BLP Model (Random Coefficient Logit Model) for Demand Estimation

(SMART 2014)

Agenda

- Overview
- Model
- Identification
- Estimation
- Nevo (2000)
- Matlab Demo

Review: Consumer-Level Demand Models

- Data: panel of I consumers purchasing one of J products over T_i periods
- Model: consumer utility function

$$U_{itj} = \beta'_i x_{tj} - \alpha_i p_{tj} + \varepsilon_{itj}$$

 Estimation principle: assuming ε_{itj} are extreme value, integrate over an individual's errors to get individual purchase probabilities

$$s_{itj} = Pr(y_{it} = j) = \frac{\exp(\beta'_{i}x_{tj} - \alpha_{i}p_{tj})}{1 + \sum_{k=1}^{J}\exp(\beta'_{i}x_{tk} - \alpha_{i}p_{tk})}$$

- Estimate using (simulated) maximum likelihood
- Usually observe large I, relatively short T_i , and small J

No Individual Data?

Aggregate Data

Often consumer-level data is unavailable

□ Instead, we have aggregate data on sales... e.g., market shares

We start with a microeconomic model of consumer behavior, then aggregate up to the population level.

-- Berry, Levinsohn, and Pakes (1995).

Overview of BLP (1995)

- Berry, Levinsohn, and Pakes (1995) or "BLP" consists of an economic model and a GMM estimator
- Demand estimation with many differentiated products
 - Product characteristics approach: products are bundles of characteristics and consumers have preferences over characteristics
 - Requires only aggregate market share data
 - Flexible substitution patterns / price elasticities
 - Controls for price endogeneity

Used extensively in marketing and industrial organization.

Overview of BLP (1995)

- Examples:
 - Infer nature of strategic interaction between manufacturers and retailers (Sudhir 2002)
 - New product introduction (Petrin 2002, Albuquerque & Bronnenberg 2009)
 - Effect of prices varying by store instead of by geographic zone (Chintagunta, Dubé & Singh 2003)
 - Retailer targeting strategies (Besanko, Dubé & Gupta 2003)
 - Optimal product launch and exit (Hitsch 2006)
 - Impact of advertising avoidance technology on TV stations and advertisers (Wilbur 2008)
 - Changes in product assortment and pricing, post merger (Draganska, Mazzeo, & Seim 2009)
 - Voter response to political advertising (Gordon & Hartmann 2010)
 - Anindya Ghose and Sang Pil Han, Estimating Demand for Mobile Applications in the New Economy, *Management Science*, forthcoming.
 - Beibei Li, Panos Ipeirotis and Anindya Ghose. Towards a Theory Model for Product Search. WWW2011 Best Paper Award.

Setup

- Markets/periods $t = 1, \ldots, T$
- $\bullet~\mbox{Products}~j=0,1,\ldots,J$, with j=0 the outside good
- Consumer i makes choice $j \in J$ in market t
- Data
 - M is the market size
 - S_{tj} is observed market share, $S_{tj} = q_{tj}/M$, $S_{t0} = 1 \sum_{j=1}^{J} S_{tj}$
 - x_{tj} is a $(K \times 1)$ vector of observed product characteristics
 - p_{tj} is the price of product j in market t
- Model
 - *s*_{tj} is *predicted* market share
 - β is a $(K\,\times\,1)$ vector of unknown coefficients on the observed characteristics
 - α is the scalar unknown price coefficient
 - ε_{itj} is an i.i.d. unobserved random shock

Homogeneous Logit Model

• Consumer utility for $j = 1, \ldots, J$ inside products

$$U_{itj} = \underbrace{\beta' x_{tj} - \alpha p_{tj} + \xi_{tj}}_{\delta_{tj}} + \varepsilon_{itj}$$

$$U_{itj} = \delta_{tj} + \varepsilon_{itj}$$

- \Rightarrow Normalize $\delta_{t0} = 0$ such that $U_{it0} = \varepsilon_{it0}$
- Assuming $\varepsilon_{\mathit{itj}}$ distributed i.i.d. Type I extreme value,
- Integrating out ε_{itj} yields:

$$s_{tj}(\delta_{t1},\ldots,\delta_{tJ}) = \frac{\exp(\delta_{tj})}{1 + \sum_{k=1}^{J} \exp(\delta_{tk})}$$

$$S_{tj} = s_{tj} \left(\beta, \alpha, \xi_{t1}, \dots, \xi_{tJ}\right)$$

Homogeneous Logit: Estimation (Berry 1994)

In market t, matching observed to predict shares:

$$S_{t0} = \frac{1}{1 + \sum_{k=1}^{J} \exp(\delta_{tk})}$$

$$S_{t1} = \frac{\exp(\delta_{t1})}{1 + \sum_{k=1}^{J} \exp(\delta_{tk})}$$

$$\vdots \qquad \vdots$$

$$S_{tJ} = \frac{\exp(\delta_{tJ})}{1 + \sum_{k=1}^{J} \exp(\delta_{tk})}$$

Takings logs yields a system of linear equations for δ_{tj} 's:

$$\log (S_{t0}) = 0 - \log (\text{denominator}), \quad j = 0$$

$$\log (S_{tj}) = \delta_{tj} - \log (\text{denominator}), \quad j = 1, \dots, J$$

$$\Rightarrow \delta_{tj} = \log(S_{tj}) - \log(S_{t0}) = \beta' x_{tj} - \alpha p_{tj} + \xi_{tj}$$
 2S

Problem with Homogeneous Logit Model

• Recall the elasticity in the homogeneous logit:

$$\eta_{tjk} = \frac{\partial s_{tj}}{\partial p_{tk}} \frac{p_{tk}}{s_{tj}} = \begin{cases} \alpha p_{tj}(1 - s_{tj}), & \text{if } j = k \\ -\alpha p_{tk} s_{tk}, & \text{otherwise} \end{cases}$$

- Own-price elasticities are proportional to own price: lower price implies lower elasticity, so a standard pricing model would predict higher markup for low-priced brands
- Cross-price elasticities imply substitution towards brands in proportion to shares regardless of characteristics. Cross-price elasticity of products j_1, j_2 w.r.t. product k will be identical regardless of differences in x_{j_1} and x_{j_2}

IIA Failure of MNL

Introducing Heterogeneity

• Random coefficients: *i* represents an individual consumer *i*

$$U_{itj} = \beta'_i x_{tj} - \alpha_i p_{tj} + \xi_{tj} + \varepsilon_{itj}, \quad \text{where} \begin{bmatrix} \beta_i \\ \alpha_i \end{bmatrix} \sim N(\begin{bmatrix} \beta \\ \bar{\alpha} \end{bmatrix}, \Sigma)$$

- $(\beta_i, \alpha_i) \sim \text{MVN}$ with diagonal variance matrix Σ (can also allow for correlations)
- To simplify notation (and eventually estimation), easier to rewrite utility in terms of mean utilities and deviations from the mean

Carnegie Mellon University

Mean Utility vs. Individual Deviations

• Rewrite utility be separating the means and deviations:

$$U_{itj} = \underbrace{\bar{\beta}' x_{tj} - \bar{\alpha} p_{tj} + \xi_{tj}}_{\delta_{tj}} + \underbrace{[x_{tj}, p_{tj}]' v_i \sigma}_{\mu_{itj}} + \varepsilon_{itj}, \text{ with } v_i \sim N(0, 1)$$

$$U_{itj} = \underbrace{\delta_{tj}}_{\text{mean utility}} + \underbrace{\mu_{itj}(x_{tj}, p_{tj}, v_i; \theta_2)}_{\text{individual deviations}} + \varepsilon_{itj}$$

- $v_i (K+1)$ vector of unobserved individual characteristics
- Parameters to be estimated:
 - Linear: $\theta_1 = (\bar{\beta}, \bar{\alpha})$
 - Nonlinear: $\theta_2 = (\sigma)$ is a (K + 1) vector of characteristic-specific standard deviations

Incorporating Demographics

Homogeneous Logit:

$$U_{itj} = \beta' x_{tj} - \alpha p_{tj} + \xi_{tj} + \varepsilon_{itj}$$

Heterogeneous Logit

$$U_{itj} = \bar{\beta}' x_{tj} - \bar{\alpha} p_{tj} + \xi_{tj} + [x_{tj}, p_{tj}]' v_i \sigma + \varepsilon_{itj}$$
$$v_i \sim N(0, I)$$

Heterogeneous Logit with Demographics

$$U_{itj} = \bar{\beta}' x_{tj} - \bar{\alpha} p_{tj} + \xi_{tj} + [x_{tj}, p_{tj}]' v_i \sigma^u + [x_{tj}, p_{tj}]' d_i \sigma^o + \varepsilon_{itj}$$
$$v_i \sim N(0, I), \ d_i \sim G(\cdot)$$

• v_i are consumer-level *unobservable* variables

• d_i are consumer-level *observable* variables (e.g. demographics)

How exactly do we infer individual preferences from aggregate data?

BLP Identification

How do we infer individual preferences from aggregate observations?

What do we know?

- Demographic distributions!
- > Differences in demographic distributions in different markets!
- Market shares in different markets!

Basic Idea: Monitor demand for similar products in different markets.

differences in demand \rightarrow different demographics

BLP Identification - Example

Table A: 80% Kids, 20% Adults; - Rainbow: 80% gone, Wholegrain: 20% gone.

Table B: 10% Kids, 90% Adults; - Rainbow: 10% gone, Wholegrain: 90% gone.

→ Kids favor rainbow cereal, and adults favor wholegrain!

BLP: Aggregate Demand \rightarrow Individual Preference

Agenda

- ✓ Overview
- ✓ Model
- ✓ Identification
- Estimation
- Nevo (2000)
- Matlab Demo

Overview of Estimation

Nonlinear search over the nonlinear parameters θ_2 - will concentrate out θ_1 using the first-order conditions

Steps:

- **1** Given guesses for (δ, θ_2) , calculate aggregate shares
- **2** Given θ_2 , recover δ from share inversion
- 3 Given θ_2 , compute residuals ξ , interact with Z, minimize GMM objective function

We will see more details in Nevo (2000).

- Nevo (2000). A Practitioner's Guide to Estimation of Random-Coefficients Logit Models of Demand. *Journal of Economics & Management Strategy*, 9(4), 513–548.
- Nevo (2001). Measuring Market Power in the Ready-to-Eat Cereal Industry. *Econometrica*, 69(2), 307-342.

Nevo (2000)

- Data: 24 brands of RTE cereal, 47 U.S. cities, 2 quarters (94 markets).
- Challenges: 1) No individual-level observations, only market-level data;
 2) Price endogeneity: price ~ brand-city-quarter demand shocks.

TABLE A(I)

BRANDS USED FOR ESTIMATING DEMAND

All Family/	Taste Enhanced	Simple Health	Kids Segment
Basic Segment	Wholesome Segment	Nutrition Segment	
K Corn Flakes K Crispix K Rice Krispies GM Cheerios GM Wheaties	K Frosted Mini Wheats K Raisin Bran GM Raisin Nut P Honey Bunches of Oats P Raisin Bran Q 100% Natural	K Special K GM Total P Grape Nuts N Shredded Wheat	K Corn Pops K Froot Loops K Frosted Flakes GM Cinn Toast Crunch GM Honey Nut Cheerios GM Kix GM Lucky Charms GM Trix Q CapN Crunch Q Life

TABLE A(II)

SAMPLE STATISTICS

Description	Mean	Median	Std	Min	Max
Calories	137.6	120	36.32	110	220
Fat Calories (/100)	0.124	0.100	0.139	0	0.60
Sodium (% RDA/100)	0.087	0.090	0.042	0	0.150
Fiber (% RDA/100)	0.095	0.050	0.094	0	0.310
Sugar (g/100)	0.084	0.070	0.060	0	0.200
Mushy (= 1 if cereal gets soggy in milk)	0.35			0	1
Serving weight (g)	35.1	30	9.81	25	58
Income (\$)	13,083	10,475	11,182	14	275,372
Age (years)	29.99	28	23.14	1	90
Child (= 1 if age < 16)	0.23	—		0	1

Source: Cereal boxes and samples from the CPS.

- Setup:
- \checkmark t = 1,..., T markets; i = 1,..., I_t consumers;
- ✓ Market definition: "city-quarter" combination;
- Market share (inside goods): Converting sales into number of servings; The potential denominator is assumed to be one serving per capita per day;
- Market share (outside good): One minus the sum of the inside goods market shares;
- Observable for a market *t*: aggregate quantities (market share), prices, and product characteristics.

• Utility:

$$u_{ijt} = x_j \beta_i^* - \alpha_i^* p_{jt} + \xi_j + \Delta \xi_{jt} + \epsilon_{ijt},$$

 $i = 1, \dots, I_t, \qquad j = 1, \dots, J_t, \qquad t = 1, \dots, T,$

- ξ_j is brand-level mean unobservable (absorbed by brand dummy); - $\Delta \xi_{it}$ is a market (city-quarter) specific deviation from the mean;

$$\begin{pmatrix} \alpha_i^* \\ \beta_i^* \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \Pi D_i + \Sigma v_i, \qquad v_i \sim N(0, I_{K+1}),$$

- D_i is a d * 1 vector of observed demographic variables;
- Π is a (*K*+1) **d* matrix of coefficients that measure how taste characteristics vary with observed demographics;
- v_i is a (K+1) * 1 vector of unobserved demographic variables;
- $\boldsymbol{\Sigma}$ is a scaling matrix;
- v_i and D_i are independent;
- α , β , Π , Σ are the final estimates;

$$\begin{pmatrix} \alpha_i^* \\ \beta_i^* \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \Pi D_i + \Sigma v_i, \qquad v_i \sim N(0, I_{K+1}),$$

Age Income Child ...

-

. .

$$D_{i} = \begin{bmatrix} D_{i}^{1} \\ D_{i}^{2} \\ \vdots \\ D_{i}^{d} \end{bmatrix} = \begin{bmatrix} Age_{i} \\ Income_{i} \\ Child_{i} \end{bmatrix} \qquad \qquad \Pi_{(K+1)^{*}d} = \frac{x_{1}}{x_{2}} \\ \frac{x_{K}}{p} \begin{bmatrix} \vdots & \vdots & \vdots \end{bmatrix}$$

$$\boldsymbol{v}_{i} = \begin{bmatrix} \boldsymbol{v}_{i}^{1} \\ \boldsymbol{v}_{i}^{2} \\ \dots \\ \dots \\ \boldsymbol{v}_{i}^{K+1} \\ \boldsymbol{v}^{K+1}_{i} \end{bmatrix} \sim N(0, I_{K+1}) \qquad \boldsymbol{\Sigma}_{(K+1)^{*}(K+1)} = \begin{bmatrix} \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Re-write Utility (Mean + Deviation):

$$u_{ijt} = \delta_{jt}(x_j, p_{jt}, \xi_j, \Delta\xi_{jt}; \theta_1) + \mu_{ijt}(x_j, p_{jt}, v_i, D_i; \theta_2) + \epsilon_{ijt},$$

$$\delta_{jt} = x_j \beta - \alpha p_{jt} + \xi_j + \Delta\xi_{jt}, \qquad \mu_{ijt} = [p_{jt}, x_j]' * (\Pi D_i + \Sigma v_i),$$

- δ_{it} represents the (population) mean utility;
- $\mu_{ijt} + \epsilon_{ijt}$ a mean-zero individual-specific deviation from the mean utility;
- ϵ_{iit} random error, i.i.d., Type I EV;
- Let $\theta = (\theta 1, \theta 2)$ be a vector containing all parameters;
- $\theta 1 = (\alpha, \beta)$ linear parameters;
- $\theta 2 = (\Pi, \Sigma)$ nonlinear parameters.

Individual taste attributes:

An individual is defined as a vector of observed and unobserved demographics and product-specific shocks, $(D_i, v_i, \epsilon_{i0t}, ..., \epsilon_{iJt})$.

• Set of individuals who will choose brand *j* in market *t*

$$A_{jt}(x_{\cdot t}, p_{\cdot t}, \delta_{\cdot t}; \theta_2) = \left\{ (D_i, v_i, \varepsilon_{i0t}, \dots, \varepsilon_{iJt}) | u_{ijt} \ge u_{ilt}, \forall l = 0, 1, \dots, J \right\},\$$

• Computing (predicted) market share of brand *j* in market *t*:

Integral over the mass of individual consumers in the region A_{it} .

$$\begin{split} s_{jt}(x_{\cdot t}, p_{\cdot t}, \delta_{\cdot t}; \theta_2) &= \int_{A_{jt}} dP^*(D, v, \varepsilon) \\ &= \int_{A_{jt}} dP^*_{\varepsilon}(\varepsilon) \, dP^*_{v}(v) \, d\widehat{P}^*_{D}(D), \end{split}$$

• Computing (predicted) market share:

$$s_{jt}(x_{\cdot t}, p_{\cdot t}, \delta_{\cdot t}; \theta_2) = \int_{A_{it}} dP^*(D, v, \varepsilon)$$
$$= \int_{A_{jt}} dP^*_{\varepsilon}(\varepsilon) dP^*_{v}(v) d\widehat{P}^*_{D}(D),$$

- ✓ Given assumptions on the distributions, we can compute the integral, either analytically or numerically.
- ✓ Simplest Assumption → Heterogeneity via only individual taste shock, ε_{ijt} with i.i.d., Type I EV assumption, we have compute market share analytically. This is the simple Logit Model:

$$s_{jt} = \frac{\exp(x_{jt}\beta - \alpha p_{jt} + \xi_{jt})}{1 + \sum_{k=1}^{J} \exp(x_{kt}\beta - \alpha p_{kt} + \xi_{kt})}.$$

How to integrate over D_i , v_i ?

• Computing (predicted) market share:

$$\begin{split} s_{jt}(x_{\cdot t}, p_{\cdot t}, \delta_{\cdot t}; \theta_2) &= \int_{A_{it}} dP^*(D, v, \varepsilon) \\ &= \int_{A_{jt}} dP^*_{\varepsilon}(\varepsilon) \, dP^*_{v}(v) \, d\widehat{P}^*_{D}(D), \end{split}$$

Predicted Market Share = Observed Market Share

- ✓ Given assumptions on the distributions, we can compute the integral, either analytically or numerically.
- ✓ Further Assumption → Heterogeneity via D_i , v_i , ε_{ijt} , we can compute the market share numerically using Monte Carlo simulation.

$$s_{jt}(p_{\cdot t}, x_{\cdot t}, \delta_{\cdot t}, P_{ns}; \theta_{2}) = \frac{1}{ns} \sum_{i=1}^{ns} s_{jti}$$

$$= \frac{1}{ns} \sum_{i=1}^{ns} \frac{\exp[\delta_{jt} + \sum_{k=1}^{K} x_{jt}^{k}(\sigma_{k}v_{i}^{k} + \pi_{k1}D_{i1} + \dots + \pi_{kd}D_{id})]}{1 + \sum_{m=1}^{J} \exp[\delta_{mt} + \sum_{k=1}^{K} x_{mt}^{k}(\sigma_{k}v_{i}^{k} + \pi_{k1}D_{i1} + \dots + \pi_{kd}D_{id})]},$$
where $(v_{i}^{1}, \dots, v_{i}^{K})$ and $(D_{i1}, \dots, D_{id}), i = 1, \dots, ns$, are random draws.

Overview of Estimation

Nonlinear search over the nonlinear parameters θ_2 - will concentrate out θ_1 using the first-order conditions

Steps:

- **1** Given guesses for (δ, θ_2) , calculate aggregate shares
- **2** Given θ_2 , recover δ from share inversion
- 3 Given θ_2 , compute residuals ξ , interact with Z, minimize GMM objective function

Step 1: Calculate Market Shares (Conditional on δ_t , θ_2)

For each market, given a guess of δ_t :

- Integrate out ε_{itj} analytically as before
- Integrate out random coefficients (β_i, α_i) numerically
- Easiest approach uses Monte Carlo integration

$$s_{tj}\left(\delta_{t};\theta_{2}\right) \approx \frac{1}{NS} \sum_{ns=1}^{NS} \frac{\exp\left(\delta_{tj} + \mu_{itj}(v_{ns};\theta_{2})\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{tk} + \mu_{itk}(v_{ns};\theta_{2})\right)}$$

where v_{ns} is (K+1) vector of draws from N(0, I)

 See Ken Train's book for more details on simulation methods (http://elsa.berkeley.edu/books/choice2.html)

Step 2: Computing δ_t (Conditional on θ_2)

For each market *t*:

• Compute the J-dimensional vector of mean valuations δ_t that equates observed and predicted shares

$$S_t = s_t \left(\delta_t; \theta_2 \right)$$

- In homogeneous logit we calculated $\delta_{tj} = \log (S_{tj}) \log (S_{t0})$, but now δ_{tj} is inside an integral and cannot be separated
- Now numerically compute the inversion: $s_t^{-1}(S_t; \theta_2) = \delta_t$
- BLP propose a *contraction mapping*:
 - Given a guess of $heta_2$ and initial δ^0_t , iterate on

$$\delta_{tj}^{h+1}\left(\theta_{2}\right) = \delta_{tj}^{h}\left(\theta_{2}\right) + \log S_{tj} - \log s_{tj}\left(\delta_{tj}^{h};\theta_{2}\right), \quad j = 1, \dots, J$$

• Stop when
$$\left\|\delta_{j}^{h}-\delta_{j}^{h-1}\right\|\leq\epsilon_{\mathrm{in}}$$

 $\bullet\,$ Guaranteed to find a solution from any starting value of $\delta\,$

Step 3: Moment Estimation (Compute GMM Objective Function Conditional on δ_t , θ_2)

• Basis of estimation is the moment condition:

 $\mathbb{E}\left[\xi(\theta)'Z\right] = 0$

• Minimize GMM objective function:

$$\min_{\theta} Q(\theta) = \xi(\theta)' Z A^{-1} Z' \xi(\theta)$$

where consistent estimate of weighting matrix is IV for Price
 $A = \mathbb{E} \left[Z' \xi(\theta) \xi(\theta)' Z \right]$
Given estimates of δ and a θ guess, could calculate:
 $\xi(\theta) = \delta \left(\theta_2\right) - \left(\bar{\beta}' x_j - \bar{\alpha} p_j\right)$

Final Goal: Minimize the objective function $Q(\theta_2)$ – search nonlinearly over θ_2 .

IV for Price?

1. Cost shifters (Nevo 2000)

Variables that affect marginal cost (product, packaging, distribution costs); Cost proxies like city density for storage cost, salary for labor cost.

2. Price in other markets (Hausman 1996, Nevo 2001) Assumes demand shocks uncorrelated across markets, but cost shocks are correlated across markets

3. Characteristics of competing products (BLP 1995)

Firm set price of a product based on characteristics of competing products from competitors (but these characteristics will not affect consumer valuation for the firm's own product).

Estimation Summary

Steps:

- Draw $u_{ns} \sim N(0, I)$, for $ns = 1, \ldots, NS$,
- 2 Compute initial δ from homogeneous model
- **③** Outer loop iteration $\ell = 1, 2...$, given value of θ_2^{ℓ}
 - () Inversion: Given a starting δ^0 ,
 - ① Compute shares $s_{tj} \left(\delta_t^h; \theta_2^\ell \right)$ via simulation
 - 2 Iterate on $\delta_t^{h+1} = \delta_t^h + \log S_t \log s_{tj} \left(\delta_t^h; \theta_2^\ell \right)$ until convergence
 - **2** Use $\delta(\theta_2)$ to calculate $\theta_1 = (\bar{\beta}, \bar{\alpha})$
 - **3** Get residuals $\xi_{tj} = \delta_{tj} (\theta_2) (\bar{\beta}' x_{tj} \bar{\alpha} p_{tj})$
 - **4** Evaluate objective function $Q(\theta_2)$

Class Exercise – Nevo (2000)

Matlab Code

Aviv Nevo's Original BLP Code + Data: <u>http://faculty.wcas.northwestern.edu/~ane686/supplements/rc_dc_code.htm</u> (Some issues due to Matlab version update...)

Eric Rasmusen's revision, Indiana U (partial success...): http://www.rasmusen.org/zg604/lectures/blp/frontpage.htm

Bronwyn H. Hall's revision, UC Berkeley (Matlab 7): http://eml.berkeley.edu/~bhhall/e220c/rc_dc_code.htm

A recent version (with minor changes) available to download: http://www.andrew.cmu.edu/user/beibeili/BLPdemo_SMART.rar

Optimization: fminunc (option quasi Newton's Method, derivitive-based) fminsearch (simplex method, random walk on a convex polytope)

Data Files: Original Excel

Original Excel Spreadsheets:

data_cereal.xlsx contains 2256 observations on id, brand, firm, city, quarter, share, price, sugar, mushy, and the 20 instruments in *iv*, called *z1-z20*.

data_demog.xlsx contains the demographic draws for each market. There are 94 markets (47 cities by 2 quarters) and 80 variables (20 individuals * 4 demographic variables on "Income" "Income^2" "Age" "Child").

data_v.xlsx contains the unobserved individual iid normal draws for each market. There are 94 markets (47 cities by 2 quarters) and 80 variables (20 individuals * 4 variables, for each individual there is a different draw for each brand-level variable on "Constant" "Price" "Sugar" "Mushy").

Matlab Data Inputs: ps2.mat

id - an id variable in the format bbbbccyyq, where bbbb is a unique 4 digit identifier for each brand (the first digit is company and last 3 are brand, i.e., 1006 is K Raisin Bran and 3006 is Post Raisin Bran), cc is a city code, yy is year (=88 for all observations is this data set) and q is quarter. All the other variables are sorted by date city brand.

s_jt - the market shares of brand *j* in market *t*. Each row corresponds to the equivalent row in *id*.

x1 - the variables that enter the linear part of the estimation. Here this consists of a price variable (first column) and 24 brand dummy variables. Each row corresponds to the equivalent row in *id*. This matrix is saved as a sparse matrix.

x2 - the variables that enter the non-linear part of the estimation (i.e., individual deviation). Here this consists of a constant, price, sugar content and a mushy dummy, respectively. Each row corresponds to the equivalent row in *id*.

Matlab Data Inputs: ps2.mat

id_demo - an id variable for the random draws and the demographic variables, of the format ccyyq. Since these variables do not vary by brand they are not repeated. The first observation here corresponds to the first market, the second to the next 24 and so forth.

v - random draws given for the estimation. For each market 80 iid normal draws are provided. They correspond to 20 "individuals", where for each individual there is a different draw for each column of x^2 . The ordering is given by *id_demo*.

demogr - draws of demographic variables from the CPS for 20 individuals in each market. The first 20 columns give the income, the next 20 columns the income squared, columns 41 through 60 are age and 61 through 80 are a child dummy variable (=1 if age <= 16). Each of the variables has been demeaned (i.e. the mean of each set of 20 columns over the 94 rows is 0). The ordering is given by *id_demo*.

Matlab Code

<u>rc_dc.m</u> - A script file that reads in the data and calls the other functions;

<u>gmmobjg.m</u> - This function computes the GMM objective function;

<u>meanval.m</u> - This function computes the mean utility level;

<u>mufunc.m</u> - This function computes the individual deviation of the utility (mu_ijt);

<u>mktsh.m</u> - This function computes the market share for each product;

<u>ind_sh.m</u> - This function computes the "individual" probabilities of choosing each brand;

jacob.m - This function computes the Jacobian of the implicit function that defines the mean utility;

<u>var_cov.m</u> - This function computes the VCov matrix of the estimates.

Estimation – Matlab Code

 $\overset{\downarrow}{\theta}_2 \rightarrow s \rightarrow \delta \rightarrow \xi \rightarrow GMMobj$

Steps:

- **①** Draw $u_{ns} \sim N(0, I)$, for $ns = 1, \ldots, NS$, Preprocessing
- 2 Compute initial δ from homogeneous model ${\rm Preprocessing}$
- **3** Outer loop iteration $\ell = 1, 2...,$ given value of θ_2^{ℓ}
 - () Inversion: Given a starting δ^0 ,
 - ① Compute shares $s_{tj} \left(\delta_t^h; \theta_2^\ell \right)$ via simulation **mktsh.m**, ind_sh.m
 - 2 Iterate on $\delta_t^{h+1} = \delta_t^h + \log S_t \log s_{tj} \left(\delta_t^h; \theta_2^\ell \right)$ until convergence **meanval.m**
 - **2** Use $\delta(\theta_2)$ to calculate $\theta_1 = (\bar{\beta}, \bar{\alpha})$ gmmobjg.m
 - **3** Get residuals $\xi_{tj} = \delta_{tj} (\theta_2) (\bar{\beta}' x_{tj} \bar{\alpha} p_{tj})$ gmmobjg.m
 - **4** Evaluate objective function $Q(\theta_2)$ gmmobjg.m

④ Iterate minimization of $Q(\theta_2)$ until convergence **rc_dc.m**

Matlab Demo

📣 <student version=""> MATLAB R</student>	2014a (1996-1996)			o x
HOME PLOTS	APPS EDITOR PUBLISH VIEW	A H L h h b c	🔁 🕐 Search Documentation	<mark></mark> 🔎 🛣
New Open Save	es Insert re Comment % % % % Indert Feit Part EDIT NAVIGATE BREAKPOINTS RUN			
💠 🔶 🔁 🔀 🌗 🕨 C: 🕨 Use	ers → heinz → Dropbox → _Conferences, Travel, Talks → SMART → nevofiles_matlab7.0 → Hal_OK → BLPdemo_SMART			- P
Current Folder 💿	🕑 Editor - rc_dc.m 💿 🗙 🛃 Variables - theta2w	Workspace		$\overline{\mathbf{v}}$
Name 🔻	rc_dc.m × meanval.m × jacob.m × var_cov.m × +	Name 🔺	Value Min Max	
 results rc_dc.m ps2.mat mufunc.m mktsh.m meanval.m ind_sh.m gmmobjg.m gmmobjg.m data_vxlsx data_demog.xlsx data_cereal.xlsx 	<pre>123 - mcoef = [beta(1); theta1(1); beta(2:3)]; 124 - semcoef = [semd(1); se(1); semd]; 125 126 - Rsq = 1-((resmd-mean(resmd))'*(resmd-mean(resmd)))/((ymd-mean(ymd))'*(ymd-mean(ymd))); 127 - Rsq_G = 1-(resmd'*omega*resmd)/((ymd-mean(ymd))'*omega*(ymd-mean(ymd))); 128 - Chisq = size(id,1)*resmd'*omega*resmd; 129 130 - diary results 131 - disp(horz) 132 - disp(' ') 133 - for i=1:size(theta2w,1) 134 - disp(vert(i,:)) 135 - disp([mcoef(i) theta2w(i,:)]) 136 - disp([semcoef(i) se2w(i,:)])</pre>	 aris beta cdid cdindex Chisq comp_t demogr dfull exitflag fval as horz i id_demo iud_demo mx 	-0.0334 -0.0334 -0.0334 [-1.8866;0.15 -1.8866 0.9842 2256x1 double 1 94 94x1 double 24 2256 3.7457e+06 3.7457 3.7457 0.4002 0.4002 0.4002 94x80 double -65.94 46.8563 2 2 2 14.9008 14.9008 14.9008 'mean 4 4 42256x1 double 10040 60186 94x44 sparse 2256x4 sparse	
	<pre>137 - Lend 138 </pre> Student Version> Command Window iterations: 6 funcCount: 7 cgiterations: 3 firstorderopt: 1.2189 algorithm: 'large-scale: trust-region Newton' message: 'Local minimum possible. fminunc stopped because the size of the current step'	 mcoef nbrn nmkt ns ormega options output resmd Rsq Rsq.G s_jt se 	[-1.8866;-32 -32.43 0.9842 24 24 24 94 94 94 20 20 20 24x24 sparse 1x1 struct 1x1 struct 1x1 struct 24x1 double -3.1888 2.3681 0.2225 0.2225 0.2225 0.2225 0.1072 0.1072 0.1072 2256x1 double 1.8179 0.4469 38x1 sparse 38x1 sparse	
jacob.m (Function)	<pre>constrviolation: [] GMM objective: 14.9008 MD R-squared: 0.22246 MD weighted R-squared: 0.10722 run time (minutes): 0.40021 EDU>> fx EDU>> rc_dc</pre>	sezw semcoef semd t theta1 theta2 theta2w theti	4x5 double 0 173.98 [0.2476;7.580 [0.2476;0.013 0.0132 0.2476 25 25 25 25x1 double -32.43 2.3730 13x1 double -1.5143 16.5980 4x5 double -1.5143 16.5980 13x1 double 1 4	-

Theta1 - Mean Effect

Mai	n	Roci	ilte			P	rice	1	-32.4374
		INC51	1113			D		2	-3.4939
						Br	and	3	0.7485
						Dur	nmies	4	-1.3989
								5	-1.7301
								6	2.3730
								7	0.1387
								8	-1.5570
		The	eta2 – In	teraction	Effect			9	-1.4858
								10	-0.2475
		Sigma	Income	Income?	Δαο	Child		11	-0.8883
		orgina	meome	mcomez	Age	CIIIIu		12	-0.0332
		1	2	3	4	5		13	-3.4607
Constant	1	0 3772	3 0888	0	1 1859	0		14	-1.1772
Detas	1	1.9490	16 5090	0 6500	1.1055	11 6245		15	0.0706
Price	2	1.8480	10.5980	-0.0590	0	11.0245		16	0.5026
Sugar	3	-0.0035	-0.1925	0	0.0296	0		17	1.8213
Mushv	4	0.0810	1.4684	0	-1.5143	> 0		18	-1.0325
J								19	-1.5984
								20	0.2314
								21	0.7887
								22	1.0814
								23	-1.6915

Carnegie Mellon University

-0.4042 -0.7128

24 25

Recap: Why do we need random coefficients?

• Avoid IIA Failure & Flexible Substitution Pattern:

Without random coefficient, homogeneous Logit model indicates that a consumer who substitutes away from a given product will tend to substitute toward other popular products (popularity measured by market shares), not to other similar products.

Heterogeneous Tastes (interacted with product features):

We can estimate the distribution of the individual taste \rightarrow Random coefficients allow individual i to have a specific substitution pattern that appeals to her.

Additional References

- Ackerberg, D., Benkard, L., Berry, S., and Pakes, A. (2007), "Econometric Tools for Analyzing Market Outcomes," in *Handbook of Econometrics* (eds: J. Heckman and E. Leamer), Ch. 63, Vol. 6A, Elsevier.
- Berry, S. (1994), "Estimating Discrete Choice Models of Product Differentiation," RAND Journal of Economics, 25, 242-262.
- Berry, S., Levinsohn, J., and Pakes, A. (1995), "Automobile Prices in Market Equilibrium," *Econometrica*, 63(4), 841-890.
- Berry, S., Linton, O., and Pakes, A., "Limit Theorems for Differentiated Product Demand Systems," *Review of Economic Studies*, 71, 613–654.
- Nevo, A. (1998), "A Research Assistant's Guide to Random Coefficients Discrete Choice Models of Demand," NBER Technical Working Paper 221, http://www.nber.org/papers/T0221. (Later published in *Journal of Economics* and Management Strategy, 2000, 9, 513-548.)
- Nevo, A. (2001), "Measuring Market Power in the Ready-to-Eat Cereal Industry," *Econometrica*, 69(2), 307-342.
- Petrin, A. (2002), "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, 110, 705-729.