, (x1, . . . , xn))} =c {REALπ,A(z),I(1
λ, (x1, . . . , xn))},

where z ∈ {0, 1}∗ is the auxiliary input, IDEALf,S(z),I denotes the output of
the interaction of the adversary S(z) (who corrupts parties in I) with the ideal
functionality Feval-MPC (this output consists of the output of the adversary S(z)
as well as the outputs of the honest parties), and REALπ,A(z),I denotes the output
of the interaction between the adversary A(z) who corrupts parties in I and
the honest parties in the protocol π (this output consists of the output of the
adversary A(z) as well as the outputs of the honest parties).

In one of our constructions, we consider MPC protocols which provide guaranteed
output delivery. In that case the security of protocol π is defined the same way
as before, except that the ideal functionality is now Feval-MPC-GoD, described in
Functionality 5.

18

Functionality 4. Feval-MPC

1. We distinguish between the set of MPC contributors P = {P1, . . . , Pn} and
the set of evaluators E = {E1, . . . , En′}. These sets can be, but do not need
to be disjoint.

2. Let xi denote the input of the party Pi ∈ P.
3. The adversary S selects a set of contributors I ⊂ [n] to corrupt.
4. The adversary S selects a set of evaluators I ′ ⊂ [n′] to corrupt.
5. Each honest party Pi sends its input x∗i = xi to Feval-MPC. For each corrupted

party Pj , the adversary may select any value x∗j and send it to Feval-MPC.
6. Feval-MPC computes F (x∗1, . . . x

∗
n) and sends F (x∗1, . . . x

∗
n) to the adversary.

7. The adversary sends either abort or continue to Feval-MPC.
– If the adversary send abort, Feval-MPC sends ⊥ to all honest evaluators.
– Otherwise, Feval-MPC sends F (x∗1, . . . x

∗
n) to each honest evaluator.

8. Each honest evaluator outputs the message it received from Feval-MPC. Each
adversarial party can output an arbitrary PPT function of the adversary’s
view.

Functionality 5. Feval-MPC-GoD

1. We distinguish between the set of MPC contributors P = {P1, . . . , Pn} and
the set of evaluators E = {E1, . . . , En′}. These sets can be, but do not need
to be disjoint.

2. Let xi denote the input of the party Pi ∈ P.
3. The adversary S selects a set of contributors I ⊂ [n] to corrupt.
4. The adversary S selects a set of evaluators I ′ ⊂ [n′] to corrupt.
5. Each honest party Pi sends its input x∗i = xi to Feval-MPC. For each corrupted

party Pj , the adversary may select any value x∗j and send it to Feval-MPC.
6. Feval-MPC computes F (x∗1, . . . x

∗
n) and sends it to the adversary as well as each

honest evaluator.
7. Each honest evaluator outputs the message it received from Feval-MPC-GoD.

Each adversarial party can output an arbitrary PPT function of the adver-
sary’s view.

2.6 Multi-Key FHE with Distributed Setup

Our construction of an MPC scheme which combined communication and state
complexity is independent of the function being computed is based on the MPC
protocol of Brakerski et al. [BHP17], which in turn utilizes multi-key fully ho-
momorphic encryption scheme with distributed setup. In the following, we for-

19

mally define this primitive (in large parts taken verbatim from Brakerski et
al. [BHP17]).

Definition 6 (Multi-key homomorphic encryption scheme). A multi-key
homomorphic encryption scheme with distributed setup consists of five proce-
dures, MFHE = (MFHE.DistSetup,MFHE.Keygen,MFHE.Encrypt,MFHE.Decrypt,MFHE.Eval) :

– Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): On input the security param-
eter κ and number of users N , outputs the system parameters for the i-th
player paramsi . Let params = {paramsi}i∈[N].

– (pk, sk) ← MFHE.Keygen(params, i): On input params and entry number i
the key generation algorithm outputs a public/secret key pair (pk, sk).

– c ← MFHE.Encrypt(pk,x): On input pk and a plaintext message x ∈ {0, 1}∗
output a “fresh ciphertext” c. (We assume for convenience that the ciphertext
includes also the respective public key.)

– ĉ := MFHE.Eval(params;C; (c1, . . . , cl)): On input a (description of a) Boolean
circuit C and a sequence of fresh ciphertexts (c1, . . . , cl), output an “evaluated
ciphertext” ĉ. (Here we assume that the evaluated ciphertext includes also
all the public keys from the ci’s.)

– x := MFHE.Decrypt((sk1, . . . , skN), ĉ): On input an evaluated ciphertext ĉ
(with N public keys) and the corresponding N secret keys (sk1, . . . , skN),
output the message x ∈ {0, 1}∗.

The scheme is correct if for every circuit C on N inputs and any input se-
quence x1, . . . , xN for C, we set paramsi ← MFHE.DistSetup(1κ, 1N , i), params =
{paramsi}i∈[N], and then generate N key-pairs and N ciphertexts (pki, ski) ←
MFHE.Keygen(params) and ci ← MFHE.Encrypt(pki, xi), then we get

MFHE.Decrypt((sk1, . . . , skN),MFHE.Eval(params;C; (c1, . . . , cN))) = C(x1, . . . , xN)

except with negligible probability (in κ) taken over the randomness of all these
algorithms.

In the work of Brakerski et al. the following two properties are needed of
the multi-key FHE schemes: first, the decryption procedure consists of a “local”
partial-decryption procedure evi ← MFHE.PartDec(ĉ, ski) that only takes one
of the secret keys and outputs a partial decryption share, and a public com-
bination procedure that takes these partial shares and outputs the plaintext,
x← MFHE.FinDec(ev1, . . . , evN , ĉ). Another property that is needed is the abil-
ity to simulate the decryption shares. Specifically, there exists a PPT simulator
ST , that gets for input:

– the evaluated ciphertext ĉ,
– the output plaintext x := MFHE.Decrypt((sk1,←, skN), ĉ),
– a subset I ⊂ [N], and all secret keys except the one for I, {skj}j∈[N]\I .

The simulator produces as output simulated partial evaluation decryption shares:
{ẽvi}i∈I ← ST (x, ĉ, I, {skj}j∈[N]\I). We want the simulated shares to be statis-
tically close to the shares produced by the local partial decryption procedures

20

using the keys skiiI , even conditioned on all the inputs of ST . A scheme is
simulatable if it has local decryption and a simulator as described here.

Brakerski et al. require that semantic security for the i-th party holds even
when all {paramsj}j∈[N]\i are generated adversarially and possibly depending on
paramsi.

They consider a rushing adversary that chooses N and i ∈ [N], then it sees
paramsi and produces paramsj for all j ∈ [N]\{i}. After this setup, the adversary
is engaged in the usual semantic-security game, where it is given the public key,
chooses two messages and is given the encryption of one of them, and it needs
to guess which one was encrypted.

Simulatability of the decryption shares is defined as before, but now the
evaluated ciphertext is produced by the honest party interacting with the same
rushing adversary (and statistical closeness holds even conditioned on everything
that the adversary sees).

3 Our Non-Interactive MPC Construction

We now present our first construction - given an MPC protocol π, we use Yao’s
garbled circuits as well as a CSaR to transform it into an MPC protocol π′ that
does not require parties to be online at the same time and only requires a single
message from the contributors in π. The contributors in π do not need to interact
with each other. First, we briefly outline the assumptions we make and define
the adversarial model.

Assumptions. We assume a public-key infrastructure and the existence of a
CSaR. To distinguish between concurrent executions of the protocol, we give
each computation a unique identifier id, and we assume that the evaluators know
the public keys of the parties eligible to contribute in the protocol π. We assume
the existence of a bulletin board modeled as an append-only log that provides a
proof of publish which cannot be (efficiently) forged. Such bulletin boards can be
implemented in practice via a blockchain. Finally,we assume IND-CCA secure
public key encryption.

For the ease of presentation, we assume the following about the MPC protocol
π: (a) it is in a broadcast model, and (b) it has a single output which is made
public to all participants in the last round 7.

Adversary model. We consider a computationally bounded, fully malicious, static
adversary A. Once an adversary corrupts a party it remains corrupted: the ad-
versary is not allowed to adaptively corrupt previously honest parties.

7 Note that these are not real limitations: if a protocol has several outputs, some of
which cannot be made public, the MPC functionality broadcasts the encryption of
a party’s output under that party’s public key. Additionally, later in this section we
discuss how protocols with point-to-point channels can be supported in the broadcast
model.

21

3.1 Construction Overview

Intuitively, there are two main steps in the protocol. In the first step, the par-
ties (dubbed “contributors”) prepare the garbled circuits (and keys) and store
these with the CSaR. In the second step, one or more parties (we dub them
“evaluators”) use the garbled circuits to execute the original protocol π.

Step 1. Preparing Garbled Circuits and Keys. Each party Pj that wishes to par-
ticipate (contribute inputs) in π starts by garbling the slightly modified next-
message functions of each round of π. Typically, the next-message function takes
as input some subset of the following: the secret input of the party, local random-
ness of the party for that particular round, the messages received in the previous
rounds, some secret state passed along from the previous round. The output con-
sists of the message that is broadcast as well as the state that is passed to the
next round. We make the following modifications: in each round i, instead of the
state sij that is passed to the next round, the function outputs the encryption cij
of the state as well as a signature sigprij over this encryption. Additionally, the

modified next-message function outputs the public message mi
j that is supposed

to be broadcast by Pj in this round, as well as the signature sigpubij over this
message. The secret key as well as the signature key of Pj are hard-coded in the
circuit (we explain how it can be done later in this section). Prior to executing
the original next-message function, the modified function decrypts the state us-
ing the hard-coded secret key of Pj and verifies the signatures on each public
message as well as the signature on the state passed in from previous round.
Intuitively, these modifications are due to the following reasons:

– The state of the party is passed in an encrypted state because the state
information is assumed to be private in the original MPC construction.

– The parties need to sign their messages (and verify signatures on the mes-
sages passed as inputs) since we must prevent the adversary from tricking
an honest party into acceptance of a message that is supposedly generated
by another honest party, but in reality is mauled by the adversary.

Once the garbled circuits are prepared, Pj stores the garbled circuits with
CSaR. Note that the next-round functions in particular take messages produced
by other parties as inputs. Thus, there is no way for the party to know at the
time the garbled circuits are constructed, whether the key corresponding to bit
0 or the key corresponding to bit 1 will be chosen for some wire w. To allow
an evaluator to execute the garbled circuits anyway, Pj additionally stores both
wire keys for each input wire with CSaR, each with a separate CSaR request.
This needs to be done for every single round, since in any particular round the
inputs will depend on the messages produced by the garbled circuits of other
parties in the previous round.

Intuitively, in order to be able to reduce the security of this protocol to
the security of the original MPC protocol, we need to ensure not only that the
adversary is not able to maul messages of the honest parties and see the parties’

22

private information, but also that the protocol is executed in order and there
is only a single instance of the protocol running. This is ensured by carefully
constructing conditions that must be met in order to release the garbled circuits
and wire keys. In order to release a garbled circuit for some round i, a party
needs to provide a proof that the execution of the protocol up to and including
round i − 1 is finalized. In order to release a wire key corresponding to bit b
on a wire corresponding to position p of the input to some garbled circuit, a
party needs to additionally provide a proof that the input bit to position p in
this circuit is indeed bit b. In the following, we first explain how the protocol is
executed, and then explain how exactly the release conditions look like.

Step 2. Executing π. Once all required information is stored, an evaluator E
can execute the original MPC protocol π. It is not required that E is one of
the parties participating in the protocol π and in fact, there can be multiple
evaluators (for simplicity, we refer to all of them as “E”). E executes the garbled
circuits round-by-round. Once E has executed all garbled circuits for a certain
round, E publishes the concatenation of the outputs of these circuits on a bulletin
board. Then, E uses the proof of publishing of this message in order to release
the garbled circuits as well as the wire keys of the next round.

First round optimization. Note that the message broadcast by the parties in
the first round of the protocol π does not require any information from the
other participants in the MPC protocol. Thus, instead of storing the garbled
circuits for the first round, we let the parties publish their first message (and the
signature on it) directly. The secret state that needs to be passed to the second
round is hard-coded in the garbled circuit of the second round.

Release conditions. As described above, after the execution of all garbled circuits
of the certain round, the evaluator is tasked with publishing the (concatenation
of the) outputs of these circuits. This published message servers as a commitment
to the evaluator’s execution of this round, and this is what is needed to release
the gabled circuits of the next round. We additionally require that the length of
each published message is the same as expected by the protocol (corresponds to
the number of input wires), and the correct length requirement holds for every
part of this message (i.e., the public message, the signature over it, the state,
and the signature over the state for each contributing party). In order to ensure
that there is only a single evaluation of the original MPC running, only the
very first published message that is of a correct form (i.e., satisfies the length
requirements) can be used as the witness to release garbled circuits and keys
of a certain round. We call such messages authoritative messages. Formally, the
authoritative message of round d > 1 is a published message that satisfies the
following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖ md

n ‖
sigpubd1 ‖· · ·‖sigpubdn ‖cd1 ‖· · ·‖cdn ‖sigprd1 ‖· · ·‖sigprdn). This corresponds to
the concatenated output of the garbled circuits of round d: public messages

23

followed by signatures over each public message, and encryptions of state
followed by signatures over each ciphertext.

– each md
j , c

d
j , sigpub

d
j , sigpr

d
j has correct length.

– This is the first published message that satisfies the requirements above.

Due to our first round optimization the authoritative message of the first
round is slightly different. In particular, there are up to n authoritative messages
for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sigpub

1
k).

– m1
k and sigpub1k both have correct length.

– This is the first published message that satisfies the requirements above.

In terms of authoritative messages, the release conditions can be now defined
as follows: in order to release the garbled circuits for round i, we require that
all authoritative messages for rounds 1 up to and including round i − 1 are
published. In order to release the wire key for some bit b of an input wire w of
a garbled circuit the authoritative message of the previous round must contain
bit b at the same position w.

Identifying secrets In order for the evaluator to know the identifiers of the secrets
it must request from CSaR, we require that upon storing the secrets (i.e., garbled
circuits and wire keys), the contributors choose their CSaR secret identifiers
(appending their own party identifier to the secret in order to ensure that it
has not been used before) and publish those identifiers on the bulletin board
(we assume messages can’t be posted or stored by a party pretending to be
another party). For readability purposes, further we exclude this detail from the
construction description.

Removing point-to-point channels. While in our construction we assume that
the original MPC protocol is in a broadcast model, it is very common for MPC
protocols to assume secure point-to-point channels. We can handle such protocols
as well since an MPC protocol that assumes point-to-point channels can be
easily converted to a protocol in a broadcast model. A generic transformation
is outlined in the eWEB paper (Protocols 1 and 2 in [GKM+20]), it requires
using a protocol to “package” a message that must be sent and another protocol
to “unpack” a message received by a party. Intuitively, these protocols rely on
authenticated communication channels (which can be realized via signatures).
The packaging is done via appending the id of the sender to the message and
IND-CCA encrypting the resulting string. The unpacking is done via decrypting
and verifying that the party id specified in the message corresponds to the id of
the party who sent this message via the authenticated communication channel.

24

Hardcoding secret inputs. As mentioned above, some of the information used
in the modified next-message function (such as the secrets of the parties, their
secret keys etc.) is hardcoded in the circuit. Say the hardcoded input wire is
w, and its value is (bit) b. Then, the party preparing the garbled circuit that
uses w does so as follows: whenever one of the inputs to a gate is w, the party
removes the wire corresponding to w from the circuit and computes the values
in the ciphertexts using bit b only (instead of computing the output both for
w = 0 and w = 1). We give an example for the computation of the AND-Gate
in Figure 6. For security purposes, it is important that we do not perform any
circuit optimizations based on the value of w.

x w out

0 0 K0

0 1 K0

1 0 K0

1 1 K1

x out

0 K0

1 K0

Fig. 6. On the left, we show the computation of the AND-gate in Yao’s construction.
Given the garbled keys of x and w, depending on whether they correspond to zero or
one, the doubly-encrypted ciphertext contains K0 or K1. On the right, we show the
computation for the AND-gate if w = 0. In this case, both ciphertexts contain K0.

Notation. In the following, we denote party Pj ’s public and secret encryption
key pair as (pkj , skj). We denote party Pj ’s signature and verification keys as
sigkj and verkj . By mi

j we denote messages that are generated by the party Pj
in the i -th round.

Further Details. Note that eWEB, the construction that we use as the instan-
tiation of the CSaR, assumes a CRS. This requirement can be removed in our
case by simply allowing each participant in the protocol π to prepare the CRS
on its own. From a security standpoint, this is unproblematic – we only wish to
protect the secrets of honest clients, and if a client is honest, it will generate the
CRS honestly as well 8.

Additionally, we note that in eWEB the party storing the secret is required
to send multiple messages. In order to ensure that in our MPC protocol a single
message from the MPC participant is sufficient and the parties can go offline
after sending this message, we slightly modify the eWEB construction. Roughly,
in eWEB miners are tasked with jointly preparing a random value r s.t. each
miner knows a share of r. The user then publishes the value s+r (where s denotes
the secret to be stored), and the miners compute their shares of s by subtracting

8 Note that this change reduces the efficiency of the eWEB system – instead of batch-
ing secrets from different clients, only secrets from a single client can be processed
together now.

25

their shares of r from s + r. Along the way, the commitments to the sharing
of s are made public. We modify it as follows: the user simply publishes the
commitments to the sharing of s and sends shares of s (along with the witnesses)
to the miners who then verify the correctness of the shares and witnesses.

Finally, note that we require that the original protocol π has the publicly
recoverable output property (see Definition 3). For security with abort, this
property can be easily achieved as follows: first, all parties broadcast the output.
Then, if all parties broadcasted the same value, this value is taken as the output.
Otherwise, protocol is considered to be aborted. In the following, for simplicity
we assume that protocol π has the publicly recoverable output property and Eval
denotes the algorithm used to retrieve the output from the transcript.

The full construction is given in Protocols 1 and 2 (preparation of the garbled
circuits and keys), as well as Protocol 3 (execution phase).

Security Analysis Intuitively, correctness of the construction as well as the se-
crecy of the honest parties’ inputs follow from the correctness as well as security
properties of the underlying cryptographic primitives as well as the original pro-
tocol π. We formally show security by providing a simulator in the ideal model
and showing that no PPT adversary can distinguish between interaction with
the simulator and the interaction with the honest parties. Intuitively, we rely
on the security of the cryptographic primitives used in our construction to show
that the adversary is not able to use a garbled circuit from an honest party in
a “wrong” way. In particular, the adversary cannot trick an honestly produced
garbled circuit into accepting wrong inputs from other honest parties i.e., in-
puts that were not produced using the garbled circuits or published (for the
first message) by those parties directly, or claim that a required message from
some honest party is missing. Additionally, there is no way for the adversary
to execute honest garbled circuits for the same round on inconsistent inputs (or
execute a single honest garbled circuit multiple times on a different inputs) since
only the authoritative message published for a single round is considered valid.
We then rely on the security of the original protocol π. We give the formal proof
in Section A.

4 Optimizations

Our next goal is to minimize the number of CSaR invocations in our construction.
For this, we will focus on our main construction (Protocols 1, 2 and 3), but
the optimizations are applicable to our guaranteed output delivery construction
(which will be introduced later) as well.

Let n denote the number of parties participating in the original MPC protocol
π, nrounds denote the number of rounds in π, niwires,j denote the number of input
wires of a garbled circuit of the next-message function for round i of party Pj .

Then, the number of CSaR secret store operations is upper bounded by:

Nstore = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

2 ∗ niwires,j

26

Protocol 1 Non-Interactive MPC− CircuitPreparationPhase
1. Pj computes the output (m1

j , s
1
j) of the first round of π. Pj computes the signature

sigpub1j on the message (id, 1, j,m1
j) using its signing key sigkj . Pj posts M1j =

(id, 1, j,m1
j , sigpub

1
j) on the bulletin board.

2. Pj produces Yao’s garbled circuits {GCij} for each round i > 1 based on the circuit
Cij of the next-message function f ij of the original MPC protocol π:

({labw,b,ij }w∈inpij,b∈{0,1})← Gen(1λ, inpij)

GCij ← Garble(Cij , ({labw,b,ij }w∈inpij,b∈{0,1})

Here, inpij is the length of the input to the circuit Cij . This circuit takes as input
messages {mi−1

k }
n
k=1 published by the parties in the previous round along with the

signatures {sigpubi−1
k }

n
k=1 of these messages, and the encryption ci−1

j of the secret

state passed by Pj from the previous round as well as the signature sigpri−1
j over

this ciphertext. All of Pj ’s keys, input xj and randomness rij are hardcoded in the
circuit. The verification and public keys of other participants are also hardcoded
in the circuit. For the circuit of the second round, the secret state passed from
the first round is also hardcoded in the circuit. The circuit decrypts the secret
state and, if the ciphertext was correctly authenticated, executes the next message
function of the current round:
(a) If i = 2, proceed to step 2(c).
(b) Verify the signature on the tuple (id, i − 1, j, ci−1

j) using verkj . If this check
fails, stop the execution and output ⊥.

(c) Verify the signature on the tuple (id, i − 1, z,mi−1
z) from party Pz. If any

verification check fails, stop the execution and output ⊥.
(d) Compute si−1

j = Decskj (ci−1
j).

(e) Obtain (mi
j , s

i
j) by executing f ij (xj , r

i
j ,m

i, si−1
j), where mi = mi−1

1 ‖· · ·‖mi−1
n .

(f) Compute the signature sigpubij on the public message (id, i, j,mi
j) using the

signing key sigkj .
(g) Compute the encryption of the state cij = Encpkj (sij).

(h) Compute the signature sigprij on the tuple (id, i, j, cij) including the encryption
of state using the signing key sigkj .

(i) Output (mi
j , sigpub

i
j , c

i
j , sigpr

i
j).

3. Pj securely stores garbled circuits GCij for all rounds i > 1 using a CSaR. The
witness needed to release the garbled circuit of round i is a valid proof of publishing
of all authoritative messages from round 1 and up to and including round i− 1.

The term n ∗ (nrounds − 1) is due to the fact that each party needs to
store a garbled circuit for each round, except for the very first one. The term∑nrounds

i=2

∑n
i=1 2 ∗ niwires,j is added because each party also needs to store two

wire keys for each input wire of each garbled circuit it publishes.

27

Protocol 2 Non-Interactive MPC−KeyStoragePhase
1. Securely store input wire keys ({labw,b,2j }w∈inp2j,b∈{0,1}) for the circuit of the second

round using CSaR. For each party Pk whose first round message is needed for the
computation, the witness required to decrypt the wire key corresponding to the
i-th bit of the input being 0 (resp. 1) is a valid proof of publishing of the
following:
(a) All of the authoritative messages of the first round.
(b) i-th bit of the authoritative message of round 1 of Party Pk is 0 (resp. 1).

2. Securely store input wire keys ({labw,b,dj }w∈inpdj,b∈{0,1}) for the circuit of the d-th

(d ≥ 3) round using CSaR. The witness needed to decrypt the wire key correspond-
ing to the i-th bit of the input being 0 (resp. 1) is a valid proof of publishing
of the following:
(a) All of the authoritative messages of the first d− 1 rounds.
(b) i-th bit of the authoritative message of round d− 1 is 0 (resp. 1).

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

niwires,j

This is because the evaluator needs all of the garbled circuits, as well as
a single wire key for each input wire of each garbled circuit, to perform the
computation.

Note that the dominant factor in both of the equations is
∑nrounds

i=2

∑n
j=1 n

i
wires,j .

This term is precisely the combined communication and (encrypted) state com-
plexity of the original MPC protocol π, minus the messages of the first round
and plus the signatures on the public messages and the state. Thus, in order to
minimize the number of CSaR invocations, we must first and foremost optimize
the combined communication and state complexity of the original MPC scheme.
We discuss a possible way to do this in the next section.

5 Optimizing Communication and State Complexity in
MPC

Our goal in this section is to design an MPC protocol in the plain model such that
its combined communication and state complexity is independent of the function
that it is computing. While a number of works have focused on optimizing com-
munication complexity, we are not aware of any construction optimizing both
the communication and state complexity.

We achieve it in two steps, starting with a protocol secure against semi-malicious
adversaries. Semi-malicious security, introduced by Asharov et al [AJLA+12], in-
tuitively means that the adversary must follow the protocol, but can choose its
random coins in an arbitrary way. The adversary is assumed to have a special

28

Protocol 3 Non-Interactive MPC− ExecutionPhase
1. The evaluator E uses messages (id, 1, z,m1

z, sigpub
1
z) posted on the bulletin board

by each party Pz as the proof of publishing to get the garbled circuits (and keys)
for the second round stored in CSaR by each participant in π. Then, E computes
the outputs (m2

j , sigpub
2
j , c

2
j , sigpr

2
j) of the second round by executing the garbled

circuits.
2. If an authoritative message of the second round was not published on the bulletin

board yet, set m = (m2
1 ‖ · · · ‖m2

n ‖ sigpub21 ‖ · · · ‖ sigpub2n ‖ c21 ‖ · · · ‖ c2n ‖ sigpr21 ‖
· · · ‖ sigpr2n), publish M2 = (id, 2,m):

(post2, σ2)← Post(M2)

and use the proof of publish σ2 as the witness to decrypt the wire keys and the
garbled circuits of the next round. If an authoritative message (id, 2,m′) was pub-
lished on the bulletin board, use its proof of publishing as the witness if m′ = m.
Otherwise, stop the execution and output ⊥.

3. In each following round d ≥ 3, E executes each garbled circuit published by party
Pz for round d − 1. Then, E concatenates the outputs and checks if there is a
message on the bulletin board for this round. If there is no such message, E posts
the computed output Md = (id, d,md−1

1 ‖ · · · ‖md−1
n ‖ sigpubd−1

1 ‖ · · · ‖ sigpubd−1
n ‖

cd−1
1 ‖ · · · ‖ cd−1

n ‖ sigprd−1
1 ‖ · · · ‖ sigprd−1

n):

(postd, σd)← Post(Md)

and uses the proof of publishing σd as witness to obtain input keys and garbled
circuits of the next round. Otherwise, if a message for this round is already pub-
lished and is the same as the one computed by E, E uses the proof of publishing
of this message as the witness. If it is not the same message as the one computed
by E, E aborts the execution.

4. Let τ denote the resulting transcript of execution of π. E outputs Eval(τ) as the
result.

witness-tape and is required to write a pair of input and randomness (x, r) that
explains its behavior. We specifically start with a semi-malicious MPC protocol
that has attractive communication and state complexity (i.e., independent of the
function being computed). Then, we extend it so that the resulting construction
is secure against not only semi-malicious, but also fully malicious adversaries.

5.1 Step. 1: MPC with semi-malicious security

Our starting point is the solution proposed in the work of Brakerski et al. [BHP17]
based on multi-key fully homomorphic encryption (MFHE) that achieves semi-
malicious security 9. The construction is for deterministic functionalities where
all the parties receive the same output, however it can be easily extended using

9 Their scheme is secure when exactly all but one parties are corrupted. To transform
it into a scheme that is secure against any number of corruptions, Brakerski et
al. suggest to extend it by a protocol proposed by Mukherjee and Wichs (Section

29

standard techniques to randomized functionalities with individual outputs for
different parties [AJLA+12]. For technical details behind the construction and
the security proof we refer to Brakerski et al.

We note that while Brakerski et al. do not explicitly explain how to handle
circuits of arbitrary depth, the bootstrapping approach outlined by Mukherjee
and Wichs [MW16] can be used here. Informally, the bootstrapping is done as
follows: each party encrypts their secret key bit-by-bit using their public key
and broadcasts the resulting ciphertext. These ciphertexts are used to evaluate
the decryption circuit, thus reducing the noise. To do so, the parameters of the
MFHE scheme must be set in a way that allows it to handle the evaluation of the
decryption circuit. We assume circular security that ensures that it is secure to
encrypt a secret key under its corresponding public key and refer to Mukherjee
and Wichs [MW16] for details.

To summarize, the construction in Protocol 4 is an MPC protocol secure
against semi-malicious adversaries and can handle functions of arbitrary depth 10.

The communication complexity in Protocol 4 depends only on the security
parameters, the number of parties, and input and output sizes [BHP17]. Note
that for a party Pk the state that is passed between the rounds in Protocol 4
consists of the following data:

– paramsk (passed from round one to round two and round three)

– params, (pkk, skk), {ck,j}j∈[lin], {c̃k,j}j∈[lkey] (passed from round two to round
three)

– {evk,j}j∈lout (passed from round three to round four)

Note that this data depends only on security parameters, number of parties, and
input and output sizes. Thus, the communication and state complexity of the
semi-malicious protocol does not depend on the circuit we are computing.

5.2 Step. 2: MPC with fully malicious security

In order to protect from fully malicious adversaries, we extend the construc-
tion above with the zero-knowledge protocol proposed by Kilian [Kil92]. In the
following, we first elaborate on Kilian’s protocol and some changes we need to
make to it in order to keep the combined communication and state complexity
low. Then, we elaborate on how Kilian’s protocol is used in the overall MPC
construction.

6.2 in [MW16]) that relies on a so-called extended function. For simplicity, we
skip this technical detail in our protocol. We note, however, that the additional
communication and state complexity incurred due to the transformation depend
only on the security parameter, as well as the parties’ input and output sizes.

10 Again, this construction is secure against exactly N − 1 corruptions (where N is the
total number of parties). When used with the extended function transformation by
Mukherjee and Wichs (which we skip here for readability purposes), the construction
becomes secure against arbitrary many corruptions.

30

Protocol 4 Optimizing MPC

1. Let Pk be the party executing this protocol.
2. Run paramsk ← MFHE.DistSetup(1κ, 1N , k). Broadcast paramsk.
3. Set params = (params1, . . . , paramsN), and do the following:

– Generate a key-pair (pkk, skk)← MFHE.Keygen(params, k)
– Let lin denote the length of the party’s input. Let xk[j] denote the j-th bit of
Pk’s input xk. Let lkey denote the length of the party’s secret key.

– Encrypt the input bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk, xk[j])j∈[lin]

– Encrypt the secret key bit-by-bit:

{c̃k,j ← MFHE.Encrypt(pkk, skk[j])j∈[lkey]

– Broadcast the public key and the ciphertexts (pkk, {ck,j}j∈[lin], {c̃k,j}j∈[lkey])
4. On receiving values {pki, ci,j}i∈[N]\{k},j∈[lin] execute the following steps:

– Let fj be the boolean function for j-th bit of the output of f . Let lout denote
the length of the output of f .

– Run the evaluation algorithm to generate the evaluated ciphertext bit-by-bit:

{cj ← MFHE.Eval(params, fj , (c1,1, . . . , cN,lin))}j∈[lout],

while performing a bootstrapping (using the previously broadcasted encryp-
tions of the secret keys) whenever needed.

– Compute the partial decryption for all j ∈ [lout] :

evk,j ← MFHE.PartDec(skk, cj)

– Broadcasts the values {evk,j}j∈lout

5. On receiving all the values {evi,j}i∈[N],j∈[lout] run the final decryption to obtain
the j-th output bit: {yj ← MFHE.FinDec(ev1,j , . . . , evN,j , cj)}j∈[lout]. Output y =
y1 . . . ylout .

Kilian’s zero-knowledge protocol Kilian’s construction [Kil92] relies on
probabilistically checkable proofs (PCPs) and allows a party P to prove the
correctness of some statement x using a witness w to the prover V . We specif-
ically chose Kilian’s construction because of its attractive communication and
state complexities. Note that we make a minor change to Kilian’s construction
(Protocol 5) – instead of storing the PCP string that was computed in round
two to use it in round four (as is done in the Kilian’s original scheme), P re-
computes the string (using the same randomness) in round four. Clearly, this
changes nothing in terms of correctness and security. However, it allows us to
drastically cut the state complexity of Kilian’s original construction since the
storage of the PCP becomes unnecessary.

Full construction The MPC construction secure against fully malicious adver-
saries is effectively the same as the semi-malicious one, except that additionally

31

Protocol 5 Optimizing MPC - Kilian’s construction

1. Verifier V chooses a collision-resistant hash function h and sends its description to
the prover P .

2. Prover P uses the PCP prover P ′ to construct a PCP string ψ ← P (x,w). Denote
by rp the randomness used by the prover in the generation of ψ. P computes the
root of the Merkle tree (using the hash function h) on ψ, and sends the commitment
to the Merkle tree root to the verifier V .

3. V chooses a randomness rv and sends it to P .
4. P recomputes the PCP string ψ ← P (x,w) using the randomness rp and sends

PCP answers to the set of queries generated according to the PCP verifier V ′

(executed on randomness rv) to V .
5. V checks the validity of the answers, and accepts if all answers are valid and

consistent with the previously received Merkle tree root. Otherwise, V outputs ⊥.

the parties commit to their input and randomness in the semi-malicious protocol
and prove (using any zero-knowledge argument of knowledge, denoted by ZKAoK
in the following) that they know the opening to the commitment. Kilian’s con-
struction is executed by each party Pk after each of the first three rounds of
Protocol 4. In more detail:

We assume that there exists some ordering of parties participating in Pro-
tocol 4. Following the approach outlined by Asharov et al. [AJLA+12], in each
round d of Protocol 4 we use Kilian’s construction as follows:

For each pair of parties (Pi, Pj), Pi acts as a prover to the verifier Pj in order
to prove the statement

NextMessaged(xi, ri, {mk}dk=1) = md
i , com(xi||ri, r′i) = ci

Here, NextMessage is the function executed by Pi in this round according to
Protocol 4, xi is the secret input of Pi, ri is the randomness used by Pi in
the semi-malicious construction, {mk}dk=1 are (concatenations of) the messages
broadcast by all parties participating in Protocol 4 in rounds 1 to d, md

i is the
message broadcast by Pi in round d, and ci is the commitment broadcast by Pi
in the first round (com(x, r) denotes a perfectly binding, computationally hiding
commitment to value x using randomness r). If a check fails, Pj broadcasts ⊥
and aborts. These proofs are done sequentially (starting a new one only after
the previous is fully finished), following the ordering of the (pairs of) parties. If
at least one party has broadcasted ⊥, all parties abort.

5.3 Properties of the resulting MPC construction

We now discuss the properties of the scheme constructed above. Specifically, we
show the following:

Theorem 5. Let f be an N -party function. Protocol 6 is an MPC protocol com-
puting f in the plain (authenticated broadcast) model which is secure against fully

32

Protocol 6 Optimizing MPC - handling fully malicious adversaries

1. Let Pz denote the party executing this protocol.
2. Let NextMessaged(·) denote the next message function of Protocol 4.
3. Compute and broadcast cz = com(xz||rz, r′z).
4. Sequentially, for each ordered pair of parties (Pi, Pj):

(a) If Pi = Pz: Act as a prover in a ZKAoK to prove knowledge of xz||rz, r′z such
that cz = com(xz||rz, r′z).

(b) If Pj = Pz: act as verifier in a ZKAoK to check knowledge of xi||ri, r′i such
that ci = com(xi||ri, r′i). If this check fails, broadcast ⊥.

5. If any party party broadcast ⊥, abort.
6. For each round d = 1, . . . , 3

(a) Let md = md−1
1 , . . . ,md−1

n .
(b) Compute NextMessaged(xz, rz, {mk}dk=1) = md

z .
(c) Broadcast md

z .
(d) Sequentially, for each ordered pair of parties (Pi, Pj):

i. If Pi = Pz, Pz acts as a Prover in Protocol 5 and uses the witness
(xz, rz, c

d−1
z , r′z) to prove that the following holds:

NextMessaged(xz, rz, {m
k}dk=1) = md

z , com(xz||rz, r′z) = cz

ii. If Pj = Pz, Pz acts as a Verifier in Protocol 5 to verify that there exist
(xi, ri, c

d−1
i , r′i) such that the following holds:

NextMessaged(xi, ri, {m
k}dk=1) = md

i , com(xi||ri, r′i) = ci

If this verification check fails, broadcast ⊥ and abort.
(e) If any party party broadcast ⊥, abort.

7. Output NextMessage4(xz, rz, {mk}4k=1, c
3
z) = md

z .

malicious adversaries corrupting up to t < N parties. Its communication and
state complexity depend only on security parameters, number of parties, and in-
put and output sizes. In particular, the complexity is independent of the function
f .

Security We outline why this construction is secure. Intuitively, in order to prove
security we construct the simulator S as follows: S commits to 0 for each honest
party, and uses a zero-knowledge argument of knowledge simulator to prove
that it knows the opening to the commitment. Then, S uses an extractor Ext of
the argument of knowledge construction to retrieve the input and randomness
xi, ri, r

′
i of each corrupted party Pi’s valid proof. Then, in each round S uses

the simulator Ssm of the semi-malicious scheme to retrieve the honest parties’
messages, while forwarding messages broadcasted by any adversarial party Pi to
Ssm (aborting whenever NextMessaged(xi, ri, {mk}dk=1, s

d−1
i) 6= md

i but the proof
supplied by the adversary goes through, and writing witnesses (xi, ri) extracted
by Ext on the witness tape of Pi otherwise). S uses the zero-knowledge simulator
Szk of Kilian’s protocol to simulate proofs on behalf of the honest parties. S

33

honestly checks the proofs submitted by the adversary, aborting (according to
the protocol) whenever a proof is invalid.

Communication and State Complexity Analysis As we mentioned above, the
communication complexity of Protocol 4 depends only on security parameters,
number of parties, and input and output sizes. In particular, the communication
and state complexity of the semi-malicious protocol does not depend on the
circuit we are computing.

The communication complexity of Kilian’s protocol depends on the security
parameter as well as the length of the statement. In our case, the statement
consists of the messages sent by the parties participating in the semi-malicious
MPC protocol in the previous round as well as the message output by the party
in the current round. Since the communication complexity of the semi-malicious
MPC protocol is independent of the function being computed, the communica-
tion complexity of the overall construction is also independent of the function
being computed. As for the state complexity, recall that we made a minor change
to Kilian’s original protocol – instead of storing the PCP, the prover simply re-
computes (using the same randomness) it whenever it is needed. Due to this
simple modification the PCP string does not contribute to the state complexity.
The only other things contributing to the state complexity is the hash function
h and the randomness rv, both independent of the function being computed by
the MPC 11.

The combined communication and state complexity added due to the broad-
casted commitments as well as ZKAoK proofs about these commitments also
depends only on security parameters, number of parties, and input and output
sizes.

Thus, we have shown that the communication and state complexity of our
construction in Protocol 6 is independent of the function the MPC protocol is
tasked with computing.

Integrating communication and state optimized MPC As we showed in Section 4,
the number of CSaR secret store operations in our non-interactive MPC con-
struction (Protocols 1, 2 and 3) is upper bounded by:

Nstore = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

2 ∗ niwires,j

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +

nrounds∑
i=2

n∑
j=1

niwires,j

11 Additionally, they can be chosen by V independently of any messages from P , and
thus they can be hardcoded in the garbled circuits and do not add to the state
complexity of the non-interactive construction.

34

As we pointed out in Section 4, the term
∑nrounds

i=2

∑n
j=1 n

i
wires,j is precisely

the combined communication and (encrypted) state complexity of the underlying
MPC protocol π, minus the messages of the first round and plus signatures on
the public messages and the state. Thus, when using Protocol 6 as the underlying
protocol π in our main non-interactive MPC construction (Protocols 1, 2 and
3), we obtain a construction which number of CSaR store and release operations
depends only on the number of rounds in π, security parameters, number of
parties, and input and output sizes. All of these parameters are independent of
the function that π is tasked with computing.

Thus, we get the following result:

Corollary 3. There exists an MPC protocol π′ in the blockchain model that has
adversarial threshold t < N , provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time. Only
a single message is required from the MPC contributors (the evaluators might
be required to produce multiple messages). Furthermore, the number of calls to
CSaR of this protocol is independent of the function that is being computed using
this MPC protocol.

6 Guaranteed Output Delivery

In this section, we provide an extension of our main construction that ensures
guaranteed output delivery, meaning that the corrupted parties cannot prevent
honest parties from receiving their output.

In order to provide guaranteed output delivery, the first step is to build upon
an MPC protocol π that also has this property. However, note that this change
by itself is not sufficient – a malicious evaluator could still disrupt the execution
of our original construction by simply providing an authoritative message that
contains an invalid signature and thus forcing honest garbled circuits to abort.
It is clear that we cannot simply accept such invalid signatures. Thus, further
modifications are required. In general, compared to our main protocol we make
the following changes:

– The original MPC protocol must have the guaranteed output delivery prop-
erty.

– We introduce a deadline by which all initial messages must be posted. In the
following, we denote this deadline by τ .

– Signatures on the messages are verified not by the garbled circuits, but rather
by the CSaR parties as part of the CSaR request. The signature is computed
on the whole message, rather than separately for the public and state parts
of the next-message function’s output.

– We use CSaR with public release, which is similar to CSaR, but instead of
privately releasing secret shares to the user, the parties release the shares
publicly (e.g., by posting them on the bulletin board).

– As a part of the release condition, the garbled circuits and wire keys of
the current round (that were previously published on the bullet board) are

35

used to check whether the message submitted by the evaluator is indeed the
output of the garbled circuit in question. Only if this is the case (i.e., the
evaluator acted honestly) is the evaluator allowed to receive the next wire
keys. The evaluator uses a proof of publishing of the garbled circuits and the
wire keys released by the CSaR to prove the correctness of the computation.
Roughly the following statement is checked: “The execution of the garbled
circuit GC on the wire keys {ki}i∈I results in the output provided by E.
Here, the garbled circuit GC is the circuit, and {ki}i∈I are the keys for this
circuit reconstructed using the published values of the CSaR present on the
proof of publish supplied by E”.

– If a message from the first round was not published, or a garbled circuit or
wire key from some party was not stored with CSaR, the evaluator needs to
prove that with respect to the genesis block, by deadline τ indeed no such
message was stored. We call such proof a “proof of missing message”.

– In the cases described in the last two points, the CSaR releases default wire
keys (encoding “⊥”) for each garbled circuit that is supposed to use the
missing message.

In order to allow for an easy verification of the evaluator’s claims of invalid
garbled circuits, we use CSaR with public release (CSaR-PR, see Figure 7),
which is the same as CSaR, except that the witness is supplied by the client
that wishes to receive the secrets publicly, and the secrets (garbled circuits and
wire keys in our case) are released publicly as well (as long as the release con-
dition is satisfied). Such CSaR-PR can be instantiated with the PublicWitness
construction presented in the eWEB work. For simplicity, in the following we
assume that the public release of the computation result is permitted. If the ap-
plication requires that only a certain party obtains the function result, it can be
easily supported by changing the output of the function that is being computed
to the encryption of this output under that party’s public key.

The definition of the authoritative message for this construction is a bit
different from the definition in our main construction to account for the fact
that the signatures and proofs of execution are checked by the CSaR parties.
Formally, the authoritative message of round d > 1 is a published message that
satisfies the following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖ md

n ‖
cd1 ‖ · · · ‖ cdn ‖ sigd1 ‖ · · · ‖ sigdn‖P), where P is some additional proof data, as
explained below.

– each md
j , c

d
j , sig

d
j has correct length, and each sigdj is a valid signature

of Pd on the tuple (id, d, j,md
j , c

d
j), and P contains a proof that for each

contributor Pd the output of Pd’s garbled circuit for that round is indeed
what the evaluator claims this output to be 12. The following exceptions are
allowed:

12 The “proof” simply consists of the whole bulletin board. CSaR retrieves the garbled
circuit of Pj and the corresponding wire keys that were published by CSaR on
the bulletin board, executes the garbled circuit and checks whether the output is
consistent with the message posted by the evaluator.

36

1. if a garbled circuit or wire key needed for the evaluation of that garbled
circuit from some party Pj is missing and the corresponding message
part could not be computed, the evaluator must prove that Pj failed to
post the garbled circuit or wire key and the deadline τ has passed. Recall
that in our main construction we require CSaR secret identifiers to be
published on the bulletin board (in order for the evaluator to know what
secrets it must request from the CSaR). If Pj failed to post the secret
identifier, “proof of missing message” is used to prove that this message
does not exist. If Pj posted this identifier, but the corresponding message
is not stored with CSaR, CSaR publicly returned ⊥ upon evaluator’s
request to retrieve this message and the proof of this publication is used
to prove that the message was not stored. In both cases, wire keys for
the default value ⊥ are released by the CSaR participants as wire keys
corresponding to the output of the missing circuit.

2. If a md
j , c

d
j , or sigdj has incorrect length, or sigdj is not a valid signature of

Pd on the tuple (id, d, j,md
j , c

d
j), but the evaluator proved that it is indeed

the output of Pd’s garbled circuit, this still counts as an authoritative
message. In this case, wire keys for the default value ⊥ are released by
the CSaR participants as wire keys corresponding to md

j and cdj .
– The deadline τ has passed at the time of posting.
– This is the first published message that satisfies the requirements above.

Same as in our main construction, there are up to n authoritative messages
for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sig

1
k).

– sig1k is a Pk’s correct signature over m1
k.

– m1
k has correct length.

– The deadline τ has not passed at the time of posting.
– This is the first published message that satisfies the requirements above.

If a required authoritative first message from some party Pj is missing, the
evaluator must prove that Pj failed to post this message and the deadline τ
has passed (“proof of missing message”). In this case, wire keys for the default
value ⊥ are released by the CSaR participants as wire keys corresponding to
that message.

Finally, note that same as in our main construction, we require that the orig-
inal protocol π has the publicly recoverable output property, now with the ad-
ditional guarantee of output delivery. The publicly recoverable output property
with guaranteed output delivery can be easily achieved as follows in a protocol
which has guaranteed output delivery: first, all parties broadcast the output.
Then, the value that was broadcasted by more than half of the parties is taken
as the output. Note that if π has guaranteed output delivery, each honest partici-
pant in π is guaranteed to be able to correctly compute the honest output. Given

37

honest majority among the participants (which we assume in order for π to pro-
vide the guaranteed output delivery anyway), the protocol outlined above results
in a correct output. In the following, for simplicity we assume that protocol π
has the publicly recoverable output property with guaranteed otput delivery and
Eval denotes the algorithm used to retrieve the output from the transcript.

The full construction is given in Protocols 7 and 8 (preparation of the garbled
circuits and keys), as well as Protocol 9 (execution phase). Just as in our main
construction, we show security by providing a simulator that does not have
access to the honest parties’ secrets and showing that no PPT adversary is
able to distinguish the interaction with the simulator from the interaction with
the honest parties. However, this time we additionally prove that the guaranteed
output delivery property holds for our construction. We provide the formal proof
in §B.

Protocol 7 Non-Interactive MPC with GoD−CircuitPreparationPhase
1. Pj computes the output (m1

j , s
1
j) of the first round of the MPC protocol for F . Pj

computes the signature sig1j on the tuple (id, 1, j,m1
j) using its signing key sigkj .

Pj posts (id, 1, j,m1
j , sig

1
j) on the bulletin board.

2. Pj produces Yao garbled circuit {GCij} for each round i > 1 based on the circuit
Cij of the next-message function f i of the original MPC protocol π:

({labw,b,ij }w∈inpij,b∈{0,1})← Gen(1λ, inpij)

GCij ← Garble(Cij , ({labw,b,ij }w∈inpij,b∈{0,1})

Here, inpij is the length of the input to the circuit Cij . This circuit takes as in-
put messages {mi−1

k }
n
k=1 published by the parties in the previous round, and the

encryption ci−1
j of the secret state passed by Pj from the previous round. All of

Pj ’s keys, input and randomness are hardcoded in the circuit. The verification and
public keys of other contributors are also hardcoded in the circuit. For the circuit
of the second round, the secret state passed from the first round is hardcoded in
the circuit as well. The circuit decrypts the secret state and executes the next
message function of the current round:
(a) Compute si−1

j = Decskj (ci−1
j).

(b) Obtain (mi
j , s

i
j) by executing f̃(xj , r

i
j ,m

i, si−1
j), where mi = mi−1

1 ‖ · · · ‖mi−1
n .

(c) Compute the encryption of the state cij = Encpkj (sij).

(d) Compute the signature sigij on the tuple (id, i, j,mi
j , c

i
j) using the signing key

sigkj .
(e) Output (mi

j , c
i
j , sig

i
j).

3. Pj securely stores garbled circuits {GCij} for all rounds i > 1 using CSaR-PR.
The witness needed to decrypt the ciphertext of some round i is a valid proof of
publishing of all authoritative messages of round 1 and up to (and including) round
i − 1. If τ was reached and some party did not post its authoritative message of
the first round, the witness does not need to include a proof of publishing of the
message computed by the garbled circuits of this party. Instead, the witness needs
to include a proof of missing message by the deadline τ .

38

Protocol 8 Non-Interactive MPC with GoD−KeyPreparationPhase
1. Securely store input wire keys ({labw,b,2j }w∈inp2j,b∈{0,1}) for the circuit of the second

round using CSaR-PR. For each party Pk whose first round message m1
k is needed

for the computation, the witness required to decrypt the wire key corresponding
to the i-th bit of the input m1

k being 0 (resp. 1) is a valid proof of publishing
with respect to the genesis block of the following:
(a) Each authoritative message of the first round is published. If a message is

missing, the witness needs to include a proof of missing message by deadline
τ instead of that message. For each missing message that is needed in the
computation, wire keys for the default value ⊥ are released.

(b) i-th bit of m1
k is 0 (resp. 1).

2. Securely store input wire keys ({labw,b,dj }w∈inpdj,b∈{0,1}) for the circuit of the d-th

(d ≥ 3) round using CSaR-PR. Say a message md−1
j (resp., cd−1

j) is needed for
the computation. The witness needed to decrypt the wire key corresponding to the
i-th bit of md−1

j (resp., cd−1
j) being 0 (resp. 1) is a valid proof of publishing

with respect to the genesis block of the following:
(a) All authoritative messages of round 1 up to and including round d − 1 are

published (subject to the constraint that τ is reached and some party did not
post its authoritative message of the first round). Recall that an authoritative
message is defined in a way that allows for missing or invalid partial messages
(given a valid execution proof from the evaluator) – in those cases, for each
missing message that is needed in the computation, wire keys for the default
value ⊥ are released.

(b) i-th bit of md−1
j (resp., cd−1

j) is 0 (resp. 1).

7 Acknowledgments

Bryan Parno, A and Elisaweta Masserova were supported by a fellowship from
the Alfred P. Sloan Foundation, a gift from Bosch, NSF Grant No. 1801369, and
by the CONIX Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA. Vipul Goyal and
Yifan Song were supported by the NSF award 1916939, DARPA SIEVE program,
a Cylab Presidential Fellowship, a gift from Ripple, a DoE NETL award, a JP
Morgan Faculty Fellowship, a PNC center for financial services innovation award,
and a Cylab seed funding award.

39

Protocol 9 Non-Interactive MPC with GoD− ExecutionPhase
1. Wait until either deadline τ has passed.
2. The evaluator E uses messages (id, 1, z,m1

z, sigpub
1
z) posted on the bulletin board

by each party Pz as the proof of publishing to get the garbled circuits (and keys)
for the second round stored in CSaR by each participant in π. Then, E computes
the outputs (m2

j , sigpub
2
j , c

2
j , sigpr

2
j) of the second round by executing the garbled

circuits. If for a party Pj any part of the information required to compute the
output is missing, output ⊥ is used in the following.

3. Check whether an authoritative message was published for round 2. If yes, check
if this message is consistent with own output and if so, simply use its proof of
publish as the witness to decrypt the wire keys of the next round. If the message
is not consistent, abort. If the authoritative message is not published yet, publish
(id, 2,m2

1 ‖· · ·‖m2
n ‖c21 ‖· · ·‖c2n ‖sig21 ‖· · ·‖sig2n) (appending the proof of execution,

as well as proofs of of missing/invalid messages if necessary) and use the proof of
publish as the witness.

4. In each following round d ≥ 3, E executes each garbled circuit published by party
Pz for round d−1. Then, E checks whether the authoritative message was published
for that round and whether this message is consistent with own output and if so,
simply uses its proof of publish as the witness to decrypt the wire keys of the next
round. If the message is not consistent, E aborts. If the authoritative message is
not published yet, E publishes the concatenated output of the garbled circuits
along with the proof of execution. In any case, E uses the proof of publish of the
authoritative message to release the wire keys and the garbled circuits of the next
round.

5. Whenever any needed wire key and/or garbled circuit was missing, E additionally
supplies a proof of missing message to decrypt the default wire keys of the next
round.

6. Let τ ′ denote the resulting transcript of execution of π. E outputs Eval(τ ′) as the
result.

40

References

Go17. Google AI Blog. Brendan McMahan and Daniel Ramage. Fed-
erated Learning: Collaborative Machine Learning without Cen-
tralized Training Data. https://ai.googleblog.com/2017/04/

federated-learning-collaborative.html, 2017.
ABH+21. Ghada Almashaqbeh, Fabrice Benhamouda, Seungwook Han, Daniel

Jaroslawicz, Tal Malkin, Alex Nicita, Tal Rabin, Abhishek Shah, and
Eran Tromer. Gage mpc: Bypassing residual function leakage for non-
interactive mpc. Cryptology ePrint Archive, Report 2021/256, 2021.
https://eprint.iacr.org/2021/256.

AJLA+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold fhe. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 483–501. Springer, 2012.

AMPR14. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 387–404. Springer, 2014.

BGG+20. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In Theory of Cryptography Conference, pages
260–290. Springer, 2020.

BGI+14. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure mul-
tiparty computation. In Annual Cryptology Conference, pages 387–404.
Springer, 2014.

BGI+17. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 275–303. Springer, 2017.

BGJ+18. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal mpc. In Annual International Cryptology
Conference, pages 459–487. Springer, 2018.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Theory of Cryptography Conference,
pages 645–677. Springer, 2017.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing.
In International Conference on the Theory and Application of Cryptology
and Information Security, pages 134–153. Springer, 2012.

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 784–796, 2012.

BJOV18. Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Vis-
conti. Non-interactive secure computation from one-way functions. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 118–138. Springer, 2018.

41

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://eprint.iacr.org/2021/256

BL20. Fabrice Benhamouda and Huijia Lin. Mr nisc: Multiparty reusable non-
interactive secure computation. In Theory of Cryptography Conference,
pages 349–378. Springer, 2020.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 503–513, 1990.

CCG+20. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Round optimal secure multiparty computation from min-
imal assumptions. In Theory of Cryptography Conference, pages 291–319.
Springer, 2020.

CDI+19. Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tian-
ren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-
interactive secure computation. In Annual International Cryptology
Conference, pages 462–488. Springer, 2019.

CGG+21. Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid mpc: Secure multiparty computation with dy-
namic participants. In Annual International Cryptology Conference, pages
94–123. Springer, 2021.

CGJ+17. Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk,
and Ian Miers. Fairness in an unfair world: Fair multiparty computation
from public bulletin boards. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 719–728,
2017.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security
with a global random oracle. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 597–608,
2014.

FKN94. Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure com-
putation. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 554–563, 1994.

GG17. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility
results using blockchains. In Theory of Cryptography Conference, pages
529–561. Springer, 2017.

GGG+14. Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 578–602.
Springer, 2014.

GHK+21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. Yoso: You only speak once. In
Annual International Cryptology Conference, pages 64–93. Springer, 2021.

GKM+20. Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and
Yifan Song. Storing and retrieving secrets on a blockchain. Cryptology
ePrint Archive, Report 2020/504, 2020. https://eprint.iacr.org/2020/
504.

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Poly-
chroniadou. The exact round complexity of secure computation. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 448–476. Springer, 2016.

42

https://eprint.iacr.org/2020/504
https://eprint.iacr.org/2020/504

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game. In Proceedings of the Nineteenth ACM Symp. on Theory of
Computing, STOC, pages 218–229. ACM, 1987.

Goy11. Vipul Goyal. Constant round non-malleable protocols using one way func-
tions. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 695–704, 2011.

HIJ+16. Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Ra-
bin. Secure multiparty computation with general interaction patterns. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 157–168, 2016.

HIJ+17. Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sa-
hai, and Eylon Yogev. Non-interactive multiparty computation with-
out correlated randomness. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 181–211.
Springer, 2017.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In Annual Cryptology
Conference, pages 132–150. Springer, 2011.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 406–425. Springer, 2011.

JMS20. Aayush Jain, Nathan Manohar, and Amit Sahai. Combiners for func-
tional encryption, unconditionally. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 141–168.
Springer, 2020.

KGM20. Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the
stateless: Augmenting trustworthy computation with ledgers. In Network
and Distributed Systems Seminar, volume 1, 2020.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, pages 723–732, 1992.

KOS03. Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency
of multi-party computation with a dishonest majority. In International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 578–595. Springer, 2003.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for
two-party computation. Journal of cryptology, 22(2):161–188, 2009.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 735–763. Springer, 2016.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with
a dishonest majority. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 232–241, 2004.

tra20. Certificate transparency, 2020. https://www.certificate-transparency.
org/.

Yao82. Andrew C Yao. Protocols for secure computations. In 23rd annual
symposium on foundations of computer science (sfcs 1982), pages 160–164.
IEEE, 1982.

43

 https://www.certificate-transparency.org/
 https://www.certificate-transparency.org/

Yao86. Andrew C Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162–
167. IEEE, 1986.

A Security Proof - Main Construction

Formally, we show that our construction supports the MPC functionality Feval-MPC

described in Functionality 4.
We do so by constructing the simulator S using the CSaR simulator SCSaR,

the garbled circuit simulator SGC , and the simulator of the original MPC pro-
tocol SMPC . Intuitively, our end goal is to arrive at the point where we only
have access to the honest parties’ secrets via the ideal functionality Feval-MPC –
then we have shown that the parties’ secrets are safe. In order to use the CSaR
simulator (which needs access to an ideal functionality IdealCSaR), S simulates
IdealCSaR by itself. In order to use the garbled circuit simulator SGC which takes
as input the output that it needs to compute, S uses the messages output by
the MPC simulator SMPC . Note that whenever we use the simulator SGC , we
also give it as input the circuit representation of the next-message function of
the according round (for the according party) as specified by our construction.
For ease of presentation, we skip this detail in the following proof.

We construct the simulator S as follows:
S starts by choosing the public and secret keys (pkj , skj), as well as the

signing and verification keys (sigkj , verkj) for the honest parties, and initializing
an empty list L which will be later used for the secret storage when simulating
IdealCSaR. Then, S starts the real-world adversary A, and gives A the public and
verification keys. Additionally, S starts the CSaR simulator SCSaR. S also starts
the simulator SMPC for MPC functionality f and secure protocol π. Whenever
SMPC sends a message to its ideal functionality, S forwards this message to its
own ideal functionality (and vice versa).

Note that the CSaR simulator SCSaR is running during the whole execution
of S, and requires access to the ideal functionality IdealCSaR. We first explain
how exactly S is simulating the CSaR infrastructure, and then explain how S is
simulating each phase of the protocol.

Simulation of the CSaR infrastructure

– S honestly simulates IdealCSaR by keeping the list L of (identifier, release
condition, secret) tuples and honestly storing messages whenever such re-
quests come from SCSaR. Messages stored by the adversary are not only
stored, but also released honestly. For an honest message the simulator S
decides on the fly whether and what it returns (acting as IdealCSaR) (see the
description of the next two phases for details). If S is unable to provide a
response to a valid release request of an honest message, S aborts.

Simulation of the CircuitPreparationPhase

44

– In Step 1 of the CircuitPreparationPhase, for each honest party Pj , S waits
until it receives the message m1

j output by SMPC as the party Pj , honestly

computes the signature sigpub1j over it, and posts (id, 1, j,m1
j , sigpub

1
j) on

the bulletin board.
– In Step 2, to construct garbled circuits for round i, S waits until all au-

thoritative messages of the first i − 1 rounds are published (either by the
adversary, or, if applicable, by S itself). Then, S forwards each message
mi−1
z that is supposed to represent the public message of a corrupted party

Pz in the authoritative message of round i− 1 to SMPC (as if coming from
Pz).
To construct the garbled circuit of an honest party Pj in round i, S uses the
garbled circuit simulator SGC . If Pj ’s garbled circuit is supposed to use an
input m according to our protocol, S verifies that the authoritative message
of round i − 1 contains a valid signature on m. If not, S uses the garbled
circuit simulator on the input ⊥. If all the required signatures are valid, S
uses the garbled circuit simulator on the input (mi

j , sigpub
i
j , c

i
j , sipr

i
j). Here,

mi
j is the output of SMPC for party Pj in round i, sigpubij is the signature

honestly computed by S over (id, i, j,mi
j), c

i
j the encryption of a zero string,

and siprij the signature honestly computed by S over (id, i, j, cij).
– When an honest party is supposed to store a garbled circuit as specified

by Step 3, S simulates the SecretStorage step of IdealCSaR by informing
SCSaR that a secret has been stored with the release condition as specified
by Step 3 of the CircuitPreparationPhase. Once a valid release request for
this garbled circuit has been submitted to SCSaR, S checks whether it was
able to construct a garbled circuit according to the procedure outlined in
the simulation of Step 2, and if so, honestly simulates IdealCSaR by storing
the constructed garbled circuit in the list L and then honestly releasing it
to SCSaR. Otherwise, S aborts.

Simulation of the KeyStoragePhase

– For all wire keys that must be stored according to Step 1 and Step 2 of the
KeyStoragePhase, S simulates the SecretStorage step IdealCSaR by informing
SCSaR that a secret has been stored with the release condition as specified
by Step 1 and Step 2 of the KeyStoragePhase. Once a valid release request
has been submitted for a wire key, S checks whether it was able to create the
requested garbled key according to the procedure outlined in Step 2 of the
simulation of the CircuitPreparationPhase, and if so, S honestly simulates
IdealCSaR by storing this garbled wire key in the list L and then honestly
releasing it to SCSaR. Otherwise, S aborts.

Simulation of the ExecutionPhase

– Note that the evaluator does not possess any secrets. Thus, S simply follows
the procedure outlined in Protocol 3, sending its CSaR release requests to
SCSaR.

45

Now, we prove that no PPT adversary A is able to distinguish the view of
interaction with the simulator S constructed above from the view of interacting
with honest parties in the real world. We prove it by establishing a series of
hybrids such that any two consecutive hybrids are indistinguishable. We denote
the advantage of the adversary in distinguishing the between the Hybridi−1
and Hybridi by εi, and define the hybrids as follows:

Hybrid0: This hybrid corresponds to the execution in the real world. The
simulator S controls all honest parties and follows the protocol.

Hybrid1: The simulator S behaves the same as in the previous protocol,
except that it switches from honestly executing the CSaR protocol to using the
CSaR simulator SCSaR while honestly simulating IdealCSaR by himself. In more
detail, S passes messages to and from SCSaR and the dishonest parties, as well
as simulates IdealCSaR by storing a list L of (identifier, release condition, secret)
tuples as follows:

– Upon receiving a secret s and a release condition F from SCSaR, the simu-
lator S stores (id, F, s), where id is the identifier of the CSaR request.

– Whenever an honest message needs to be stored, S honestly stores it in L
and notifies SCSaR.

– Whenever SCSaR queries IdealCSaR for a secret with the identifier id, the
simulator S checks whether the entry with the identifier id exists, and if
so, whether the given witness satisfies the release condition of this entry.
If so, the simulator looks up the list L of stored tuples and returns the
corresponding secret s to SCSaR.

Lemma 3. For the hybrids Hybrid1 and Hybrid0 holds: ε1 ≤ negl1(n).

Proof. Intuitively, this holds by the security of the CSaR protocol. In more detail,
assume that there exists an adversary A able to distinguish between Hybrid1

and Hybrid0. Then, we can construct an adversary B for the CSaR protocol.
B starts by choosing the public and secret keys for the honest parties, sends
the public keys to A, constructs the garbled circuits as specified by Protocol 1,
and posts the messages of the first round on the bulletin board. Whenever a
CSaR message needs to be passed from A to an honest party, B forwards it to
its challenger. Whenever the challenger passes an CSaR message to a dishonest
party, B forwards it to A. Additionally, B passes messages to and from honest
clients and the challenger. Now, if B’s challenger uses the real CSaR protocol,
the game A is in is exactly Hybrid0, while if B’s challenger uses the simulator,
the game A is in is exactly Hybrid1. Thus, B’s advantage is at least the same
as the advantage of A. Since the advantage of B is negligible by the security of
the CSaR protocol we use, the advantage of A must be negligible.

Hybrid2: The simulator behaves the same as in the previous round, except
that it changes the way IdealCSaR is simulated. Specifically, instead of saving the
honest parties’ secrets (wire keys, garbled circuits) in list L at the time specified
by the protocol, the simulator stores each secret in L only when the simulator
asks for this secret and is able to provide a valid witness for the corresponding
release condition.

46

Lemma 4. For the hybrids Hybrid2 and Hybrid1 holds: ε2 = 0.

Proof. Note that in IdealCSaR, access to a secret is needed only upon a valid
release request for this secret. Thus, it makes no difference whether the message
is stored in L at the time that is specified by the protocol or only upon a valid
release request.

Hybrid3: The simulator S behaves the same as in the previous round, except
that it aborts if SCSaR provides a valid release request for an honest input wire
key or an honest garbled circuit that does not satisfy one of the requirements
outlined in Protocols 1 and 2 based on S’s own view of the computation, i.e,
corresponds to bit 1−bp at some position p in the string, when the authoritative
message’s bit in this position is bp, or corresponds to some position which does
not have a recorded authoritative message on the bulletin board yet). We denote
this by abort1.

Lemma 5. For the hybrids Hybrid3 and Hybrid2 holds: ε3 ≤ negl3(n)

Proof. Note that the simulator S aborts only if SCSaR provides a valid request for
some wire key z such that one of the release requirements either of Protocol 1 or
of Protocol 2 does not hold. Since we know that SCSaR provides a valid request,
and at the same time the release requirement does not hold based on S’s view
of the bulletin board, it means that as a part of its execution, the adversary
A is able to provide a forged proof of publishing. If A is able to do so with
a non-negligible probability, we can use it to forge a proof of publishing with
non-negligible probability as well.

Hybrid4: The simulator S behaves the same as in the previous hybrid,
except that it now uses the garbled circuit simulator SGC instead of honestly
constructing the garbled circuit. Specifically, once the adversary published its
authoritative message for round i − 1, the simulator S honestly computes the
output of the garbled circuit (consisting of the public message, the encrypted
state, and the signatures) of an honest party Pj in round i using the authoritative
message from round i−1, as well as honest party’s input, public and secret keys,
signature and verification keys, and (for the garbled circuit of the second round)
the honest parties’ state from the first round. Denote the output of party Pj ’s

garbled circuit of round i by outji . Then, S uses the garbled circuit simulator to

construct the circuit for round i of an honest party Pj : gc
j
i = SGC(outji) and

uses the result instead of the actual garbled circuit.

Lemma 6. For the hybrids Hybrid4 and Hybrid3 holds: ε4 ≤ negl4(n).

Proof. Technically, this is a series of hybrids where the circuits are replaced
one after the other (starting with the circuits of the first round). Note that at
this point the adversarial input is guaranteed to be known before the circuit is
constructed. Thus, S is always able to correctly compute the output, and the
statement holds by the selective security of the garbled circuit construction.

47

Hybrid5: The simulator behaves the same as in the previous hybrid, except
that the simulation of the garbled circuits is done a bit differently. Specifically,
we change the input we provide to the garbled circuit simulator SGC : instead of
using an encryption of the state, we use an encryption of zeroes (the signature
is computed on this encryption of zeroes).

Lemma 7. For the hybrids Hybrid5 and Hybrid4 holds: ε5 ≤ negl5(n).

Proof. Technically, this is a series of hybrids where the encryptions of the state
are replaced one after the other. Note that at this point, the simulator S does
not use the secret keys of the honest parties anymore. By the security of the
encryption scheme, in each hybrid, the distribution of the input we give to the
garbled circuit simulator SGC is computationally indistinguishable from the in-
put in the previous hybrid. Thus, the input distribution of the adversary does
not change as well. Therefore, each two consecutive hybrids (and thus Hybrid4

and Hybrid5 as well) are indistinguishable.

Hybrid6: The simulator S behaves the same as in the previous hybrid, except
that it aborts if the adversary posts an authoritative message for some round i
such that some honest part of it (public message or state that is supposed to be
produced by the honest party) is not consistent with what the simulator expects
based on the authoritative message of the previous round, but still has a valid
signature. Specifically, the simulator computes the output of the honest party’s
garbled circuit on the authoritative message of the previous round, and checks
whether this message is the same as what is given in the authoritative message
of the current round. We denote this by abort2.

Lemma 8. For the hybrids Hybrid6 and Hybrid5 holds: |ε6 − ε5| ≤ negl6(n)

Proof. Note that if the adversary is able to post such message, we can use this
adversary to construct an adversary against the unforgeability of the signature
scheme that we use. Thus, this situation can occur only with some negligible
probability.

In more detail, this is a series of hybrids where in each hybrid we target
one honest party at a time. Assume that there exists an adversary A able to
distinguish between two consecutive hybrids that differ only in the fact that the
adversary posts an unexpected, correctly signed message for some honest party
Pj . Then we can construct an adversary B against the security of the signature
scheme. B starts by choosing the public and secret keys of the honest parties
(except for the signature/verification key of party Pj - those keys are chosen
by B’s challenger), sends the public keys to A, constructs the garbled circuits,
posts messages of the first round on the bulletin board etc. as specified by the
description of the simulator in the previous hybrid. Whenever B needs to sign a
message for Pj , it uses the signature oracle. Now, if A outputs an unexpected
correctly signed message for Pj , B can use this message to present the forgery to
its own challenger. Thus, B’s advantage is at least the same as the advantage of
A. Since the advantage of B is negligible by the security of the signature scheme
we use, the advantage of A must be negligible as well.

48

Hybrid7: The simulator S behaves the same as in the previous hybrid,
except that if the adversary posts an authoritative message for some round i−1
such that some part of it does not have a valid signature, the simulator changes
the way that the garbled circuits for round i that use this partial message is
generated: instead of computing the output using the inputs and then using
the garbled circuit simulator as is done in the previous hybrid, the simulator S
computes the garbled circuit directly as SGC(⊥).

Lemma 9. For the hybrids Hybrid7 and Hybrid6 holds: |ε7 − ε6| = 0

Proof. Note that the garbled circuit of an honest party would have output ⊥
anyway due to the signature verification check. Thus, nothing has changed.

Hybrid8: The simulator S behaves the same as in the previous hybrid,
except that if the adversary posts a message for some round i−1 such that some
honest part of it is not consistent with the simulator’s expectations based on the
authoritative message of the previous round, the simulator changes the way that
the garbled circuits for round i− 1 that use this honest message are generated:
instead of computing the output using the inputs and then using the garbled
circuit simulator as is done in Hybrid9, the simulator S computes the garbled
circuit directly as SGC(⊥).

Lemma 10. For the hybrids Hybrid8 and Hybrid7 holds: |ε8 − ε7| = 0

Proof. Note that at this point, due to the steps made in the previous two hybrids,
we know that the signature on the changed message is invalid. Thus, any honest
garbled circuit that uses this changed message will output ⊥ either as part of
Step 2b) or part of Step 2c) of Protocol 1. Thus, the input we feed into the
garbled circuit simulator does not change.

Hybrid9: Consider the garbled circuits of the honest parties that were com-
puted not using the garbled circuit simulator with the input ⊥. Note that S
currently computes those garbled circuits by using the garbled circuit simulator
SGC on the output that S honestly computed based on the authoritative mes-
sage of the previous round as well as the honest party’s input and state from
the previous round. In this hybrid, we remove the requirement of knowing the
honest party’s input and state. Specifically, the simulator behaves the same as
in the previous hybrid, except that instead of honestly computing the output
using the honest parties’ inputs and states, it relies on the simulator SMPC of
the original MPC protocol π to retrieve the public messages that are supposed
to be output by those garbled circuits that were not already generated by the
garbled circuit simulator using the input ⊥. Note that in Hybrid5 we already
changed the encryption of state to encryption of zeroes, so once we retrieved the
public messages, we are done.

Lemma 11. For the hybrids Hybrid9 and Hybrid8 holds: |ε9 − ε8| ≤ negl9(n)

Proof. At this point, note the the adversary is not able to misbehave more than
it can in the execution of the protocol π. Thus, the indistinguishability of the
hybrids holds by the security of the original MPC protocol π.

49

Note that in the last hybrid, the simulator does not need the honest parties’
inputs to simulate the execution.

B Proof of Security - GoD Construction

In order to prove security properties of our construction, we again construct the
simulator S using the CSaR simulator SCSaR, the garbled circuit simulator SGC ,
and the simulator of the original MPC protocol SMPC .

S starts by choosing the public and secret keys (pkj , skj), as well as the sig-
nature and verification keys (sigkj , verkj) for the honest parties, and initializing
an empty list L which will be later used for the secret storage when simulating
IdealCSaR. Then, S starts the real-world adversary A, and gives A the public and
verification keys. Additionally, S starts the CSaR simulator SCSaR. S also starts
the simulator SMPC for MPC functionality f and secure protocol π. Whenever
SMPC sends a message to its ideal functionality, S forwards this message to its
own ideal functionality (and vice versa). Finally, S observes the blockchain and
aborts whenever an authoritative message is posted such that it is not consis-
tent with S’s expectations based on the authoritative messages of the previous
rounds.

First, note that the CSaR simulator SCSaR is running during the whole
execution of S, and requires access to the ideal functionality IdealCSaR. We first
explain how exactly S is simulating the CSaR infrastructure, and then explain
how S is simulating each phase of the protocol.

Simulation of the CSaR infrastructure

– S honestly simulates IdealCSaR by keeping the list L of (identifier, release con-
dition, secret) tuples and honestly storing messages whenever such requests
come from SCSaR. Messages stored by the adversary are not only stored,
but also released honestly. For an honest message that was not stored in L
the simulator S decides on the fly whether and what it returns (acting as
IdealCSaR) (see the description of the next two phases to understand what we
mean by this). If S is unable to provide a response to a valid release request
of an honest message, S aborts.

Simulation of the CircuitPreparationPhase

– In Step 1 of the CircuitPreparationPhase, for each honest party Pj , S waits
until it receives the message m1

j output by SMPC as the party Pj , honestly

computes the signature sigpub1j over (id, 1, j,m1
j), and posts (id, 1, j,m1

j , sigpub
1
j)

on the bulletin board.
– In Step 2, to construct garbled circuits for round i = 2, S waits until the

deadline τ has passed and forwards each message m1
z which is part of Pz’s

authoritative message of round 1 to SMPC as if coming from Pz (forwarding
⊥ whenever an authoritative message is missing).

50

To construct garbled circuits for rounds i > 2, S waits until all authoritative
messages of the first i− 1 rounds are published (either by the adversary, or,
if applicable, by S itself), and the deadline τ has passed. Then, S forwards
each message mi−1

z that represents the public message of a corrupted party
Pz in the authoritative message of round i − 1 to SMPC as if coming from
Pz, forwarding ⊥ whenever the authoritative message contained the corre-
sponding proof of missing message or the party’s message was invalid (had
an invalid signature or length etc).
To construct the garbled circuit of an honest party Pj in round i, S uses
the garbled circuit simulator SGC on the input (mi

j , c
i
j , sig

i
j). Here, mi

j is the

output of SMPC for party Pj in round i, cij the encryption of a zero string,

and siprij the signature honestly computed by S over (id, i, j,mi
j , c

i
j).

– When an honest party is supposed to store a garbled circuit as specified
by Step 3, S simulates the SecretStorage step of IdealCSaR by informing
SCSaR that a secret has been stored with the release condition as specified
by Step 3 of the CircuitPreparationPhase. Once a valid release request has
been submitted, S checks whether it was able to construct a garbled circuit
according to the procedure outlined in the simulation of Step 2, and if so,
honestly simulates IdealCSaR by storing the constructed garbled circuit in
the list L and then honestly releasing it. Otherwise, S aborts.

Simulation of the KeyStoragePhase

– For all wire keys that must be stored according to Step 1 and Step 2 of the
KeyStoragePhase, S simulates the SecretStorage step IdealCSaR by informing
SCSaR that a secret has been stored with the release condition as specified
by Step 1 and Step 2 of the KeyStoragePhase. Once a valid release request
has been submitted for a wire key, S checks whether it was able to create the
requested garbled key according to the procedure outlined in Step 2 of the
simulation of the CircuitPreparationPhase, and if so, S honestly simulates
IdealCSaR by storing this garbled wire key in the list L and then honestly
releasing it. Otherwise, S aborts.

Simulation of the ExecutionPhase

– Note that the evaluator does not possess any secrets. Thus, S simply follows
the procedure outlined in Protocol 9, sending its CSaR release requests to
SCSaR.

Now, we prove that no PPT adversary A is able to distinguish the view of
interaction with the simulator S constructed above from the view of interacting
with honest parties in the real world. We start by having the the simulator control
the honest parties and honestly follow the protocol, and make gradual changes
in order to achieve the simulator described above. We denote the advantage of
the adversary in distinguishing the between the Hybridi−1 and Hybridi by εi.
We define the following hybrids (the detailed proofs for the indistinguishability

51

between the neighboring hybrids are the same as for the corresponding hybrids
in our main construction):

Hybrid0: This hybrid corresponds to the execution in the real world. The
simulator S controls all honest parties and follows the protocol.

Hybrid1: The simulator S behaves the same as in the previous protocol,
except that it switches from honestly executing the CSaR protocol to using the
CSaR simulator SCSaR while honestly simulating IdealCSaR by itself. In more
detail, S passes messages to and from SCSaR and the dishonest parties, and
simulates IdealCSaR by storing a list L of (identifier, release condition, secret)
tuples as follows:

– Upon receiving a secret s and a release condition F from SCSaR, the simu-
lator stores (id, F, s), where id is the identifier of the CSaR request.

– Whenever an honest message needs to be stored, S honestly stores it in L
and notifies SCSaR.

– Whenever SCSaR queries IdealCSaR for a secret with the identifier id, the
simulator S checks whether the entry with the identifier id exists, and if
so, whether the given witness satisfies the release condition of this entry.
If so, the simulator looks up the list L of stored tuples and returns the
corresponding secret s to SCSaR if an entry with the identifier id is in the
list.

Lemma 12. For the hybrids Hybrid1 and Hybrid0 holds ε1 ≤ negl1(n) by the
security of the CSaR construction.

Hybrid2: The simulator behaves the same as in the previous round, except
that it changes the way IdealCSaR is simulated. Specifically, instead of saving the
honest parties’ wire keys and garbled circuits in list L at the time specified by
the protocol, the simulator stores each secret in L only when SCSaR asks for
this secret and is able to provide a valid witness for the corresponding release
condition.

Lemma 13. For the hybrids Hybrid2 and Hybrid1 holds: ε2 = 0 (nothing
changed between the hybrids).

Hybrid3: The simulator S behaves the same as in the previous round, ex-
cept that it aborts if an authoritative message for round i > 1 is submitted
by the adversary which is inconsistent with S’s own view of the bulletin board:
corresponds to bit 1 − bp at some position p in the string, when based on S’s
view the authoritative message contains bp at this position, or corresponds to
some position which does not have a recorded authoritative message on the bul-
letin board yet, or contains a valid proof of missing message for a message that
is present on the bulletin board, or contains a proof of publication of garbled
circuits/wire keys different from those released by the CSaR according to S’s
view. We denote this by abort1.

Lemma 14. For the hybrids Hybrid3 and Hybrid2 holds: ε3 ≤ negl3(n) by the
unforgeability of the proof of publish.

52

Hybrid4: The simulator S behaves the same as in the previous hybrid, except
that it aborts if some honest party’s authoritative message for the first round is
not the same as expected by the simulator. We denote this by abort2.

Lemma 15. For the hybrids Hybrid4 and Hybrid3 holds: ε4 ≤ negl4(n)

Proof. Note that honest parties always publish all required messages, and ac-
cording to the previous hybrid, the authoritative messages published by the
adversary are consistent with S’s view of the bulletin board. By the definition
of an authoritative message each first message of a party must contain a valid
signature. Thus, if the adversary is able to publish an authoritative message of
the first round of some honest party such that is not the same as expected by
the simulator, it means that the adversary is also able to forge a signature of
that honest party. We can thus use this adversary to construct an adversary on
the unforgeability of the signature scheme that we use.

Hybrid5: The simulator S behaves the same as in the previous hybrid,
except that it aborts if the adversary publishes an authoritative message for
some round i > 1 that is not the same as expected by the simulator. We denote
this by abort3.

Lemma 16. For the hybrids Hybrid5 and Hybrid4 holds: ε5 = 0

Proof. Note that at this point the authoritative messages published by the ad-
versary are consistent with S’s view of the bulletin board. Since the authoritative
message in particular contains pointers to the garbled circuits/wire keys for the
previous round which must explain the output claimed by the evaluator, the
output claimed by the evaluator must be the same as expected by the simulator.

Hybrid6: The simulator S behaves the same as in the previous hybrid,
except that it now uses the garbled circuit simulator SGC instead of honestly
constructing the garbled circuit. Specifically, once the authoritative message for
round i−1 is published (and the deadline τ has passed), the simulator S honestly
computes the output of the garbled circuit (consisting of the public message, the
encrypted state, and the signatures) of an honest party Pj in round i using
the authoritative message from round i− 1, as well as honest public and secret
keys, signature and verification keys, and (for the garbled circuit of the second
round) the honest parties’ state from the first round. Whenever a (part of an)
authoritative message (needed as part of the input) is shown missing or shown
to be invalid, the default message ⊥ is used instead. Denote the output of an
honest party Pj ’s garbled circuit of round i by outji . Then, use the garbled circuit

simulator to construct the circuit for round i of Pj as follows: gcji = SGC(outji)
and use the result instead of the actual garbled circuit.

Lemma 17. For the hybrids Hybrid6 and Hybrid5 holds: ε6 ≤ negl6(n) by the
security of the garbled circuits construction.

53

Hybrid7: The simulator behaves the same as in the previous hybrid, except
that the simulation of the garbled circuits is done a bit different. Specifically,
we change the input we provide to the garbled circuit simulator SGC : instead
of using an encryption of the state that was published by the adversary in the
previous round, we use an encryption of zeroes (the signature is computed using
this encryption of zeroes as well).

Lemma 18. For the hybrids Hybrid7 and Hybrid6 holds: ε7 ≤ negl7(n) by the
security of the encryption scheme.

Hybrid8: The simulator behaves the same as in the previous hybrid, except
that instead of using the honest parties’ inputs, it relies on the simulator SMPC

of the original MPC protocol π to retrieve the messages used in the construction
of the garbled circuits.

Lemma 19. For the hybrids Hybrid8 and Hybrid7 holds: ε8 ≤ negl8(n) by the
security of the original MPC protocol π.

Note that in the last hybrid, the simulator does not need the honest parties’
inputs to simulate the execution, and that all of the simulator’s aborts happen
only with a negligible probability. Additionally, note that from the proofs above
follows that the authoritative messages are consistent with what an honest eval-
uator would have output (thus in particular, up to some negligible probability,
an honest evaluator does not need to abort), and that the messages forwarded
to the ideal functionality are consistent with the authoritative messages. Finally,
note that it is given that the original protocol has the publicly recoverable output
with guaranteed output delivery property. Thus, up to some negligible proba-
bility, the output of an honest evaluator is guaranteed to exist and is the same
both in the real and in the ideal world. Thus, our protocol securely computes f
in the presence of contributors and evaluators with guaranteed output delivery
for the evaluators, as required.

C CSaR-PR

For one of our constructions we rely on a CSaR variation which releases the
secrets not privately to a single user, but publicly to everyone. We call this vari-
ation CSaR with public release (CSaR-PR), and introduce the ideal functionality
in Figure 7.

CSaR-PR Security For any PPT adversary A there exists a PPT simulator S
with access to our security model IdealCSaR-PR (described in Ideal CSaR-PR),
such that the view of A interacting with S is computationally indistinguishable
from the view in the real execution.

54

Fig. 7. Ideal CSaR-PR: IdealCSaR-PR

1. SecretStore Upon receiving an (identifier, release condition, secret) tuple
τ = (id, F, s) from a client P , IdealCSaR-PR checks whether id was already
used. If not, IdealCSaR-PR stores τ and notifies all participants that a valid
storage request with the identifier id and the release condition F has been
received from a client P .

2. SecretRelease Upon receiving an (identifier, witness) tuple (id, w) from some
client C, IdealCSaR-PR checks whether there exists a record with the identifier
id. If so, IdealCSaR-PR checks whether F (w) = true, where F is the release
condition corresponding to the secret with the identifier id. If so, IdealCSaR-PR

broadcasts the secret.

D Instantiating CSaRs

In the following, we briefly outline why the eWEB system satisfies the CSaR
security notion. We sketch out the simulator S that has access to the parties’
secrets only via the ideal CSaR functionality and has the property that no PPT
adversary can distinguish between interaction with the simulator and the in-
teraction with the honest parties. S in particular relies on the DPSS simulator
SDPSS while simulating Idealsafe for SDPSS and the NIZK simulator given by
the zero-knowledge property of the NIZK scheme.

Before we describe the simulation of each eWEB subprotocol, we note that
in the following S internally stores all information published on the blockchain
and aborts if whenever during the execution it notices that the information it
retrieved from the blockchain is inconsistent with the internal copy.

Similarly, whenever according to the protocol S is required to store some data
off-chain and the hash of it on-chain, S additionally stores the data internally.
Whenever according to the protocol S is required to verify the correctness of this
off-chain data by comparing its hash to the on-chain hash, S instead directly
compares the data to the one stored internally.

Additionally, whenever S needs to send a message from an honest party to
an honest party, it sends an encryption of a zero string of the according length
instead.

Simulating SecretStore. We distinguish between the following cases:

– The client storing the secret is honest.
– The client storing the secret is malicious.

In the first case, instead of generating NIZK’s CRS honestly, S uses NIZK’s
simulator to generate the CRS σ. Then, S generates the hash of the request,
publishes it on the blockchain and stores the request data offchain as specified
by the eWEB protocol. Additionally, S stores the request data internally. Then,

55

S (acting as Idealsafe) notifies the DPSS simulator of an honest secret storage re-
quest to simulate the DPSS setup phase (stopping the execution for a committee
party whenever the request verification check did not go through).

In the second case, S follows the eWEB protocol to verify the hashes and
stores the obtained data internally. Additionally, S uses the DPSS simulator and
passes messages between the adversary and the DPSS simulator (for those parties
whose hash verification did not fail) and if the DPSS simulator subsequently
extracts the secret and stores it in Idealsafe, S stores it internally and in IdealCSaR

(with the given release condition).
Simulating SecretsHandoff. S uses the DPSS simulator to simulate the

handoff phase.
Simulating SecretRelease. We again distinguish between the following

cases:

– The client requesting the secret is honest.
– The client requesting the secret is malicious.

In the first case, S follows the protocol for the request hash verification and if the
offchain data is successfully verified S uses the NIZK simulator to generate the
required proof of knowledge. Then, S continues to follow the eWEB protocol to
generate the hash of the secret release request, publish it on the blockchain and
store the required information offchain. For each honest committee member,
S continues to follow the protocol to retrieve the secret release request hash
and verify the offchain data. Then, S uses the DPSS simulator for the secret
reconstruction process.

In the second case, we additionally distinguish between the following cases:

– The client who stored the secret is honest.
– The client who stored the secret is malicious.

In the first case, S follows the protocol up to the step when it must engage
with the client in the DPSS reconstruction phase. If the requester passed all
verification checks, S uses the witness extractor on the submitted proof and use
the retrieved witness to retrieve the secret from the IdealCSaR and store it in
Idealsafe and uses the DPSS simulator for the last step.

In the second case, S simply uses the DPSS simulator while accessing inter-
nally stored secret if necessary (acting as Idealsafe).

We now outline why no PPT adversary A is able to distinguish the view of
interaction with the simulator S constructed above from the view of interacting
with honest parties in the real world. For this, we establish a series of hybrids
such that any two consecutive hybrids are indistinguishable.

Hybrid0: This hybrid corresponds to the execution in the real world. The
simulator S controls all honest parties and follows the protocol.

Hybrid1: In this hybrid, S switches from honestly generating the CRS and
the proofs to using the NIZK’s simulator. By the unbounded zero-knowledge
property of the NIZK, the adversary can detect the difference at most with a
negligible probability.

56

Hybrid2: In this hybrid, S switches from generating the CRS using the
NIZK’s simulator given by the unbounded zero-knowledge property to generat-
ing the CRS given by the simulation sound extractability property of the NIZK.
Again, the adversary can detect the difference at most with a negligible proba-
bility due to the simulation sound extractability property.

Hybrid3: In this hybrid, S internally stores all messages published on the
blockchain and aborts whenever a message it retrieved from the blockchain dur-
ing the execution at a later point is not consistent with the internal copy. Since
we assume that is hard to modify or erase posts on the blockchain, S aborts only
with a negligible probability.

Hybrid4: In this hybrid, S additionally internally stores the information
that is normally being hashed with the hash being published on chain and data
being stored off chain. S aborts whenever during the execution the information
stored offchain is not consistent with S’s internal copy, but still passes the hash
verification check. Since we assume that the hash function is collision-resistant,
S aborts only with a negligible probability.

Hybrid5: In this hybrid, all encrypted messages sent between honest parties
are changed to encryptions of zero strings of the same length. Due to the multi-
message IND-CCA security of the encryption scheme, the adversary can detect
the difference at most with a negligible probability.

Hybrid6: In this hybrid, S switches to using the DPSS simulator while
honestly simulating Idealsafe for it by keeping a list L of secrets and adding
secrets to this list whenever honest parties wish to store a secret or whenever
the DPSS simulator wishes to store a secret. Here, S simulates the point-to-point
channels of the DPSS protocol in the same way as outlined in the proof given
in the eWEB paper. By the security of the DPSS scheme, the adversary notices
the difference with at most a negligible probability.

Hybrid7: In this hybrid, S changes the time when honest secrets are stored
in L – instead of storing them when the honest user wishes to store a secret, S
stores them only when a party wishes to see the secret and is able to provide a
valid release request. Note that the only case when the secrets in L are accessed
by S is when a client requests a reconstruction and is able to satisfy the release
condition. Thus, nothing changes in this case.

Hybrid8: In this hybrid, S switches to using IdealCSaR to retrieve honest
users’ secrets. Whenever the DPSS simulator wishes to retrieve an honest secret
from Idealsafe, S uses the proof of knowledge property of the NIZK to extract a
witness from the adversarial proof. Then, S sends the witness to IdealCSaR and (if
the witness is correct) stores the obtained secret in L for the DPSS simulator to
use. By the unbounded simulation soundness property of the NIZK, the extracted
witness satisfies the release condition. Thus, the adversary is able to detect a
difference at most with a negligible probability.

57

	Blockchains Enable Non-Interactive MPC

