
Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies

James Larisch
Harvard University

Waqar Aqeel
Duke University

Michael Lum
University of Maryland

Yaelle Goldschlag
University of Maryland

Kasra Torshizi
University of Maryland

Leah Kannan
University of Maryland

Yujie Wang
University of Maryland

Taejoong Chung
Virginia Tech

Dave Levin
University of Maryland

Bruce M. Maggs
Duke University and Emerald

Innovations

Alan Mislove
Northeastern University

Bryan Parno
Carnegie Mellon University

Christo Wilson
Northeastern University

ABSTRACT
This paper proposes using a logic programming language to disen-
tangle X.509 certificate validation policy from mechanism. Express-
ing validation policies in a logic programming language provides
multiple benefits. First, policy and mechanism can be more indepen-
dently written, augmented, and analyzed compared to the current
practice of interweaving them within a C or C++ implementation.
Once written, these policies can be easily shared and modified for
use in different TLS clients. Further, logic programming allows us to
determine when clients differ in their policies and use the power of
imputation to automatically generate interesting certificates, e.g., a
certificate that will be accepted by one browser but not by another.

We present a new framework called Hammurabi for expressing
validation policies, and we demonstrate that we can express the
complex policies of the Google Chrome and Mozilla Firefox web
browsers in this framework. We confirm the fidelity of the Ham-
murabi policies by comparing the validation decisions they make
with those made by the browsers themselves on over ten million
certificate chains derived from Certificate Transparency logs, as
well as 100K synthetic chains. We also use imputation to discover
nine validation differences between the two browsers’ policies. Fi-
nally, we demonstrate the feasibility of integrating Hammurabi into
Firefox and the Go language in less than 100 lines of code each.

CCS CONCEPTS
• Security and privacy → Web protocol security; Logic and
verification.

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560594

KEYWORDS
TLS, Web PKI, X.509 certificate validation, logic programming

ACM Reference Format:
James Larisch,Waqar Aqeel, Michael Lum, Yaelle Goldschlag, Kasra Torshizi,
Leah Kannan, Yujie Wang, Taejoong Chung, Dave Levin, Bruce M. Maggs,
Alan Mislove, Bryan Parno, and ChristoWilson. 2022. Hammurabi: A Frame-
work for Pluggable, Logic-Based X.509 Certificate Validation Policies. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560594

1 INTRODUCTION
The Transport Layer Security (TLS) Public-Key Infrastructure (PKI)
is critical for establishing authenticated communication between
entities on the Internet. All manner of servers (and many clients)
authenticate themselves during the TLS handshake by sending
a public key housed in an X.509 certificate signed by a trusted
Certificate Authority (CA). TLS user-agents1 verify that the received
certificates are valid according to various RFCs [39, 103] and, for
browsers, CA/B Baseline Requirements (BRs) [28] that prescribe or
suggest, among other things, validating cryptographic signatures,
checking extensions, and checking revocation status.

However, even when two user-agents are standards compliant,
they may still make different policy decisions about what consti-
tutes a valid certificate. For instance, while the CA/B BRs do not
require browsers to implement revocation checks, Firefox performs
OCSP revocation checking for all certificates while Chrome only
uses OCSP for EV certificates [81]. Furthermore, there are often de-
fensible policy reasons (e.g., backwards-compatibility) for violating
standards. For example, Firefox allows leaf certificates that include
the keyCertSign key usage (§7.3), despite RFC 5280 forbidding it.

1We define “user-agent” as software responsible for validating TLS certificates, e.g., web browsers
or TLS libraries like OpenSSL.

https://doi.org/10.1145/3548606.3560594
https://doi.org/10.1145/3548606.3560594

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

1.1 The Problem of Entanglement
Unfortunately, today’s user-agents currently entangle certificate
validation policy—the high-level rules by which a certificate is
deemed valid or authorized to communicate on behalf of an entity—
with validation mechanism—the low-level implementation code
responsible for parsing certificates, verifying cryptographic signa-
tures, and executing policy rules. The separation of mechanism
and policy is a core security design principle of many research and
software systems [21, 44, 74, 79, 110, 112, 121, 123, 124], and its
absence in the TLS PKI has particularly problematic consequences.

First, it is difficult to determine what policy a user-agent imple-
ments, since doing so often requires examining the source code of
a large and complex implementation where validation policy and
implementation details are intertwined. This has obvious negative
consequences for analyzing the intended validation behavior. For
example, the only way to check that Firefox obeys Mozilla’s Root
Store Policy [90], which describes Firefox’s validation criteria in
English, is to manually examine Firefox’s C++ source code.

Second, entanglement between mechanism and policy makes
it difficult for new TLS libraries to reuse existing—well-developed
but complex—validation policies. As a result, they must implement
their own policy decisions about when to accept a certificate based
on the sometimes ambiguous [125] standards, which can lead to
security-critical, validation-related bugs [3–11, 15, 56]. Furthermore,
software depending on TLS libraries inherit their entangled policy
decisions, which are difficult to understand or change.

Finally, entanglement makes it difficult to determine how and
why two user-agents differ in the rules they use for validation. For
instance, the best way to determine whether a certificate is valid in
Chrome versus Firefox is to visit a website serving that certificate
in both browsers and compare the results (although even this may
not provide complete certainty, as the results may differ based on
the OS used [81]). If the browsers return different results, is the
difference due to differing interpretations of an RFC [125], due to
an unintentional bug, or due to an intentional policy choice?

1.2 Disentanglement with Hammurabi
In this work, we present Hammurabi, a framework for executing
“pluggable” certificate validation policies expressed in a standard-
ized, high-level, logic-programming language. Hammurabi sepa-
rates the mechanisms required to process X.509 certificates (e.g.,
parsing, signature validation, performing OCSP and CRL requests,
etc.) from the validation policy (e.g., enforcing a maximum certifi-
cate lifetime, blocking particular CAs, enforcing name constraints,
determining which revocation checking mechanisms to use, etc.).

Hammurabi replaces the X.509 certificate validation code found
in TLS user-agents. Hammurabi-compatible user-agents pass certifi-
cates (a leaf and intermediates), their choice of high-level validation
policy, and other parameters to the Hammurabi engine, which exe-
cutes the policy over the given certificates and returns the validation
result. We present a feature-complete prototype of Hammurabi im-
plemented as a system service (§6), but it could also be implemented
as a library, as we describe in §9.1.

The disentanglement of policy and mechanism enabled by Ham-
murabi generates several benefits. First, it facilitates separation of
required expertise. TLS user-agents often have legitimate reasons

for deviating from standard validation policy requirements, as we
discuss in §2, and validation policy changes impact both end-users
and CAs. Using Hammurabi, policy experts (e.g., the managers of
root-store programs [34, 89]) can write, extend, and analyze the
policies of multiple user-agents. Likewise, implementation engi-
neers need only add the plumbing required to support certificate
validation, rather than interweaving the high-level validation policy
with low-level mechanisms.

Second, Hammurabi makes it easier to reuse validation policies.
For instance, Chrome and Firefox share much of their validation
logic, which could be standardized and reused, as we show in §7.1.
Reusable policy components may lead to more consistency across
the vast TLS ecosystem (e.g., web browsers, command-line tools,
and IoT devices). Hammurabi also makes it easier to extend existing
TLS validation policies: for example, a new TLS user-agent can
import (and modify) Chrome or Firefox’s existing policy, rather
than writing its own, which often leads to omissions and bugs.
Additionally, user-agents can adopt sophisticated validation policies
with little TLS-specific implementation work.

Third, Hammurabi improves TLS policy agility for user-agents.
Changing policy today typically means modifying low-level code
or switching TLS libraries entirely, both of which are complex tasks
that require recompilation and redistribution. With Hammurabi,
applications like curl could provide runtime interfaces for devel-
opers to choose validation policies as they see fit, e.g., to comply
with new CA/B BRs or RFCs, or in response to security incidents
like the deprecation of a CA.

Finally, by leveraging techniques available to high-level lan-
guages (e.g., imputation using our chosen language, Prolog), devel-
opers and testers can automatically generate example certificates
that are valid according to one policy but not another, making it eas-
ier to automatically discover how two policies differ. For example,
although Chrome and Firefox share validation logic, they disagree
in subtle and complex ways, as we show in §7.3. These differences,
once highlighted automatically, can then be further classified as
validation bugs or differences of institutional opinion.

1.3 Contributions and Roadmap
This paper makes the following major contributions:

• We separate TLS certificate validation mechanism and pol-
icy in the design of Hammurabi, a drop-in replacement for
the validation logic of existing user-agents. The Hammurabi
engine (§4) performs the validation mechanisms (e.g., pars-
ing, signature checking, and revocation checking) before
executing Hammurabi policies (§5) expressed in a logic-
programming language.

• We implement and open source2 the validation logic of
Mozilla Firefox and Google Chrome in our high-level policy
language (Prolog, §5) and verify that, using our Hammurabi
engine prototype (§6), our policies make the same validation
decisions as the corresponding browsers for 10M certificates
sampled from nine Certificate Transparency logs and for
100K fuzzed certificates (§7.1).

2https://github.com/semaj/hammurabi

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

• We leverage our use of logic programs to automatically
discover differences between our two Hammurabi policies
(and thus the corresponding browsers) using imputation. We
find and discuss nine subtle differences between Firefox and
Chrome in the context of the RFCs and CA/B BRs (§7.3).

We begin in §2 by discussing how certificate validation policy and
mechanism are entangled in modern TLS user-agents and why this
is a problem. We then briefly discuss our threat model in §3, before
presenting the design of the Hammurabi engine in §4 and the choice
of Prolog as a policy language in §5. We describe the preliminary
Hammurabi prototype implementation in §6 and evaluate it and
our Hammurabi policies in §7. In §8 and §9 we discuss related work,
deployment options, and our future outlook.

2 BACKGROUND
In this work we focus on theWeb PKI, whose goal is to authenticate
websites to web clients (e.g., web browsers, mobile apps, and com-
mand line tools), which enables confidentiality and integrity for
data sent over an untrusted network (e.g., the Internet) [99]. The
Web PKI focuses on X.509 certificates, which are signed attestations
that bind a subject (i.e., a domain or CA name) to a public key.

Over the nearly 30 years since its inception [66], X.509 has
evolved to meet new threats and deployment considerations. In
1996, RFC 5280 [39] standardized X.509 version 3, which introduced
certificate extensions. Each extension consists of a unique object
identifier (OID), a boolean Critical, and arbitrary data specific
to that extension. Most changes to certificates have been made
via new extensions, such as Subject Alternative Names (SAN) and
Certificate Revocation List (CRL) distribution points [39] in 1996,
certificate transparency log timestamps (SCT) [77] in 2013, and
Online Certificate Status Protocol (OCSP) Must-Staple [59] in 2015.

Certificates used by websites are referred to as leaf certificates.3
TLS user-agents accept leaf certificates that are issued and signed by
CAs, whose certificates are in turn signed by other CAs, terminating
with a self-signed CA-owned root certificate.4 The certificates in-
between the leaf and root are referred to as intermediate certificates.
Typically, the server sends the leaf and intermediate certificates to
the user-agent during the TLS handshake.

2.1 Path Building
To be more specific, a user-agent accepts a leaf certificate if and
only if the user-agent can build a “valid path” from it to a trusted,
self-signed CA root certificate. For every certificate in a valid
path excluding the self-signed root: (1) the certificate’s Issuer Dis-
tinguished Name (DN) matches its parent’s Subject DN, (2) the
certificate’s authorityKeyIdentifier field matches its parent’s
subjectKeyIdentifier field, and (3) the certificate is signed by
the parent’s private key (corresponding to the parent’s public key).

There may be multiple paths for a given leaf certificate [82] be-
cause there may be multiple intermediate certificates with the same
Subject DN and public keys, each signed by different CA certificates
(i.e., cross-signing). As a result, the path building algorithm is a
depth-first search (DFS) problem in which the user-agent attempts

3Standards often refer to these certificates as “end-entity” certificates.
4Technically the path terminates with a trust anchor [39], whose information is often distributed
as a self-signed certificate.

to build and validate any path from the leaf to a root, abandoning
invalid paths along the way. Correctly implementing this logic is
subtle, and failure to properly fall back to alternative paths led to
an outage in May of 2020 [108].

2.2 Certificate Validation Ambiguity
Unfortunately, the list of criteria for what constitutes a valid path
described in §2.1 is incomplete. Indeed, there is no complete,
universal, canonical definition of what constitutes a valid
certificate path. For instance, web browsers only construct an
edge between a child and parent certificate if the parent issued
the child, the public keys match, the signature is valid, and the
browser’s own criteria (based on RFCs, BRs, and unique decisions)
are met. Such criteria may include disallowing particular signature
algorithms, disallowing particular extensions, and more.

Path validation requirements are specified across many different
and occasionally ambiguous RFCs [45, 125], including but not lim-
ited to RFCs 3647, 5280, 6066, 6125, and 6960. For example, RFC 5280
states that the signatureAlgorithm field of the certificate and the
signature field of the inner tbsCertificate5 must be “the same”,
but does not specify what “the same” means. One user-agent may
require that the encodingsmust be “byte-for-byte” equivalent, while
another may require equivalency after being parsed (see §10.1).

Adding to the complexity, web browsers—arguably the most
ubiquitous TLS user-agents deployed today—and CAs agree upon
their own set of 123 requirements for TLS certificates as part of the
Certificate Authority/Browser (CA/B) Forum. These requirements,
dubbed the CA/B Baseline Requirements (BRs) [28], both augment
and supersede (when in contradiction to) the RFC requirements.

Nonetheless, many user-agents ignore RFC and BR requirements
due to lack of resources, performance concerns, business-driven
decisions, or mistakes. For instance, the standard HTTP libraries in
Python performed virtually no certificate validation until 2014 [55].

Additional discrepancies arise because some user-agents imple-
ment RFC or BR recommendations (e.g., “MAY” and “MAY NOT”),
while others do not. For example, Firefox implements revocation-
checking for almost all leaf certificates using OCSP, OCSP Stapling,
OCSP-Must-Staple, and/or more recently CRLite [76]. Chrome, on
the other hand, only supports CRLSet, OCSP Stapling, and leaf
OCSP checking for EV certificates, and has no plans to implement
support for OCSP-Must-Staple [13, 14].

We present detailed descriptions of nine areas where Chrome
and Firefox’s certificate validation policies deviate from one other
based on our imputation-driven analysis (§7.3).

2.3 Other Challenges

Library Design. Georgiev et al. found that existing TLS libraries
make it easy for applications to perform validation incorrectly, due
to poor API design [56]. Fahl et al. showed that significant misuse of
the TLS APIs provided to Android applications (via Java) resulted in
potentialMITM attacks for 8% of examined applications [53], among
other issues with TLS on Android [54, 119]. Similar issues have
been documented in the IoT ecosystem, where devices sometimes
fail to properly validate certificates [93].

5The signature field redundancy was meant to defend against a now-obsolete attack [58].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

Implementation. Extensive research examines certificate valida-
tion code for bugs and omissions. Brubaker et al. [27] used a fuzzing
technique called “Frankencerts” to determine which TLS libraries
would correctly (or incorrectly) reject certificates with randomly
generated fields and extensions. Fuzzing has also been used to iden-
tify TLS-protocol level bugs in libraries [109]. Chau et al. [32] used
a combination of symbolic and concrete execution of TLS valida-
tion code to find discrepancies across libraries. CERES [45] is an
RFC-based, formally specified reference implementation designed
for the differential testing of existing non-browser TLS libraries.

2.4 Summary
While prior work has found bugs and inconsistencies in existing
certificate validation implementations, it fails to address a funda-
mental issue: certificate validation mechanism and policy are two
separate components, and should be treated as such. This entangle-
ment makes it difficult to discover and reason about validation bugs
and errors. Over-inclusive validation logic within an application
may not be a mechanism bug at all, but rather an insecure policy
choice. Complicating the issue further, there is no “one, true” vali-
dation policy—there are multiple, sometimes ambiguous RFCs with
optional requirements, additional requirements for certain user-
agents such as web browsers, and good reasons to break the rules
from time to time (e.g., for backward compatibility, or to voluntarily
choose a more secure policy than what the standards prescribe).

In other words, even if on-going efforts to produce a bug-free
TLS library [25] and formally specified certificate parsing rou-
tines [45, 96] are successful, a key question remains:which certificate
validation policy should such libraries execute?

3 THREAT MODEL
Our goal is to replace the certificate validation code used by exist-
ing TLS user-agents with a system that provides identical external
functionality but that properly factors validation policy from vali-
dation mechanism. Since our system runs on the client, it inherits
the threats that target existing TLS user-agent code. In particular,
we assume that adversaries may send arbitrary data to the client,
including bogus certificates.

Since our focus is on certificate validation, we assume that the
X.509 parsing routines, the cryptographic libraries, and the TLS
protocol itself are free from bugs and implemented correctly. Other
work focuses on improving these components [25, 45, 96], but this
is not a goal of Hammurabi. We also assume that the user-agent’s
certificate validation policy (detailed in §4 and §5) is legitimate and
has not been tampered with.

4 THE HAMMURABI ENGINE
Our system, Hammurabi, decouples certificate processing mecha-
nism from certificate validation policy. In Hammurabi, validation
mechanisms (e.g., parsing the fields of an X.509 certificate, pars-
ing an OCSP response, etc.) produce information that we call facts.
Validation policies use these facts to make validity determinations
about certificates. We call these decision procedures policy rules.
Hammurabi policies are composed of one or more rules. Crucially,
user-agents specify the validation policy that Hammurabi must use
when validating a given leaf certificate.

Figure 1 presents the conceptual design of the Hammurabi en-
gine. User-agents delegate leaf certificate validation to the engine
subject to a given validation policy, and the engine returns a deci-
sion (valid or invalid) to the user-agent.

Guided by Figure 1, in the following sections we describe the
operation of Hammurabi in detail, starting with how user-agents
interface with Hammurabi, critical initial policy choices, and vali-
dation mechanisms like X.509 parsing and cryptographic signature
validation. In §5 we discuss Hammurabi’s policy language in detail.
We present details of our prototype implementation in §6.

4.1 Interface and Initial Policy Choices
Starting from the left of Figure 1, the Hammurabi engine defines
an interface for interacting with user-agents. When invoking the
engine, user-agents are required to supply: (1) the subject name
in question (e.g., a DNS name), (2) the leaf certificate (and any
other certificates provided during the TLS handshake), and (3) a
validation policy written in Hammurabi’s policy language. User-
agents may also pass optional arguments that further refine their
desired validation policy, as we describe below.

Because the engine must validate paths from a given leaf certifi-
cate to root certificates, it must be told which roots to trust. Many
existing user-agents use the OS’s certificate root store, while major
browsers often use their own root store [37, 90]. Hammurabi offers
three ways for user-agents to choose their root store:

(1) Validation policies may include a directive specifying which
root store to use.

(2) A user-agent may override the root store directive specified
in the validation policy by supplying its own root store as
an argument.

(3) If (1) and (2) above are left unspecified, Hammurabi will use
the OS’s root store as a fallback.

Similarly, existing user-agents differ in terms of which certificate
revocation checking protocols they support [43, 81]. Revocation de-
cisions must be made before policies are executed because policies
may rely on revocation information (e.g., the result of an OCSP re-
quest), and the policies themselves cannot perform I/O. As a result,
policies may include directives specifying which revocation check-
ing protocols the engine should use, e.g., CRL, OCSP, OCSP stapling,
etc. Additionally, user-agents may override a policy’s revocation
directives by passing in optional arguments.

4.2 Validation Mechanisms
Given the root store and revocation policies, the Hammurabi engine
executes the validation mechanisms that ultimately produce facts
for the validation policy. The engine includes two major classes of
mechanisms: certificate tree construction and revocation checking.

4.2.1 Certificate Tree Construction. The engine performs the initial
depth-first-search path building and cryptographic signature vali-
dation process (§2.1, §2.2). The engine starts at the leaf certificate
supplied by the user-agent and constructs all possible paths to a
trusted root by only checking the signature, public keys, and issuer
match of potential child-parent pairs. It discards all certificates that
do not belong to such a path, backtracking as required. During path
building the engine may check intermediate certificates supplied by

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

https://subject.name

Leaf Certificate
+ Intermediates

Hammurabi Engine

Validation
Policy

(Optional)
Root Store

User-
Agent

Mechanism PolicyPolicy

DFS to
Build

Pruned
Certificate

Tree Revocation
Checking

(CRL, OCSP,
CRLite, etc.)

Execute
User-

Agent’s
Policy
Over

Produced
Facts

Produce
X.509
Facts

Produce
Environment

Facts

Set Root
Store
Policy

Set
Revocation
Checking

Policy

Valid
Certificate

Chain

Invalid
Leaf

Certificate

(Optional)
Revocation
Parameters

Figure 1: Overview of how a user-agent uses Hammurabi to validate a certificate. Starting at the left, the user-agent supplies
arguments to Hammurabi: a subject name, leaf and intermediate certificates, a validation policy, (optionally) a root store,
and (optionally) revocation checking parameters. Hammurabi picks root store and revocation checking policies based on the
supplied validation policy and any optional arguments. Next, it builds a candidate tree of certificates by performing a DFS
starting at the leaf certificate, traversing edges to intermediate and root certificates, and verifying cryptographic signatures
along the way. It then performs revocation checking of certificates in the candidate tree. Next, it translates the candidate
certificates and revocation information into Prolog facts, gathers additional environmental facts, and passes them all as input
to the user-agent’s policy. Finally, Hammurabi executes the policy and returns the result to the user-agent: either a valid chain
of certificates from the supplied leaf to one or more trusted roots, or a message indicating that the certificate failed validation.

the user-agent, and it may fetch new intermediates by examining
the Authority Information Access (AIA) field of certificates.

The end result of path building is a tree of certificates that are
cryptographically valid. However, at this point, no other certifi-
cate validity checks are applied. Rather, the engine forwards this
“partially-valid” certificate tree to the validation policy supplied
by the user-agent. As we show in Figure 1 and discuss in §5, the
validation policy supplied by the user-agent performs the full path
validation, e.g., checking the certificate lifetimes, signature algo-
rithms, blocklist checking, and more.

4.2.2 Revocation Checking. The engine is responsible for retriev-
ing the revocation information decided upon in the first stage for
all certificates in the tree produced during path building. Based
on a user-agent’s policy choices (see §4.1), the engine will attempt
to retrieve revocation information from various sources such as
CRL, OCSP, or OCSP responses that were stapled to certificates
supplied by the user-agent. Advanced versions of the engine may
also incorporate additional sources of revocation information such
as OneCRL [57], CRLSet [12], and CRLite [76]. The engine imple-
ments all necessary network protocols and cryptographic signature
checks necessary to retrieve and verify revocation information.

4.2.3 Fact Production. The engine takes the results of certificate
tree construction and revocation checking and translates them into
facts for the validation policy. It first parses all relevant X.509 fields
and extensions from certificates in the tree and converts them into
a policy-compatible format. We call these X.509 facts, and they must
be encoded in a format specified by Hammurabi.

The engine also produces environment facts, i.e., information
about the validation context—such as the current time and subject
name supplied by the user-agent—and passes them to the validation
policy. These environment facts include all fields parsed from revo-
cation information (e.g., OCSP responses). Similar to X.509 facts,
these facts must be encoded in Hammurabi format.

We discuss both X.509 and environment facts in §5.3.

X.509 Facts

fingerprint(Cert, Fingerprint)
commonName(Cert, CommonName)
subjectAlternativeName(Cert, SAN)
notBefore(Cert, NotBefore)
notAfter(Cert, NotAfter)
maxPathLength(Length)
signatureAlgorithm(Cert, Algo)
extensionExists(Cert, Extension, Exists)
signsAndIssuer(Cert, Parent)

Table 1: A non-exhaustive list of X.509 Facts—Prolog facts
containing existing X.509 data for the concrete certificate
Cert. Capitalized terms are placeholders for actual values.
A certificate may have multiple instances of a fact, e.g.,
subjectAlternativeName.

5 HAMMURABI POLICIES
The Hammurabi engine’s final step is executing a validation policy.
In Hammurabi, policies are implemented as logic programs: they
contain a set of rules that operate over engine-produced facts. For
example, a policy author might specify the rule “if the certificate
lifetime is greater than one year and the SAN list has more than 12
entries, the certificate is invalid”. The Hammurabi policy interpreter
evaluates these rules over the engine-produced facts such as “the
certificate lifetime is 370 days” to determine whether a particular
query (“is the certificate invalid?”) can be derived from the given
facts and rules. The interpreter derives new facts until either the
query is satisfied or it reaches a fixed point.

In this section, we describe the responsibilities of Hammurabi
validation policies and how these responsibilities can be expressed
as rules in a logic programming language, and provide more details
about the facts that the rules operate over. For the Hammurabi
prototype we chose Prolog as the language for expressing validation
policies; we justify this choice in §5.2.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

Environment Facts Description

hostname(Hostname) The DNS name being accessed by the user in the user-agent.
now(Timestamp) The current system time in seconds since UNIX epoch.
serverIPAddr(Addr) The current certificate chain was received from a server with IPv4 or IPv6 address Addr.
tlsVersion(Ver) Connection with the remote server was established using TLS version Ver.
sctReceivedTLS(Cert) Valid SCT for Cert received via TLS extension signed_certificate_timestamp.
sctReceivedOCSP(Cert) Valid SCT for Cert received via OCSP extension OID 1.3.6.1.4.1.11129.2.4.5.
publicSuffix(Suffix) Suffix is a public suffix such as "co.uk". There is one such fact for each public suffix.

Revocation Facts Description

ocspResponse(Cert, [IsValid, IsSigned, IsExpired, Status]) Indicates whether the OCSP response is valid, signed, and expired, plus the revocation status.
stapledResponse(Cert, [IsValid, IsSigned, IsExpired, Status]) Same as above for stapled OCSP responses.
crl(Cert, Issuer, [IsValid, IsSigned, IsExpired, Status]) Indicates that a certificate appears on CRL signed by Issuer.
crlite(Cert) Cert’s presence in CRLite [76].
crlSet(Cert) Cert’s presence in CRLSet [12].
oneCRL(Cert) Cert’s presence in OneCRL [57].

Table 2: Environment facts made available to Hammurabi policies.

5.1 Policy Responsibilities
The engine extracts necessary syntactical information from sources
like certificate fields and revocation status; policies make decisions
based on this information. We include a non-exhaustive list of ways
in which user-agent policies (in particular, those of browsers) may
diverge from standards and one another:
Extension andfield processing.X.509 extensions and fields must
be processed according to the RFCs and BRs, but browsers may
diverge from these standards (e.g., for backwards compatibility).
Time checking. All certificates in the candidate chain must have
valid issuance and expiration dates (relative to the current time),
and their lifetime must be within a certain range (which varies on
a per-browser basis).
Name matching. The leaf certificate must be authorized to
speak on behalf of the subject (e.g., DNS name) in question. The
commonName field used to specify this information, but was dep-
recated in favor of the subjectAltName extension. Browsers may
differ in how they handle this deprecation.
Name constraints. The name constraints extension [39] was im-
plemented relatively recently [65] and is used by certificate author-
ities to restrict the names (among other things) that descendant
certificates may be used for. Browsers have varying degrees of
support for name constraints.
Revocation decisions. The BRs do not require user-agents to
check for revocation, but some browsers prioritize it.
Blocklist consultation. Certain certificates, such as those is-
sued by Symantec roots, are blocked by default by most modern
browsers [30, 48, 86]. Browsers may differ, however, on exactly
which Symantec certificates to block, when to block them, and
whether exceptions should be made for certain child intermediates.
SCTs. Chrome rejects certificates that do not include Signed Certifi-
cate Timestamp attestations from public Certificate Transparency
logs that the certificate was issued and recorded in one of these
logs—this helps detect certificate misissuance [31]. Firefox does not
currently require leaves to include SCTs.

5.2 Policies Are Logic Programs
We adopt Prolog in our prototype implementation as the language
for expressing Hammurabi policies for several reasons:

• Expressive power. Prolog is sufficiently powerful to ex-
press a wide range of certificate validation constraints,
as we demonstrate in §7.1. Logic-programming languages
such as Prolog and its syntactic subset Datalog [16, 117]
have been used extensively for expressing security poli-
cies [17, 52, 67, 72, 92, 118].

• Declarative style. Prolog code mirrors the declarative na-
ture of certificate validation (constraints over “facts”). In
contrast, the (often C or C++) source code of existing TLS
clients and libraries obfuscates the policies they implement.
Policies cannot use non-declarative operators such as cut.

• Imputation. Specifying certificate validation policies in Pro-
log enables us to programmatically compare different poli-
cies using Prolog’s unification algorithm. As we show in
§7.3, this allows us to automatically identify differences in
real-world certificate validation policies.

5.3 Facts
As shown in Figure 1 and introduced in §4.2.3, the Hammurabi
engine passes two types of facts to policies: X.509 facts and en-
vironment facts. X.509 facts are simply the fields of every X.509
certificate included in the candidate tree, encoded as Prolog facts.
For instance, notBefore(root45, 1650901161) would be the
notBefore time (seconds since Epoch) of the 45𝑡ℎ root certificate
in the root store encoded as a Prolog fact. The X.509 facts also
include signature information produced by the engine. For instance,
signsAndIssuer(root45, cert1) indicates that the 45𝑡ℎ root
signed and issued cert1 (and the signature was valid). Table 1
provides a subset of X.509 facts.

Hammurabi policies may also need to reference information that
is not found in certificates but is still relevant for validation, such as
the current time, revocation information, the subject DNS name, or
the TLS server’s IP address. These are called environment facts. For
instance, the current time (seconds since Epoch) may be encoded
as now(1650901161). Table 2 lists the environment facts produced
by the engine and made available to policies. Policies may only rely
on environment facts specified by Hammurabi.

5.4 Imputation
With policies specified as logic programs, policy authors can, when
given a partially specified certificate, impute the missing values that

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

would make the certificate satisfy a particular set of constraints. As
a consequence, Hammurabi can automatically examine the differ-
ences between two validation policies, e.g., by generating a certifi-
cate that one policy accepts while the other rejects.

To illustrate imputation, consider the simple rule foo that is true
if the Key Usage extension is keyCertSign and the certificate’s
notBefore time is before its notAfter time:

foo(KeyUsage, NotBefore, NotAfter) :-
isKeyUsage(KeyUsage),
KeyUsage == "keyCertSign",
NotBefore < NotAfter.

If we query Prolog with concrete values for NotBefore and
NotAfter, it will impute a concrete value for KeyUsage that makes
the rule hold (or report that it cannot find such a value) using unifi-
cation [70]. Critically though, the values must be drawn from an
enumerable domain—Prolog cannot enumerate all possible strings,
hence the isKeyUsage clause, which ensures that KeyUsage is
from a finite set of valid key usage strings. Despite NotBefore
and NotAfter being integers, we can also impute their values (by
providing a concrete value for KeyUsage) using the Constraint
Logic Programming over Finite Domains (CLPFD) library [116].

Although most X.509 and environment fact values are easily
enumerable—booleans, enumerable strings, or OIDs—some policy-
critical values are relatively unstructured strings, such as DNS
names, distinguished names, and email addresses. DNS names, in
particular, will be used by almost every policy, since the given sub-
ject name must match the Common Name or a Subject Alternative
Name of the leaf certificate.

Because Prolog can not search all possible strings, we must
restrict each set of strings to an enumerable set. Consider a DNS
name, which one can think of as a list of labels separated by dots.
Often the actual concrete value of each label is irrelevant from
the policy’s perspective—instead, we know that policies usually
check whether the labels of two DNS names match (with special
consideration taken for the wildcard * character). Using this insight,
we restrict all DNS names (subject name, Common Name, SAN) to
the following DNSName structure:

DNSName = Prefix + "." + Suffix

Suffix = "com" | "co.uk" | "org" | ...

Prefix = Wildcard | Wildcard + "." + Constants | Constants

Constants = Constant | Constant + "." + Constants

Constant = "a" | "b" |"c" | "d" | "e"

The values for Suffix are drawn from the Public Suffix List [2]
and we limit the total length of DNS names to seven labels.6 Because
this set of strings is enumerable (and relatively small), Prolog can
impute operands of “type” DNSName. Note that this approach is a
heuristic, it is not complete: if a policy depends on a particular
label’s concrete value, this approach will not work. However, this
approach adds enough power to allow imputation to discover DNS
name-related differences in the Firefox and Chrome policies (§7.3).

This approach can be extended to other relatively unstructured
string values. Further, more sophisticated imputation may be possi-
ble using a constraint solver that includes a theory of strings such
as Z3 [87] or using a logic programming language integrated with a
6The choice of seven labels is not fundamental, but represents a reasonable tradeoff between cov-
erage and imputation time. This limit may be increased later if desired, but seven labels covers the
vast majority (>99.5%) of domain names [68].

constraint solver like Formulog [23]. We look forward to exploring
such options in future work.

5.5 Example Policy: Mozilla Firefox
As we discuss in §7, we manually extracted the certificate val-

idation logic from the Mozilla Firefox C++ code and converted it
into a Hammurabi policy. We show an abridged slice of this policy
in Listing 1.

The policy is split into four major rules: validChain, validLeaf,
validNonLeaf, and validRoot. The validChain rule is the entry-
point and its definition is required by Hammurabi. In the Firefox
policy, it first extracts properties of interest from the leaf (62–70);
note that x509 and env denote X.509 and environment facts, re-
spectively. The validChain rule then checks that the leaf is valid
(71) before checking that there exists an issuer of Leaf that is a
valid non-leaf certificate (75).

The validNonLeaf rule has two critical branches for validating
the non-leaf as an intermediate (32–39) and for validating it as a
root (41–44).7 The validNonLeaf rule is called recursively until a
root is reached. The potential existence of multiple paths need not
be expressed in Prolog, since rules such as x509:signsAndIssuer
hold if there exist operands that satisfy the relation.

We also extracted and converted Chrome’s certificate validation
logic into a Hammurabi policy (§7). The high-level structure of
the Chrome policy is exactly the same as the Firefox policy shown
in Listing 1—the differences lie in the semantics of some of the
component rules whose definitions are not shown here. For example,
both the Chrome and Firefox policies define isTimeValid policies,
but their semantics differ (Firefox allows certificates with longer
lifetimes than Chrome).

6 IMPLEMENTATION
We implemented a feature-complete Hammurabi prototype that
we use for testing and evaluation. Our prototype runs as a daemon
and existing user-agents interact with it using Inter-process Com-
munication (IPC). It is written in roughly 2.5K lines of Rust. Our
prototype implements the following functionality.
Certificate parsing. Our prototype uses the Rust X.509 and DER
parsing libraries from the Rusticata project [100, 101] to parse each
certificate into a Rust object. Syntactic validation related to ASN.1
DER encoding and X.509 requirements happens at this stage. For
example, notBefore and notAfter are syntactically required to be
in either the UTCTime or GeneralizedTime ASN.1 types. If these
fields are not correctly encoded then validation is terminated.
Cryptographic validation. We use the Rust OpenSSL bindings
for certificate signature validation. As described in §4, our prototype
only checks signatures for potentially valid paths where, for each
child–parent pair, the parent issued the child.
X.509 fact production. Our prototype converts each X.509 field
into a corresponding Prolog X.509 fact.
Environment fact production. Our prototype produces environ-
ment facts such as the current time, subject DNS name, and public
suffix list. It also performs any necessary revocation checking steps

7The ; operator denotes disjunction while , denotes conjunction.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

1 validRoot(LeafSANList, Fingerprint, Lower, Upper,
2 BasicConstraints, KeyUsage, ChildFingerprint) :-
3 isCA(BasicConstraints),
4 keyUsageValidRoot(KeyUsage),
5 isTimeValid(Lower, Upper),
6 symantecValid(Fingerprint),
7 trustedRoot(Fingerprint).
8
9 validIntermediate(Fingerprint, Lower, Upper, Algorithm,
10 BasicConstraints, KeyUsage, ExtKeyUsage,
11 LeafEVStatus, StapledResponse, OcspResponse) :-
12 extKeyUsageValid(BasicConstraints, ExtKeyUsage),
13 isCA(BasicConstraints),
14 isTimeValid(Lower, Upper),
15 keyUsageValid(BasicConstraints, KeyUsage),
16 strongSignature(Algorithm),
17 \+env:oneCRL(Fingerprint),
18 notOCSPRevoked(Lower, Upper, LeafEVStatus,
19 StapledResponse, OcspResponse).
20
21 validNonLeaf(Cert, CertsSoFar, Leaf) :-
22 x509:commonName(Leaf, LeafCommonName), x509:sanList(Leaf, LeafSANList),

23 x509:extKeyUsage(Cert, KeyUsage), x509:keyUsage(Cert, KeyUsage),

24 x509:fingerprint(Cert, Fingerprint),

25 x509:notBefore(Cert, Lower), x509:notAfter(Cert, Upper),

26 x509:signature(Cert, Algorithm, Params),
27 env:stapledResponse(Cert, StapledResponse),
28 env:ocspResponse(Cert, OcspResponse),
29 getEVStatus(Leaf, LeafEVStatus),
30 getBasicConstraints(Cert, BasicConstraints),
31 ((
32 validIntermediate(Fingerprint, Lower, Upper, Algorithm,
33 BasicConstraints, KeyUsage, ExtKeyUsage,
34 LeafEVStatus, StapledResponse, OcspResponse),
35 x509:signsAndIssuer(Cert, Parent),

36 Cert \= Parent,
37 validNonLeaf(Parent, LeafCommonName, LeafSANList,
38 LeafEVStatus, CertsSoFar + 1, Leaf),
39 nameConstrained(Cert, Leaf)
40);(
41 x509:signsAndIssuer(Child, Cert),

42 x509:fingerprint(Child, ChildFingerprint),
43 validroot(LeafSANList, Fingerprint, Lower, Upper, BasicConstraints,
44 KeyUsage, ChildFingerprint)
45)).
46
47 validLeaf(Fingerprint, SANList, CommonName, Lower, Upper,
48 Algorithm, BasicConstraints, KeyUsage, ExtKeyUsage,
49 EVStatus, StapledResponse, OcspResponse) :-
50 extKeyUsageValid(BasicConstraints, ExtKeyUsage),
51 \+isCA(BasicConstraints),
52 isTimeValid(Lower, Upper),
53 keyUsageValidLeaf(KeyUsage),
54 leafDurationValid(EVStatus, Lower, Upper),
55 nameValid(SANList, CommonName),
56 nameMatchesHost(SANList, CommonName),
57 strongSignature(Algorithm),
58 \+env:oneCRL(Fingerprint),
59 notOCSPRevoked(Lower, Upper, EVStatus, StapledResponse, OcspResponse).
60
61 validChain(Leaf) :-
62 x509:commonName(Leaf, CommonName), x509:sanList(Leaf, SANList),

63 x509:extendedKeyUsage(Leaf, ExtKeyUsage), x509:keyUsage(Leaf, KeyUsage),

64 x509:fingerprint(Leaf, Fingerprint),

65 x509:notBefore(Leaf, Lower), x509:notAfter(Leaf, Upper),

66 x509:signature(Leaf, Signature, Params),
67 env:stapledResponse(Leaf, StapledResponse),
68 env:ocspResponse(Leaf, OcspResponse),
69 getEVStatus(Leaf, EVStatus),
70 getBasicConstraints(Leaf, BasicConstraints),
71 validLeaf(Fingerprint, SANList, CommonName, Lower, Upper,
72 Signature, BasicConstraints, KeyUsage, ExtKeyUsage,
73 EVStatus, StapledResponse, OcspResponse).
74 x509:signsAndIssuer(Leaf, Parent),
75 validNonLeaf(Parent, 0, Leaf).

Listing 1: A highly abridged section of the Hammurabi-
Firefox Prolog policy. validChain is the entrypoint.

(e.g., HTTP requests, signature checking) to produce required revo-
cation facts, as specified by the user-agents’ policy. Our prototype
currently supports OCSP and OCSP stapling revocation checking.

Policy Execution. Our prototype executes Prolog policies using
the SWI-Prolog (swipl) interpreter [122]. After loading the aggre-
gated facts and the policy itself, Hammurabi executes the query
validChain(cert_0)?. Every policy must provide a validChain
rule which serves as the entry point. By convention, cert_0 is the
leaf certificate. If the query validChain(cert_0)? succeeds, the
target leaf certificate is valid.

swipl allows us to “compile” the Hammurabi policy, root store,
and some environment facts by checkpointing the program state.
We do this out-of-band to speed up policy execution. At certificate
validation time, the program resumes from the saved state, loads
the certificate facts, and executes the entry point query. We expect
a production-grade Hammurabi engine to use additional techniques
for efficiency.8

7 EVALUATION
In this section, we evaluate Hammurabi from four perspectives:
(1) can Hammurabi correctly capture existing certificate validation
policies, (2) can Hammurabi identify meaningful differences be-
tween certificate validation policies using imputation, (3) how diffi-
cult is it to integrate Hammurabi into real user-agents, and (4) what
performance impact would our (proof-of-concept, unoptimized)
Hammurabi prototype have on the validation process relative to
existing implementations, and is there room for optimization?

7.1 Correctness
The Hammurabi policy language must be (1) powerful enough to
express the policy logic found in state-of-the-art TLS certificate
validation implementations while (2) remaining concise and easy
to reason about. To that end, we manually translated the certificate
validation logic found in Mozilla Firefox and Google Chrome (both
written in C++) into Prolog. In this section, we evaluate the correct-
ness and coverage of our Hammurabi policy implementations.
Setup.We evaluate the correctness of our Prolog browser imple-
mentations by checking whether Hammurabi-Firefox (our Prolog
version of Firefox’s policy) and Firefox itself produce the same vali-
dation results for a large test set of real-world TLS certificate chains.
We repeat the process for Hammurabi-Chrome and Chrome.9

Hammurabi-Firefox and Hammurabi-Chrome are each less than
650 lines of code. Comparing the number of lines of C++ browser
validation logic to the number of lines of Prolog is a challenge since
the code in browsers to validate a certificate is deeply entangled
with parsing, revocation network requests, caching, cryptographic
signature checking, etc. Just one of the relevant files in Firefox
(NSSCertDBTrustDomain.cpp) is 1.8K lines of C++, and this does
not include parsing, revocation checking, and more. An analogous
file in Chrome (cert_verify_proc.cc) is 1K lines of C++, with
an additional 500 lines each for iOS, Mac, and Windows platforms.
We estimate that the amount of code directly related to certificate
validation in Chrome and Firefox respectively is ∼5K lines.

We do not claim to have completely emulated all of Firefox and
Chrome’s certificate validation behavior. For instance, Firefox and
8For instance, while our prototype aggregates facts and rules into files (as input to the Prolog inter-
preter), a production-grade implementation would integrate its engine and interpreter to keep facts
and rules in memory.
9We use Chromium’s verification logic for Linux at git commit 0590dcf7b03 and Firefox’s at mer-
curial changeset 610414:dbd5ee74c531.

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Chrome also have special rules for imported root and intermediate
certificates, which we omitted for brevity in our Prolog implemen-
tations, though we have no reason to believe it would be any harder
to implement such policies in Hammurabi.

Instead, we intend to demonstrate that it is possible to express
the complex validation logic found in Firefox and Chrome using our
policy language. As our results in this section show, our Prolog im-
plementations agree with the canonical browser implementations
on all certificates “found in the wild” and all synthetic certificates
except four rejected by Chrome due to parsing errors.

7.1.1 In-the-Wild Validation. To validate the correctness of our
browser Prolog implementations with respect to actual browsers,
we examine the differences in validation responses across certifi-
cates found in the wild. We first collect ∼10M certificates from nine
public CT logs [105] (Pilot, Rocketeer, Skydiver, Argon2022, Ar-
gon2021, Argon2020, Xenon2022, Xenon2021, and Xenon2020). We
consider only non-expired certificates and exclude pre-certificates.
97% of the certificates we tested with were issued between August
1st and October 1st, 2020. We validated all certificates on October
2nd, 2020 UTC.10 Since the CT logs often contain only the leaves
of certificate chains, we use metadata (the AIA field) found in the
leaves to fetch and construct about 10M candidate certificate chains.
We disable OCSP revocation checking in all experiments to (1) avoid
overwhelming OCSP servers, (2) avoid mismatched OCSP responses
as a result of soft-failures (e.g., Firefox is unable to contact the OCSP
responder and accepts the certificate, while Hammurabi-Firefox
receives a REVOKED response), and (3) speed up the experiments.

We use a binary validation result for each chain: each validator
deems the certificate chain either valid or invalid. For all 10,603,456
certificates, both Hammurabi-Chrome and Hammurabi-Firefox pro-
vide the same validity results as Chrome and Firefox, respectively.11

7.1.2 Synthetic Validation. A limitation of using certificates from
CT logs for testing is that the vast majority are valid (99.998% in
our case—all four validators agree that only ∼17K of the 10M CT
certificates are invalid). To test our implementations against a more
diverse set of (often invalid) certificates, we apply the “Frankencerts”
fuzzing technique of Brubaker et al. [27]. We randomly sampled a
set of 1K leaves and 613 intermediates from the same CT logs as
seeds to generate 100K synthetic certificate chains. The certificates
in these chains are assembled using elements randomly taken from
seed certificates and randomly generated elements (e.g., extensions,
field values, and critical bits). As expected, some of these certificates
do not even parse due to malformed extensions and fields.

Of the 100K synthetic chains, Hammurabi-Chrome and Chrome
disagree on the validity of four. These four are considered valid by
Hammurabi-Chrome and invalid by Chrome due to a parsing error
(Chrome returned net::ERR_CERT_INVALID). Hammurabi-Firefox
and Firefox agree on the validity of all synthetic certificates. No-
tably, Firefox and Chrome disagree on the validity of 9,544 of the
100K synthetic certificates, underscoring how different their valida-
tion implementations are (this degree of disagreement is expected,
as these certificates were generated by fuzzing and likely do not re-
semble real certificates). Despite these promising results, we do not
10We hard-coded this date as the current time in all of our experiments.
11Ignoring our Hammurabi implementations, the canonical Firefox and Chrome browsers disagree
on the validity of 48 certificates.

Validator Mean Median Max StdDev

Chrome 2.73 2.0 39 1.11
Firefox 1.81 2.0 423 2.47
Hammurabi-Chrome 2.05 2.0 21 0.31
Hammurabi-Firefox 2.07 2.0 19 0.35

Table 3: Certificate validation times (ms) for browsers versus
their corresponding Hammurabi Prolog implementations.

claim that our Hammurabi-Firefox and Hammurabi-Chrome imple-
mentations are complete. Rather, we believe the CT logs and these
Frankencert results demonstrate the feasibility of implementing
complex TLS validation logic correctly in Prolog.

7.2 Validation Performance
Although performance is not our primary concern, we nonetheless
investigate the performance of executing our Hammurabi policies
using our unoptimized prototype. We compare the time taken by
Hammurabi-Firefox, Hammurabi-Chrome, Firefox, and Chrome
to validate a subset of our 10M certificate-chain corpus. Before
running the experiment, as mentioned in §6, we compile both the
Hammurabi-Firefox and Hammurabi-Chrome policies into what
SWI-Prolog calls “saved state”. In a realistic deployment, we sim-
ilarly expect developers to compile and load their policies before
starting validation to reduce the latency. For this analysis we disable
OCSP and CRL checking for all four validators.

In Table 3 we show the results from timing the validation
of 105K certificate chains sampled from the 10M dataset de-
scribed in §7.1. We ran each benchmark on a Dell XPS 9560
laptop with an Intel i7-7700HQ 2.8 GHz 16-thread CPU, 32
GB of memory, and a 2TB NVMe SSD, running Ubuntu 20.04,
kernel v5.13. We measure the wall-clock running time of the
net/cert/cert_verify_proc.cc#Verifymethod in Chrome, the
nsNSSCertificateDB.cpp#AsyncVerifyCertAtTime12 function
in Firefox, and the validChain query in Hammurabi-Chrome and
Hammurabi-Firefox. Mean validation times range from 1.81–2.73ms
across browser implementations and 2.05–2.07ms across Prolog
implementations, while the median validation time is 2ms for all
validators. The Hammurabi times include the time taken to load
certificate facts and run the query, and do not include the times
taken to (1) parse certificates (which all validators must do), (2)
translate certificates into Prolog facts (which can be cached for
intermediate and root certificates), (3) validate signatures of can-
didate subject-issuer pairs (which can be cached), and (4) run the
Prolog binary (which can be amortized across all validations). Steps
(2) and (3) take an average of 24ms in our unoptimized prototype.

Considering that our Hammurabi prototype is unoptimized, we
find these results promising. We believe a deployment-caliber Ham-
murabi engine would be able to minimize performance gaps by
implementing the optimizations above and by using a Prolog en-
gine designed for low-latency queries. To put these benchmark
times in context of overall HTTP request latency, Google found
that the average website time-to-first-byte (which includes certifi-
cate validation) ranged between 1.8–2.7 seconds in 2017 [19].

12The full path is mozilla-unified/security/manager/ssl/nsNSSCertificateDB.cpp.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

7.3 Imputation
As a demonstration of how imputation can be used to program-
matically find differences between certificate validation policies,
we compare our Hammurabi-Firefox and Hammurabi-Chrome poli-
cies. We limit our imputation experiments to leaf certificates, for
now. Both Hammurabi-Firefox and Hammurabi-Chrome include
validLeaf rules (shown in §5.5), which hold if the leaf certifi-
cate passes preliminary checks. validLeaf takes the following
operands, each listed with its possible values:

• OCSP Response. An OCSP response has four boolean val-
ues that indicate the following: syntactic validity, expiration,
signature verification, and status (revoked or not).

• Stapled OCSP Response. A stapled OCSP response has
the four OCSP Response booleans plus one more to indicate
whether a stapled OCSP response was received.

• Key Usage and Extended Key Usage (EKU). These exten-
sions each contain a list of enumerable key usage values.

• CA status. The Basic Constraints extension contains a
boolean indicating whether the certificate can be used as
a CA certificate and a path length. We enumerate over the
boolean only.

• Signature Algorithm. The signature algorithm is drawn
from an enumerable list of OIDs.

• EV status.A certificate is EV if it contains an EV OID, which
can vary by intermediate.

• Not Before. A Unix timestamp denoting when the certifi-
cate’s validity period starts.

• NotAfter.AUnix timestamp denotingwhen the certificate’s
validity period ends.

• Common Name. The Common Name is (for our purposes)
a DNS name, whose possible values are described §5.4.

• SAN List. The Subject Alternative Names extension is a list
of DNS names. We only consider SAN Lists of length zero
and one.

• Hostname. The hostname is an environment fact and a DNS
name denoting the subject name.

We then construct a new rule firefoxOnly (and chromeOnly),
which takes the above operands, restricts them to their enumerable
values, and holds if the values are valid in Hammurabi-Firefox but
not Hammurabi-Chrome:

firefoxOnly(SANList, CommonName, Lower, Upper,
Algorithm, BasicConstraints, KeyUsage, ExtKeyUsage,
EVStatus, StapledResponse, OcspResponse, Hostname) :-

restrict(...), % Limits each field to enumerable values.
firefox:validLeaf(...), % "..." denotes all rule operands, for brevity.
\+chrome:validLeaf(...).

We can then impute over subsets of operands as follows. First,
we pick an operand or operands to impute over—consider SANList,
CommonName, and Hostname, which should illuminate differences
in name checking between the two policies. We then construct
a query firefoxOnly(...)., using concrete values for all other
operands, while keeping SANList, CommonName, and Hostname as
Prolog variables. Prolog will automatically then produce all possible
values for our three chosen operands that make the rule hold, i.e.,
that are valid in Hammurabi-Firefox but not in Hammurabi-Chrome.

We then repeat the process for different subsets of concrete and
variable operands to reveal further differences.

Our imputation analysis uncovered the following differences
between Chrome and Firefox. We confirmed the differences using a
combination of differential testing, manual analysis of the original
browser source code, and querying the Chrome and Firefox teams
directly. We confirmed that these policy differences are intentional
(yet obscure) rather than errors or bugs.
TLDWildcard. The wildcard character (*) is allowed in the Com-
mon Name or Subject Alternative Names as the entirety of the left-
most label (labels are separated by dots) as long as the remaining
label is not a registry-controlled TLD. For instance, *.example.com
is a valid name, but *.com is not. The CA/B BRs recommend consult-
ing the Public Suffix List [2] to identify registry-controlled TLDs,
which Chrome does, despite the maintainer advising against it [1].
Firefox instead checks whether there are at least two labels to the
right of the wildcard. The result is that names like *.co.uk are
valid in Firefox but invalid in Chrome.
Common Name Fallback. Per RFC 5280, TLS user-agents should
process targeted domains in the Common Name or Subject Alterna-
tive Names fields. RFC 2818 and the CA/B BRs deprecate the usage
of the Common Name field, and discourage its use. Chrome only
processes domains in the Subject Alternative Names and ignores
the Common Name. Firefox will process domains in the Common
Name if and only if the Subject Alternative Name extension is
omitted or empty.13

Leaf keyCertSign Key Usage. According to RFC 5280: “[i]f the
cA boolean is not asserted, then the keyCertSign bit in the key
usage extension MUST NOT be asserted.” Chrome adheres to this
rule, but Firefox allows certificates with cA set to false to include
the keyCertSign Key Usage bit, for compatibility reasons.
Leaves with CA enabled. The CA/B BRs specify that end-entity
or subscriber certificates MUST NOT set the CA bit to true. Firefox
correctly rejects leaf certificates with the CA bit set to true, while
Chrome accepts them. Interestingly, Chrome will only accept such a
leaf if it also sets a maximum path length and has the keyCertSign
key usage.
Revocation.While the CA/B BRs do not require browsers to per-
form revocation checking of any kind, almost all do, but to varying
degrees. Firefox checks its small local database of revoked interme-
diates (OneCRL) and performs OCSP revocation checking for all
certificates by default. Firefox is also currently testing CRLite, an
efficient, private, and complete revocation mechanism [76]. Firefox
also supports OCSP Must-Staple. Chrome checks its small local
database (CRLSet) and only performs OCSP checking for leaf EV
certificates. Chrome does not support OCSP Must-Staple.
Maximum Certificate Lifetime. RFC 5280 does not specify a
maximum certificate lifetime, but the CA/B BRs specify a maxi-
mum leaf certificate lifetime of 398 days for certificates issued after
September 1st, 2020. A certificate’s lifetime is the time between
its notBefore and notAfter fields. Chrome enforces this restric-
tion, while Firefox does not (yet) [90, 98]—the maximum certificate
13This behavior is configurable using the security.pki.name_matching configuration preference.
Note that by default, Firefox will not fall back to the Common Name, but we modeled and evaluated
Firefox as if this preference was set to “fallback”.

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

lifetime for EV leaf certificates is 27 months, and for non-EV leaf
certificates is unbounded.
RSA PSS Algorithms. The version of Firefox we used to evaluate
Hammurabi does not allow the id-RSASSA-PSS algorithm identifier
(OID 1.2.840.113549.1.1.10), while Chrome does.
anyExtendedKeyUsage. The Extended Key Usage extension allows
CAs to further restrict the purposes for which certificates can be
used. For example, the serverAuth EKU indicates that the certifi-
cate can be used to authenticate a web server during a TLS hand-
shake. One possible EKU is anyExtendedKeyUsage, which was
intended to denote that the certificate can be used for any EKU pur-
pose. However, the CA/B BRs state that the anyExtendedKeyUsage
EKU “MUST NOT be present”. Neither Firefox nor Chrome re-
ject certificates that include the anyExtendedKeyUsage EKU. But
if it is present, Firefox skips over it entirely—in other words,
Firefox will still require serverAuth, regardless of whether
anyExtendedKeyUsage is present or not. Chrome, on the other
hand, does not require serverAuth if anyExtendedKeyUsage is
present—it treats anyExtendedKeyUsage as a catch-all for all EKUs.
ocspSigning Extended Key Usage. Firefox rejects leaf certifi-
cates that include the EKU ocspSigning, while Chrome accepts
them (as long as the EKU is otherwise valid). The BRs (7.1.2.3) spec-
ify that the value “SHOULD NOT” be present. From the Firefox
source:

When validating anything other than an [sic] del-
egated OCSP signing cert, reject any cert that also
claims to be an OCSP responder, because such a cert
does not make sense. For example, if an SSL certificate
were to assert id-kp-OCSPSigning then it could sign
OCSP responses for itself, if not for this check.

7.4 Integration
Finally, to show Hammurabi can be integrated into real-world TLS
user-agents, we modified Mozilla Firefox and the Go programming
language (which uses its own native TLS and X.509 libraries) to
use our Hammurabi daemon. Rather than executing their own
certificate validation routines during the TLS handshake, the two
user-agents send the certificates and domain name to the Ham-
murabi daemon, which executes a Prolog policy and returns the
result and validated chain (all over a local TCP socket). One in-
teresting consequence of this integration is that we can instruct
Firefox to validate certificates according to Chrome’s policy. Inte-
grating Hammurabi into Firefox required approximately 100 lines
of additional code; integrating into Go required approximately 50.

8 RELATEDWORK
We now provide an overview of recent work on the PKI.
Measurements. There is a long thread of studies examining the
web’s certificate ecosystem from various vantage points [50, 51, 62,
63, 71, 94, 107, 120]. Studies have specifically examined the cost of
HTTPS [91]; how certificates are managed from the web administra-
tor side [29, 36, 127], the CA side [73], within root stores [84, 119],
and by CDNs [29, 80]; and the response to specific security vulnera-
bilities [126] like Heartbleed [49, 127]. Other studies have measured
the deployment of new security features such as CAA [104], SCSV,

and others [18]. Huang et al. studied the usage of forged TLS certifi-
cates [64]. As the reach of the HTTPS protocol has moved beyond
web browsers, studies are now examining the adoption of web PKI
primitives across a variety of application domains [20, 61], including
mobile apps [97], IoT devices [93], and DNS [26, 33, 83].

These measurement studies reveal that the TLS ecosystem is
constantly in flux: protocols change, certificate features get adopted
and deprecated, and applications evolve. We believe that these
observations motivate the need for systems like Hammurabi, to
help manage this complexity across time and application-domains.
Formalization. Given the critical importance of TLS to the inter-
net, there have been several efforts to guarantee its correctness and
security properties through the application of formal and symbolic
methods. Recent efforts have focused on proving the properties of
the TLS 1.3 protocol in general, and of specific implementations
of the protocol [24, 41, 42, 47]. Other studies have used symbolic
execution and formal specification to examine the correctness of
X.509 certificate parsing and validation code [32, 45].

Hammurabi complements these techniques by bringing more
rigor to the specification and evaluation of X.509 certificate valida-
tion logic. It does not attempt to formally specify X.509 certificate
parsing or TLS protocol implementations, but could easily be com-
bined with systems that do.
Alternative Designs. Alternate architectures to the current CA-
based systems have been proposed [22, 38]. For example, DNS-based
Authentication of Named Entities (DANE) replaces the CA-based
system by mirroring the existing DNS hierarchy [60]. Delignat-
Lavaud et al. [46] propose replacing the existing X.509 format with
a zero-knowledge verifiable computation scheme [40]. Lee et al.
proposes a new framework that uses the cloud to enable evolution
of PKI enhancements [78]. Techniques have also been suggested
to improve the existing TLS ecosystem [69, 85, 95, 102, 113, 114].
For example, Ryan proposes extending certificate transparency to
support end-to-end encrypted mail [102].
Revocation. The number of revoked certificates continues to grow
significantly, making distributing revocation information to user-
agents a challenging task. Several studies attempt to measure
OCSP lookup latency and suggest improvements [75, 111, 128].
Topalovic et al. proposes using short-lived certificates to reduce the
size of revocation data [115]. CRLite uses a filter cascade to com-
press the set of revoked certificates [76]. Schulman et al. proposes a
method for disseminating revocation data over FM radio [106]. The
efforts of CAs and website administrators are, however, pointless if
user-agents do not perform OCSP lookups or utilize the response,
as has been observed in prior work [81]. Chuat et al. present a
detailed framework for thinking through the costs and benefits of
various delegation and certificate revocation schemes [35].

Hammurabi may make it easier for developers to choose revoca-
tion checking policies that match their use case, by separating these
policy choices from low-level certificate parsing mechanisms.

9 CONCLUSION
X.509 certificate validation is a complicated ecosystem, with con-
stantly evolving best practices and policies hidden inside complex

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

codebases. In this paper, we aimed to address these issues by separat-
ing low-level mechanism (which rarely evolves) from the high-level
policy (which must adapt to changing circumstances). We presented
a framework, Hammurabi, that cleanly separates the two.

The more sophisticated, interesting, and evolvable portions of
Hammurabi are the policies themselves, which we express in a
high-level logic-based programming language, Prolog. To demon-
strate the expressiveness of logic-based languages in this domain,
we reimplemented Chrome and Firefox’s validation policies. In
addition to being able to faithfully and concisely represent these
implementations, Prolog gives us a valuable feature for free: the
ability to leave some features of certificates unspecified, and to
have the language automatically impute valid values for them. This
makes it straightforward to interrogate the differences between
policies (“what are certificate values such that Firefox validates
but Chrome does not?”) and to assist administrators in choosing
compliant values (“what is a value such that Chrome and Firefox
both validate?”).

Although it is not surprising that a high-level language like
Prolog yields more concise code than C, C++, or even Go, what is
surprising is how amenable logic-based languages are to certificate
validation. Indeed, in retrospect it seems obvious that certificate
validation is a set of logical constraints: what better way to represent
them than with a language made up of logical constraints?

9.1 Deployment Considerations
Crucially, Hammurabi is incrementally deployable. Different TLS
user-agents already adopt a variety of certificate validation policies—
Hammurabi does not change this status quo, and user-agents that
choose to adopt it will have no impact on those that do not. Fur-
thermore, deploying Hammurabi does not necessitate changes to
the TLS protocol, certificates, CAs, or root stores.

The interface we described for Hammurabi in §4.1 is sufficiently
abstract that there are a variety of concrete ways it could be im-
plemented. The particular way in which Hammurabi is integrated
into user-agents will undoubtedly have tradeoffs, thus we present
several options for concrete implementations.
System service. Hammurabi can be implemented as a system-
level service. Any user-agent wishing to validate a certificate sim-
ply forwards the arguments to the Hammurabi daemon using IPC.
Although this design may result in performance overhead, it is
compatible with all programming languages and allows the service
to cache data (e.g., intermediate certificates and revocation infor-
mation) at the OS, rather than user-agent, level. As we describe in
§6, our Hammurabi prototype is implemented as a daemon.
Shared library. Hammurabi could be implemented as a library
that user-agents would bind to (e.g., like OpenSSL or NSS). This
would eliminate IPC overhead, but may not be compatible with all
platforms and programming languages.
Bespoke implementations. Finally, each user-agent could im-
plement its own Hammurabi-standard engine. In this model, the
user-agent must produces the exact same certificate facts and ex-
ecute policies in the exact same way as other Hammurabi imple-
mentations (described in §5), to ensure policy portability. Some

high-profile user-agents (e.g., web browsers) may choose this ap-
proach for performance reasons, though it requires careful interface
standardization to ensure consistency across implementations.

9.2 Future Outlook
We conclude this paper by considering what a future web PKI might
look like were it to adopt Hammurabi.

Hammurabi could make it easier for standards bodies to publish
certificate validation policies, and easier for developers to adopt
them. For example, the CA/B could also publish supplementary
Prolog rules that precisely capture their proposed text-based poli-
cies. Developers could simply include the new Prolog in their Ham-
murabi validation policies rather than translating (often ambiguous)
text into code. Similarly, the IETF could publish executable policies
in Prolog alongside new RFCs. Having a canonical validation policy
from the IETF would facilitate detection (via imputation) of cases
where user-agents’ policies deviate from the RFC standard (as we
showed in §10.1, such deviations do occur).

As a proof-of-concept, we translated ZLint [129] into a Ham-
murabi validation policy. The Mozilla root program recommends
that CAs perform pre-issuance linting of their certificates with
ZLint (or a similar tool) to make sure they comply with RFC and
BR requirements [88]. Hammurabi-ZLint demonstrates that Prolog
can be used to express baseline X.509 certificate validation stan-
dards. As an added bonus, user-agents could directly incorporate
Hammurabi-ZLint into their validation policy if they were con-
cerned about encountering misissued certificates in-the-wild.

This discussion highlights the flexibility that Hammurabi of-
fers to developers and power users. Today, if a developer wants to
change validation policy in their user-agent, they must either mod-
ify validation logic that is enmeshed with validation mechanisms,
or switch to an entirely different tool (e.g., from OpenSSL to NSS)
that offers the desired policy. In contrast, once a developer adopts
Hammurabi, they are free to choose any available validation pol-
icy that meets their needs or change policies at any time, without
switching tools (or even recompiling their software, depending on
the Hammurabi implementation). Likewise, if a power user wished
to take on a stricter posture than their user-agent, they could simply
append additional Prolog rules to the policy.

Finally, the existence of well-specified, executable validation poli-
cies maymake the adoption of these strong policies more ubiquitous
across all TLS user-agents rather than just browsers.

These use cases point to a web PKI in which certificate validation
policy is easier to articulate, easier to reason about, easier to adopt,
more transparent, and easier to update in the face of new risks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments. We
also thank Zachary Hanif, Olamide Omolola, and Aaron Bembenek
for their valuable help. This research was supported in part by the
NSF under grants CNS-1901047, CNS-1901090, CNS-1901325, CNS-
1900879, CNS-1900996, and CNS-2053363. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
funders.

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

REFERENCES
[1] [n. d.]. Proper handling for wildcard certificates for all tlds. https://bugzilla.mozilla.org/

show_bug.cgi?id=1196364.
[2] [n. d.]. Public Suffix List. https://publicsuffix.org/list/public_suffix_list.dat.
[3] 2002. CVE-2002-0862. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0862.
[4] 2003. CVE-2003-1229. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1229.
[5] 2005. CVE-2005-3170. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3170.
[6] 2008. CVE-2008-4989. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4989.
[7] 2009. CVE-2009-2408. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2408.
[8] 2010. CVE-2010-1378. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1378.
[9] 2011. CVE-2011-0228. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228.
[10] 2012. CVE-2012-3446. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3446.
[11] 2014. CVE-2014-0092. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0092.
[12] 2015. Crlsets. The Chromium Projects. http://bit.ly/1JPsUeC.
[13] 2015. Issue 572734: Support for OCSP Must-staple. https://bugs.chromium.org/p/chromium/

issues/detail?id=572734.
[14] 2016. Feature request: OCSPMust Staple (RFC 7633). https://groups.google.com/a/chromium.

org/g/security-dev/c/-pB8IFNu5tw.
[15] 2021. CVE-2021-3450. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3450.
[16] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-

Wesley Reading.
[17] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, and M Dennis Mickunas. 2003. Cer-

berus: a context-aware security scheme for smart spaces. In Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communications, 2003.(PerCom 2003). IEEE,
489–496.

[18] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi Brent, Georg Carle, and Ralph Holz.
2017. Mission Accomplished? HTTPS Security after DigiNotar. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[19] Daniel An. 2018. Find out how you stack up to new industry benchmarks for mobile page
speed. " Think with Google-Mobile, Data & Measurement" (2018).

[20] Blake Anderson and David McGrew. 2019. TLS Beyond the Browser: Combining End Host
and Network Data to Understand Application Behavior. In Proceedings of the ACM Internet
Measurement Conference (IMC).

[21] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. 2013. Faceted
execution of policy-agnostic programs. In Proceedings of the Eighth ACM SIGPLAN workshop
on Programming languages and analysis for security. 15–26.

[22] Adam Bates, Joe Pletcher, Tyler Nichols, Braden Hollembaek, and Kevin R.B. Butler. 2014.
Forced Perspectives: Evaluating an SSL Trust Enhancement at Scale. In Proceedings of the
ACM Internet Measurement Conference (IMC).

[23] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-
based static analysis. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1–31.

[24] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified Models and
Reference Implementations for the TLS 1.3 Standard Candidate. In Proceedings of the IEEE
Symposium on Security and Privacy.

[25] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Haw-
blitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Mail-
lard, Jinyang Pang, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,
Aseem Rastogi, Nikhil Swamy, Laure Thompson, PengWang, Santiago Zanella-Beguelin, and
Jean-KarimZinzindohoué. 2017. Everest: Towards a Verified, Drop-In Replacement of HTTPS.
In Summit on Advances in Programming Languages (SNAPL).

[26] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leão Fernandes, Gareth Tyson, Igna-
cio Castro, and Steve Uhlig. 2019. An Empirical Study of the Cost of DNS-over-HTTPS. In
Proceedings of the ACM Internet Measurement Conference (IMC).

[27] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly Shmatikov. 2014.
Using Frankencerts for Automated Adversarial Testing of Certificate Validation In SSL/TLS
Implementations. In Proceedings of the IEEE Symposium on Security and Privacy.

[28] CA/Browser Forum. 2016. Baseline Requirements: Certificate Policy for the Issuance and
Management of Publicly-Trusted Certificates. Version 1.4.1. https://cabforum.org/wp-
content/uploads/CA-Browser-Forum-BR-1.4.1-redlined.pdf

[29] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mis-
love, and Christo Wilson. 2016. Measurement and Analysis of Private Key Sharing in the
HTTPS Ecosystem. In Proceedings of ACM CCS.

[30] CA:Symantec Issues [n. d.]. CA:Symantec Issues. https://wiki.mozilla.org/CA:Symantec_
Issues.

[31] Certificate Transparency Enforcement in Google Chrome [n. d.]. Certificate Transparency
Enforcement in Google Chrome. https://groups.google.com/a/chromium.org/forum/#!topic/
ct-policy/wHILiYf31DE.

[32] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket Kate, Cristina Nita-
Rotaru, and Ninghui Li. 2017. SymCerts: Practical Symbolic Execution For Exposing Noncom-
pliance in X.509 Certificate Validation Implementations. In Proceedings of the IEEE Symposium
on Security and Privacy.

[33] Rishabh Chhabra, Paul Murley, Deepak Kumar, Michael Bailey, and Gang Wang. 2021. Mea-
suring DNS-over-HTTPS Performance Around the World. In Proceedings of the ACM Internet
Measurement Conference (IMC).

[34] Chrome Root Program 2020. Chrome Root Program. The Chromium Projects. https://www.
chromium.org/Home/chromium-security/root-ca-policy/.

[35] Laurent Chuat, AbdelRahman Abdou, Ralf Sasse, Christoph Sprenger, David Basin, and
Adrian Perrig. 2020. SoK: Delegation and Revocation, the Missing Links in the Web’s Chain
of Trust. In Proceedings of the IEEE European Symposium on Security and Privacy.

[36] Taejoong Chung, Yabing Liu, Dave Choffnes, Dave Levin, Bruce Maggs, Alan Mislove, and
Christo Wilson. 2016. Measuring and Applying Invalid SSL Certificates: The Silent Majority.
In Proceedings of the ACM Internet Measurement Conference (IMC).

[37] Catalin Cimpanu. 2020. Chrome will soon have its own dedicated certificate root
store. https://www.zdnet.com/article/chrome-will-soon-have-its-own-dedicated-
certificate-root-store/.

[38] Convergence [n. d.]. Convergence. http://convergence.io.

[39] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280.
http://www.ietf.org/rfc/rfc5280.txt

[40] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur and. 2015. Geppetto: Versatile Verifiable Computa-
tion. In Proceedings of the IEEE Symposium on Security and Privacy.

[41] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. 2017.
A Comprehensive Symbolic Analysis of TLS 1.3.

[42] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Automated Analysis
and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication. In Proceedings
of the IEEE Symposium on Security and Privacy.

[43] CRLite - CA/Browser Forum [n. d.]. CRLite - CA/Browser Forum. https://cabforum.org/wp-
content/uploads/CABF_F2Fpreso_030518_vmf.pdf.

[44] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. 2001. The Ponder
Policy Specification Language. In Proceedings of the International Workshop on Policies for
Distributed Systems and Networks. Springer, 18–38.

[45] Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury. 2021. On Re-engineering the X.509
PKI with Executable Specification for Better Implementation Guarantees. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security. 1388–1404.

[46] Antoine Delignat-Lavaud, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. 2016. Cin-
derella: Turning Shabby X.509 Certificates into Elegant Anonymous Credentials with the
Magic of Verifiable Computation. In Proceedings of the IEEE Symposium on Security and Pri-
vacy.

[47] Antoine Delignat-Lavaud, Cedric Fournet, Markulf Kohlweiss, Jonathan Protzenko, Aseem
Rastogi, Nikhil Swamy, Santiago Zanella-Beguelin, Karthikeyan Bhargavan, Jianyang Pan,
and Jean Karim Zinzindohoue. 2017. Implementing and Proving the TLS 1.3 Record Layer. In
Proceedings of the IEEE Symposium on Security and Privacy.

[48] Distrust of the Symantec PKI: Immediate action needed by site operators [n. d.]. Distrust of
the Symantec PKI: Immediate action needed by site operators. https://security.googleblog.
com/2018/03/distrust-of-symantec-pki-immediate.html.

[49] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey, Frank Li,
NicolasWeaver, JohannaAmann, Jethro Beekman,Mathias Payer, andVern Paxson. 2014. The
Matter Of Heartbleed. In Proceedings of the ACM Internet Measurement Conference (IMC).

[50] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. 2013. Analysis of the
HTTPS Certificate Ecosystem. In Proceedings of the ACM Internet Measurement Conference
(IMC).

[51] EFF SSL Observatory [n. d.]. EFF SSL Observatory. https://www.eff.org/observatory.
[52] Eslam Elnikety, AasthaMehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and Peter Druschel.

2016. Thoth: Comprehensive Policy Compliance in Data Retrieval Systems. In 25th USENIX
Security Symposium (USENIX Security 16). 637–654.

[53] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and
Matthew Smith. 2012. Why Eve and Mallory Love Android: An Analysis of Android SSL
(In)Security. In Proceedings of ACM CCS. Raleigh, North Carolina, USA.

[54] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith. 2013. Re-
thinking SSL Development in an Appified World. In Proceedings of ACM CCS. Berlin, Ger-
many.

[55] Alex Gaynor. 2014. Enabling certificate verification by default for stdlib http clients. PEP 476.
https://peps.python.org/pep-0476

[56] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly
Shmatikov. 2012. The Most Dangerous Code In The World: Validating SSL Certificates In
Non-browser Software. In Proceedings of ACM CCS.

[57] Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing OneCRL. Mozilla
Security Blog. http://mzl.la/1zLFp7M.

[58] Peter Gutmann. 2000. X.509 Style Guide.
[59] P. Hallam-Baker. 2015. X.509v3 Transport Layer Security (TLS) Feature Extension. RFC 7633.

http://www.ietf.org/rfc/rfc7633.txt
[60] P. Hoffman and J. Schlyter. 2012. The DNS-based Authentication of Named Entities (DANE)

Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. https://www.ietf.org/rfc/rfc6962.
txt

[61] RalphHolz, JohannaAmann, OlivierMehani, MatthiasWachs, andMohamedAli Kaafar. 2016.
TLS in the Wild: An Internet-wide Analysis of TLS-based Protocols for Electronic Communi-
cation. In Proceedings of NDSS.

[62] Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The SSL Landscape – a
Thorough Analysis of the X.509 PKI Using Active and Passive Measurements. In Proceedings
of the ACM Internet Measurement Conference (IMC).

[63] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost, Narseo Vallina-
Rodriguez, and Oliver Hohlfeld. 2020. Tracking the Deployment of TLS 1.3 on the Web: A
Story of Experimentation and Centralization. SIGCOMM Comput. Commun. Rev. 50, 3 (July
2020), 3–15.

[64] Lin-Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson. 2014. Analyzing Forged
SSL Certificates In The Wild. In Proceedings of the IEEE Symposium on Security and Privacy.
San Jose, California, USA.

[65] Ian Haken. [n. d.]. BetterTLS. https://netflixtechblog.com/bettertls-c9915cd255c0.
[66] International Telecommunications Union. 1988. ITU-T Recommendation X.509: The Direc-

tory: Authentication Framework. Technical Report X.509.
[67] Trevor Jim. 2000. SD3: A Trust Management Systemwith Certified Evaluation. In Proceedings

2001 IEEE Symposium on Security and Privacy. S&P 2001. IEEE, 106–115.
[68] Joe St Sauver. [n. d.]. How Many "Parts" (or "Labels") Does A Domain Name Typically Have?

https://www.farsightsecurity.com/blog/txt-record/rrlabel-20171013/.
[69] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and Virgil Gligor.

2013. Accountable Key Infrastructure (AKI): A Proposal for a Public-key Validation Infras-
tructure. In Proceedings of WWW.

[70] William A Kornfeld. 1983. Equality for Prolog. In IJCAI, Vol. 83. 514–519.
[71] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson, Narseo Vallina-

Rodriguez, and Juan Caballero. 2018. Coming of Age: A Longitudinal Study of TLS Deploy-
ment. In Proceedings of the ACM Internet Measurement Conference (IMC).

[72] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth, Pramod Bhatotia,
and Christof Fetzer. 2018. Pesos: Policy Enhanced Secure Object Store. In Proceedings of the
Thirteenth EuroSys Conference. 1–17.

https://bugzilla.mozilla.org/show_bug.cgi?id=1196364
https://bugzilla.mozilla.org/show_bug.cgi?id=1196364
https://publicsuffix.org/list/public_suffix_list.dat
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0862
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1229
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3170
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4989
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2408
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3446
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0092
http://bit.ly/1JPsUeC
https://bugs.chromium.org/p/chromium/issues/detail?id=572734
https://bugs.chromium.org/p/chromium/issues/detail?id=572734
https://groups.google.com/a/chromium.org/g/security-dev/c/-pB8IFNu5tw
https://groups.google.com/a/chromium.org/g/security-dev/c/-pB8IFNu5tw
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3450
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.4.1-redlined.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.4.1-redlined.pdf
https://wiki.mozilla.org/CA:Symantec_Issues
https://wiki.mozilla.org/CA:Symantec_Issues
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/wHILiYf31DE
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/wHILiYf31DE
https://www.chromium.org/Home/chromium-security/root-ca-policy/
https://www.chromium.org/Home/chromium-security/root-ca-policy/
https://www.zdnet.com/article/chrome-will-soon-have-its-own-dedicated-certificate-root-store/
https://www.zdnet.com/article/chrome-will-soon-have-its-own-dedicated-certificate-root-store/
http://convergence.io
http://www.ietf.org/rfc/rfc5280.txt
https://cabforum.org/wp-content/uploads/CABF_F2Fpreso_030518_vmf.pdf
https://cabforum.org/wp-content/uploads/CABF_F2Fpreso_030518_vmf.pdf
https://security.googleblog.com/2018/03/distrust-of-symantec-pki-immediate.html
https://security.googleblog.com/2018/03/distrust-of-symantec-pki-immediate.html
https://www.eff.org/observatory
https://peps.python.org/pep-0476
http://mzl.la/1zLFp7M
http://www.ietf.org/rfc/rfc7633.txt
https://www.ietf.org/rfc/rfc6962.txt
https://www.ietf.org/rfc/rfc6962.txt
https://netflixtechblog.com/bettertls-c9915cd255c0
https://www.farsightsecurity.com/blog/txt-record/rrlabel-20171013/

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Larisch et al.

[73] Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle Beck, David
Adrian, Joshua Mason, Zakir Durumeric, J. Alex Halderman, and Michael Bailey. 2018. Track-
ing Certificate Misissuance in the Wild. In Proceedings of the IEEE Symposium on Security and
Privacy.

[74] Butler W. Lampson and Howard E. Sturgis. 1976. Reflections on an Operating System Design.
Commun. ACM 19, 5 (1976), 251–265.

[75] Adam Langley. 2012. Revocation Checking and Chrome’s CRL. https://www.imperialviolet.
org/2012/02/05/crlsets.html.

[76] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wil-
son. 2017. CRLite: A Scalable System for Pushing all TLS Revocations to All Browsers. In
Proceedings of the IEEE Symposium on Security and Privacy.

[77] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency. RFC 6962.
https://www.ietf.org/rfc/rfc6962.txt

[78] Taeho Lee, Christos Pappas, Pawel Szalachowski, and Adrian Perrig. 2018. Towards Sustain-
able Evolution for the TLS Public-Key Infrastructure. In Proceedings of AsiaCCS.

[79] Roy Levin, Ellis Cohen, William Corwin, Fred Pollack, and WilliamWulf. 1975. Policy/Mech-
anism Separation in Hydra. In Proceedings of the Fifth ACM symposium on Operating Systems
Principles. 132–140.

[80] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu. 2014. When
HTTPS Meets CDN: A Case of Authentication in Delegated Service. In Proceedings of the
IEEE Symposium on Security and Privacy.

[81] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs, Alan Mis-
love, Aaron Schulman, and Christo Wilson. 2015. An End-to-end Measurement of Certificate
Revocation in the Web’s PKI. In Proceedings of the ACM Internet Measurement Conference
(IMC).

[82] Steve Lloyd. 2002. Understanding Certification Path Construction. In PKI ForumWhite Paper.
http://www.oasis-pki.org/pdfs/Understanding_Path_construction-DS2.pdf.

[83] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chunying
Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu. 2019. An End-to-End, Large-Scale Mea-
surement of DNS-over-Encryption: How Far Have We Come?. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[84] Zane Ma, James Austgen, Joshua Mason, Zakir Durumeric, and Michael Bailey. 2021. Tracing
Your Roots: Exploring the TLS Trust Anchor Ecosystem. In Proceedings of the ACM Internet
Measurement Conference (IMC).

[85] Stephanos Matsumoto, Pawel Szalachowski, and Adrian Perrig. 2015. Deployment Chal-
lenges in Log-based PKI Enhancements. In EuropeanWorkshop on Systems Security. Bordeaux,
France.

[86] Misissued/Suspicious Symantec Certificates [n. d.]. Misissued/Suspicious Symantec Certifi-
cates. https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/fyJ3EK2YOP8/
yvjS5leYCAAJ.

[87] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
337–340.

[88] Mozilla CA Recommendations 2017. CA/Required or Recommended Practices. Mozilla Wiki.
https://wiki.allizom.org/CA/Required_or_Recommended_Practices.

[89] Mozilla Root Store Policy 2022. Mozilla Root Store Policy. Mozilla. https://www.mozilla.org/
en-US/about/governance/policies/security-group/certs/policy/.

[90] Mozilla Root Store Policy Archive [n. d.]. Mozilla Root Store Policy Archive. https://wiki.
mozilla.org/CA/Root_Store_Policy_Archive.

[91] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Mau-
rizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. 2014. The Cost of the “S” in
HTTPS. In Proceedings of ACM CoNEXT.

[92] Xinming Ou, Sudhakar Govindavajhala, Andrew W. Appel, et al. 2005. MulVAL: A Logic-
based Network Security Analyzer.. In Proceedings of the USENIX Security Symposium. Balti-
more, MD, 113–128.

[93] Muhammad Talha Paracha, Daniel J. Dubois, Narseo Vallina-Rodriguez, and David Choffnes.
2021. IoTLS: Understanding TLS Usage in Consumer IoT Devices. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[94] Henning Perl, Sascha Fahl, and Matthew Smith. 2014. You Won’t Be Needing These Any
More: On Removing Unused Certificates From Trust Stores. In Financial Cryptography and
Data Security.

[95] Matthew Prince. 2018. Encrypting SNI: Fixing One of the Core Internet Bugs. https://blog.
cloudflare.com/esni/.

[96] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej C hajed,
NadimKobeissi, and Jonathan Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers
for Authenticated Message Formats. In Proceedings of the USENIX Security Symposium.

[97] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Johanna Amann, and Phillipa Gill. 2017. Studying TLS Usage in Android Apps. In Proceedings
of ACM CoNEXT.

[98] Reducing TLS Certificate Lifespans to 398 Days 2020. Reducing TLS Certificate Lifespans to
398 Days . https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-
to-398-days/.

[99] Ivan Ristic. 2013. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI to
Secure Servers and Web Applications (2 ed.). Feisty Duck. 97 pages.

[100] Rusticata DER Parser [n. d.]. Rusticata DER Parser. https://github.com/rusticata/der-parser.
[101] Rusticata X.509 Parser [n. d.]. Rusticata X.509 Parser. https://github.com/rusticata/x509-

parser.
[102] Mark Dermot Ryan. 2014. Enhanced Certificate Transparency and End-to-end Encrypted

Mail. In Proceedings of NDSS. San Diego, California, USA.
[103] Peter Saint-Andre and Jeff Hodges. 2011. Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX)
Certificates in the Context of Transport Layer Security (TLS). RFC 6125. https://doi.org/10.
17487/RFC6125

[104] Quirin Scheitle, Taejoong Chung, Jens Hiller, Oliver Gasser, Johannes Naab, Roland van
Rijswijk-Deij, Oliver Hohlfeld, Ralph Holz, Dave Choffnes, Alan Mislove, and Georg Carle.
2018. A First Look at Certification Authority Authorization (CAA). ACM Computer Commu-
nication Review 48, 2 (April 2018).

[105] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg Carle,
Ralph Holz, Thomas C. Schmidt, and Matthias Wählisch. 2018. The Rise of Certificate Trans-
parency and Its Implications on the Internet Ecosystem. In Proceedings of the ACM Internet
Measurement Conference (IMC) (Boston, MA, USA).

[106] Aaron Schulman, Dave Levin, and Neil Spring. 2014. RevCast: Fast, Private Certificate Revo-
cation Over FM Radio. In Proceedings of ACM CCS.

[107] Sudheesh Singanamalla, Esther Han Beol Jang, Richard Anderson, Tadayoshi Kohno, and
Kurtis Heimerl. 2020. Accept the Risk and Continue: Measuring the Long Tail of Government
https Adoption. In Proceedings of the ACM Internet Measurement Conference (IMC).

[108] Ryan Sleevi. 2020. Path Building vs Path Verifying: The Chain of Pain. Medium. https://
medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6.

[109] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In Proceedings of
ACM CCS.

[110] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, Dave Andersen, and Jay Lepreau.
1999. The Flask Security Architecture: System Support for Diverse Security Policies. In 8th
USENIX Security Symposium (USENIX Security 99).

[111] Emily Stark, Lin-Shung Huang, Dinesh Israni, Collin Jackson, and Dan Boneh. 2012. The
Case for Prefetching and Prevalidating TLS Server Certificates. In Proceedings of NDSS. San
Diego, California, USA.

[112] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and Martin
Vechev. 2019. zkay: Specifying and Enforcing Data Privacy in Smart Contracts. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 1759–1776.

[113] Nick Sullivan. 2017. High-reliability OCSP stapling and why it matters. CloudFlare. https:
//blog.cloudflare.com/high-reliability-ocsp-stapling/.

[114] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert: Secure and
Flexible TLS Certificate Management.

[115] Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin Jackson, and Dan Boneh. 2012.
Towards Short-lived Certificates. In IEEE Web 2.0 Security and Privacy.

[116] Markus Triska. 2012. The Finite Domain Constraint Solver of SWI-Prolog. In FLOPS (LNCS,
Vol. 7294). 307–316.

[117] Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems.
[118] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel,

Rodrigo Rodrigues, Johannes Gehrke, and Ansley Post. 2015. Guardat: Enforcing data policies
at the storage layer. In Proceedings of the Tenth European Conference on Computer Systems. 1–
16.

[119] Narseo Vallina-Rodriguez, Johanna Amann, Christian Kreibich, Nicholas Weaver, and Vern
Paxson. 2014. A Tangled Mass: The Android Root Certificate Stores. In Proceedings of ACM
CoNEXT.

[120] Benjamin VanderSloot, Johanna Amann, Matthew Bernhard, Zakir Durumeric, Michael Bai-
ley, and J. Alex Halderman. 2016. Towards a Complete View of the Certificate Ecosystem. In
Proceedings of the ACM Internet Measurement Conference (IMC).

[121] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-defined Privacy
Constraints in Distributed Web Services. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). 615–630.

[122] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. 2012. SWI-Prolog. The-
ory and Practice of Logic Programming - Prolog Systems archive 12, 1 (2012), 67–96.

[123] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and
Stephen Chong. 2016. Precise, Dynamic Information Flow for Database-Backed Applications.
ACM SIGPLAN Notices 51, 6 (2016), 631–647.

[124] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A Language for Automatically
Enforcing Privacy Policies. ACM SIGPLAN Notices 47, 1 (2012), 85–96.

[125] Jane Yen, Ramesh Govindan, and Barath Raghavan. 2021. Tools for Disambiguating RFCs. In
Proceedings of the Applied Networking Research Workshop. 85–91.

[126] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage. 2009. When
Private Keys are Public: Results from the 2008 Debian OpenSSL Vulnerability. In Proceedings
of the ACM Internet Measurement Conference (IMC).

[127] Liang Zhang, David Choffnes, Tudor Dumitras, Dave Levin, Alan Mislove, Aaron Schulman,
and Christo Wilson. 2014. Analysis of SSL Certificate Reissues and Revocations in the Wake
of Heartbleed. In Proceedings of the ACM Internet Measurement Conference (IMC).

[128] Liang Zhu, Johanna Amann, and John Heidemann. 2016. Measuring the Latency and Perva-
siveness of TLS Certificate Revocation. In Proceedings of PAM.

[129] ZLint [n. d.]. ZLint. https://github.com/zmap/zlint.

10 APPENDIX
10.1 List of Browser Edge Cases
While translating the Chrome and Firefox certificate validation logic
to Prolog, we noticed several cases where the browsers’ behavior
deviates from the RFCs in identical ways. Currently we cannot
detect these differences with imputation because both browsers’
implementations are identical. However, if there was a RFC stan-
dard compliant Hammurabi validation policy, then these deviations
would be automatically detectable by using imputation to com-
pare Hammurabi-Chrome or Hammurabi-Firefox against the RFC
standard policy.
Empty Extended Key Usage. The Extended Key Usage ex-
tension (EKU) signifies (along with the Key Usage extension) how
a certificate is to be used. RFC 5280 states that “[i]f the extension
is present, then the certificate MUST be only be used for one the

https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.ietf.org/rfc/rfc6962.txt
http://www.oasis-pki.org/pdfs/Understanding_Path_construction-DS2.pdf
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/fyJ3EK2YOP8/yvjS5leYCAAJ
https://groups.google.com/forum/#!msg/mozilla.dev.security.policy/fyJ3EK2YOP8/yvjS5leYCAAJ
https://wiki.allizom.org/CA/Required_or_Recommended_Practices
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://wiki.mozilla.org/CA/Root_Store_Policy_Archive
https://wiki.mozilla.org/CA/Root_Store_Policy_Archive
https://blog.cloudflare.com/esni/
https://blog.cloudflare.com/esni/
https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-to-398-days/
https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-to-398-days/
https://github.com/rusticata/der-parser
https://github.com/rusticata/x509-parser
https://github.com/rusticata/x509-parser
https://doi.org/10.17487/RFC6125
https://doi.org/10.17487/RFC6125
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://blog.cloudflare.com/high-reliability-ocsp-stapling/
https://blog.cloudflare.com/high-reliability-ocsp-stapling/
https://github.com/zmap/zlint

Hammurabi: A Framework for Pluggable, Logic-Based
X.509 Certificate Validation Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

purposes indicated.” However, it does not specify what to do when
the EKU extension is present but empty. Both Chrome and Firefox
interpret an empty EKU extension by permitting all required EKUs
for the given certificate.
Signature Algorithm Equality. For historical reasons (de-
fense against the now irrelevant algorithm substitution attack), an
X.509 consists of two signature algorithm fields: one in the “outer”
certificate structure, called the signatureAlgorithm, and one
in the “inner” tbsCertificate, called the signature. RFC 5280
states that these two identifiers MUST be equivalent, but does
not specify what equivalent means—either byte-for-byte encoded
equality or decoded semantic equality. Chrome and Firefox prefer
byte-for-byte equality but accept the same signature algorithms
with different encodings.

	Abstract
	1 Introduction
	1.1 The Problem of Entanglement
	1.2 Disentanglement with Hammurabi
	1.3 Contributions and Roadmap

	2 Background
	2.1 Path Building
	2.2 Certificate Validation Ambiguity
	2.3 Other Challenges
	2.4 Summary

	3 Threat Model
	4 The Hammurabi Engine
	4.1 Interface and Initial Policy Choices
	4.2 Validation Mechanisms

	5 Hammurabi Policies
	5.1 Policy Responsibilities
	5.2 Policies Are Logic Programs
	5.3 Facts
	5.4 Imputation
	5.5 Example Policy: Mozilla Firefox

	6 Implementation
	7 Evaluation
	7.1 Correctness
	7.2 Validation Performance
	7.3 Imputation
	7.4 Integration

	8 Related Work
	9 Conclusion
	9.1 Deployment Considerations
	9.2 Future Outlook

	Acknowledgments
	References
	10 Appendix
	10.1 List of Browser Edge Cases

