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Abstract. This paper was motivated by the need to simultaneously address two competing 
policy objectives during the course of the COVID pandemic: namely, the public health 
objective, which required people to be less mobile, and the economic objective, which 
aimed to ensure that the economy was not adversely affected by the constraints imposed 
by the first objective. To realize these objectives, we developed a data-informed approach to 
model human mobility, health risk, and economic activity jointly. This approach computes 
equilibrium between epidemic models of public health and economic activity under policy 
interventions that could be used to change people’s mobility behavior. Our approach is dis-
tinctive in its capacity to assemble proprietary data sets from public and private sectors at 
the individual and the zip code levels, which heretofore had not been used together. These 
data enabled customization of the population-level epidemic models widely used in public 
health (e.g., the SIR model) with individual-level data traces of mobility behaviors for 
assessment of public health risks. The outputs of the proposed model enabled parameteri-
zation of economic choice models of individuals’ economic decision-making. Various pol-
icy interventions and their capacities to shift the equilibrium between economic activity 
and public health were investigated in this study. Whereas the data-informed joint model-
ing approach was developed and tested in the pandemic context, it is generalizable for the 
evaluation of any counterfactual policy interventions.
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1. Introduction
The pandemic (COVID-19) caused global havoc to 
both public health and the economy. From early 2020, 
governments adopted various policies in response to 
COVID-19 (Hale et al. 2020). For example, general pol-
icies included international travel bans, mask man-
dates, and stay-at-home requirements. These broad 
measures aimed to limit the spread of the virus with-
out focusing on specific sectors or populations. Tar-
geted policies were also implemented to address 
specific challenges. Specifically, supply-side policies, 
such as restrictions on internal movement and tar-
geted closures, were designed to control the spread of 
the virus within particular regions or industries (Birge 
et al. 2022). Demand-side policies, such as stimulus 
checks, aimed to bolster the economy and support 
those affected by the pandemic (Kim and Lee 2021). 
Although these policies had an impact on mitigating 

healthcare risks whereas supporting the economy, 
several challenges remained.

First, individuals’ health risks and their responses to 
pandemic policies are often heterogeneous. However, 
existing policy designs were largely homogeneous and 
did not account for individuals’ socioeconomic factors 
(e.g., income, age) or behavioral motivations. For in-
stance, among the 17 mainstream government policies 
documented in Hale et al. (2020), 16 were homogeneous 
in design; only 1 policy considered differentiating a spe-
cific socioeconomic group based on income support.

Second, existing pandemic policy designs focused 
mostly on reducing healthcare risk, with limited under-
standing of its continuing impact on individuals and the 
local economy. Besides, existing policies tend to take 
either a supply-side (e.g., targeted or nontargeted clo-
sures) or demand-side (e.g., economic subsidy) approach. 
However, all these critical factors interact in a complex 
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system. For example, individuals assess the health risks 
of a destination before deciding to visit. The health risk of 
a location depends on how many people have visited it 
in the past. The prevailing COVID-19 policy, the extent of 
compliance with the policy, socioeconomic factors, the 
economic preferences of individuals, and the types of 
places being visited all interact in complex ways. The 
underlying mechanism of this complex system has to 
be modeled prior to developing an understanding of 
how people respond to different policy designs. This 
can be highly challenging because it requires a deep 
understanding of how exactly individuals respond to 
the spread of COVID-19 (e.g., decisions to visit certain 
places versus stay at home) and the underlying social 
and economic drivers of such behaviors.

Third, there is a lack of understanding of how existing 
policies can alleviate social and economic inequality dur-
ing pandemics. Although our society as a whole was 
affected by the epidemic, the infection rate disparity 
among different socio-demographic groups is well docu-
mented (Chowkwanyun and Reed 2020, Garg et al. 2020, 
Hardy and Logan 2020, Pareek et al. 2020, Van Dorn et al. 
2020, Yancy 2020). Because human mobility is fundamen-
tal to the spread of infectious diseases (Balcan et al. 2010, 
Poletto et al. 2013, Courtemanche et al. 2021), one way to 
explain that disparity is to study the mobility pattern in 
different social groups under COVID-19. For example, 
Chang et al. (2021) found that disadvantaged groups 
were not able to reduce their mobility as sharply as privi-
leged groups, which might have contributed to the 
higher infection rate. However, what causes the difference in 
mobility patterns between different groups? What is the 
decision-making process that determines whether to stay at 
home or go out during an epidemic? What can policymakers do 
to reduce infection rates whereas supporting social welfare?

To answer these questions, we proposed a holistic 
model to jointly model healthcare risk, economic activ-
ity, and human mobility using state administrative 
data on COVID-19 infections along with two unique 
large-scale private sector data sets that capture 
individual-level mobility data and individual-level 
bank transaction data from a major financial institution. 
The hypothesis is that health risks and economic activ-
ity are crucial factors in mobility decisions and, conse-
quently, in the spread of the epidemic. With economic 
activity as a moderator, we are able to explain the differ-
ence in mobility patterns between different income 
groups. Based on an understanding of the interplay 
between human mobility, health risk, and economic 
activity, we are able to assess and recommend public 
policies to promote social welfare.

More specifically, we modeled this holistic process as 
three interactive components: (1) the effect of human 
mobility on health risk, (2) the effect of health risk and 
economic activity on human mobility, and (3) the 
equilibrium.

First, to capture the impact of human mobility on 
COVID-19 spread, we introduced an individual-level 
susceptible-infected-recovered model (individual SIR 
model) that maps individual human mobility and 
interactions with specific points-of-interest (POI) cate-
gories (e.g., restaurants, grocery stores, gas stations) to 
the spread of COVID-19. Prior research mostly used 
aggregated mobility data (Badr et al. 2020, Jia et al. 
2020, Lai et al. 2020), synthetic mobility data (Block 
et al. 2020, Duque et al. 2020), or pure mobility data 
without an embedded epidemiological model (Benzell 
et al. 2020, Block et al. 2020, Hsiang et al. 2020). In con-
trast, we build a dynamic network based on the SIR 
epidemiological model, using real-life mobile phone 
geo-location data (tracking more than 10 billion move-
ment records of 10 million unique individuals in 
Pennsylvania) as input and zip-code-level measures 
of COVID-19 daily cases as output.

The dynamic model we propose is among the first 
to incorporate individual-level movement trajectory into 
the simulation of the spread of an epidemic. It enables us 
to account for not only the general spread of COVID-19 
as measured by daily zip code–specific case numbers and 
death rates but also, more importantly, POI 
category–specific health risk as captured by the number, 
source, and risk of individual visitors being colocated. 
This data-driven approach allows us to predict the spread 
of COVID-19 more accurately, highlight locations that 
can be “super-spreaders” of COVID-19 in real time, and 
reveal the health risk disparities among different socio- 
demographic groups. Second, to estimate the impact of 
COVID-19 health risks on human mobility, we took an 
economic perspective in modeling individuals’ mobility 
choices. Specifically, we modeled a consumer’s choice to 
visit a place in person (e.g., shopping offline) or not (e.g., 
shopping online) as a function of health risk, economic 
constraints (e.g., income, travel distance, any economic 
subsidy such as delivery fees waivers, etc.) and other fac-
tors such as temporal effects (e.g., weekend versus week-
day). In addition, we focused primarily on individuals’ 
economic activity for this model because it was a major 
driver of consumer mobility during COVID-19 (Bonac-
corsi et al. 2020, de Palma et al. 2022). We validated this 
binary choice model with a unique large-scale credit card 
transaction data set from a major regional bank, contain-
ing detailed zip-code-level transaction information for 
Pennsylvania from February 2020 to May 2021, compris-
ing 12.6 million records and accounting for USD 840 mil-
lion in total spending per month.

Finally, a negative feedback loop of the mutual effects 
of COVID-19 spread and human activity: A decrease in 
infection rate will lead people into more in-store pur-
chasing activity and, in turn, increase the infection rate. 
The equilibrium established on the negative feedback 
loop enabled us to identify changes in infection rate 
and in-store purchase probability. Thus, we could 
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simulate various counterfactual policy interventions 
(e.g., distribution of delivery coupons, enforcement of 
mask mandates, or category-specific lockdowns) and 
evaluate the corresponding effectiveness by quantita-
tively changing factors in the equilibrium.

Our model demonstrated significantly higher perfor-
mance compared with a number of baselines. We tested 
our individual SIR model via out-of-sample prediction, 
and it outperformed the mobility-based SIR model lack-
ing individual mobility data by 21% and the baseline SIR 
model without any mobility data by 60% in predicting 
zip code–level COVID case numbers. Furthermore, our 
model-estimated industry-category–specific risk coeffi-
cients were shown to be highly consistent with the Risk 
Assessment Chart (Texas Medical Association 2020) 
from the Texas Medical Association (i.e., with a small 
Kendall Tau distance of 3=21 � 0:14 between the two).

We found from the individual SIR model that house-
hold size and age positively correlate with COVID-19 
transmission probability, whereas income negatively 
correlates with COVID-19 transmission probability. 
Interestingly, we did not find that low-income indivi-
duals visit locations that belong to industry categories 
of higher health risk; instead, we found that they tend 
to visit more crowded locations under the same indus-
try category than the general public. For example, both 
the high-income and low-income groups visit grocery 
stores, but the latter tend to visit those branches that 
have a higher density of colocated visitors, which con-
dition contributes to a higher health risk. This is likely 
because low-income groups have mobility constraints 
and, hence, might have limited location choices in the 
consideration set for economic activity. We also found 
that among the low-income group, more multigenera-
tional households contribute to higher infection rates.

The economic choice model showed that exposure risk 
of COVID and the average distance from a POI are signif-
icantly positively correlated with online purchase proba-
bility, whereas delivery fee and weekend effects are 
significantly negatively correlated with online purchase 
probability. In addition, our findings are consistent with 
prior literature demonstrating a significant and positive 
relationship between income level and online shopping 
probability (Farag et al. 2006, Bell and Song 2007).

By linking the mobility and economic choice mod-
els, we were able to find an equilibrium between 
health risk and human mobility. Moreover, the interac-
tion between the two models allowed us to test how 
such equilibrium would change under different pan-
demic policies. Specifically, we tested three counterfac-
tual settings: giving out delivery coupons, enforcing 
mask mandates, and announcing categorical lock-
downs. We found that giving out delivery coupons 
will reduce the infection rate and have greater effects 
on low-income groups. Interestingly, we also found 
that whereas mask mandates, in theory, will curb virus 

spread, loose enforcement may inadvertently increase 
the overall infection rate. In the categorical lockdown 
setting, we found that a specific lockdown in Pennsyl-
vania, encompassing restaurants, shopping malls, and 
grocery stores, led to a uniform reduction in infection 
rates across all zip codes, but its effectiveness was 
slightly diminished when taking into account a shift to 
online shopping.

Previous research mostly focused on mobility’s im-
pact on disease spread by building a prediction model 
of COVID-19 with case numbers (Putra and Mutamar 
2019, Cooper et al. 2020, Salgotra et al. 2020), or with 
aggregated mobility data (Kraemer et al. 2020, Nouvellet 
et al. 2021). Other researchers investigated the mobility 
changes in response to COVID-19 (Abu-Rayash and 
Dincer 2020, Warren and Skillman 2020). The novelty of 
the present work lies in the following three areas.

First, it is the first study to model epidemic spread-
ing and individual movement trajectories instead of 
relying on fitting aggregated data sets. The individual 
SIR Model was shown empirically to be more capable 
of predicting zip code–level COVID-19 cases than the 
population-level SIR model. It is also structurally 
more flexible, allowing the integration of more socio- 
demographic information and accounting for the den-
sity, path, and associated risk of colocated individuals 
in real time in estimating POI category–specific health-
care risk. Such an approach also enabled us to better 
capture the individual-level data generation process, 
thus enabling a deeper understanding of the underly-
ing mechanisms of the observed human mobility pat-
terns and associated health risks.

Second, the literature in this area has mostly treated 
human mobility as given or assumed to follow an exog-
enous stochastic process. Instead, we aimed to endogen-
ize human mobility decisions by taking an economic 
perspective in modeling human mobility behavior as a 
utility maximization process that is subject to both 
health risk and economic constraints. By doing so, we 
could further capture the individual-level data genera-
tion process of human mobility.

Third, to date, there is a lack of work that combines 
healthcare risk data, consumer-level economic con-
sumption data, and mobility data to capture the feed-
back loop between human mobility patterns and the 
spread of epidemics. In this study, we leveraged both 
epidemiological modeling and economic theories and 
established the equilibrium to understand the dynamic 
interactions between individual economic activity, 
mobility, and health risk in a holistic fashion.

2. Related Literature
Since its breakout in 2020, COVID-19 has become a hot 
topic in epidemiology, sociology, economics, machine 
learning, and data science research. Our work is closely 
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related to the literature on the prediction of COVID-19 
cases and the analysis of the economic and public 
health effects of COVID-19.

2.1. Epidemiology Models: Analysis and 
Prediction of COVID-19 Spread

In the mathematical modeling context, there is much 
research on different aspects of the spread of COVID- 
19 using the SIR model, which is one of our bases for 
COVID-19 case prediction in Section 4. In Cooper et al. 
(2020), the authors investigate the spread of the disease 
in different communities over time. After monitoring 
the diversity in significant parameters, the authors find 
that suitable early infection rates can manage COVID- 
19 under control. In Chen et al. (2020), the authors pro-
pose a time-dependent SIR model, the parameters of 
which can change over time, and claim that the model 
can be adapted to disease control policy entailing lock-
downs and mask mandates. In Calafiore et al. (2020), 
the authors take the initial number of susceptible peo-
ple and the unknown number of infected people into 
account in their model.

These papers show that the SIR model as an epidemi-
ology model offers great utility for the prediction of 
COVID-19 spread and that, as a framework incorporat-
ing various features, it has great potential. However, the 
literature is based on population-level mobility data, not 
on individual level (Goel and Sharma 2020, Paoluzzi 
et al. 2021). The lack of integration of mobility data on a 
more granular level has several shortcomings.

First, the predictions of epidemiology models with 
high-level mobility data lack power. The population 
mobility data used in this research (Calafiore et al. 2020, 
Cooper et al. 2020) usually investigate only an aggre-
gated transport flow from one geographical area (zip 
code or county) to another. That is, they do not take into 
account the latent variable of the socio-geographical 
background of individuals and their travel behaviors as 
influenced or determined by that background. As such, 
the prediction often overestimates the risk to people 
with lower travel frequency or in lower-risk areas and 
underestimates the risk to those who travel more fre-
quently and to higher-risk areas. Moreover, the predic-
tions of those models are often misleading. Because of 
the aggregated nature of population-level mobility data, 
research using it will inevitably treat mobility as a flow 
of population instead of a population of trajectories and 
thus will go on to attribute mobility to the wrong people, 
neglecting the path and associated risk of colocated indi-
viduals in real time, or omitting the order of a travel tra-
jectory. For these reasons, integrating individual travel 
trajectories could reinstate the validity and boost the 
accuracy of disease-spread prediction.

One possible limitation of the individual SIR model 
may come from its inherently higher computational 
requirements. This increased demand is attributed to 

the model’s finer granularity of data representation. 
Consequently, this characteristic may render the individual- 
based SIR model less suited to contexts where computa-
tional resources are constrained, such as in less developed 
regions or countries, or when real-time predictive capabili-
ties are needed.

2.2. Socioeconomic Impact of COVID-19
The COVID-19 pandemic, since its outbreak in late 
2019, has exerted significant socioeconomic impacts on 
a global scale (Nicola et al. 2020). These impacts have 
been diverse and far-reaching, affecting almost every 
aspect of society, from health and education to employ-
ment and the economy at large.

The economic impacts have been particularly devastat-
ing. The pandemic has led to an unprecedented global 
economic downturn, characterized by widespread busi-
ness closures and soaring unemployment rates (Coibion 
et al. 2020). The International Monetary Fund (IMF) 
reported a contraction of the global economy by an esti-
mated 3.5% in 2020 alone (International Monetary Fund 
2020). This contraction was not restricted to particular sec-
tors or regions; rather, it was a widespread phenomenon 
affecting both developed and developing economies. 
Despite attempts at economic recovery through various 
fiscal stimuli, numerous countries continue to face sub-
stantial challenges in restoring their economies to prepan-
demic levels (International Monetary Fund 2021).

Beyond the economic consequences, the pandemic 
has exacerbated social inequalities. COVID-19 has hit 
marginalized communities the hardest, intensifying 
pre-existing inequalities, such as education inequality 
(Van Dorn et al. 2020), gender inequality (Alon et al. 
2020), and racial inequality (Sood and Sood 2021). Parti-
cularly, the impact of the pandemic on low-income 
families has been devastating, as these families are less 
able to weather the financial and health shocks brought 
about by the crisis (Adams-Prassl et al. 2020). Dispari-
ties in access to resources, including healthcare and 
online education, have also become more evident dur-
ing the pandemic.

In addition, the pandemic has brought about a pro-
found change in people’s everyday lives. With lock-
downs and social distancing measures being enforced 
worldwide, individuals and communities have expe-
rienced substantial mental health effects. Rising levels 
of stress, anxiety, and depression have been reported 
across different populations, underscoring the severe 
psychological impacts of the pandemic (Xiong et al. 
2020).

One crucial area that the COVID-19 pandemic has 
dramatically affected is consumer behavior, specifically 
in the domain of retail and shopping; as a result of social 
distancing measures and lockdowns, traditional brick- 
and-mortar retail has been greatly impacted, leading to 
a significant shift toward e-commerce (Roggeveen and 
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Sethuraman 2020, Sayyida et al. 2021). The inability to 
shop in person, coupled with an increased amount of 
time spent at home, has accelerated the adoption of online 
shopping platforms across different demographics.

To comprehensively evaluate the transformation 
of consumer behavior under the influence of the 
COVID-19 pandemic, it is imperative that we critically 
examine the ramifications of this global crisis on the 
dynamics of online shopping. Koch et al. (2020) report 
that the economic situation can affect consumer’s moti-
vation in online shopping. Sharma and Jhamb (2020) use 
daily consumable sales data from an Indian e-commerce 
website as evidence to show that the losses and down-
shift caused by COVID-19 are not negligible. Nguyen 
et al. (2020) collect survey-based data from Vietnamese 
consumers to show that hedonic motivation prevails in 
online book purchasing. Overall, online shopping faces 
several fundamental obstacles in persuading more con-
sumers to embrace it. In Huang and Oppewal (2006), the 
authors show that delivery fee is not as important as 
travel time to the grocery store when deciding whether 
to purchase online. Specifically, 15 minutes in traveling 
time has a heavier weight than a delivery fee of £5. Le 
et al. (2022) established the connection between online 
shopping and travel demand. Shi et al. (2020) use an 
interview-based method in China to show that online 
consumers are more likely to have longer travel dis-
tances and that therefore the lockdown might not be as 
useful as policymakers had thought. An interesting 
related study (Mantin and Koo 2010) of the weekend 
effect on airline prices shows a strong effect in terms of 
the dispersion of airfares. This motivated us to take the 
weekend effect on online shopping into consideration.

2.3. Consumer Choice Between Online vs. 
In-Store Shopping

Our work is related to literature that has examined con-
sumers’ decision making between online and in-store 
shopping. For example, Mosteller et al. (2014) propose a 
model of consumers’ observation of the verbal fluency 
of online information’s effect on the decision to pur-
chase online. Also, in Schmid et al. (2016), the authors 
use a latent variable model to explain the online shop-
ping convenience and socioeconomic characteristics’ 

effect on the choice of online or in-store shopping. In 
Hsiao (2009), the authors conduct quantitative research 
to show that the value of delivery time for an online 
good is around $0.53 per day. In Etminani-Ghasrodashti 
and Hamidi (2020), research conducted in Iran shows 
that building environment, store attributes, and consu-
mers’ lifestyles are the main factors affecting consumers’ 
in-store purchasing choices.

However, consumer shopping behavior has changed 
significantly under COVID-19, for example, in the tran-
sition from offline to online shopping, avoidance of 
high-risk areas, and other aspects. Previous work in 
this area has not taken into account the interaction 
between consumer economic decisions and human 
mobility in the context of the pandemic. Notably, as 
higher-risk areas and merchant categories change over 
time, the utility of avoiding participation in such activ-
ity will vary.

3. Data and Description
3.1. Data
In this paper, we conducted analyses on a combination 
of five large unique data sets obtained from a variety of 
sources in the public and private sectors. We refer to 
them henceforth as bank data set, mobility data set, POI 
data set, case data set, and survey data set. We first intro-
duce each of them in this section. Then, in the next sec-
tion, we will discuss how we make the linkage among 
them.

3.1.1. Bank Data Set. We obtained bank data set 
(Table 1) from a major bank operating in 27 states in the 
United States. The data set includes consumer credit 
card spending information from a subsidiary of the 
bank. The data set is composed of transaction details, 
including transaction date, amount, type, means, and 
industry category.

The transaction date is described by the following 
three attributes: date of postage, date of completion, 
and date of transaction. The date of postage is the date 
on which the transaction gets posted in the banking 
system; the date of completion is the date that the trans-
action is completed and the bank wires money to the 
merchant; the date of the transaction is the date when 

Table 1. Variable Description of Bank Data Set

Variable name Variable description Mean
Standard 
deviation

TransDate Date of the transaction — —
TransAmt Amount of money in transaction 293.48 635.73
TransCate Industry-category of the transaction — —
TransMns Means of the transaction (online or offline) — —
Income Median income of consumer’s CBG 90,856 9,046
Dist Average distance to merchant 1.51 0.55
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the actual purchase happens. We selected the date of 
transaction, denoted as TransDate, for our purposes.

The transaction amount is the total amount of money 
transferred from the consumer to the merchant and is 
denoted as TransAmt.

The transaction type is used by the bank to identify 
and manage payments. The transaction types include 
Visa Authorization Adjustments, Case Authorization 
Adjustments, Returns, Sales, and others. We focused 
on sales data in our study.

The means of transaction, denoted as TransMns, 
is categorized into nine classes: mail/phone trans- 
action, electronic transaction, face-to-face transaction, 
and others. Because migration between online and off-
line transactions is a matter of interest in this paper, we 
aggregated the nine categories into two classes: online 
transactions and offline transactions. Each transaction 
record has an identifier for the means of transaction, 
enabling us to identify each transaction as offline or 
online. Each record of the transaction has an identifier 
for the means of transaction. Therefore, we can iden-
tify each transaction as offline or online.

The industry category, denoted as TransCate, is a 
classification of merchants. Identified by the Standard 
Industrial Classification (SIC) code, merchants are clas-
sified into more than 10,000 categories, ranging from 
grocery stores to airlines. It was of great importance to 
our research to learn what the consumer spent money 
on and how different the proportions of online transac-
tions were among the different industry categories.

For this study, our sample from the bank data set con-
tains detailed spending information from all consumers 
in Pennsylvania dating from February 2020 to May 
2021, with around 12.6 million individual records, $840 
million USD total spending per month, of which around 
90.0% number of records and total spending amount are 
identified as sales. 36.3% of the 12.6 million monthly 
transactions are online transactions, which accounts 
for 47.6% of the $840 million USD monthly total spend-
ing. Of the eight means of online transaction, channel- 
encrypted electronic commerce transaction is the most 
common way, contributing $260 million USD spending 
(65.0% of all online transactions) and 3.2 million records 
(71.6% of all online transactions) per month. By industry 
level, grocery stores, restaurants, and gas stations are 

the top three contributors, accounting for 12.0%, 10.8%, 
and 3.67% in total transaction amount, respectively.

Online spending changes over time and varies 
within industry categories, which will be discussed in 
Section 3.3.

3.1.2. Mobility Data Set. The mobility data set is a mobil-
ity information data set (Table 2) sourced from an inter-
national geo-location data provider. The data set is 
collected by a Software Development Kit (SDK), a mod-
ule on which mobile phone applications are built. 
When mobile phone users agree to the terms and condi-
tions of the application and start to use it, the location 
tracker embedded in the SDK will make a request to 
the mobile phone’s global positioning system (GPS) 
and send it to the data provider the user’ location at cer-
tain regular time intervals. The data provider’s SDK is 
available on both Android and iOS.

Each individual record in the mobility data set con-
tains a unique identifier for each mobile phone, which 
does not change over time. For simplicity, and given 
that the data are anonymous and advertiser ID is the 
only way to identify individuals, we recorded the 
same identifier as the records of the same person and 
recorded different identifiers as the records of differ-
ent people.

The mobility data set is packed into days, but there is 
no further timestamp stating the specific time when the 
record is tracked. Therefore, we conducted the epide-
miology analysis in 4 on a daily level.

The geolocation of the user, which is where the user 
is visiting, is represented in mobility data set by lati-
tude and longitude, and the error is under 10 meters.

We obtained mobility data set from January 2020 to 
November 2020, containing around 10 billion records 
in Pennsylvania and more than 300 billion records in 
the United States. For the purposes of this study, we 
focused on all individuals primarily residing in the 
state of Pennsylvania.

3.1.3. Other Data Sets. The POI data set is provided by 
SafeGraph, a global data provider. The data set con-
tains around 170,000 points of interest in Pennsylvania, 
with their location (latitude and longitude) and indus-
try (SIC code).

Table 2. Variable Description of Mobility Data Set

Variable category Level Variable name Variable description

Location Geographic Lat Latitude of recorded location
Geographic Lon Latitude of recorded location

Individual Person HomeAdr Home address of individual
Person IDFA Identifier for advertising

POI CBG PoiCbg CBG of the POI
Category PoiCate Industry-category of the POI
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We mapped each visit in mobility data set to points of 
interest in POI data set and discovered the industry cate-
gory each visit is for via the SIC code in POI data set. 
Figure 1 is an illustration of movement trajectory in the 
data set.

The case data set is a proprietary data set provided 
by Pennsylvania’s Department of Health. It contains 
every day’s case number in each zip code in Pennsylva-
nia, dating from May 2020 to May 2021.

Finally, the survey data set is from the COVID-19 
Trends and Impact Survey conducted by the CMU Del-
phi Research Group via a partnership with Facebook 
(Salomon et al. 2021). Respondents were questioned 
about COVID-like symptoms, their behavior (such as 
social withdrawal), mental health, and the economic 
and health effects of the pandemic. The reported mask- 
wearing level was of particular interest to us, as we 
incorporated the attributes into both the epidemic 
spread model and the economic choice model. The 
survey ran from April 6, 2020, to June 25, 2022, and 
generated about 40,000 to 50,000 monthly responses in 
Pennsylvania. The attributes in which we were most 
interested were the self-reported mask-wearing level 
and the perceived mask-wearing level.

3.2. Overview of Data Structures
To understand the spread of COVID-19 and infection 
factors, we engage in the use of the mobility data set 
and POI data set.1 These data sets are instrumental in 
the design of the Mobility Model, a predictive construct 

for COVID-19 transmission estimations. The Mobility 
Model was validated based on daily COVID-19 case 
numbers reported at the zip code level obtained via the 
case data set. Instead, we observed COVID-19 case 
numbers at the zip code level. Therefore, we modeled 
the mobility and infection processes at the individual 
level and then calibrated the model at the zip code level 
by aggregating the model-predicted probabilities for 
all individuals in a given zip code. We discuss further 
details of the Mobility Model in Section 4.

Meanwhile, in an effort to forecast consumer beha-
viors, we used the bank data set and survey data set. 
These data sets feed into the Economic Model, provid-
ing a dynamic representation of consumer activities 
and economic responses in the face of the pandemic. By 
synergizing the Mobility Model and the Economic 
Model, we constructed equilibria under counterfactual 
settings. We discuss the economic model and the equi-
librium in Sections 5 and 6, respectively.

In summary, we illustrate an overview of the data 
and analysis structure in Figure 2.

Although one major advantage of our work is its 
leveraging of a wide variety of unique data sets from 
both the public and private sectors, some data were 
recorded at different granularities than others. We 
provide the time granularity and level of observation 
of each data set in Table 3. In our main analysis, we 
opted to harmonize the analysis at the granularity of 
the day and zip code levels. The reason was manifold 
as detailed here.

Figure 1. (Color online) Movement Trajectories Overlay 

Note. Dots show records of three sample individuals in mobility data set on March 30, 2020.
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Daily granularity permits the analysis of trends and 
changes on a day-to-day basis, revealing patterns or 
anomalies that might be obscured at a coarser time res-
olution. In the context of a pandemic, where situations 
evolve rapidly, daily data can be vital in recognizing 
emerging trends or shifts in the progression of the dis-
ease, thereby allowing for more responsive policy deci-
sions and interventions.

The use of zip codes provides a balance between 
detail and privacy. It offers a localized perspective that 
is more precise than that of larger geographic units (like 
a city or state) but less so than individual addresses, thus 
preserving some level of privacy. This granularity can 
reveal localized trends and disparities, enabling targeted 
interventions in specific areas showing higher rates of 
infection, economic distress, or other indicators of inter-
est. Furthermore, incorporating data at the census block 
group (CBG) level would prove less effective and poten-
tially infeasible.

Besides, conducting research at the zip code level 
allows for a community-focused understanding of the 
situation. Zip codes can be representative of specific com-
munities or neighborhoods, each with distinct demographic 

and socioeconomic characteristics. Thus, using zip 
code–level data can facilitate understanding of how 
the pandemic affected different communities and can 
help to identify vulnerable groups and tailor interven-
tions to the unique needs of each community.

Our utilization of a variety of unique data sets offers 
several notable contributions, which we outline here.

First, to the best of our knowledge, this is the first 
effort to combine proprietary data sources across both 
the public and private sectors in a timely, meaningful, 
and privacy-friendly manner. In this sense, it offers a 
novel pathway for data-driven policymaking. Second, 
we develop a robust method of harmonizing heteroge-
neous data sources at different levels of granularity 
for optimal policy analysis. Third, our data sets are 
updated with high frequency. The incorporation of 
such data provides a crucial real-time dimension to 
our analysis. This allows for the generation of timely pol-
icy recommendations, thus facilitating rapid responses 
to fast-changing situations. Therefore, we are able to 
provide relevant and timely advice to policymakers, 
potentially enabling more effective interventions during 
critical periods of a public health crisis.

Together, these contributions reflect our commitment 
to integrating various data sets to deliver nuanced analy-
sis and timely advice.

3.3. Model-Free Analysis
In the bank data set, COVID-19 has shown a great 
impact on the consumption structure of different 
income groups in Pennsylvania.

As shown in Figure 3, the weekly total spending 
dropped by almost half in late March and early April 

Figure 2. Overview of Data and Analysis Structure 

Table 3. Granularity of Data Sets

Data set Time granularity
Level of 

observation

Mobility data set Minute Individual
POI data set — POI
Bank data set Day CBG
Survey data set Day Zip code
Case data set Day Zip code
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2020, when COVID-19 began to transmit massively 
within the United States. In the meantime, the online 
spending percentage of the total spending increased 
from 45% to more than 55%.

In some industry categories, the story confirms the 
previous trend. Take grocery stores as an example. In 
Figure 4, people in zip codes that have median income 
in the top 25% bracket are recognized as the “top 
income” group. People in zip codes that have median 
income in the bottom 25% bracket are recognized as the 
“bottom income” group. In both groups, the solid line 
represents offline spending, and the dashed counter-
part represents online spending.

In Figure 4, we see a doubling in online grocery 
spending percentage after April 2020, when COVID- 
19 hit the United States. This phenomenon of spend-
ing migration from offline to online will be discussed 
in detail in Section 5. Figure 4 also illustrates the rela-
tive spending (Spending=Spending in Feb: 2020) trend 
for groceries. Although the relative spending with off-
line means maintains a stable level, the online relative 
spending almost doubles in the bottom income group 

and triples in the top income group. This not only ech-
oes the online migration above but also raises the ques-
tion of why it has a larger effect on the top-income 
group than the bottom-income group. This question 
will be explored in detail in Section 5.

However, in some industry categories, such as video 
games, the trend is different. In Figure 5, the spending 
on video games increased at the beginning of the pan-
demic (April 2020) and maintained itself at a stable 
level thereafter. This was possibly because video games 
are mostly purchased online, similar to the online 
spending trend (the bottom line in March 2020) in 
Figure 3. Another thing to note here is that the bottom 
income group has more increase in relative spending 
than the top income group during the pandemic, which 
is not seen in any other (70) industry categories in the 
bank data set.

A clearer view of this behavioral contrast between 
different income groups during the pandemic is pro-
vided by Figure 6. According to Risk Assessment 
Chart (Texas Medical Association 2020), we classified 
industry categories in bank data set into three 

Figure 3. (Color online) Spending Trend in Online and Offline Transaction Means from February 2020 to June 2021 in 
Pennsylvania 

Figure 4. (Color online) Spending Trend in Grocery Store Category with Different Income Groups and Transaction Means from 
February 2020 to May 2021 
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risk levels: high risk, moderate risk, and low risk. 
Solid lines in the top subfigure of 6 show the relative 
spending (Spending=Spending in Feb: 2020) of bot-
tom income group, and the dashed lines show the rel-
ative spending of top income group, on three risk 
levels, respectively.

Meanwhile, both income groups show a drastic de-
crease in both moderate- and high-risk spending and 

a steady increase in low-risk spending; the degree of 
change is different.

The bottom subfigure of Figure 6 shows the ratio 
of relative change in spending (Relative spending of 
top income group=Relative spending of bottom income 
group). A higher ratio means spending change happens 
more in the top income group than in the bottom 
income group. It was found that the top income group 

Figure 5. (Color online) Spending Trend in Video Game Category with Different Income Groups from February 2020 to May 
2021 

Figure 6. (Color online) Spending in Different Risk Levels, Conditioning on Income 
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increased their spending more than the bottom income 
group in low-risk activity whereas decreasing their 
spending more than the bottom income group in high- 
risk activity.

This phenomenon is also echoed by evidence from 
human mobility patterns revealed in mobility data set. In 
Figure 7, the high-income group (the bottom line in 
March 2020) relative to the low-income group (the top 
line in March 2020) exhibits a much more severe de-
crease in their visits to clothing stores and restaurants 
during the early months of COVID-19 and then a 
quicker recovery in mobility later in the year (i.e., after 
the reopening in the summer of 2020).

This evidence shows the behavioral differences be-
tween the two income groups. The bottom income 
group inevitably was exposed to greater health risk 
because of more offline spending on high-risk activities 
and more traveling overall, which raises the questions 
of what causes the difference and how the gap might 
be closed.

4. How Does Human Mobility Affect the 
Spread of COVID-19?

Existing epidemiological research mostly focuses on 
modeling the relationship between people’s mobility 
pattern and their health risk from an aggregate level 
(e.g., country or state level). Scientists often have used 
aggregate-level mobility data to simulate the recent epi-
demic and estimate the parameters of the disease (Cala-
fiore et al. 2020, Cooper et al. 2020).

Modeling the spread of an epidemic from an aggre-
gate level has a few drawbacks. First, although it aims 

to fit the overall data distribution from a population 
level, such a model cannot fully capture the data gener-
ation process from an individual perspective. Hence, it 
may lead to limited predictive power, especially given 
the strong heterogeneity in individual human behavior 
under different counterfactual scenarios. Second, mobil-
ity behaviors are, to a large extent, individual decisions. 
Models that focus solely on aggregated mobility trends 
present several drawbacks, limiting their effectiveness 
in understanding the underlying dynamics. Besides the 
limited interpretability, as they cannot explain what 
drives the observed changes, aggregated-level epidemi-
ological models also suffer from a lack of precision 
and flexibility. Individual-level analysis, on the other 
hand, offers the opportunity to account for the heteroge-
neity in population behaviors, enabling more accurate 
predictions and targeted interventions. Furthermore, 
individual-level models can better capture the nuances 
in mobility patterns and their impact on disease trans-
mission, thus providing valuable insights for policy-
makers and public health officials.

Facilitated by the unique and rich set of mobility data 
available at the individual level, we were able to develop 
a novel structural model of COVID-19 transmission that 
can help assess health risk (i.e., Susceptible, Infected, and 
Recovered probabilities) at the individual level.

4.1. Individual-Level SIR Model
The SIR model of disease spread is a three-stage differ-
ential equation model. It classifies people into three 
groups: susceptible, infected, and recovered. The sus-
ceptible group is defined as people who have not been 

Figure 7. (Color online) Spending in Different Risk Levels, Conditioning on Income 
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infected, the infected group as those who have been 
infected and have not recovered, and the recovered 
group as those who have been infected but recovered.

The independent variable in the SIR model is time t, 
which is usually measured in days. On day t, the num-
ber of individuals in groups is S(t), I(t), and R(t), respec-
tively. Similarly, the fraction of individuals in groups is 
s(t) � S(t)=N, i(t) � I(t)=N, r(t) � R(t)=N, where N is the 
whole population. Note that s(t) + i(t) + r(t) � 1 for all t.

The main simplifications of the SIR model are that no 
immigration or birth is taken into account, no second- 
time infection is considered, no person is immune to 
the disease unless they are infected once, and the rate 
of change in S(t), the number of susceptibles, depends 
only on S(t), I(t).

An important assumption the SIR model makes is 
that the rate of change in S(t), dS(t)=dt, is dependent 
only on the interaction between susceptible and in-
fected people and that in particular, each infected per-
son has b contacts per day with other people. Because 
the infected people do not meet only susceptible people, 
the SIR model also assumes that the population is 
mixed homogeneously. Therefore, the susceptible equa-
tion is dS(t)=dt ��bs(t)I(t).

However, the homogeneous mixing assumption is 
not true in reality. For example, large apartment build-
ings or multigenerational homes may have people in 
the same group living together. Also, visiting low-risk 
areas will incur exposure to fewer infected people than 
will visiting high-risk areas. Furthermore, a person may 
travel significantly more than other people because of 
various reasons, which can be evidenced in Figure 8
and Table 4. Socio-demographic differences are not 
taken into account in the original SIR model either.

To tackle the weakness of the SIR model, we propose 
the individual SIR model. We considered the spread of 

the disease, COVID-19 in this case, in a dynamic man-
ner and took into account individual mobility and 
socio-demographic backgrounds.

At t� 0, each person j ∈ J, where J is the total popula-
tion, gets assigned a probability of being in one of the 
three stages p(0)Sj

, p(0)Ij
, p(0)Rj

. Note that p(t)Sj
+ p(t)Ij

+ p(t)Rj
� 1 

for all t.
A person is exposed to COVID-19 by visiting POIs 

and contacting infected people in those POIs. We de-
note the transition probability between two stages as 
p (t)

S�>Ij 
and p (t)

I�>Rj
. Although there are more transitions, 

for example, R� > S, according to the assumption the 
SIR model makes, the probabilities of transitions apart 
from S� > I and I� > R are zero.

Figure 9 shows this transition of stage, and the transi-
tion matrix for any individual is
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The probability of infection, PS�>I, is dependent on the 
exposure level of COVID-19, which can be impacted by 
various factors, including age, the number of people 
residing in the same household, the number of infected 
people visited the same POI within the same day, the 
type of the POI, and so on.

An individual j on the day t is observed to have visits 
to a (repeatable) list of POIs (O1, O2, : : : , On). Each POI 
in the list has an industry category preassigned to it by 
SIC code, denoted as ci. For each POI c on day t, there is 
a set of people Jc visiting it. Then, for individual j, the 
risk of visiting POI O1 on day t is proportion to the 

Figure 8. (Color online) Number of People with a Certain Number of Recorded Visits to POIs per Month in Mobility Data Set 
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expected number of infected people that also visit O1 
on day t.

The expected number of infected people that also 
visit O1 on day t is

N(t)1 �
X

j∈J1

ρO1
p(t)Ij

, (2) 

where ρO1 
is the percentage of not wearing masks in 

the county that the POI O1 belongs to.
The probability of infection, taking industry cate-

gory and socio-demographic heterogeneity into ac-
count, is

p1 � (β2Cat1 + β3Age + β4LgInc)ρ1N(t)1 , (3) 

where Cat is the dummy variable for the industry cate-
gory of the POI, Age is the age of the individual, LgInc is 
the (log) household income of the individual, and ρ1 is 
the percentage of not wearing masks in the county that 
the individual j is from.

The individual also has an unobserved infection 
event at home, and the probability of infection is

punob � β1Nhh, (4) 

where Nhh is the household size.
If we assume each event of potential infection is inde-

pendent, the probability of infection on day t is

P (t)
S�>Ij

� 1� (1� punob)
Yn

i�1
(1� pi) (5) 

� 1� (1� β1Nhh)
Yn

i�1

"

1� (β2Cat1
+ β3Age

+ β4Inc)ρ1

X

j∈Ji

ρO1
p(t)Ij

#

: (6) 

The transition probability from infected to recovered is

P (t)
I�>Rj

� 1=δI, (7) 

where δI is the expected days it takes to recover from 
COVID-19. As in Buckee et al. (2020), δI � 4.

4.2. Empirical Analysis
The mobility data set is an anonymous data set and does 
not contain demographic information such as age or 
income. Therefore, we augmented the mobility data set 
with a synthetic population data set, namely the FRED 
(Framework for Reconstructing Epidemic Dynamics) 
synthetic population data set (Grefenstette et al. 2013).2
The synthetic population data set had been created 
using an iterative approach to U.S. Census Data. The 
synthetic population data set contains a population with 
characteristics sampled from distributions of those in 
the census data, that is, each individual in the synthetic 
population data set has a home address, age, income, 
household size, and so on, assigned, and the aggregated 
statistics of the characteristics are close to the census 
data, visualized in Figure 10.

To map the synthetic population data set onto the 
mobility data set, we identified the most frequently vis-
ited place as the home address of an individual and uni-
formly sampled within 100 meters from the synthetic 
population data set. As the demographic distribution of 
the mobility data set is unknown, we validated it with 
several different nonuniform distributions in Appendix A
and thereby confirm the robustness of this method.

To estimate the individual SIR model, we simulated 
the spread of COVID-19, predicted the case numbers of 
each county in Pennsylvania, and calculated the root 
mean square error (RMSE) of the predicted case num-
ber with respect to the ground truth number in the case 
data set as an objective function:

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T
XT

t�1

�
N(t)cases � N̂ (t)cases

�2

v
u
u
t : (8) 

We deployed a stochastic gradient descent (SGD) 
method to estimate the model. To be specific, we used 
the adaptive moment estimation (Adam) optimizer to 
train the model with an initial learning rate of 1 e-3. 
We also adopted the early-stopping technique to 
avoid overfitting. The parameter estimations for the 
individual SIR model are in Table 5.

Table 4. Inter–Zip Code Travel Frequency in Mobility Data 
Set

Top 
income

Middle 
income

Bottom 
income

Top income 53.8% 22.7% 23.5%
Middle income 33.8% 30.5% 35.8%
Bottom income 28.1% 26.4% 44.4%

Notes. The number in row 1, column 2 is the proportion of travels 
from top-income zip codes to middle-income zip codes in all travels 
from top zip codes. Top-income zip codes are those in which the 
median income is in the top 25% of U.S. zip codes; bottom-income zip 
codes are those in which the median income is in the bottom 25% of 
U.S. zip codes, whereas middle-income zip codes are those in 
between.

Figure 9. Stage Transition in Individual SIR Model 
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The model was validated by predicting the case 
number in Pennsylvania in both an out-of-sample fit 
and a full fit. We also compared our model with the 
classic SIR model without mobility data, as shown in 
Figure 11. We used the whole data set as training data 
and tested it on the same data set in full fit, whereas in 
the out-of-sample fit, we trained the model only with 
data before October 11, 2020 and then tested it on 
the whole data set until October 29, 2020. Therefore, the 
out-of-sample fit was an evaluation of the ability of the 
model using mobility data to predict the case number 
accurately in an unseen time period. The experiment 
documented a 40% drop in RMSE in out-of-sample 
tests after integrating individual mobility information.

The out-of-sample test showed that our model fits 
the pandemic case well. The negative sign of β4 shows 
that the risk of exposure is negatively correlated with 
household income and that the positive sign of β1 and 
β3 shows that the risk of exposure is positively corre-
lated to the size of household and age, holding all other 
variables constant.

Meanwhile, Figure 12 shows the estimated category 
risk compared with the Risk Assessment Chart (Texas 
Medical Association 2020). The Kendall Tau distance 

between the risk ranking of our estimation and that of 
the Risk Assessment Chart was 3=21 � 0:14, indicative 
of high consistency.

5. How Does COVID-19 Risk Affect Shop-
ping Behavior?

We considered a binary choice model in which the con-
sumer chooses to purchase an item of category c via 
online or offline transaction means by considering the 
potential risk of exposure at the target offline merchant 
r if choosing to shop offline, the delivery fee f if choos-
ing to shop online, the travel distance from home to the 
merchant d, whether the day is a weekend w, and the 
income s of the consumer.

The potential infection risk of an offline purchase is 
dependent on three factors, as discussed here.

An inherently more dangerous industry category can 
render the consumer more exposed to COVID-19. For 
example, dining at a restaurant is much more risky than 
filling a car up at a gas station. The risk factor of the indus-
try category is estimated via the individual SIR model 
and is denoted as ρc, where c is the industry category.

The expected number of people visiting a location is 
also an important factor in evaluating risk. To estimate 
it, we used the daily average number of people who 
made offline purchases at merchants of the same cate-
gory c in the same zip code i in the previous week:

N̂(t)c, i �
1
7
Xt�1

d�t�7
N(d)c, i : (9) 

Table 5. Parameter Estimation of Individual SIR Model

Parameters Estimate

β1 (size of household) 0.0152
β3 (age) 0.0075
β4 (log monthly income) �0.102

Figure 10. (Color online) Visualization of FRED Synthetic Population Data of Allegheny County, Pennsylvania 

Notes. Each dot represents an individual on the map. Deeper color represents higher population density.
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The last factor is the infection rate of the zip code. The 
infection rate is defined by

δ(t)i �
N(t)I, i

N(t)i
, (10) 

where N(t)I, i is the number of reported infected people in 
zip code i, and N(t)i is the total number of people in zip 
code i.

Hence, the potential infection risk of an offline pur-
chase at merchant of category c and zip code i and day t 
is

r(t)c, i � ρ1 × ρ2 × ρc × N̂ (t)c, i × δ
(t)
i : (11) 

In Equation (11), N̂ (t)c, iδ
(t)
i is the estimated number of 

infected people, and ρc is a modifier for industry cate-
gory of the merchant, which is consistent with Equation 
(6) in Section 4; ρ1 is the percentage of not wearing 

masks in the county that the offline merchant belongs 
to, whereas ρ2 is the percentage of not wearing masks 
in the county of the customer. Both variables are from 
the survey data set.

The delivery fee is the main reason consumers hesitate 
to shop online (Huang and Oppewal 2006, Bauerová 
2018, Dias et al. 2021); therefore, we integrated “delivery 
fee” as a variable in the behavior model. We assumed 
that the delivery fee is proportional to the product of the 
transaction amount and the expected travel distance. 
Although many of the grocery and restaurant delivery 
platforms offer a monthly subscription and flat delivery 
fee promotions, the service fee and default tips are usu-
ally proportional to the total transaction amount and the 
expected travel distance.

The exact travel distance was unobserved because 
the consumer j’s home address or the address of the 
merchant was not directly observed. Therefore, we 
made the assumption that the merchants of the same 
industry category c and zip code i are distributed 

Figure 11. (Color online) COVID-19 Case Number Out-of-Sample Prediction Test 

Notes. Two lines represent the predicted and reported case number. We fit the model with mobility data from October 1 to October 11, 2020, and 
predict the case numbers from October 1 to October 29, 2020, in the whole of Pennsylvania and its three most populous counties: Philadelphia, 
Allegheny, and Montgomery.
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randomly in a square. This is a data limitation that could 
be potentially addressed in future studies through more 
precise data collection methods or advanced estimation 
techniques, where the home address and merchant 
address are both known in a transaction record.

The consumer’s home address is also randomly dis-
tributed in the same square. We calculate the expected 
distance to the closest merchant as d:

d(t)i ≈

ffiffiffiffi
Si
√

ffiffiffiffiffiffiffiffi
Nc, i
√ ; (12) 

Si is the area of the zip code i, and Nc, i is the number of 
merchant of category c in zip code i. An important 
assumption we made is that the consumer will visit the 
merchant in the same zip code. Thus, we can use the 
median household income of the zip code on the trans-
action record as a proxy variable for the income of the 
consumer. One argument for this approximation is that 
although consumers will inevitably travel to other zip 
codes, they will travel to the zip code that has a similar 
income level more often, as shown in Table 4. There-
fore, using the income of the merchant’s zip code is a 
reasonable proxy for the income of the consumer’s 
income.

The linear probability model is

Poffline � P(y � 1 |x) � βconst + βriskr + βdeliv f
+ βdistd + βamta + βincs, (13) 

where y� 1 if and only if the consumer chooses to pur-
chase offline.

The estimation of the model is on bank data set, using 
data in the top eight industry categories (in total transac-
tion amount) from April 2020 to October 2020. Industry 
categories that are offline only are ignored, for example, 
gas stations. We report the estimation result in Table 6.

6. Equilibria and Counterfactual Analyses
To reveal the effect of COVID-19 policies on the over-
all risk of COVID-19 and the economy by conducting 
counterfactual simulations, we first establish equilib-
ria from the mobility model and the behavior model.

The equilibrium underlies the choice process of 
online purchase. When choosing to make a purchase 
of the same good via online or offline transaction 
means, the consumer would consider several factors 
discussed in Section 5. The negative feedback loop is 
as follows:

Table 6. Parameter Estimation of Choice Model

Parameters Estimate Std. error

βrisk �6:13 × 10�3*** 1:46 × 10�3

βdeliv 9:64 × 10�4*** 1:86 × 10�4

βdist �2:83 × 10�2*** 2:04 × 10�3

βamt 7:37 × 10�3*** 2:85 × 10�3

βinc �2:36 × 10�6*** 1:46 × 10�8

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Figure 12. (Color online) Categorical Risk Validation 

Notes. Left bars are the estimated category risk; right bars are the category risk according to the Texas Medical Association (2020) Risk Assess-
ment Chart. The line shows the correct ranking pair, whereas the red line shows the wrong ranking pair. The Kendall Tau distance between two 
arrangements of risk levels is 3=21 � 0:14.
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Consumers are more willing to purchase offline (for 
some reason) → there will be more people in the offline 
places → the risk of exposure to COVID-19 goes up →
consumers are less willing to purchase offline.

The equilibrium is characterized by the optimization 
equation:

min
poffline

δinfect(poffline; r, f , d, w, s, c)

s:t: poffline > 0, poffline < 1

poffline � g(δinfect):

In the equilibrium, we use the infection rate of a zip 
code δinfect and the probability of consumers going off-
line poffline as the two economic variables.

In the individual SIR model, the relationship between 
δinfect and poffline is controlled by the expected number of 
infected people at POIs 

P
j∈Ji

p(t)Ij 
in Equation (6):

δ(t+1)
infect � (1� δ

(t)
infect)P

(t)
S�>Ij

� δ(t)infectP
(t)

I�>Rj
(14) 

� C1P (t)
S�>Ij
+C2 (15) 

� C1

"

1� (1� β1Nhh)
Yn

i�1

"

1� (β2Cat1
+ β3Age

+ β4Inc)
X

j∈Ji

p(t)Ij

##

+C2

(16) 

≈ C1

"

β1Nhh+
Xn

i�1
(β2Cat1

+ β3Age+ β4Inc)

#
X

j∈Ji

p(t)Ij

+C2 (17) 

� C∗1p(t)offline +C∗2: (18) 

This equation has shown the quasi-linear relation 
between δinfect and poffline. Equation (16), where C1 and 
C2 are constants, holds because we treat δ(t)infect as a con-
stant (we cannot change the past). The approximation 
in 18 is made for the fact that every single event of 
infection only has a probability that is significantly 
smaller than one. The relation between δinfect and poffline, 
the infection curve, is illustrated in Figure 13(a).

Conversely, in the consumer behavior model dis-
cussed in Section 5, the customer will have less chance 
to make purchases offline in fear of infection.

In Equation (13), we have

poffline � βconst + βriskr + βdeliv f + βdistd + βweekndw

+ βincs +
X

c∈C\c0
βcc (19) 

� C2 + βriskr (20) 
� C2 + βriskρN̂δinfect (21) 
� C1δinfect + C2: (22) 

Because βrisk < 0, N̂ > 0, ρ > 0, C2 < 0. Figure 13(b) shows 
the behavior curve.

The intersection of the infection curve and the behav-
ior curve is the equilibrium point and is also where the 
reality is achieved at day t. Policymakers can change 
variables in the feedback loop and shift the infection or 
behavior curve to achieve a better balance between the 
economy and public health risk.

6.1. Would Delivery Fee Coupons Help the Poor?
The delivery fee can be a major factor preventing peo-
ple from using the online purchasing channel (Dias 
et al. 2021). By distributing delivery coupons, the be-
havior curve will shift left because people will be more 

Figure 13. Infection and Behavior Curve 

Notes. (a) The infection curve. (b) The behavior curve. Both shown as linear functions for simplicity.
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willing to purchase online under the same infection 
rate. As indicated in Figure 14, the left shift of the 
behavior curve will cause the equilibrium point to shift 
left and down, which means that both the probability 
of making an offline purchase and the infection rate go 
down at the same time.

Furthermore, although we did not observe people 
from low-income zip codes visit POIs of inherently 
more dangerous categories, we did observe they have a 
more limited choice of POIs to visit. Thus, the POIs 
become more crowded, which is reflected in 

P
j∈Ji

p(t)Ij
. 

Having a greater 
P

j∈Ji
p(t)Ij 

means having a more gentle 
slope of the infection curve, as shown (exaggeratedly) 
in Figure 15. Even if delivery coupons are given out in 
the same amount, the poor will benefit more from it.

In our simulation, giving out delivery coupons for 
every one dollar’s good (consumers do not have to pay 
for the delivery fee for one dollar’s good) will decrease 
(immediate) infection rate of the general population by 
7 × 10�6, which accounts for 90 people per day in April 
2020 in Pennsylvania. Meanwhile, giving out delivery 
coupons for every one dollar’s good to people living in 
the lower 25% income zip code will decrease (immedi-
ate) infection rate by 9 × 10�6, which accounts for 115 
people in Pennsylvania, as in Table 7.

The long-term effect of a decreased infection rate is 
compounded over time; giving out delivery coupons 
can be much more beneficial than we estimated. We 
suggest that the government distribute delivery cou-
pons, especially to the lower-income districts.

6.2. Is the Mask Mandate Effective?
Mask mandate is a policy of significance during the pan-
demic. By enforcing the mask mandate, the industry- 
category risk will go down. Thus, the infection will be 

less likely to happen with the same number of visits, and 
people will worry less about the potential danger of 
exposure when shopping offline.

As in Figure 16, the infection curve will rotate coun-
terclockwise, and the behavior curve will rotate coun-
terclockwise as well. In the experiment, we applied a 
flat discount to each industry-category risk as the proxy 
of the mask mandate, and we found that, although the 
mask mandate can reduce the infections per visit (by 
definition), the incentive of the mask mandate for peo-
ple to do more in-store purchasing can offset this effect. 
To be specific, without any changes in other variables, 
if the percentage of those not wearing a mask is 
reduced by half, there will be an estimated 5.3% drop 
in COVID-19 infections in Pennsylvania but a 12.4% 
increase in offline shopping as well.

However, as we will point out, this is not always the 
case.

Figure 17 illustrates this phenomenon. Initially, the 
absence of a mask mandate policy is depicted by the 
dotted curves, representing the behavior and infection 
rates, respectively. In this scenario, people estimate a 
higher risk and therefore prefer online shopping, mini-
mizing the potential for infections.

As Intervention I is implemented, denoted by the 
dashed curves, a stricter mask mandate policy leads to 
a marked-down estimated risk. This effect influences 

Table 7. Estimated Infection Rate Decrease for Different 
Income Groups with Delivery Coupon

Overall Top 25% income Bottom 25% income

7:03 × 10�6 5:28 × 10�6 9:45 × 10�6

Figure 14. (Color online) Delivery Fee Coupon Helps 

Note. Dashed line: behavior curve before the intervention; solid line 
with negative slope: behavior curve after the intervention; solid line 
with positive slope: infection curve.

Figure 15. (Color online) Delivery Fee Coupon Helps 
Differently 

Notes. Dashed line: behavior curve before intervention; solid line with 
negative slope: behavior curve after intervention; top line with positive 
slope: infection curve of high-income group; bottom line with positive 
slope: infection curve of low-income group. The change in the infection 
rate of the low-income group is greater than that of the high-income 
group.
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individuals to shop offline more frequently. Interest-
ingly, this increase in offline shopping does not corre-
spond to a decrease in infections. Rather, the opposite 
happens. Because of the increased public exposure, 
even with a stricter mask mandate, there is an unex-
pected rise in infections. This is a manifestation of the 
“risk compensation” effect, whereby perceived safety 
measures can lead to riskier behavior.

As illustrated by the solid curves, Intervention II 
represents a further tightening of the mask mandate. In 
this case, the protection provided by the mask mandate 
outpaces the number of people venturing into public 
spaces, resulting in a decline in infection rates. People 
still feel safe enough to continue their offline shopping, 
but the strengthened mask mandate effectively curbs 
the virus spread, proving that a balance can be achieved 
between safety measures and maintaining a degree of 
normalcy in daily activities.

Although in the real-life setting, we observed infection 
rate reductions only under a tighter mask mandate pol-
icy, in essence, these hypothetical interventions elucidate 
the nuanced relationship between public health policy, 
individual behavior, and infection rates. The effective-
ness of policies may not always align with initial expec-
tations because of adaptive changes in human behavior, 
which underlines the importance of ongoing evaluation 
and adjustment of policies as they are implemented.

6.3. Inequality in Categorical Lockdown Effect
Lockdown of POIs of certain categories has been a 
widely used policy in the past two years (Abu-Rayash 
and Dincer 2020, Badr et al. 2020, Kraemer et al. 2020, 
Chang et al. 2021). The main aim of the lockdown, espe-
cially in the high-risk category, for example, restaurants, 
movie theaters, and so on, is to block the critical path in 
the disease spread trajectory. The effectiveness of this 
treatment has been analyzed in Le et al. (2022) and 
Chang et al. (2021). However, as discussed previously, 
the lack of individual-level mobility data and, more 
importantly, the lack of any substitute for the loss of off-
line activity are the main shortcomings of such studies.

In an attempt to address these issues, we conducted 
two counterfactual tests. First, we simulated the lock-
down effect solely with the individual SIR model. 
Using mobility data set during February 2020, we block 
certain categories of POIs in the travel trajectories and 
calculate the risk of infection, with the coefficients esti-
mated in the original model, ignoring the blocked way-
points as shown in Equation (24):

P (t)
S�>Ij

� 1� (1� punob)
Yn

i�1
(1� pi) (23) 

� 1� (1� β1Nhh)
Yn

i�1

"

1� (β2Cat1
+ β3Age

+ β4Inc)ρ1

X

j∈Ji

ρO1\Oignore
p(t)Ij

#

, (24) 

where Oignore is the set of the ignored waypoints in the 
trajectories.

We tested a complete lockdown scenario on three 
different categories: restaurants, department stores/ 
shopping malls, and grocery stores. We found that the 
total infection rate decreased in Pennsylvania. With the 
cutoff of the crucial disease-spreading path, the infection 
rate became evener across all zip codes in Pennsylvania.

In a more elaborate attempt, we took into account 
customers’ behavior in opting for online shopping after 
the offline alternative was forbidden by the lockdown 
policy. We used the coefficients estimated in the previ-
ous section with the mobility data set and bank data set 

Figure 16. (Color online) Movement of Equilibrium After the 
Intervention 

Figure 17. (Color online) Equilibrium Exhibits a Right-Then- 
Left Shift as Depicted in the Graph 

Figure 18. (Color online) Lockdown Intervention 
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from February 2020. The experiment revealed a smaller 
total infection rate reduction than in the pure epidemio-
logical setting. The lockdown policy was less effective, 
mainly because of customers having not completely 
avoided the blocked categories, as shown in Figure 18. 
We estimated a 33.8% infection rate reduction for the 
top 25% income zip code and a 25.8% drop for the bot-
tom 25% income zip code in the event that the top three 
categories (grocery stores, restaurants, and department 
stores) were locked down, as in Table 8.

7. Discussion and Conclusion
We discussed and proposed herein a holistic model for 
joint modeling of human mobility, health risk, and eco-
nomic activity on two unique large-scale data sets. We 
broke down the model into three parts.

First, we introduced a fine-grained individual 
susceptible-infected-recovered model (Individual SIR 
Model) to a large GPS location tracking data set to esti-
mate the impact of human mobility on the spread of 
COVID-19. We found that household size and an indi-
vidual’s age had a positive correlation with COVID-19 
spread, whereas income had a negative correlation. 
Second, we proposed a binary choice model on a large 
credit card data set to capture the mobility response to 
COVID-19. We found that delivery fee and weekend 
effects had a significantly negative impact on online pur-
chase probability, whereas exposure risk of COVID-19, 
average distance from POI, and income level had a sig-
nificantly positive impact on online purchase probabil-
ity. Last, we set up an equilibrium based on the negative 
feedback loop of the mutual effects of COVID-19 spread 
and human activity. We tested three counterfactual poli-
cies: giving out delivery coupons, enforcing mask man-
dates, and announcing categorical lockdowns. We 
found that giving out delivery coupons would reduce 
the infection rate and have greater effects on low- 
income groups. Interestingly, we also found that whereas 
mask mandates, in theory, will curb virus spread, loose 
enforcement may unintentionally increase the overall 
infection rate. In the categorical lockdown setting, we 
found that a lockdown in Pennsylvania, encompassing 
restaurants, shopping malls, and grocery stores, led to a 
uniform reduction in infection rates across all zip codes, 

but its effectiveness was slightly diminished when taking 
into account a shift to online shopping.

Overall, our approach proved distinctive in its capac-
ity to assemble, at the zip code level, individual-level 
data sets that had not been used together. These data 
enabled customization of the epidemic models widely 
used in public health with individual-level data traces of 
mobility behaviors for assessment of public health risks, 
which in turn enabled parameterization of economic 
choice models of how individuals make economic deci-
sions. Various policy interventions and their capacities 
to shift the equilibrium between economic activity and 
public health were investigated in this study. Whereas 
the data-informed joint modeling approach was devel-
oped and tested in the pandemic context, it is generaliz-
able for the evaluation of any counterfactual policy 
interventions.

Our work has some limitations that nonetheless can 
illuminate potentially fruitful paths for future research. 
First, we focused primarily on consumer behavior and 
did not incorporate any analysis of worker behavior. 
Although our research provides valuable insights into 
consumer preferences and decision-making, under-
standing the role of workers in the system could offer 
additional perspectives and potential optimizations. In 
future work, it would be beneficial to explore the influ-
ence of worker behavior, as it can provide a more com-
prehensive understanding of the ecosystem and inform 
strategies for improving overall efficiency. Additionally, 
we could extend our framework by developing a 
more detailed online delivery policy to address speci-
fic scenarios and optimize coupon utilization. Further-
more, expanding the merchant categorization within 
our framework would enable more nuanced analysis 
and, therefore, more tailored policies for lockdowns.

Appendix A. Robustness Check
Different distributions of possible socioeconomic populations 
are tested.

Table A.1 shows the estimated β4 under different settings 
of normal distribution.

Table A.2 shows the relative deviation of β4 �
β4�β4
β4

:
Beta distribution: f (x) � xα�1(1�x)β�1

B(α,β) .
Six different Beta distribution settings are tested for the 

marginal distribution of age and income, as in Table A.3. It 
shows acceptable robustness under all settings.

For all four parameters, the “worst” distribution is when 
both marginal distributions have α � 0:5 and β � 0:5, as seen 
in Table A.4. The reason might be when α � 0:5 and β � 0:5, 

Table 8. Estimated Infection Rate Decrease for Different 
Categories to Lockdown

Category to lockdown

Estimated infection rate decrease

Overall
Top 25% 
income

Bottom 25% 
income

Restaurants 13.5% 17.0% 11.0%
Grocery stores 7.9% 9.1% 6.0%
Department stores 5.3% 5.9% 4.2%

Note. The top income group saw a more significant effect on 
lockdowns.

Table A.1. Estimation of β4 (Weight of Income)

Age mean/income mean 0.25 0.5 0.75

20 �0.129 �0.134 �0.107
40 �0.145 �0.121 �0.136
60 �0.118 �0.128 �0.095
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the distribution assumes that we should sample the extreme 
value more (i.e., mostly very old, very young, very rich, and 
very poor people are presented in the mobility data set), 
which is not very probable.

Endnotes
1 The mobility data set is an anonymous data set that does not contain 
demographic information such as the age and income of individuals. 
To analyze the heterogeneous effects on different demographic 
groups in terms of human mobility and health risk, we augmented 
the mobility data set with a synthetic population data set. We used 
the standard FRED synthetic population data set (Grefenstette et al. 
2013). We discuss more details in Section 4.2.
2 As a robustness check, we created a synthetic population data set 
in PA with a similar approach in Xu et al. (2017) and got similar 
results.
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