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Ubiquitous mobile technologies have been producing massive swaths of consumer location data, giving rise

to an elaborate multi-billion-dollar ecosystem. In this ecosystem, some consumers share personal data in

exchange for receiving economic benefits including personalized recommendations, data aggregators curate

and monetize data by sharing data with advertisers, and advertisers often utilize such data for location-

based marketing. While these various entities can benefit from such data sharing, privacy risks can prevail.

This creates an opportunity for data aggregators to implement an effective privacy preserving framework

to balance potential privacy risks to consumers and data utilities to advertisers before sharing data with

advertisers. We hence propose a personalized and flexible framework that quantifies personalized privacy

risks, performs personalized data obfuscation, and flexibly accommodates a variety of risks, utilities, and

acceptable levels of risk-utility trade-off. Leveraging machine learning methods, we illustrate the power of

the framework with two privacy risks and two utilities. Validating the framework on one million consumer

trajectories, we demonstrate potential privacy risks in the absence of data obfuscation. Outperforming ten

baselines from the latest literature, the proposed framework significantly reduces each consumer’s privacy

risk while preserving an advertiser’s utility. As industries increasingly unleash the power of location big data,

this research offers an imperatively needed framework to balance privacy risks and data utilities, and to

sustain a secure and self-governing multi-billion dollar location ecosystem.

Key words : consumer privacy, privacy preservation data publishing, mobile location data, machine

learning, location-based marketing

1. Introduction

Location Ecosystem and Advertiser Utility Massive volumes of mobile location data are

being generated daily. This is catalyzed by wide adoptions of smartphones (76% in advanced and

45% in emerging economies) and location-based services (90% in the U.S.), such as navigation, ride
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share, and food delivery (Taylor and Silver 2019). These data represent the latest form of marketing

intelligence in the historical evolution of consumer data, from surveys to click stream, search, social

media, and location (Wedel and Kannan 2016). Location data (or trajectory data hereafter) embed

rich, granular, and spatio-temporal consumer behavior, such as visits to restaurants, gyms, and

hospitals, hence enabling applications of commercial value, including geo-targeting, or point-of-

interest (POI hereafter) recommendations of restaurants or location-based advertising (Luo et al.

2014, Andrews et al. 2016, Kelsey 2018, Ghose et al. 2019).1 Location-based marketing is rapidly

becoming a primary venue for campaign planning and consumer targeting, enriching both tra-

ditional and digital marketing strategies. Also, the global market for location analytics alone is

projected to reach $25.5 billion by 2027.2 As a result, an elaborate multi-billion-dollar ecosystem of

location data collection, sharing (or publishing hereafter), analytics, and applications has emerged.

Three central entities occupy this space.

1. Data collector: is either an app owner who has access to location data via its own mobile

app, once its customers opt in to location tracking and data sharing; or more commonly, a data

aggregator who purchases and aggregates location data from multiple app owners within its app

network, and then sells the aggregated data in bulk to interested advertisers (or other end users)

in compliance with consumer agreements and other privacy regulations, such as the General Data

Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA). Compared to a sin-

gle app owner, a data aggregator can offer location data with much more comprehensive consumer

and POI coverage, hence of much higher value to advertisers. Examples of leading data aggrega-

tors include SafeGraph, Xmode Social, and PlaceIQ. Most of them specialize in data curation and

publishing, instead of data analytic services, in order to grant advertisers greater flexibility and

broader use cases beyond geo-targeting, such as customer segmentation or new store site selection.

While some data aggregators share POI-level data (such as total numbers of visits to a store),

others share individual-level data of greater value, accruing from advertisers 0.5 to 2 cents per

consumer-month (Valentino-Devries et al. 2018). Each location record commonly includes a device

ID, timestamp, longitude, latitude, speed, and dwell time at each visited location.3

1 Numerous other business applications (i.e., utilities to advertisers), such as geo-fencing, re-targeting, behavior-based
insurance, advertising attribution, retail site selection, stock prediction, and non-business applications, such as smart
city, event planning, COVID epidemiology, have been exemplified on various data aggregators’ websites, such as
https://xmode.io/data-licensing/ and https://www.safegraph.com/industries/retail.

2 https://www.fortunebusinessinsights.com/location-analytics-market-102041.

3 Mobile phone numbers are not shared to preserve consumer privacy. Also, device IDs or advertising IDs were
originally introduced by the iOS and Android mobile operating systems for the core purpose of advertising. These
IDs can be easily reset by a consumer on his/her own phone’s setting. Also, interested readers may refer to http:

//bit.ly/3IJg0BN for more information about mobile location tracking.

https://xmode.io/data-licensing/
https://www.safegraph.com/industries/retail.
https://www.fortunebusinessinsights.com/location-analytics-market-102041.
http://bit.ly/3IJg0BN
http://bit.ly/3IJg0BN
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2. Consumer: is an individual who owns a smartphone with apps installed that can transmit

his/her locations to the data collector if he/she opts in to sharing location data. Each consumer

may choose to opt in to share their data when installing an app, or at any time while using the

app, primarily to enjoy the app’s location-based services, such as map navigation, location-based

search, geo-targeted advertising, restaurant recommendations, and so on. As is well known in the

privacy literature, consumers are increasingly willing to share their personal data with companies

in return for economic benefits or convenience(Ghose 2017) and there is substantial heterogeneity

in consumers’ privacy preferences and valuations(Ghose 2017). They may also choose to opt out of

location tracking at any time within each single app, or opt out of all apps in the data aggregator’s

app network on the data aggregator’s app or website, or simply opt out of all location tracking on

his/her smartphone using the privacy setting provided by the mobile operation system.

3. Advertiser: is a firm, such as a retail store, that gains access to location data, often from

a data aggregator, to accomplish various marketing objectives, such as geo-targeting, POI rec-

ommendation, customer acquisition, or market research. For instance, the retail store may derive

highly valuable marketing insights from location data – understanding customers’ broad lifestyle,

trajectory sequence before and after visiting its store, patronage to its competitors, and timing

and frequency of those present and potential customers entering its vicinity. Then it may target

the consumers of interest with coupons or other marketing messages by sending these consumers’

device IDs to common mobile targeting platforms. Location data acquired from a data aggregator

thus grant an advertiser a holistic view of its past, present, and potential customers, as well as

their broad lifestyle and patronage to all POIs of relevance, hence offering much richer information

than what an advertiser would normally access from its own app or stores.

Privacy Risks. Overall, access to location data can benefit all three entities above by allowing

consumers to enjoy location-based services, advertisers to accomplish targeting and other market-

ing goals, and data aggregators to monetize the data. Nonetheless, location data can also entail

potential privacy risks or privacy costs upon some consumers. “Privacy”, defined by the Merriam-

Webster dictionary as “the quality or state of being apart from company or observation”, broadly

pertains to the protection of personally identifiable information (PII hereafter), such as name and

home address, and enactment of privacy policies and regulations. Privacy violation can occur when

the use or release of PII violates an individual’s reasonable expectation of confidentiality, or violates

any law protecting such information.

A subset of advertisers, or more broadly a third party (“stalker” or “adversary” hereafter), may

perform malicious acts using the published data or in combination with other sources of data,

largely for short-term revenue gains. For instance, a stalker may infer a consumer’s home location

to launch excessive direct mail campaigns, predict political ideology to deliver political ads, perform
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privacy-invasive targeting (e.g., a baby brand targeting a consumer who visited a pregnancy clinic),

or identify celebrities, their estates, or those visiting the Playboy Mansion overnight, abortion

clinics, mosques, and queer locations (Valentino-Devries et al. 2018, Thompson and Warzel 2019).

Privacy risks may also arise if location data are linked to other sources of consumer data, such as

an individual’s media consumption, online search behavior, social networking activities, credit card

transactions, online check-ins, ride shares, or wearable technologies. Overall, the media coverage

of location tracking has elevated consumers’ privacy concerns and triggered stricter mobile opt-in

policies. For example, Apple’s latest App Tracking Transparency policy requires all iOS apps to

ask users for permission to share data. This change has critically impacted the $189 billion digital

advertising industry worldwide.4

Need for Personalized and Flexible Framework in Privacy Preserving Data Publish-

ing. Situated at the center of the two-sided market, with consumers on one side as data generators

and advertisers on the other as data users, a data aggregator has both a responsibility and vested

interest in preserving consumer privacy while maintaining data utilities to advertisers (Katsoma-

llos1 et al. 2019). As apparent in the examples above, preserving privacy is key for consumers

to willingly opt in and continuously offer their location data – the lifeline for the data aggrega-

tor’s monetization and the foundation of the entire location ecosystem.5 Meanwhile, maintaining

data utilities is key for advertisers to accomplish targeting and other marketing objectives, and to

continue purchasing location data from the data aggregator. On the contrary, failure to preserve

consumer privacy could diminish consumers’ willingness to provide location data, which would

entail monetary and non-monetary losses to all entities in the location ecosystem (Pew 2018).

Hence, it is in the data aggregator’s best interest to balance the risks and utilities, and to share

location data with advertisers while protecting consumer privacy.

More importantly, the data aggregator needs a personalized and flexible framework to

balance diverse types of risks and utilities for heterogeneous consumers and advertisers, each with

individualized needs for privacy protection and business applications (Primault et al. 2019, Li et al.

2020, Cunha et al. 2021). One, from the consumers’ perspective, diverse types of privacy risks (or

threats hereafter), hence diverse consumer needs for privacy protection, frequently arise, such as

home inference risk, or re-identification of a consumer and his/her sensitive activities (Li et al. 2020,

Jiang et al. 2022). Even for the same type of privacy risk, each consumer’s risk level is heterogeneous

due to heterogeneous mobility patterns. Therefore, a consumer with a higher privacy risk, such as

being the only individual in the data who has visited an abortion clinic, needs stronger protection.

4 http://bit.ly/3Zem7VL; https://bit.ly/3ZhvIev.

5 https://gtnr.it/3IHPPvr.

http://bit.ly/3Zem7VL
https://bit.ly/3ZhvIev
https://gtnr.it/3IHPPvr
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Two, from the advertisers’ perspective, diverse types of data utilities, hence diverse advertiser

needs, prevail in business applications, such as geo-targeting versus personalized recommendations

(Yang et al. 2018, Ghose et al. 2019). Thus, the framework needs to accommodate a wide range of

data utilities and advertisers’ use cases. Finally, diverse acceptable levels of risks to consumers or

consumer advocacy groups6, including zero risk, and similarly diverse acceptable levels of utilities

to advertisers, are commonplace. For instance, some advertisers demand a high utility from the

data for finessed geo-targeting, while others an intermediate-to-high utility for coarser consumer

segmentation. Hence, the academic literature and location industry imperatively covet not just

a framework that balances a single risk and a single utility, but a personalized and flexible

framework for the data aggregator to agilely fulfill and balance individualized and diverse needs

from both the consumer side and advertiser side, thus sustaining a healthy, secure, and mutually

beneficial location data ecosystem. We aim to fulfill this urgent need.

Research Objectives and Findings. In particular, while the emerging literature on privacy

preserving data publishing (PPDP hereafter) of location data has focused on a single privacy

risk or non-business utility (e.g., similarities between the original and published trajectories) at

a time, and also global data obfuscation at the sample- instead of individual-level, we develop a

novel framework that performs personalized obfuscation while flexibly accommodating different

types, and different acceptable levels, of risks and business utilities. Specifically, we take a data

aggregator’s perspective and address the following core research questions:

1. How can we quantify privacy risk to a consumer (personalized risk quantification)?

2. How can we quantify data utility to an advertiser (personalized utility quantification)?

3. Most importantly, how can we personalize data obfuscation to accommodate diverse types of

risks, utilities, and acceptable levels of risk-utility trade-off (personalized and flexible obfuscation)?

To accomplish the above, we develop a machine learning-based framework with three compo-

nents: (1) quantification of each consumer’s privacy risk; (2) quantification of an advertiser’s utility;

and (3) design of a personalized and flexible obfuscation scheme – our key contribution.

The core idea of this scheme is to suppress a subset of locations visited by a consumer based on

his/her personalized suppression parameter proportional to his/her risk level, and to further lever-

age flexible structured grid search by varying a grid parameter to accommodate different types

and different acceptable levels of risks and utilities (such as a 1% reduction in utility upon data

suppression with a 10% reduction in risk). We specifically illustrate the agility of the framework

with two most prevalent types of privacy risks: home inference from the published location data

and re-identification of a consumer and his/her entire trajectory from a subset of locations known

6 https://bit.ly/3EQWTVo.

https://bit.ly/3EQWTVo
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a priori to a stalker, and two essential types of advertiser utilities: next location prediction and

activity-timing prediction. We further validate the proposed framework on one million trajectories

generated by 40,000 consumers over five weeks from a major U.S. metropolitan area.

A few key findings arise. First, an absence of obfuscation, i.e., no steps taken to preserve con-

sumer privacy, indeed entails high privacy risks to consumers. For instance, a stalker may infer

a consumer’s home location with 0.84 normalized haversine distance (varying between 0 and 1).

This means that the home location can be inferred within a radius of 2.5 miles, indicating a high

home inference risk. A stalker may also identify a consumer and his/her entire trajectory with 49%

success by knowing a priori merely two randomly sampled locations visited by the consumer. Sec-

ond, location data offer great value to an advertiser, who may predict a consumer’s next location

with 25% success, and next activity (such as dining or fitness) and its timing (such as Saturday

morning) with 26% success. Finally, a data aggregator can effectively curtail a potential invasion

of consumer privacy by performing personalized data obfuscation without sacrificing the utility of

the obfuscated data to an advertiser. The data aggregator may also fulfill personalized and diverse

demands from both the consumer side and advertiser side by flexibly accommodating multiple

types of risks and utilities, as well as a wide array of acceptable levels of a specific risk, utility, and

risk-utility trade-off. Our extensive benchmark comparisons and robustness checks also confirm the

superior and robust performance of the proposed personalized and flexible framework.

Key Contributions. In summary, this study contributes to a core research domain across

multiple disciplines – privacy preserving data publishing (PPDP) – by designing a personalized

and flexible PPDP framework for location data. It harnesses the power of the latest form of

unstructured big data with rich business applications, while simultaneously preserving consumer

privacy. Consumer privacy and business utility stand as two essential pillars sustaining the long-

term health and self-governance (without solely relying on regulatory interventions) of the location

data ecosystem. The proposed personalized data obfuscation, facilitated by personalized risk

quantification, mitigates each consumer’s distinct privacy risk. The flexible accommodation of

multiple types of risks and utilities, and multiple acceptable levels of a risk, utility, and risk-

utility trade-off (i.e., objective function), allows a data aggregator to fulfill the diverse needs of

risk protection and utility preservation from both the data provider and data user sides, with even

multiple trade-off solutions to each specific type of risk and utility. With skyrocketing business

applications of novel location big data, the proposed personalized and flexible PPDP framework

hence fills a critical void in a multi-disciplinary literature on PPDP of location data. The framework

also offers a direly needed solution to the most quintessential challenge confronting the multi-

billion-dollar location data and location-based marketing industries – a balance between privacy

risks and data utilities.
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2. Literature Review

With the rising needs for inter-organizational sharing and offline mining of consumer data (e.g.,

between healthcare providers and CDC, Netflix Prize and academics, location-based services like

Google Map and location-based marketers), a multi-disciplinary literature on PPDP is rapidly

emerging (Fiore et al. 2020). For instance, the Information Systems and Marketing literature has

designed PPDP methods for numeric and categorical structured data (Li and Sarker 2011, Li and

Sarkar 2013, 2014, Menon and Sarkar 2016, Chen et al. 2022) and more recently unstructured data,

such as text (Li and Qin 2017) and image data (Zhou et al. 2020). As different data types require

different PPDP methods (Cunha et al. 2021), our research extends this small yet growing business

literature on PPDP into one of the latest form of unstructured data, consumer location data.

Meanwhile, the literature from Computer Science and related disciplines has developed a vari-

ety of PPDP methods specifically for location data, such as vehicle movements (Abul et al. 2008,

Yarovoy et al. 2009), social media check-ins (Terrovitis et al. 2017, Yang et al. 2018), and simulated

location data (Abul et al. 2008, Yarovoy et al. 2009, Chen et al. 2013). Nonetheless, large-scale

business applications on real-world location data remain sparse (Primault et al. 2019). More impor-

tantly, the methods thus far primarily (a) preserve global (sample-level) instead of personalized

(individual-level) privacy in location data; and (b) focus on a single risk (most commonly re-

identification risk) and non-business utilities (e.g., the distance between the original and published

trajectories). They are hence not personalized or flexible to accommodate heterogeneous types of

privacy risks, business utilities, or acceptable levels of risks and utilities quintessential in business

applications, such as location-based marketing. Below we will zoom into this literature of PPDP

of location data and highlight the key contribution of our research as offering a personalized and

flexible PPDP framework for location data in business applications. This literature falls under two

mainstreams: differential privacy models and syntactic models, to which our framework belongs.

Differential Privacy Models. Based on ϵ-differential privacy, these models aim at reaching the

same inference regardless whether a focal individual is included in the data or not (Dwork and Lei

2009). They demand zero risk, hence offering stronger privacy protection. Nonetheless, this limits

their applications and data utilities to primarily data queries, instead of broad business applica-

tions where non-zero risks are prevalent. For instance, consumers often have to share their location

data, and as a result tolerate non-zero privacy risks, in exchange for location-based services, such

as map navigation, food delivery, and POI recommendations. Moreover, the specific obfuscation

techniques used to accomplish stronger privacy protection in differential privacy models, such as

perturbation (adding noise to data), do not preserve data truthfulness required by many down-

stream business applications (Terrovitis et al. 2017, Fiore et al. 2020, Jin et al. 2022). For instance,
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after perturbation of a location data set, it becomes challenging to answer even simple questions,

such as how many customers visited my restaurant today.7

Syntactic Models. These models permit non-zero risks, hence well-versed for business appli-

cations (Jin et al. 2022). Moreover, suppression (of a subset of data) commonly used in syntactic

models preserves the truthfulness of the remaining unsuppressed and subsequently published data

(Chen et al. 2013, Terrovitis et al. 2017), making syntactic models a top choice for a wide range

of downstream business tasks that demand data truthfulness (Jin et al. 2022). We hence take the

route of syntactic models when designing our framework, and focus on reviewing the syntactic

models for location data below. Syntactic models ensure k-anonymity, that is, at least k records

share the same value of an attribute (e.g., visiting the same location). Then (k, δ) anonymity is

proposed to offer stronger privacy preservation (Abul et al. 2008, Yarovoy et al. 2009). For instance

Abul et al. (2008) perform space generalization on location data and transform the trajectories so

that k of them lie in a cylinder of radius δ. Variants of k-anonymity and (k, δ) anonymity further

relax the assumptions of the earlier methods (Chow and Mokbel 2011, Huo et al. 2012, Hwang

et al. 2013, Gao et al. 2014, Brauer et al. 2022).

While importantly advancing PPDP of location data, these methods originating from Computer

Science and related disciplines are not particularly apt at business applications (Primault et al.

2019, Jiang et al. 2022, Jin et al. 2022). Specifically, business use cases of location data demand

a number of important qualities in the PPDP methods. First, with the well established business

philosophy of personalization (Tong et al. 2020, Chandra et al. 2022), PPDP of location data

requires personalized risk quantification and acceptable level of risk for heterogeneous consumers,

personalized utility and acceptable level of utility for heterogeneous advertisers and use cases, and

personalized data obfuscation (Li et al. 2020, Cunha et al. 2021, Jiang et al. 2022). Personalization

also enhances transparency and interpretability of PPDP in business applications (e.g., which

locations are obfuscated for which consumers and why). Second, the rapid emergence of diverse

types of privacy risks and business utilities, such as with the rise of 5G, blockchain, and metaverse,

calls for flexible frameworks that can accommodate many types of risks, utilities, and acceptable

levels of a specific risk, utility, and risk-utility trade-off (Primault et al. 2019, Fiore et al. 2020,

Cunha et al. 2021, Jiang et al. 2022). Finally, business applications demand PPDP that maintains

data truthfulness for downstream tasks, such as geo-targeting. In contrast, the above syntactic

models hide a user inside a crowd, hence not personalized (Primault et al. 2019). They are also

7 Besides these two mainstreams, ad hoc methods such as mix zone and dummy (adding dummy users) (Primault
et al. 2019, Jin et al. 2022, Jiang et al. 2022) are also developed. Nonetheless, similar to differential privacy models,
these methods often do not preserve data truthfulness well, nor do they offer sufficient privacy protection. Therefore,
they are not pertinent to business applications, or the focus of our review.
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designed to tackle a single risk, hence not flexible to accommodate diverse risks (Jin et al. 2022).

They are also tested only on simulated or small data (Primault et al. 2019). These important gaps

are also accentuated by the latest surveys of this literature (Primault et al. 2019, Fiore et al. 2020,

Li et al. 2020, Cunha et al. 2021, Jin et al. 2022, Jiang et al. 2022).

As a result, newer methods have been developed, aiming to incorporate either personalized risks

or alternative risks beyond re-identification. Specifically, as the literature starts to recognize the

significance of fulfilling personalized risk requirements, developing personalized PPDP methods for

location data has become an active area of research in recent years (Gao et al. 2014, Komishani et al.

2016, Qiu et al. 2021, Mahdavifar et al. 2022). Nonetheless, these methods (a) focus on personalized

risks, without considerations of personalized utilities across diverse data users; (b) examine only

non-business utilities (Jin et al. 2022), such as information loss, query error (Komishani et al. 2016),

correlation (Gao et al. 2014) or similarity between original and published trajectories (Qiu et al.

2021); (c) address merely one or a small number of privacy risks, and cannot flexibly accommodate

heterogeneous types of risks (or utilities); and (d) publish trajectories that do not well preserve the

truthfulness of the original trajectories for downstream business applications (Mahdavifar et al.

2022).

The literature is also advancing along the flexibility dimension. For example, methods such as t-

closeness (Li et al. 2007b) and ℓ-diversity have been proposed to go beyond the re-identification risk

to address the sensitive attribute inference (Pelekis et al. 2011), such that sensitive locations are well

represented for each consumer (Machanavajjhala et al. 2006), or a stalker’s confidence in inferring

a sensitive attribute is limited to a threshold (Wang et al. 2007). Frameworks accommodating

more than one risk also emerge (Komishani et al. 2016, Yao et al. 2021). However, these studies

remain incapable of flexibly accommodating a wide range of risks and business utilities, and are

not personalized. Our research thus makes distinct contributions to this literature as fulfilling

personalization and flexibility, both widely recognized by the literature as important future research

directions.

Synthetic Trajectory Models. Besides the above two mainstream methods, synthetic trajec-

tory approaches that generate dummy trajectories using a trained generative model start to show

promise in preserving consumer privacy in location data. These approaches typically involve two

phases: training and generation. For instance, PPMTF (Murakami et al. 2019) aims to preserve the

population-level distribution of the visits and transition matrix across POIs using factor matrices

trained via posterior sampling. Trajectories are then generated from the reconstructed tensors.

LSTM-TrajGAN (Rao et al. 2020) sets up a generative adversarial task with a loss metric that

quantifies the similarities between the trajectories. The trained GAN is then used to generate the

synthetic trajectories of a consumer. Conceptually, these models are trained with a set of consumer
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trajectories to generate synthetic trajectories to be shared with an advertiser. Since the generators

are trained solely to preserve the statistical properties of the original trajectories, these methods

do not emphasize any specific utility, and hence may not fulfill every advertiser’s needs. Moreover,

the published dummy trajectories do not preserve the truthfulness of the data.

Table 1 summarizes the above non-exhaustive, yet most representative, PPDP methods for

location data from Computer Science and related disciplines. Interested readers may further refer

to the latest surveys for a more comprehensive coverage of this literature (Katsomallos1 et al. 2019,

Primault et al. 2019, Fiore et al. 2020, Li et al. 2020, Cunha et al. 2021, Jin et al. 2022, Jiang et al.

2022). Table 1 further highlights our two key contributions – personalization and flexibility.

First, while the existing literature largely performs obfuscation at the group- or sample-level,

the proposed framework administers personalized obfuscation, facilitated by the individual-level

risk quantification. Such personalization nimbly addresses each consumer’s heterogeneous level

of risk given each distinct type of privacy risk, as well as heterogeneous privacy preference and

risk tolerance. Personalization also importantly grants transparency and interpretability to data

aggregators (e.g., on which features escalate the risk for which individual) and offers managerial

insights to advertisers (Primault et al. 2019). Moreover, both the utility and risk-utility trade-off

in our framework are also personalized, fulfilling diverse advertiser and data aggregator needs.

A second critical benefit of the proposed framework arises from its flexibility. In contrast to the

existing methods that are largely tailored to tackle a single risk or a single (and also non-business)

utility, the proposed framework flexibly accommodates multiple types of risks and utilities (par-

ticularly business utilities), and also multiple acceptable levels of each risk, utility, and risk-utility

trade-off. As we will demonstrate in detail next, it accomplishes so by leveraging a generalizable

objective function and also a structured grid search, both of which are not tied to any specific

risk, utility, or their functional forms. In contrast, prior studies resort to an optimization func-

tion linked to a specific functional form of a specific risk or utility. Therefore, these methods need

to modify the optimization function for alternative risks or utilities case by case, also without a

guarantee of an optimal solution that often depends on the specific functional forms of the risk

and utility. Moreover, structured grid search permits and produces multiple trade-offs of each type

of risk and type of utility (corresponding to different values of the grid parameter), such as 1%

decrease in the utility for 10% decrease in the risk, or 2% decrease in the utility for 15% decrease

in the risk. Therefore, it is capable of fulfilling a multitude of acceptable levels of a specific risk,

utility, and risk-utility trade-off. Overall, such flexibility empowers a data aggregator to satisfy

diverse demands of risk mitigation from the consumer side and simultaneously utility conservation

from the advertiser side. As discussed in the Introduction, such flexibility is critical for business

applications.
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Risk Utility Data
Syntactic Models:
Abul et al. (2008) (k, δ) anonymity Deviation from true trajectories Simulated data
Yarovoy et al. (2009) k-anonymity Information loss Car trajectories
Chow and Mokbel (2011) k-anonymity Deviation from true trajectories NA
Pelekis et al. (2011) Sensitive attribute Streaming KNN queries Simulated data
Huo et al. (2012) (k, δ) anonymity Information loss 155 consumers’ trajectories
Hwang et al. (2013) r-anonymity Number of consumers in a region Taxi trajectories

Chen et al. (2013)
Re-identification risk
Sensitive attribute inference

Frequent sequences Simulated data

Gao et al. (2014) k-anonymity Information loss Simulated data
Komishani et al. (2016) Sensitive attribute Information loss Simulated data
Terrovitis et al. (2017) Re-identification risk Frequent sequences Social network trajectories
Qiu et al. (2021) Re-identification risk, sensitive attribute original-obfuscated trajectory similarities 182 consumers’ trajectories
Yao et al. (2021) l-diversity enhanced Information loss Simulated data
Mahdavifar et al. (2022) Re-identification risk original-obfuscated trajectory similarities Simulated data
Brauer et al. (2022) k site-unidentifiability Jensen-Shannon Distance 182 consumers’ trajectories
Synthetic Trajectories:
Murakami et al. (2019) NA POI distribution Foursquare
Rao et al. (2020) NA Trajectory similarity Foursquare

Proposed Framework
Re-identification risk
Home inference risk
Flexible to accommodate other risks

Location prediction
Activity-timing prediction
Flexible to accommodate other utilities

1 million consumer trajectories

Table 1 Comparison of proposed framework with syntactic and synthetic trajectory models

3. Data

We partner with a leading data aggregator that integrates the location data across 400+ commonly

used mobile apps, such as news, weather, map, and fitness, from one-quarter of the U.S. population

in compliance with privacy regulations such as GDPR and CCPA8. The data are representative

of the U.S. population given the company’s detailed research. The sample under analysis covers

a major U.S. metropolitan region. Figure 1 displays the region’s map (purposefully blurred to

preserve privacy) and an example of an individual’s footprints with 732 unique locations visited

during the five-week sampling period between September and October of 2018. The entire sample

includes 940,000 locations from 40,012 consumers. Each data record corresponds to a location

visited by an individual and contains an anonymized device ID, mobile operating system (Android

or iOS), and the timestamp, latitude, longitude, and dwell time at the location. Table 2 displays

the summary statistics of the sample. Each individual’s location is recorded every five to fifteen

minutes, or when the geo-coordinates (longitude/latitude) change substantially, to reduce device

battery drainage and data redundancy.

Prior studies have tested their methodologies on simulated data, vehicle movements, or social

media check-ins over a small sample and a short period such as 24 hours. We make an initial effort to

validate the proposed framework on the newly available, population-scale, individual-level mobile

location data. These data are automatically generated in real time via GPS, Wi-Fi, Bluetooth, and

Beacon multi-technology multi-lateration with an accuracy radius of 20 meters. They are hence

8 These apps install a proprietary SDK designed by the company, which tracks location data (via GPS, Wi-Fi,
Bluetooth, and Beacon multi-technology multi-lateration) more accurately than other sources, including individual
app owners. This SDK also greatly reduces battery drainage in mobile devices when location data are being tracked
in real time. Interested readers may refer to https://www.tamoco.com/blog/location-data-info-faq-guide/ for further
details. Consumers are always asked to double opt-in to the specific app in use and to the data aggregator’s SDK for
location tracking and data sharing.
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Figure 1 An example consumer’s footprints (732 unique locations over five weeks)

Description Mean (S.D.) Min (Max)

Number of locations per person 23.47 (50.26) 2 (1104)
Number of unique locations per person 14.25 (38.12) 2 (963)
Overall duration (hours) 272.97 (278.25) 0.05 (759.27)
Duration at each location (minutes) 27.96 (45.99) 1.6 (359.23)
Distance between locations (km) 1.89 (3.89) 0.02 (75.49)

Table 2 Summary statistics

Concept Definition Model Measurement Findings

Risk(1):
Home
inference

Stalker infers a consumer’s
home location
from shared data

Random Forest, LSTM

Normalized haversine
distance between predicted
and actual home locations
(Section 4.1.1)

Average home inference risk is 0.84
(Section 5.1)

Risk(2):
Re-identification

Stalker knowing a consumer’s
subset of locations a priori identifies
the consumer (and his/her entire
trajectory) from shared data

Random Forest

Max. prob. of identifying a consumer
over all subsets of locations known a priori,
then averaged across consumers
(Section 4.1.2)

Average re-identification risk is 0.49 by knowing
a consumer’s two random locations a priori
(Section 5.1)

Utility (1):
Location prediction

Advertiser predicts a consumer’s
next k locations
from shared data

Nearest Neighbor
MAP@k, MAR@k
(Section 4.2)

Next location is predicted
with 25% accuracy
(Section 5.2)

Utility (2):
Activity-timing
prediction

Advertiser predicts a consumer’s
next k activities and activity
timing from shared data

LSTM
MAP@k, MAR@k
(Section 4.2.2)

Next activity and timing is predicted
with 26% accuracy
(Section 4.2.2)

Table 3 Overview of key concepts, definitions, measurements, and findings

much more precise than cell tower tracking with an accuracy radius in kilometers, social media

geo-tags known for sparsity and inaccuracy, or social media check-ins that rely on consumers’ self-

reports. Also, unlike taxi or public transportation data that only capture the consumers using these

transportation modes, our data are representative of the U.S. population and everyday consumer

behavior, hence more valuable to advertisers.

4. Methodology

The framework consists of three core components: quantification of each consumer’s privacy risk,

quantification of the advertiser’s utility, and personalized and flexible obfuscation scheme for the

data aggregator. When describing each component below, we will formulate the problem and then

propose the solution. We will empirically evaluate the solution in the subsequent Section 5. Table

3 summarizes all key definitions, measurements, models, and findings discussed below.
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4.1. Quantification of Consumer’s Privacy Risk

The first step of the proposed framework is the quantification of each consumer i’s privacy risk ri by

simulating a stalker’s adversarial action on the published trajectories P(T ). While the framework

can accommodate different privacy risks, we will illustrate two specific risks of vital concern to

consumers: home inference risk and re-identification risk. That is, as detailed below, the stalker

would infer the consumer’s home, or re-identify the consumer and hence his/her entire trajectory

Ti with the background knowledge of a subset of his/her locations Ti ∈ Ti. In this process, the

stalker could leverage either simple heuristics, such as trajectory queries as illustrated in the re-

identification risk, or robust machine learning models as illustrated in both the home inference risk

and re-identification risk (Li et al. 2007a, Yang et al. 2018).

4.1.1. Home Inference Risk

Definition: Home inference risk refers to a stalker’s inference of a consumer’s home location

from the published data (Li et al. 2007a, Tucker 2013, Gardete and Bart 2018, Rafieian and Yoga-

narasimhan 2021). Once a consumer’s home location is identified, then his/her identity, including

name and potentially other personal information, is readily revealed, as many public databases,

such as voter registration data or real estate data, associate an individual’s name with his/her

home location. Even a simple Google search of a home address returns the name and other personal

information of the resident at the location. Such a connection between a consumer’s identity and

his/her entire trajectory history via home inference hence entails privacy risks to the consumer,

such as the identification of sensitive locations visited, or excessive mail advertising.

Measurement: A consumer i’s home inference risk ri is quantified by a stalker’s predictive

accuracy of a consumer’s home location from the published trajectories P(T ) using a machine

learning model. This predictive accuracy, as detailed next, is specifically measured by (a) the

haversine distance between the predicted and actual home locations, and (b) a normalized haversine

distance, which lies between 0 (low risk) and 1 (high risk).

Model: As shown next, we first extract a set of mobility features from the location data. Then

using these features, we train an ensemble (Sagi and Rokach 2018) of two Random Forest (RF

hereafter) regressors (Breiman 2001) to predict a consumer’s home latitude and longitude. Finally,

we use the resulting predictive accuracy described in the above Measurement to quantify a

consumer’s home inference risk.

Trajectory Feature Extraction. We first mimick a stalker’s adversarial action of extracting trajec-

tory features F(T )9 from the published trajectories prior to inferring a consumer’s home location.

9 To simplify the notation, we use F(T ) to refer to F(P(T )). Since both P(T ) and T are a set of trajectories, any
operation (such as F here) performed on T is also applicable to P(T ).



Macha, Foutz, Li, and Ghose: Personalized Privacy Preservation in Consumer Mobile Trajectories
14 Article forthcoming at Information Systems Research; manuscript no. (Please, provide the manuscript number!)

These features include the consumer mobility features commonly used in the literature (Pellun-

grini et al. 2018), as well as the richer features that we further incorporate, consumer-location and

consumer-consumer affinities. Such feature extraction, also known as feature engineering, is rou-

tinely performed prior to a prediction task in the machine learning literature, since the extracted

features capture important high-level patterns in the data (e.g., visit frequency and visit duration)

and thus offer more predictive power than the noisier raw data (e.g., latitude/longitude) (Zheng

et al. 2010, Wang et al. 2011, Williams et al. 2015, Pappalardo et al. 2016). This is to offer the

stalker an advantage and allow us to estimate the worst-scenario home inference risk. We further

illustrate the advantage of using the extracted features in Online Appendix D10. Note that these

extracted features are also subsequently used in other tasks within the proposed framework, such as

quantification of the re-identification risk, interpretation of each feature’s contribution to a specific

risk, quantification of the data’s utility to the advertiser, computation of each location’s suppression

probability, and estimation of the benchmark models to be compared with the proposed framework.

The set of consumer mobility features, summarized in Table 4, captures a consumer’s basic

mobility patterns based on the locations visited in Ti, such as the consumer’s frequency to, time

spent at (Pappalardo et al. 2016), and distance traveled to a location (Williams et al. 2015), as

well as richer mobility patterns, such as the entropy (Eagle and Pentland 2009) and radius of

gyration (Gonzalez et al. 2008). In addition, adapting from the literature on identifying significant

locations to predict consumer mobility (Ashbrook and Starner 2003, Zheng et al. 2010), we build

three consumer-location affinity tensors: a consumer’s weekly frequency to, time spent at, and total

distance traveled from the immediate prior location to each location. Each tensor is of order three:

consumer by unique location by week. We then extract the consumer-specific lower dimensional

representations by performing a higher order singular value decomposition (HOSVD) on the three

tensors separately (De Lathauwer et al. 2000). Finally, prior studies have also predicted consumer

network or social links based on trajectories (Wang et al. 2011). We thus quantify the consumers’

co-locations by building the consumer-consumer affinity tensors based on the locations shared

among consumers at a weekly level. Each tensor is of order three: consumer by consumer by

week. We populate three such tensors with respectively the weekly average frequency to, total

time spent at, and distance traveled to each co-visited location, before performing a HOSVD on

each tensor to extract the consumer-specific lower dimensional representations indicative of the

consumer-consumer affinity.

We illustrate the above consumer-location and consumer-consumer affinity features using a styl-

ized example here. Consider three consumer trajectories: T1 = {(A,1), (B,1), (A,2), (A,2)}, T2 =

10 All Online Appendices are available at https://bit.ly/privacy_2022.

https://bit.ly/privacy_2022.
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Feature Description

average locations Number of locations in Ti averaged weekly
average ulocations Number of unique locations in Ti averaged weekly

average distance
Distance travelled by a consumer
to visit locations in Ti, averaged weekly

average dwell Time spent at locations in Ti averaged weekly

avg max distance (Williams et al. 2015)
Average of the maximum distance
travelled by a consumer each week

freq rog
time rog
dist rog (Gonzalez et al. 2008)

Radius of gyrations is the characteristic
distance traveled by an individual

rogi =
√

1
|Ti|

∑|Ti|
j=1wij(lij − licm)

2

licm = 1
|Ti|

∑j=|Ti|
j=1 lij,

lij = geographical coordinates
licm = center of mass of the consumer
wij = weights obtained based on
frequency, time & distance w.r.t to lij

freq entropy
time entropy
dist entropy (Eagle and Pentland 2009)

Mobility entropy measures
predictability of consumer trajectory

Ei =−
∑|Ti|

j=1 pijlog2pij , pij computed
from wij for time, frequency, and distance

Table 4 Consumer mobility features

{(C,1), (A,1), (A,1)}, and T3 = {(D,1), (B,1), (C,2)}, where A,B,C,D are location identifiers, and

1 and 2 are week identifiers. That is, T = {T1, T2, T3} reveals that these three consumers visited

four unique locations over a period of two weeks. Each of the three consumer-location tensors

discussed above would be of size [3× 4× 2] for the 3 consumers, 4 unique locations, and 2 weeks.

For instance, the frequency matrix of the first consumer with T1 is

(
1 1 0 0
2 0 0 0

)
, where the rows

and columns correspond to the 2 weeks and 4 unique locations, respectively, and each entry in the

matrix captures the number of times that this consumer visited each of the four locations during

that week. Each of the three consumer-consumer location tensors described above would be of size

[3× 3× 2] for the 3 consumers by 3 consumers by 2 weeks. For instance, the frequency matrix for

the first consumer with T1 would be

(
1 (1+2)

2

(1+1)

2

1 0 0

)
, where the rows and columns correspond to

the weeks and consumer pairs 1-1, 1-2, and 1-3. Each entry in this matrix is the average frequency

of the co-visited locations within each consumer pair. For instance, during week 1, (A,1) is co-

visited by consumers 1 and 2, and (B,1) by consumers 1 and 3. The time and distance tensors are

similarly constructed. We then perform a HOSVD on each tensor and use the first five principal

components that capture a majority (92%) of the variance. Hence, for each consumer and tensor,

we have five lower dimensional representations that capture the corresponding consumer-location

and consumer-consumer affinities. Next, we imitate how a stalker would use the extracted features

to orchestrate privacy threats.

Home Inference Risk. For the home location prediction, we first transform the raw latitude/lon-

gitude of each location into the Universal Transverse Mercator (UTM) coordinates. Since the lati-

tude/longitude coordinate system uses angular measurements to describe a position on the surface

of the earth, the distance covered by one degree of longitude differs when moving from the equator
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to the poles11. The UTM coordinate system, in contrast, divides the world into 60 zones, each of 6

degrees of longitude wide, hence offering a constant distance anywhere on a map.12 An example of

the UTM-transformed coordinates for the latitude/longitude pair (38.969210, -77.105650) is UTM

Easting/Northing of (317580.40, 4315468.41) in meters.

We then use an ensemble of two Random Forest (RF) models, one to predict the UTM-

transformed latitude and the other to predict the UTM-transformed longitude of a consumer’s

home location. The two models are concatenated and jointly trained using the machine learning

training pipeline in Python’s sklearn package13. The loss used to jointly train these two models is

the haversine distance (or equivalently Euclidean distance as a result of the UTM transformation)

between the predicted home and actual home of a consumer14. That is, the dependent variables

are the UTM-transformed latitude and longitude, and the independent variables are the consumer

mobility features, consumer-location affinity, and consumer-consumer affinity.

Then consumer i’s home inference risk is measured by the resulting predictive accuracy, i.e.,

the haversine distance between i’s predicted home and actual home (e.g., 500 meters), denoted

as hi. hi is continuous, and a smaller hi indicates a higher home inference risk. Therefore, we

further calculate a relative measure of the home inference risk ri by using the normalized haversine

distance: ri =
max(hi)−hi

max(hi)−min(hi)
, where max(hi) and min(hi) respectively represent the maximum and

minimum haversine distance among all consumers under analysis. This normalization is similar to

the widely used min-max normalization. Given max(hi) and min(hi), a smaller hi will produce a

higher ri. Hence, a consumer i’s home inference risk ri now lies between 0 and 1, where a lower

ri indicates a lower risk (e.g., ri = 0 when hi = max(hi)) and a higher ri indicates a higher risk

(ri = 1 when hi = min(hi)). We subsequently focus on this normalized, instead of raw, haversine

distance between the predicted and actual homes as the focal measure of the home inference risk.

15

We choose RF as the stalker model for several reasons. One, it can be used for either regression

(predicting a home’s UTM-transformed latitude/longitude) or classification (predicting if a loca-

tion visited is a consumer’s home = yes/no), hence offering greater flexibility. Two, it merges a

forest of decision trees, each of which might be a weaker predictor, to form an overall much more

11 Interested readers may view the definitions of latitude and longitude at https://www.maptools.com/tutorials/
lat_lon/definitions.

12 Interested readers may view the definition of UTM and its advantages over raw latitude/longitude at https:

//bit.ly/3YcK8LD and https://www.maptools.com/tutorials/utm/why_use_utm.

13 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html.

14 Interested readers may view the history and formula of haversine distance at https://en.wikipedia.org/wiki/

Haversine_formula and Euclidean distance at https://en.wikipedia.org/wiki/Euclidean_distance.

15 Note well that another way to define risk would be ri = 1 - hi−min(hi)
max(hi)−min(hi)

which captures the prediction accuracy
of the stalker, lower the accuracy, lower the risk.

https://www.maptools.com/tutorials/lat_lon/definitions
https://www.maptools.com/tutorials/lat_lon/definitions
https://bit.ly/3YcK8LD
https://bit.ly/3YcK8LD
https://www.maptools.com/tutorials/utm/why_use_utm
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html.
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Euclidean_distance
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accurate model. It is hence widely used across disciplines in many business- or non-business-related

applications. Albeit context-specific, RF and its variants have demonstrated superior predictive

performance relative to other commonly used bagged or boosted machine learning models, such

as XGBoost (Chen and Guestrin 2016) or AdaBoost (Hastie et al. 2009) across various contexts

(Said and Mouazen 2017, Jhaveri et al. 2019, Huang et al. 2020, Bhakta et al. 2021). Our choice of

RF as the stalker model hence gives the stalker an advantage and allows us to estimate the worst-

scenario privacy risk. Three, RF holds other advantages, such as minimal requirement for data

pre-processing (e.g. no need for data re-scaling or transformation), computationally inexpensive

for big data or data with high dimensionality since it can parallelize subsets of trees, robustness

against noise, outliers, or non-linearity, automatic handling of missing value or unbalanced data,

lower risk of over-fitting, easier to tune due to very few hyper-parameters, and simpler to imple-

ment and visualize than XGBoost or AdaBoost. Four, compared to deep learning models that boast

high predictive accuracy, such as Long Short Term Memory (LSTM) (Hochreiter and Schmidhu-

ber 1997), RF is easier to implement, computationally faster, less prone to over-fitting, similarly

or even more accurate in many settings (in our study too, cf. Online Appendix D), and more

interpretable with feature importance (also illustrated Section 5.1) or most representative trees,

hence more actionable to decision makers (e.g., data aggregators) (Fernández-Delgado et al. 2014,

Ahmad et al. 2017, Weinberg and Last 2019, Chen et al. 2019, Bhakta et al. 2021). Nonetheless, our

framework is flexible: one may freely implement alternative methods other than RF to quantify the

home inference risk, or to quantify the home inference risk with alternative measures. For instance,

we demonstrate in the Online Appendix D the use of an alternative model, LSTM, to quantify the

home inference risk, as well as an alternative measure of the home inference risk, the predictive

accuracy (MAP@1, MAR@1) of a binary classification (yes/no) of whether a location visited is a

consumer’s home.

4.1.2. Re-identification Risk

Definition: Consistent with the literature, we define the re-identification risk as the re-

identification of a consumer and hence his/her entire trajectory, including sensitive locations visited,

from the published location data, by a stalker with background knowledge of a subset of his/her

locations (i.e., partial trajectory), such as home, work, or a store visited, that is already linked to

the consumer’s identity (Fiore et al. 2020, Jin et al. 2022).

A stalker could access a consumer’s partial trajectories from a wide range of internal and external

sources (Fiore et al. 2020, Jiang et al. 2022). Internally, a stalker (an advertiser or a retail brand)

commonly hosts its own customer databases, such as customer purchase and shipping records,

catalog mailing lists, loyalty program registration forms, customer surveys, or customer service
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records, all containing each customer’s home or work address, or both, as well as potentially other

location information. Externally, the stalker could easily access numerous free consumer self-reports

or public databases, such as social media (Meta, LinkedIn, Twitter) accounts, social media check-

ins, voter registrations16, and large numbers of other public records, such as marriage registrations

and divorce records17. The stalker may also purchase, with low costs, from a large number of vendors

the commercial databases containing millions of consumers’ names, home and work addresses, and

other location histories. Examples of such databases include consumer or resident mailing lists18,

background checks, and commercial people search tools19. Lastly, the widespread data breaches,

7500+ incidences annually worldwide20, have also granted stalkers access to massive volumes of

individual-level partial trajectories, such as breached employee databases21, credit card records of

visited stores22, hotel stays23, and taxi rides24

Measurement: The re-identification risk ri of a consumer i is measured by the maximum

probability of identifying i and thus his/her entire trajectory from the published trajectories P(T ),

among all possible subsets of i’s locations known a priori to the stalker T̄i ⊆ Ti.
25

Model: Without knowing the subset of locations T̄i a priori, the data aggregator needs to

account for all
(|Ti|
|T̄i|

)
possible subsets of Ti, where |Ti| is the total number of unique locations visited

by consumer i. For each such subset, the probability of i being identified is 1
J
, where J denotes the

number of all consumers among N who have visited all locations in T̄i. If no such consumers exist

other than i, then the probability of identifying i would be 1 for the subset considered. Ultimately,

a consumer i’s re-identification risk is the maximum of the probabilities of identifying i over all

subsets of locations known a priori to the stalker. We further employ a Random Forest classifier

with a speed-up heuristic to reduce the computational complexity (Online Appendix C).

Here is a stylized example. Three consumers’ trajectories over a two-week period, T1 =

{(A,1), (B,1), (C,2), (C,2)}, T2 = {(A,1), (B,1), (A,2)}, and T3 = {(A,1), (B,1), (C,2)}, suggest

16 http://bit.ly/3J7rWyD.

17 https://bit.ly/3YgLogI and http://bit.ly/3Zv7CfW.

18 Here are a few examples: http://bit.ly/3IOgV3Y; http://bit.ly/3YvGKff; and http://bit.ly/3IJhtYP.

19 https://www.supereasy.com/how-to-find-out-where-someone-works/.

20 http://bit.ly/41GjZYt; and https://bit.ly/3Zc8HcW.

21 https://www.theverge.com/2022/5/27/23144418/hacker-verizon-employee-database.

22 https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-data-standards-manual.pdf.

23 https://techcrunch.com/2022/07/06/marriott-breach-again/.

24 http://bit.ly/3kFDDmS.

25 The assumption here is that a stalker obtains the location data from a data aggregator only once, and also does
not collude with other stalkers to combine data. We invite future research on these interesting yet more complex
scenarios.

http://bit.ly/3J7rWyD
https://bit.ly/3YgLogI
http://bit.ly/3Zv7CfW
http://bit.ly/3IOgV3Y
http://bit.ly/3YvGKff
http://bit.ly/3IJhtYP
https://www.supereasy.com/how-to-find-out-where-someone-works/
http://bit.ly/41GjZYt
https://bit.ly/3Zc8HcW
https://www.theverge.com/2022/5/27/23144418/hacker-verizon-employee-database
https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-data-standards-manual.pdf
https://techcrunch.com/2022/07/06/marriott-breach-again/.
http://bit.ly/3kFDDmS
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that all three consumers visited the location subset (A, B). Two of them (consumers 1 and 3) vis-

ited (B, C), and two (consumers 1 and 3) visited (A, C). Then given each of these location subsets,

the corresponding probabilities of identifying consumer 1 are { 1
3
, 1
2
, 1
2
}, resulting in consumer 1’s

re-identification risk as max( 1
3
, 1
2
, 1
2
) = 1

2
. Given a similar number of unique locations visited across

consumers, an individual who visits more unique locations not visited by others would then have

a higher re-identification risk.

4.2. Quantification of Advertiser’s Utility

The second step of the proposed framework is the quantification of an advertiser’s utility when

leveraging the published data for location-based marketing. While an advertiser’s utility is multi-

faceted, and the proposed framework is capable of flexibly accommodating different utilities, we

demonstrate two most common and essential types of utilities: location prediction, which focuses

on the utility related to spatial factors, and activity-timing prediction, which further integrates

temporal and contextual factors. We will define each below.

4.2.1. Location Prediction Utility

Definition: Location prediction utility pertains to an advertiser’s utility of predicting a con-

sumer’s next k locations from the published data. This utility enables an advertiser to target a

consumer with spatially relevant contents, such as POI recommendations, leading to higher rev-

enues (Ghose et al. 2019). For instance, a chain restaurant may target a consumer with a discount

coupon if being able to predict the consumer’s visit of a location near one of its outlets. A gym

may target a potential customer if others similar to this consumer have visited the gym often.

Measurement: This utility is measured by the advertiser’s predictive accuracy, specifically the

Mean Average Precision (MAP@k) and Mean Average Recall (MAR@k), of the next k locations

from a collaborative filtering recommendation model, that is, by identifying other consumers with

similar trajectories to infer the focal consumer’s future locations (Bobadilla et al. 2011).

Model:We select the collaborative filtering recommendation model since consumers with similar

historical trajectories are more likely to visit similar locations in the future (Bobadilla et al. 2011).

Specifically, we focus on the best performing model, the nearest neighbor (NN) model, based on

the comparison against the common recommendation models in the literature (Online Appendix

D). This model identifies the m consumers most similar to the focal consumer i (i.e., m neighbors,

denoted as Mi) and uses their locations to predict i’s future locations. The similarity between any

pair of consumers is computed as the cosine similarity between the features of the two consumers’

trajectories F(Ti) and F(Tj):

sim(F(Ti),F(Tj)) =
F(Ti) · F(Tj)

||F(Ti)||||F(Tj)||
. (1)
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Then we rank the unique locations visited byMi based on visit frequencies and thesem neighbors’

similarities to consumer i. Specifically, for each consumer j ∈Mi and location l ∈ Tj, let f
l
j denote

the visit frequency of consumer j to location l, then the rank of a location l for consumer j is

determined by:

olij =

|Tj |∑
l=1

f l
j∑
l f

l
j

sim(F(Ti),F(Tj)), (2)

where
f l
j∑
l f

l
j
is the normalized visit frequency. Equation 2 ensures that consumer i will most likely

visit the most frequently visited location by the most similar consumer. We further aggregate olij

across all consumers in Mi who have visited location l by computing the mean of olij:

oli =
1∑|Mi|

j=1 1(l ∈ Tj)

|Mi|∑
j=1

1(l ∈ Tj) · olij, (3)

where 1(j ∈ Tj) = 1 if consumer j has visited location l and 0 otherwise. A higher valued oli suggests

that consumer i will more likely visit location l in the future. The next k locations most likely

visited by consumer i hence correspond to the top k ranked locations. The utility of consumer i’s

trajectory Ti to the advertiser is then measured as the predictive accuracy of the recommendation

model for different values of k, measured by the widely used information retrieval metrics that

assess the quality of the recommendations: Average Precision at k (AP@k or AP k
i ) and Average

Recall at k (AR@k or ARk
i ) (Yang et al. 2018). Specifically, let Li = {l1i , l2i , . . . , lk

′

i } be the actual

next k′ locations visited by consumer i and Li = {l1i , l2i , ..., lki } be the top k locations predicted by

the NN recommendation model as described above. Then AP k
i and ARk

i are:

AP k
i =

1

|Li ∩Li|

k∑
j=1

|L1:j ∩L1:j|
|L1:j|

, and (4)

ARk
i =

1

|Li ∩Li|

k∑
j=1

|L1:j ∩L1:j|
|Li|

. (5)

The intuition is that AP k
i measures the proportion of the recommended locations that are relevant,

while ARk
i measures the proportion of the relevant locations that are recommended. Then the

expected utility of all consumers’ trajectories to the advertiser E(ui) is calculated respectively as

the mean AP k
i (MAP@k) and mean ARk

i (MAR@k) across all consumers. Also, the parameter

m, the number of the most similar neighbors, is selected by performing a five-fold cross-validation

to maximize the predictive accuracy (Section 5.2), a technique commonly used in the statistical

learning literature to ensure a good out-of-sample performance (Friedman et al. 2001).
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4.2.2. Activity-Timing Prediction Utility

Definition: The activity-timing prediction utility refers to an advertiser’s utility of predicting

a consumers’ next k activities (such as commute, work, shopping, or dining) and the timing of

these activities (time of the day, day of the week) from the shared data. These daily activities

capture rich spatial, temporal, and contextual information about a consumer. Therefore, accurate

predictions of these activities and the timing of these activities, such as when a consumer will most

likely engage in leisure (instead of necessity) shopping, will allow an advertiser to deliver time-

sensitive and context-aware marketing messages. Compared to the location prediction utility that

focuses on spatial factors, this utility further incorporates temporal (sequential) and contextual

dimensions of the data. It also makes predictions based on a consumer’s own prior trajectories,

instead of leveraging the nearest neighbors as in the location prediction utility.

Measurement: This utility is measured by the predictive accuracy, specifically MAP@k and

MAR@k, of a robust machine learning model that could further incorporate the temporal and

contextual information, in addition to the spatial information.

Model: We leverage the sequential deep learning model, LSTM, to jointly predict each con-

sumer’s next activity and timing of the activity. We choose LSTM for a number of reasons. One,

a type of recurrent neural network, LSTM is designed to decipher patterns entrenched in long

sequences of data. It is hence particularly suited for data, such as ours, with time and sequence

information, and is widely used in many applications, such as stock price prediction or traffic

forecasting (Hochreiter and Schmidhuber 1997). Two, it is end-to-end, relying only on raw data

without the need for feature engineering (Sarkar and De Bruyn 2021). Three, it can easily predict

multiple outputs, such as time of the day, day of the week, and type of activity in our activity-

timing prediction task, hence superior to alternate models that require joint training of multiple

models, one for each output (Pascual and Bonafonte 2016, Zhou et al. 2019).

Before the prediction task, we query the Google Places API to identify the place type of each

location (second column of Table 5), semantically group these place types into 14 activities that

capture a consumer’s daily activities, such as fitness and leisure shopping, and then transform each

consumer’s trajectory Ti into an activity trajectory Ai comprising these 14 activities (first column

of Table 5). We then use LSTM to jointly predict the consumer’s next k activities, time of the day

(morning, afternoon, evening), and day of the week (weekend/weekday) of each activity:

1. Input Layer: The input triplet, (a, t,w), captures the state of a consumer. The activity a

is a one-hot vector of length 14 corresponding to the 14 activities. The time of the day t ∈

{Morning, Afternoon, Evening} is a vector of length 3. And the day of the week w ∈ 0/1 stands

for {Weekend/Weekday}. The input sequences are concatenated into a vector of length 18 and fed

into the next LSTM layer.
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Activity Place type

hospital hospital, doctor
health physiotherapist, pharmacy, dentist, drugstore

ncessityshopping
store, supermarket, convenience store, home goods store,
grocery or supermarket, hardware store

fitness gym

publictransport
transit station, train station, bus station, light rail station,
subway station

owntransport car wash, car repair, parking, gas station, taxi stand
religious church, mosque, hindu temple, synagogue

recreation
amusement park, tourist attraction, zoo, park, theatre,
sports stadium, concert, bowling alley, art gallery, aquarium,
museum, movie rental, book store, library, movie theater, campground

travel hotel, lodging, rv
personalcare beauty salon, spa, hair care

leisureshopping
clothing store, department store, shopping mall, shoe store,
electronics store, furniture store

unhealthyactivities casino, liquor store, bar, night club, cigarette
restaurant restaurant, food, meal, bakery, cafe, meal delivery, meal takeaway
other locations for which a place type was not identified by Places API

Table 5 Consumer activities

2. LSTM Layer: This layer has a hidden state to store the historical information and is carried

forward to the subsequent time-steps.

3. Dropout Layer: The output of the LSTM layer is fed through a dropout layer to prevent

the model from over-fitting on the training data by setting the activations of a certain percent of

neurons (i.e., dropout rate) to zero.

4. Activated Dense Layer: The output of the dropout layer is fed into a dense layer which outputs

a vector of length 18, representing the state triplet (a, t,w). We apply a SoftMax activation over

the first 14 elements and the next three elements separately, representing the probability assigned

to each activity and the time of the day of the activity. The last element has a rectified linear unit

activation applied on it to represent the day of the week of the activity.

4.3. Personalized and Flexible Obfuscation Scheme for Data Aggregator

The third step of the proposed framework is the design of a personalized and flexible obfuscation

scheme for the data aggregator.

Definition: The data aggregator’s problem is to identify a transformation of each consumer i’s

original unobfuscated trajectory Ti into an obfuscated trajectory P(Ti), in order to balance the

risk ri and utility ui before publishing P(Ti).

Acknowledging potential alternative specifications, we here introduce a simple, intuitive, yet

flexible, and generalizable objective function. It offers a broad framing of the risk-utility trade-off

as finding a grid parameter p ∈ [0,1] that governs which data are obfuscated to minimize the %

decrease in the utility (E∗(ui)−E(ui))

E∗(ui)
while maximizing the % decrease in the risk (E∗(ri)−E(ri))

E∗(ri)
:

O(p) =Min(
E∗(ui)−E(ui)

E∗(ui)
− E∗(ri)−E(ri)

E∗(ri)
), (6)
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where E∗(ui) and E∗(ri) respectively denote the expected utility and risk computed a priori from

i’s original unobfuscated trajectory. E(ui) and E(ri), or more precisely E(ui(p)) and E(ri(p)),

respectively refer to the expected utility and risk from i’s obfuscated trajectory. Equation 6 is

equivalent to

O(p) =Min(
E(ri)

E∗(ri)
− E(ui)

E∗(ui)
. (7)

This objective function is flexible to accommodate any type of personalized risk and utility. That

is, the objective here is not minimizing a specific risk, but to reach an individualized acceptable

trade-off between any type of risk and utility. In contrast, the objective of most prior studies is

to minimize a single specific risk, and then evaluate the impact on a non-business utility post hoc

(Yang et al. 2018, Primault et al. 2019, Fiore et al. 2020, Cunha et al. 2021, Jiang et al. 2022). As

a result, each study needs to be modified for a different risk case by case, also without a guarantee

of an optimal solution since such a solution depends on the functional form of the specific risk or

utility26.

Measurement: Given E∗(ui) and E∗(ri) computed a priori from the original unobfuscated data,

we empirically solve the objective function by varying p ∈ [0,1]. Specifically, for each different value

of p, we repeatedly obfuscate the original data27 and re-calculate E(ui) and E(ri) on the obfuscated

trajectory, to identify the obfuscated trajectory that fulfills the objective function. In fact, any p

that results in a greater % decrease in the risk than utility could be a viable solution depending on

the consumers’ and advertiser’s individualized needs, hence producing multiple acceptable trade-off

options and further exemplifying the flexibility of the proposed framework.

Model (Obfuscation Scheme): Acknowledging potential alternatives, we propose a person-

alized and flexible obfuscation scheme below grounded on repeated personalized suppressions of a

subset of locations by varying the grid parameter p, and structured grid search (Coope and Price

2001) over the obfuscated trajectories to identify the solution to the objective function.

Suppression. We choose suppression to obfuscate the published location data because it holds

a number of key advantages that make it best suited for business applications. One, compared

to other obfuscation techniques, suppression is easier to implement and interpret for the data

aggregator, for instance, without the need for a reverse algorithm to recover the original data

after the obfuscation is performed. Two, it reduces the advertiser’s utility the least, since unlike

26 Note that depending on the functional forms and properties of E(ui) and E(ri), there may not always exist a
single optimal solution that minimizes the objective function. For instance, how to optimize the difference of a convex
and non-convex function is currently an active area of research in the optimization community. Also, this objective
function may be easily adapted to alternative specifications, such as using the weighted % decrease in the utility
versus risk.

27 This process can be performed for a single individual, or for all individuals in the sample one by one before
calculating the average utility across all individuals to determine the best risk-utility trade-off.
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in other methods, such as perturbation, the remaining data not suppressed remain unaltered and

thus best preserve the truthfulness of the data. Three, the suppressed data are widely accepted,

and sometimes even preferred, by advertisers. For instance, it is common that advertisers acquire

and leverage location data that are suppressed and aggregated to a POI-level, as in the case of the

SafeGraph data, to accomplish geo-targeting and other marketing tasks. Lastly, suppression reduces

the data storage costs, but not revenues, of the data aggregator, since advertisers compensate the

data aggregator by the number of tracked individuals, instead of number of location records, in

the shared data (Thompson and Warzel 2019). Suppression also saves advertisers the data storage

and analysis costs.

To suppress each consumer i’s original trajectory Ti, we first calculate the suppression probability

of each location visited by i. Specifically, Ti is defined as a temporally ordered set of tuples Ti

= {(l1i , t1i ), ..., (l
ni
i , tni

i )}, where lki = (xk
i , y

k
i ) contains the geo-coordinates xk

i and yk
i (longitude and

latitude) of a location k visited by consumer i, tki is the corresponding timestamp, and ni is the total

number of locations visited by consumer i. Intuitively, more locations should be suppressed for a

consumer with a higher privacy risk. Also, more informative locations, such as those visited often by

the consumer, should be suppressed with higher probabilities. We thus formulate the personalized

suppression probability for each location j visited by consumer i as driven by (a) consumer i’s

baseline privacy risk ri calculated a priori on the original unobfuscated data, which has accounted

for intra- and inter-individual mobility patterns as described earlier; (b) a grid parameter p∈ [0,1]

that scales up or down the likelihood of a location being suppressed or the total number of locations

suppressed for i; and (c) location j’s informativeness (i.e., suppression weight) sji given consumer

i’s mobility patterns. Acknowledging potential alternative formula, we specify these personalized

suppression probabilities for the unique locations in Ti, Li = {l1i , l2i , ..., l
ki
i }, ki ≤ ni, as:

ri · p · (1+ s1i ), ri · p · (1+ s2i ), ..., ri · p · (1+ skii ). (8)

Here the informativeness of these locations s⃗i = {s1i , s2i , ...s
ki
i } can be captured by the trajectory

features extracted from Ti (Section 4.1.1), such as the frequency, recency, and time spent at each

location. For instance, s⃗i based on the frequency f (and similarly recency and time spent) at these

locations would be s⃗i = { f1
i∑ki

j=1 f
j
i

,
f2
i∑ki

j=1 f
j
i

, ...,
f
ki
i∑ki

j=1 f
j
i

}. Other features could also be incorporated,

such as a location’s distance to the individual’s home, which produces a similar performance. Over-

all, this specification suggests that for a specific grid parameter p, the base suppression probability

ri · p ensures that a consumer at a higher baseline risk would have more locations suppressed; and

the additional term ri · p · sji ensures that a more informative location j is suppressed with an
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even higher probability28. Now, each unique location visited by consumer i can be independently

suppressed (or conversely, kept) as a Bernoulli trial based on its respective suppression probability

specified in Equation 8. A Bernoulli trial, also known as binomial trial, is commonly used to cap-

ture events with exactly two possible outcomes (e.g., suppressed or kept a location in our context)

(Papoulis 1984).

Here is a stylized example of suppression. Consider Alice whose trajectory is

{H,B,H,H,M,W,E} where H is her home and W is her work; and Bob whose trajectory is

{W,W,Y,M,D,H,W}, where H is his home and W is his work. And M is a mall. The home

inference risk is 0.75 for Alice and 0.35 for Bob. Given similar informativeness of the locations

based on the frequency distributions (H=3 times, B=1, M=1, W=1, E=1 for Alice and W = 3,

Y =1, M =1, D=1, H = 1 for Bob), and a higher home inference risk for Alice, more locations

are then suppressed for Alice than Bob for a specific value of p. This will result in the obfuscated

trajectories of, for example, {B,M,E} for Alice and {Y,M,D,H} for Bob. Next, we will describe

how to vary the grid parameter p between 0 and 1 in a structured grid search to identify all

possible obfuscated trajectories P(Ti) that balance the risk and utility.

Structured Grid Search. As ri and sji are computed a priori from the original unobfuscated data,

the suppression probability specified above depends solely on the grid parameter p ∈ [0,1]. In an

extreme scenario where consumer i’s risk ri = 1 and the grid parameter p is reasonably high, all

locations visited by i would be suppressed. Then this complete suppression where {P(Ti)}=P(T ) =

∅) would result in zero risk to consumer i, yet also zero utility to the advertiser.29 Conversely, p = 0

results in no suppression (P(T ) = T ), hence a high utility to the advertiser, but also high risk to the

consumer. Noting these two extreme scenarios, we vary the grid parameter p from 0 and 1. For each

value of p, we re-calculate the suppression probabilities based on ri, p, and s⃗i, suppress a subset

of locations for each consumer based on these re-calculated suppression probabilities, and then

re-calculate the risk and utility on the obfuscated trajectories, to be compared with the baseline

risk and utility calculated a priori on the original unobfuscated data. This comparison allows us to

evaluate the % reductions in the risk versus utility, given each scenario of suppression (i.e., each

different value of p), and thus identify all possible obfuscated trajectories P(T ) that could balance

the risk and utility. Structured grid search reduces computational intensity compared to alternative

28 While the suppression probability leverages each consumer’s baseline risk, not utility, both are repeatedly calculated
on each obfuscated trajectory to identify the risk-utility balance. This set-up circumvents the unnecessary complication
of considering both the baseline risk and utility when calculating the suppression probability. Such complication could
arise, for instance, from the risk and utility being both correlated with a shared set of trajectory features, such as
visit frequency.

29 Note that sji ∈ [0,1], and ri · p ∈ [0,1] because ri ∈ [0,1] and p ∈ [0,1]. Nonetheless, the corresponding location is
suppressed with probability 1 whenever ri · p · (1+ sji )> 1.
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methods, such as a gradient descent-based approach. We also develop an early stopping heuristic

with simulated annealing to further speed up the search (Online Appendix A).

In summary, the proposed obfuscation scheme is personalized with the individual-specific sup-

pression probabilities despite a global grid parameter p. It is also flexible with a generalizable

objective function that accommodates different types of risks or utilities, together with a struc-

tured grid search that is independent of the risk or utility quantification and also permits multiple

acceptable levels of the risk and utility. The framework hence empowers a data aggregator to sat-

isfy diverse demands of risk preservation from the consumer side and utility preservation from the

advertiser side. It also offers transparency to the data aggregator regarding which locations are

suppressed and why, for which consumer of which risk level. Moreover, compared to the literature

that often requires multiple input parameters, the scheme requires no input parameter for the

home inference risk, and merely one input parameter for the re-identification risk (the number of a

consumer’s locations known a priori to a stalker |Ti|). The scheme further accounts for key charac-

teristics of location data, such as high spatial dimensionality (a large number of unique locations)

via for instance dimension reduction on the extracted features, and high temporal dimension via

for instance integrating the temporal information in the activity-timing prediction (Section 4.2.2).

In summary, Figure 2 visualizes the entire proposed framework. In Part A, each consumer’s

baseline risk ri and the advertiser’s baseline utility ui from the original unobfuscated data are

calculated, capturing the counterfactual case with no privacy preservation, hence maximum utility

yet maximum risk. In Part B, the personalized obfuscation is performed, and risk and utility

from the obfuscated data re-computed repeatedly to determine the best or acceptable risk-utility

trade-off. In the next section, we will describe the empirical evaluation of the proposed framework.

Obfuscation
scheme

Consumer risk
quantification

(Baseline)

Utility
quantification
(Baseline)

Obfuscated
consumer risk

Obfuscated
utility

A

B

Location Data

Obfuscated
location data

Figure 2 Framework overview

5. Empirical Study

To consistently estimate the risk and utility, we use bootstrapping with 20 trials for each p. We also

randomly sample 50% of the data (20,000 consumers) as our training set (Ttrain) for training and
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cross-validation (Online Appendix D), and the remaining 50% (20,012 consumers) as the test set

(Ttest) for the focal analysis. We subsequently examine alternative ways to split the training/test

sets (Online Appendix E). Additional robustness studies are reported in Online Appendix G.

5.1. Quantification of Consumer’s Privacy Risk

As described earlier, to compute each consumer’s home inference risk, an ensemble Random Forest

is trained on the training set, then used to predict the home location on the test set. Also, to

compute the re-identification risk, two locations in each consumer’s trajectory are assumed to be

known to the stalker to illustrate our approach. Figure 4 displays the average home inference risk

and average re-identification risk across all consumers in Ttest for each p.
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Figure 3 Personalized obfuscation: home inference risk

The data aggregator may already garner great insights from just this initial step of quantifying

the consumers’ privacy risks prior to the data obfuscation, such as which consumers are at the

greatest risk; what is the severity of each privacy risk; and which feature is most informative to a

stalker and should be suppressed? Using the home inference risk as an example, Figure 3a offers a

visual of the distribution of the consumers’ home inference risks if the stalker were to infer their

home locations from the unobfuscated data. It shows that the majority of the consumers carry

relatively high risks of home inference if no obfuscation were performed. On average, the normalized

haversine distance between the predicted and actual home locations (varying from 0 low risk to

1 high risk) is on the high end of 0.84. A stalker may identify a consumer’s home within a small

4km (2.5 mile) radius of the actual home (Online Appendix D). While not displayed here, the

average risk of re-identifying a consumer and hence his/her entire trajectory by knowing merely

two randomly sampled locations visited by the consumer is 0.49, that is, 49% chance of success

for the stalker. Finally, the data aggregator can assess the worst cases associated with the top-risk
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consumers in each risk. Such transparent, personalized risk assessment would enable marketers to

trade off against varying utilities or marketing campaigns. Despite the serious privacy risks with

the unobfuscated data, the data aggregator can curtail these risks by implementing the proposed

framework. For instance, the home inference risk could be reduced by 15% while fully preserving

the advertiser utility of location prediction on the POI@1 performance (Figures 4a and 4c at p =

0.7).

Besides inspecting the risks, the data aggregator may also assess the importance of the extracted

trajectory features (Table 4) prior to the obfuscation. Again, using the home inference risk as an

example, the top five most important features used in the Random Forest regressor include: a

consumer’s mobility patterns and consumer-location affinity (Figure 3b). Specifically, the average

number of unique locations visited by a consumer (average ulocations), mobility entropy that

measures the predictability of a consumer’s trajectory (time entropy), average time spent at each

location (average dwell freq), and consumer-location affinity (cons loc 1, i.e., the first principal

component in the consumer-location affinity tensor) are the most important features in estimating

a consumer’s home inference risk. These indicate to the data aggregator that the temporal infor-

mation of the trajectories (time entropy and average dwell freq) contributes significantly to

the stalker model’s predictive performance, and hence the consumer’s home inference risk. Then

a possible obfuscation scheme removing (even partially) the timestamps in the trajectories would

potentially prevent the stalker from constructing the temporal features, and as a result, reduce the

consumer’s home inference risk.

5.2. Quantification of Advertiser’s Utility

As described earlier, to compute the advertiser’s utility in the location prediction, we leverage a

collaborative filtering recommendation model. The locations visited by each consumer in the fifth

week are used as the ground truth to train the recommendation model. Without obfuscation, a

consumer’s next location may be predicted with 25% success (MAP@1 = 0.25, Figure 7 in Online

Appendix D). With obfuscation, the average utilities across all consumers in the test set, MAP@k

and MAR@k, for the next k locations where k= {1,5,10} are computed to illustrate the method’s

efficacy. MAP@k and MAR@k for other values of k may also be computed. We perform 20 trials

for each p and report the mean and 95% confidence intervals of the utility in Figure 4.

To compute the activity-timing prediction utility using the LSTM for each consumer in the

training set, we randomly select one week of his/her activities as the ground truth. Before training,

a hold-out validation set of one week of activities per consumer is randomly separated out from the

training data set. To prevent over-fitting, the models are trained until their performances on the

validation set reach a maximum. While training, we compute three losses: categorical cross-entropy
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Figure 4 Proposed framework: MAP@k and MAR@k for varying p in location prediction utility

for the activity, time of the day, and binary cross-entropy for day of the week. Since the accuracy of

the next activity prediction is more salient compared to that of time of the day prediction and day

of the week prediction, we assign disproportionate weights (λ, 1−λ, 1−λ) , where λ∈ [0,1], while

summing across these losses and empirically selecting λ with the best average validation accuracy

(grid λ ∈ [0.5, 0.6, 0.7]). In addition to λ, we also tune the number of hidden states in the LSTM

layer (grid: 64, 128, 256) and the drop-out rate (linear grid: 0.05 to 0.4, in increments of 0.05). The

models are trained for a maximum of 500 epochs. The model with the best validation accuracy is

then chosen to be evaluated on the test set.

We compute the AP k
i and ARk

i (Equations 4 and 5) for the three prediction tasks – next activity,

time of the day, and day of the week. The expected utility of all consumers’ trajectories E(ui) is

calculated as the average across the three prediction tasks across all consumers in the test set,

and is denoted as MAP@k and MAR@k. Without obfuscation, a consumer’s next activity and

its timing may be predicted with 26% success (MAP@1 = 0.26). With obfuscation, the results for

varying p, k, and their corresponding decreases in the risks for both the home inference risk and

the re-identification risk are displayed in Figure 5. Similar to Figure 4, for a given % decrease in the
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risk, we observe a lesser corresponding % decrease in the utility. This emphasizes the robustness of

the proposed obfuscation scheme under the prediction heuristics (activity-timing prediction) that

further incorporate the temporal and contextual information.
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Figure 5 Proposed framework: activity-timing prediction

5.3. Personalized and Flexible Obfuscation Scheme for Data Aggregator

We focus on discussing the results using the suppression weights s⃗i based on the frequency at each

location. Online Appendix G.1 reports the results based on the recency and time spent at each

location. Figures 4a and 4b visualize the risk-utility trade-off based on MAP@k, and figures 4c

and 4d based on MAR@k. Corresponding to each p ∈ Gp, the X-axis displays the % decrease in

the mean risk from the baseline risk (second term in Equation 6), and Y-axis the % decrease in

the utility from the baseline utility (first term in Equation 6). Therefore, a higher X-value means

more decrease in the risk and hence better privacy preservation. A higher Y-value means more

decrease in the utility, hence worse off for the advertiser. We can see that for each k = {1,5,10}

(corresponding to each curve in each graph), as p increases (a curve’s color changing from red

to green), more locations are suppressed, and hence more reductions in the risk, but also more

decreases in the utility. As a result, the data aggregator is presented with multiple options of k

and p to balance a specific type of risk and utility: e.g., as long as the decrease in the risk is larger

than the decrease in the utility (i.e., the area in the first quadrant below the 45-degree line). A

special case is the blue line (Y = 0), with decreases in the risk while zero sacrifice for the utility.30

30 The figure shows that in some cases (e.g., below the blue line), the decrease in the utility (MAP@k and MAR@k)
is actually negative. That is, the utility has actually increased upon the obfuscation. This could happen because the
obfuscation has potentially removed some noise from the location data, leading to a better model performance.
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In summary, these results showcase the flexibility of the proposed framework in furnishing the

data aggregator with multiple options in obfuscations, to satisfy diverse demands from various

entities in the location ecosystem. An auxiliary benefit of the framework is that data suppression

actually reduces the data aggregator’s and advertiser’s data storage and analytic costs. Finally,

while the obfuscation is performed offline by the data aggregator before sharing the location data

with the advertisers, we still report the time complexity and clock-time of the proposed obfuscation

scheme in Online Appendix B.

5.4. Model Comparison

We compare the proposed framework with ten baselines representing the core PPDP methods for

location data reviewed in Section 2 and also most comparable to our proposed framework. The

first group includes 3 rule-based baselines that obfuscate locations with specific timestamps, a

simple method commonly used in the early PPDP literature (Online Appendix H). The second

group showcases 3 global risk-based obfuscations to demonstrate the advantage of personalized

risk quantification and personalized obfuscation only examined by a few recent studies in Table 1

(Online Appendix I). The third group contains 2 baselines representing some of the latest syntactic

models in Table 1, LSup and GSup (Terrovitis et al. 2017). And the fourth group covers 2 newest

synthetic trajectory methods, PPMTF (Murakami et al. 2019) and LSTM-TrajGAN (Rao et al.

2020). We will focus on the last two groups below. A method is considered superior if the % decrease

in the utility is less than the % decrease in the risk.

Obfuscation
Method

% decrease
in home

inference risk

% decrease in
re-identification

risk

% decrease in
location prediction
utility (MAP@1)

% decrease in
location prediction
utility (MAR@1)

GSup
(Pbr = 0.2)

18.12 14.52 7.74 8.31

GSup
(Pbr = 0.5)

7.25 7.29 4.49 3.42

LSup
(Pbr = 0.2)

22.16 31.56 5.31 7.12

LSup
(Pbr = 0.5)

9.15 10.91 -1.65 0.86

Table 6 Proposed framework vs LSup and GSup:
green/red indicate proposed framework offers a better/worse trade-off

Latest Syntactic Models. LSup and GSup (Terrovitis et al. 2017) obfuscate data to mitigate

the re-identification risk. Methodologically, these models differ from the proposed framework in

three important ways. First, they quantify only the re-identification risk, whereas the proposed

framework can flexibly accommodate other risks. Second, these methods suppress a location either

globally across all consumers (GSup, similar to the mean-risk baseline in Figure 13) or locally for

a subset of consumers quantified as risky (LSup, e.g., all consumers visiting the same mall). In
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contrast, the proposed scheme suppresses a location at a consumer-level with the consumer-specific,

i.e., personalized, parameters {s⃗i, zi}. Third, these methods require multiple input parameters, such

as the number of adversaries A, background knowledge of each adversary in A, and Pbr that controls

the number of locations suppressed either locally (LSup) or globally (GSup), where a higher Pbr

results in fewer locations suppressed. In comparison, the proposed framework requires either no

input parameter (for home inference risk) or a single parsimonious input (for re-identification risk,

the number of locations known a priori to a stalker), making the framework easy to implement in

practice.

In model comparison, we follow these authors’ empirical evaluation framework to set the number

of adversaries A and background knowledge of each adversary in A; and merely vary Pbr. When

comparing the slope Y
X

in Figure 4 that capture the % decrease in the utility divided by % decrease

in the risk for the different decreases in the utility (MAP@1) of LSup and GSup (Table 631),

we observe that in most (6 out of 8) cases, the proposed framework provides a better trade-off

(denoted by green color in Table 6) than LSup and GSup. While it does not always outperform

LSup and GSup, it can flexibly accommodate multiple types of risks and utilities – a key feature

of a PPDP framework sought by the location ecosystem, whereas LSup and GSup only focus on a

single re-identification risk. Another benefit of the proposed framework is that it requires zero or

only one input parameter, as discussed earlier.

Synthetic Trajectory Generation Models. Finally, we compare the proposed method with

the synthetic trajectory generators, PPMTF (Murakami et al. 2019) and LSTM-TrajGAN (Rao

et al. 2020). We execute the publicly available implementations of these methods32, and adhere to

the pre-processing and parameter suggestions made by the respective authors. Using the output

synthetic trajectories, we compute the % decrease in the home inference and re-identification risks,

respectively, from the original trajectories (Section 4.1), and the % decrease in the advertiser utility

for the location prediction and activity-timing prediction, respectively (Section 4.2). Table 7 shows

that in 7 out of 8 cases, the proposed framework provides a better trade-off (denoted by the green

color) compared to both PPMTF and LSTM-TrajGAN.

31 Terrovitis et al. (2017) consider four values of Pbr: {0.2, 0.25, 0.33, 0.50} and conclude that for a fixed number of
adversaries, a higher data utility occurs at higher Pbr values (less locations suppressed) while ensuring reduction in
the re-identification risk. The best value suggested in their work is Pbr = 0.5. Our choice of Pbr is based on these
experiments and observations. Also, since these models do not address home inference, we obfuscate the data to
reduce the re-identification risk and use the same obfuscated data to quantify the reductions in the home inference
risk and the re-identification risk.

32 PPMTF: https://github.com/PPMTF/PPMTF. LSTM-TrajGAN: https://github.com/GeoDS/LSTM-TrajGAN.

https://github.com/PPMTF/PPMTF.
https://github.com/GeoDS/LSTM-TrajGAN.
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Method/Utility
% decrease
in home

inference risk

% decrease in
re-identification

risk

% decrease in
location prediction
utility (MAP@1)

% decrease in
location prediction
utility (MAR@1)

PPMTF
Location prediction

21.51 26.73 12.61 11.27

LSTMTrajGAN
Location prediction

15.81 13.69 17.65 15.28

PPMTF
Activity-timing prediction

21.51 26.73 12.51 11.83

LSTMTrajGAN
Activity-timing prediction

15.81 13.69 7.43 2.45

Table 7 Proposed framework vs synthetic trajectory models:
green/red indicate proposed framework offers a better/worse trade-off

6. Conclusion and Discussion

Mobile location-based technologies have generated massive volumes of user trajectory data over

recent years, and access to such location-based data has produced a wide range of benefits to

various entities in the ecosystem: consumers, data aggregators, and advertisers. Meanwhile, for

some entities, potential privacy concerns may arise from access to these granular data, calling for

data aggregators to adopt an effective, personalized, and flexible PPDP framework, to address

consumers’ heterogeneous privacy demands while also meeting advertisers’ heterogeneous needs.

This research tackles this essential yet under-studied topic, and contributes to an important area

of research that cuts across multiple disciplines – PPDP of consumer mobile location data – by

proposing a personalized and flexible framework to unleash the potential of location-based mar-

keting while protecting consumer privacy. The personalized data obfuscation approach accounts

for the heterogeneity in consumers’ privacy preferences and data valuations. The flexible accom-

modation of different types of risks (costs) and utilities (benefits), as well as different acceptable

levels of risk and utility, permits a data aggregator to satisfy diverse needs from both the consumers

and advertisers, as well as its own need for varied computational efficiency. Overall, this research

fills a critical void in the literature and offers an important tool for the privacy-aware practices of

big data location-based apps and services.

Specifically, we illustrate the framework with two potential privacy costs to consumers (home

inference risk and re-identification risk) and two potential benefits to advertisers (location predic-

tion and activity-timing prediction). We further validate the framework on a million real world

individual-level trajectories. Our analyses demonstrate that the proposed framework accounts for

distinct characteristics of the population-scale individual-level location data (high spatial and tem-

poral dimensions), and outperforms multiple benchmark methods from the latest literature. Our

findings indicate that potential privacy risks can prevail in the absence of data obfuscation. And

the personalized risk quantification enables a data aggregator to identify high-risk individuals, and

the data features that contribute the most to each potential risk. Furthermore, with the proposed

obfuscation scheme, a data aggregator can nimbly accomplish a more beneficial privacy-utility
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trade-off compared to the existing methods from the literature. For instance, the home inference

risk can be reduced by 15% with less than 1% decrease in the utility.

The proposed framework also offers important managerial and policy implications. For instance,

it can incorporate various types of potential privacy risks, such as location sequence inference, or

visit frequency inference, for which the risks may be quantified analytically or via machine learning

heuristics (Pellungrini et al. 2018). It also permits various types of utilities or benefits from business

applications, such as predictions of the likelihood and timing of customer conversion given past

trajectories, or evaluations of the incremental revenue from a location-based marketing campaign.

Such versatility can allow advertisers and other downstream data users to harness the power of the

individual-level location big data, while also protecting consumer privacy.

From the perspective of the policy makers, our study examines the potential benefits and costs

of access to location data, reinforces the importance of maintaining the risk-utility balance, and

provides a powerful and interpretable solution that can benefit all entities in the digital ecosystem,

especially consumers. More generally, policy makers may want to consider broadening the focus of

privacy preservation from merely issuing a blanket ban for limiting data access, to adopting a pri-

vacy friendly data sharing and utilization approach, i.e., PPDP, particularly in light of consumers’

willingness to share data in exchange for various economic or societal benefits (Ghose et al. 2020),

as well as recognizing the existence of the privacy paradox wherein there is a disconnect between

what consumers claim vs. how they behave (Ghose 2017). Finally, this research sheds additional

light on the broader discussions pertaining to privacy enhancing techniques on the internet and

also illustrates a viable solution.

Despite the contributions, this research has some limitations, which can be fruitful sources

for future research. For example, our data contain no information about individual consumers’

demographics. When such data become available, greater insights may be garnered into which

demographics are associated with higher potential privacy costs. This is important because hetero-

geneity in privacy preferences and valuations exists across demographics, both within and across

time and context. Also, our analysis considers the longitudes and latitudes, but not the names of

the locations of the entities. Hence future research may further differentiate sensitivity levels across

locations. Furthermore, as other sources of consumer-level data, such as click streams or search

queries become linked to the location data, more sophisticated privacy preservation methodologies

will be needed because there is substantial heterogeneity in a given consumer’s privacy preferences

and valuations across different kinds of data originating from different sources. In addition, we

demonstrate the framework with two potential risks and two utilities. Future research may explore

alternative situations, such as social relationship detection or public surveillance, and alternative

utilities, such as lifestyle profiling or potential customer identification. It would also be interesting



Macha, Foutz, Li, and Ghose: Personalized Privacy Preservation in Consumer Mobile Trajectories
Article forthcoming at Information Systems Research; manuscript no. (Please, provide the manuscript number!) 35

to assess the cost of accommodating different types of risks and utilities. Lastly, the proposed frame-

work considers only one-shot data sharing with the advertiser. Future research may explore more

complex scenarios with multiple risks, multiple utilities, or when a advertiser combines multiple

batches or sources of shared data.
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Appendix A: Early Stopping with Simulated Annealing

As described earlier, the exhaustive grid-based approach offers two key advantages: (1) flexibility to incorpo-

rate different types of risks and different types of utilities; and (2) reduced computational intensity compared

to a descent-based approach. Nonetheless, it comes with its own shortcomings. Specifically, the discretization

of the grid p would impact the best trade-off achieved. While considering a finer discretization of p can

remedy this, computational issues might occur in estimating E(ri) and E(ui). We partially address this by

estimating E(ri) and E(ui) for different values of p∈ {0,0.1, ...,1} in parallel. However, an exhaustive search

over a finer grid would require constraining the search space to remain computationally efficient.

To alleviate this, we propose an early stopping heuristic that improves the current grid-based search by

starting from coarser grid intervals of p, instead of a fixed grid of points, iteratively estimating E(ri) and

E(ui) for a finer grid of values efficiently using simulated annealing, guided by an acceptable decrease in the

advertiser’s utility. We will outline the early stopping heuristic below.

Input: N consumer trajectories {Ti}, estimators for E(ri) and E(ui), where ri = PR(Ti;{s⃗i, zi}), ui =

U(Ti;{s⃗i, zi}), an acceptable relative decrease in the advertiser utility Uacc.

Output: The obfuscated consumer trajectories {P (Ti)}.

1. Start with a coarse set of grid intervals for Gp ∈ {[0,0.1], [0.1,0.2], . . . , [0.9,1]} and a possible set of

pre-computed s⃗i based on frequency, recency, and time spent at each location in Ti.

2. Set Gprune = ϕ.

(a) Estimation: In parallel, repeatedly sample Ns consumers from N .

i. In each iteration, for each s⃗i, compute the best choice of p using simulated annealing33 psim
g , ∀

g ∈Gp.

ii. Compute E(ri) and E(ui) over M iterations by suppressing the locations using Eq 8). The average

of the M iterations, each computed at their respective psim
g , correspond to the estimates for a grid in Gp.

(b) Pruning:

i. If (E∗(ui)−E(ui))

E∗(ui)
<Uacc, add the corresponding g to Gprune.

ii. In Gprune, keep top ⌈ |Gprune|
2

⌉ grids based on the increasingly sorted (E∗(ri)−E(ri))

E∗(ri)
.

iii. Stopping criterion: If the M paired estimates of (E∗(ri)−E(ri))

E∗(ri)
of the top two grid intervals

do not have a statistically significant difference under paired t-test statistic, or if Gprune is empty, pick the

obfuscation parameters with the highest (E∗(ri)−E(ri))

E∗(ri)
in Step 2.1 ii), obfuscate {Ti} and return {P (Ti)}.

(c) Candidate Set:

i. Construct finer grids for each g ∈Gprune by splitting each g at the average value of psim
g across M

iterations, resulting in a maximum of |Gp|+1 candidate sets.

ii. Set Gp = Gprune and go to 2.2.

Overall, the algorithm starts off with a coarse-grained set of grid intervals Gp, instead of a fixed set of

points. We instantiate |Gp| independent parallel threads at Step 2), similar to the parallel computation in

the proposed fixed grid approach. Each thread is responsible for computing the estimates of E(ui) and E(ri)

33 For simulated annealing, we use an initial temperature of 10 and a total of 100 iterations to converge to psimg .
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for a grid interval g in Gp, across M repeated sample trajectories of size Ns, which are again executed in

parallel. In the fixed grid approach, we compute this estimate by averaging across twenty trials for a fixed

value of p (Section 4.1 and 4.2) on all N consumer trajectories.

Next, each child thread involves performing simulated annealing34 in a grid interval. This involves the

following steps,

• Start with an initial candidate of p in the grid interval (E.g.: 0.21 in grid [0.2, 0.3]), computing E(ui)

and E(ri) across the three specifications of s⃗i.

• Generate another candidate within the bounds of the grid, compute the temperature (we start with an

initial temperature of 10) and the metropolis acceptance criterion for the current iteration (we perform a

total of 100 iterations).

• Update the candidate if the metropolis criterion is met, repeat until maximum number of iterations,

return the optimal value returned by simulated annealing psim
g .

The average of the M resulting estimates at the corresponding psim
g for each g is used to prune Gp to

remain computationally efficient and generate finer grid intervals in the successive iterations, thus performing

an exhaustive search of the parameter space.

In Step 2.2) i), an optional parameter – acceptable relative decrease in the advertiser’s utility Uacc is

used to prune the grid intervals in Gp into Gprune. We further prune Gp by dropping the grid intervals

corresponding to the bottom quantile of the relative decreases in the risk (E∗(ri)−E(ri))

E∗(ri)
. If the resulting Gprune

is empty, or if the means of the top two estimates in Gprune are not statistically significant under the paired

t-test statistic, we stop the search and obfuscate {Ti} based on the parameters that result in the highest

relative decrease in the risk in Step 2.1) ii). Next, we generate a finer candidate set based on the resulting

non-empty Gprune by splitting each g at the average over M iterations of psim
g . This results in a maximum

of |Gp|+1 candidate sets for the next iteration which happens when no pruning is done due to Uacc and if

|Gp| is odd.

34 Interested readers may learn more about the implementation of simulated annealing at https://

machinelearningmastery.com/simulated-annealing-from-scratch-in-python/.

https://machinelearningmastery.com/simulated-annealing-from-scratch-in-python/
https://machinelearningmastery.com/simulated-annealing-from-scratch-in-python/
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Utility Risk k
Acceptable
decrease in u

Best p
% decrease

in r

Location prediction

Home inference

1 5 0.76 20.3
5 5 0.62 9.2
10 5 0.59 11.5
1 10 0.83 23.1
5 10 0.86 18.2
10 10 0.81 19.4

Re-identification

1 5 0.73 21.2
5 5 0.53 16.1
10 5 0.57 18.2
1 10 0.93 29.6
5 10 0.80 21.2
10 10 0.84 20.4

Table 8 Early stopping heuristic with Simulated Annealing: POI@k

Utility Risk k
Acceptable
decrease in u

Best p
% decrease

in r

Activity-timing prediction

Home inference

1 5 0.65 15.9
5 5 0.52 12.2
10 5 0.45 10.2
1 10 0.79 21.2
5 10 0.65 16.2
10 10 0.58 13.7

Re-identification

1 5 0.59 17.2
5 5 0.52 13.1
10 5 0.47 9.4
1 10 0.70 22.1
5 10 0.63 18.3
10 10 0.53 13.9

Table 9 Early stopping heuristic with Simulated Annealing: activity-timing prediction@k
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Appendix B: Complexity Analysis

We envision that data obfuscation will be performed offline by the data aggregator before sharing the data

with advertisers. The proposed obfuscation scheme requires computing features F(Ti) and inference of ui

and ri for a trajectory Ti (or an obfuscated trajectory P(Ti)) from a trained machine learning heuristic.

Denote these inference times for a single consumer trajectory Ti as O(Fi), O(ui) and O(ri). Note that these

vary depending on the data aggregator’s choice of the risk and utility functions. To compute the estimates

presented in Figure 4, we vary the grid parameter p∈ {0,0.1, ...,1} and estimate E(ui) and E(ri) for twenty

trials. This involves 20 × 10 × N × O(Fi) ≈ N × O(Fi) time for feature computation. Once the features

are built, these are fed into the corresponding risk and utility estimations - 20× 10×N ×O(ui)×O(ri) ≈

N ×O(ui)×O(ri). Hence the total time complexity is bounded by O(N(Fi +uiri)).

1. In the case of Random Forests employed for the home inference risk and in the sped-up heuristic for

the re-identification threat (Section 4.1.2), since N ≫ d, the inference complexity is bounded by O(N), hence

O(ui)≈ 1. For the POI prediction, the inference is again linear to compute the nearest k locations for each

consumer using a selection algorithm. Hence, the overall complexity is bounded by O(NFi) for both privacy

threats in the location prediction.

2. In the activity-timing prediction, we employ a LSTM to quantify the utility. The inference time is linear

in the number of points. While we do not need feature computation for the activity-timing prediction, these

still need to be computed to quantify the risk. Hence, the complexity is the same as earlier, bounded by

O(NFi).

In the proposed early stopping heuristic, additional computation overhead arises from spanning across a

finer grid of parameters, averaging over M = 50 repeated trials, until a stopping criterion is met. However,

this overhead is offset since the estimates are computed on a subset of the data Ns. This is observed in

Figure 6 and Table 10, where the early stopping heuristic is on average four times faster than the fixed-point

grid-based search. We repeat all experiments with the proposed early stopping heuristic and report the

resulting relative decreases in the risk and utility in Tables 8 and 9.
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Figure 6: Clock time for home
location inference and loca-
tion prediction

Utility Risk
Clock time (seconds)

Data Full grid Early stop

Location prediction Re-identification 100% 865 226
Location prediction Home inference 100% 978 258
Activity-timing prediction Re-identification 100% 1390 312
Activity-timing prediction Home inference 100% 1543 396
Location prediction Re-identification 50% 503 136
Location prediction Home inference 50% 645 187
Activity-timing prediction Re-identification 50% 790 210
Activity-timing prediction Home inference 50% 832 225

Table 10: Clock time of proposed heuristic
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Appendix C: Speed-up Heuristic

While the re-identification risk can be exactly computed for a given |T̄i|, it is computationally inefficient with

a complexity of
(

O(|Ti|
|T̄i|×N)

)
. To speed up the computation, we leverage a recent study (Pellungrini et al. 2018)

that empirically shows the predictability of the re-identification risk for a given k using mobility features.

The main idea is to learn a supervised algorithm, Random Forest, by building a set of mobility features

similar to F(T ) discussed in Section 4.1.1. We adopt this idea by further augmenting the mobility features

with our consumer-consumer and consumer-location affinity features. We then analytically compute the risks

for a subset of consumers and use the trained model to approximate the risks for the remaining consumers

(see Online Appendix D for the technical details).

We compute the data utility under different obfuscations and by computing the performance of an NN-

based collaborative filtering recommendation model to accurately predict future consumer locations. To

assess the accuracy of in location and activity-timing predictions, we treat the locations visited by each

consumer and correspondingly the activities by each consumer in the fifth week as the ground truth and

train the models to predict these locations/activities. Based on the risks, we obfuscate Ttrain by varying

p ∈ Gp. We learn an NN-based recommendation model (Bobadilla et al. 2011) by tuning the number of

neighbors via five-fold cross-validation on the obfuscated training set P(Ttrain). The model is learned to rank

the locations that a consumer is likely to visit during the fifth week of the observation period. That is, we

build the features F(P (Ttrain)) on the first four weeks’ data and tune the number of neighbors by using

a grid of {5,10,25,50,100,200} to maximize the predictive accuracy. Then, we compute the data utility,

MAP@k and MAR@k, on Ttest for k = {1,5,10} to illustrate the efficacy of the proposed method. The

learned recommendation model can be used to compute MAP@k and MAR@k for other values of k as

well. Intuitively, MAP@1 and MAR@1, for example, represent an advertiser’s utility to predict the next

location most likely visited by a consumer in the fifth week based on the recommendation model learned

on the obfuscated data. A key detail in the utility estimation is that we do not perform any obfuscation

on Ttest for any value of p, since our aim is to quantify the ability of obfuscated data, P(Ttrain), to learn

a consumer’s true preference revealed in the unobfuscated test sample. Similar to the risk computation, we

perform twenty trials for each p and report the mean and 95% confidence intervals of the utility metrics in

Figure 4.
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Appendix D: Model Choices and Robustness

Here we will empirically justify our model choices in the proposed framework. All choices are made based on

assessing the performance of different machine learning heuristics used in our framework on the unobfuscated

data. In Figure 7a, we show the incremental benefit of the affinity features discussed in extracting the features

F(T ). In Figure 7a, we plot the mean haversine distance of the Random Forest regressor trained to predict

home locations.35 The model is regularized by performing a grid search on the maximum number of features

{.25, .5, .75,1} and trees {50,100,200} via five-fold cross-validation.
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Figure 7 Proposed framework: model choices

Next, we learn two regression models to predict each consumer’s home latitude and longitude in UTM

with similar hyper-parameter tuning as earlier. The error estimate is the haversine distance between the

35 We treat the most frequently visited location 10pm-6am over weekdays by each consumer as the ground truth of
home location. The results remain robust across alternative operationalizations, such as 11pm-5am. We do not save
these home locations to preserve consumer privacy.
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Utility Risk k
Acceptable
decrease in u

Best p
% decrease

in r

Location prediction Home inference with LSTM

1 5 0.69 16.7
5 5 0.61 11.2
10 5 0.57 8.1
1 10 0.78 20.1
5 10 0.75 15.8
10 10 0.68 13.2

Table 11 LSTM for home inference: early stopping: POI@k

predicted home latitude/longitude and actual home latitude/longitude. From the box plots of the re-sampled

performance measures (Figure 7a), we notice that the consumer-consumer and consumer-location affinity

features incrementally improve the performance of both proxy models learned. In Figures 7b and 7c, we

visualize the MAP@k and MAR@k of the NN-based recommendation model learned by tuning the number

of neighbors.

We compare the performance with several baselines – recommendations based on the most popular loca-

tions (Most Popular), locations that the consumer spent the most time at (Most Dwell (consumer)), visited

most frequently (Most Frequent (consumer)), and a singular value decomposition (SVD) on the consumer-

location matrix populated with visit frequency. We observe that the NN-based model performs better in both

metrics compared to the baselines, justifying the choice. The mean haversine distance, 3.9 km ≈ 2.5 miles

indicates the success that a stalker would have in identifying a consumer’s home location from the unobfus-

cated data. Further, we also notice the incremental benefit of the affinity features in the recommendation

performance (See NN consumer mobility vs NN consumer mobility + affinities in Figures 7b and 7c).

For robustness, we further implement an LSTMmodel to predict the home location, both as a classification

task and regression task. In classification, we pass a location visited by a consumer i through a LSTM

encoder and train it to decode a 1 (yes, i’s home) or 0 (not i’s home). The performance is poor (MAP@1

= 0.12, MAR@1 = 0.56). In regression, the architecture is similar to that in the activity-timing prediction

(Section 4.2.2). The predictive performance (an average of 4.2 km between the predicted and actual location

locations) is inferior to the ensembled Random Forest model (4.0 kilometers) described in Section 4.1.1

and Section 5.1. While context specific, Random Forest in many contexts actually outperforms LSTM in

predictive performance (Fernández-Delgado et al. 2014, Ahmad et al. 2017, Weinberg and Last 2019, Chen

et al. 2019). LSTM is also more prone to over-fitting and more sensitive to input or different random weight

initializations.

Furthermore, we perform an obfuscation via early stopping (Online Appendix A) using LSTM instead

of Random Forest for the utility computation. Table 11 shows that the obfuscation scheme is capable of

achieving a trade-off between the consumer risk for the varying levels of acceptable decrease in the utility,

demonstrating the generalizability of the proposed approach. However, this trade-off is a bit worse when

compared to Table 8.
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Appendix E: Robustness of Training/Testing Sets Split

As detailed in Section 5.1, our Ttrain and Ttest have overlapping time periods across the five weeks. This split

was suggested by the data partner on how a data aggregator is envisioned to use the proposed framework.

For instance, a data aggregator could perform the obfuscation on a small sample of consumers, decide the

best p among the different choices available, and then perform the obfuscation with the chosen p for the

entire sample before sharing the location data with an interested party.

In this Section, we also present the results when there are no overlapping periods across the five weeks of

location data between the training and testing sets. Specifically, we use the locations from the 1st and 2nd

week to train the model and then predict the activities over the 3rd week. Finally, the testing performance

is measured by utilizing the 3rd and 4th weeks’ location data to predict the 5th week’s locations.

With the modified training/testing sets split, the NN-based algorithm achieves similar performance in

terms of MAP@k and MAR@k. This is expected since the features that go into the NN do not explicitly

factor in the sequence of weeks. They only capture the aggregate weekly behavior. Hence, as long as there

is no huge deviation between the week-to-week behavior, the features are likely to be predictive of the next

week’s behavior. The obfuscation results are thus similar to those in Figure 4.

However, we do notice a drop in the performance (about 10% decrease in both MAP@k and MAR@k) in

the activity-timing prediction (Section 4.2.2). This is expected since LSTM explicitly factors in the sequence

of the location data. In Figure 8, we present the obfuscation trade-off with the varying levels of p with the

newly trained LSTM model, with no overlapping time periods and the home inference risk. The proposed

framework is still capable of providing a reasonable trade-off between the consumer risk and the advertiser

utility.
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Appendix F: Cost-Benefit Analysis
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Figure 9 Proposed framework: cost-benefit analysis

We supplement the empirical analysis with a cost-benefit analysis, designed to closely simulate the appli-

cation of the proposed framework in practice. Consider a consumer whose location data have been acquired

by an advertiser from a data aggregator. Suppose that the advertiser engages POI recommendations and

allocates a marketing budget in hope of a return. Based on the obfuscation parameter p employed by the data

aggregator, the model accuracy (i.e. utility) and the risk would both change (Figure 4). In the simulation,

we factor both into the desired return as follows: (1) the advertiser makes a return if the location prediction

model is accurate in recommending a consumer’s likely next location (i.e., generating a benefit from being a

proper advertiser); and (2) the advertiser incurs a loss if the consumer perceives the targeting to be a privacy

invasion (i.e., loss from being considered as a stalker). We model the return from an accurate prediction in

(1) as a normal distribution, and perceived loss by the consumer in (2) based on the value function of the

Prospect Theory (Kahneman and Tversky 1979). Formally, if the model makes an accurate prediction, the

expected return from each consumer is modeled as N (µ,σ2) - λ(−ri)
v, where ri is consumer i’s risk and µ,

σ, λ, and v are the simulation parameters. If the targeting model makes an inaccurate prediction, the return

is assumed to be zero.

Figure 9 displays the advertiser’s returns and the corresponding standard errors based on 1,000 simu-

lations. For each simulation, we sample 10,000 consumers and their corresponding trajectories. For each

consumer trajectory, we infer the next likely location based on the location prediction model (Section 4.2)

and the corresponding risk of home inference (Section 4.1). To imitate the obfuscation performed by the

data aggregator before sharing the data, we also run the analyses for different specifications of p. We set

parameters µ = 1, σ2 = 0.05, λ = 1, and v = 0.6. to compute the return from a consumer in an accurate

prediction. The advertiser’s return displays an increasing trend as p increases, peaking at p = 0.5 and then

decreasing as p increases (Figure 9). Notably, the return at p = 0.5 is significantly higher when compared to

no obfuscation (p = 0). The initial increase in the returns is attributed to the decrease in the risk ri while

maintaining a similar prediction accuracy accomplished by the proposed obfuscation scheme (Figure 4). After
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p = 0.5, the model performance declines more, compared to the decrease in ri, leading to lower returns.

Overall, deploying the obfuscation scheme leads to higher returns to the advertiser, further incentivizing the

data aggregator to obfuscate the data before sharing the data with the advertiser.

F.1. Grid Search versus Gradient Descent-based Search

Next, we supplement the cost-benefit analysis by formulating an objective function similar to the one pre-

sented in the obfuscation scheme discussed in Section 4.3, with several simplifying assumptions. We then use

gradient descent in lieu of the proposed grid-based approach to maximize the expected return. Finally, we

employ the early stopping based grid-based approach presented in Online Appendix A to compare with the

expected return from the descent based approach.

Formally, we have I(p)N (µ,σ2) - λ(−ri(p))
v, where ri(p) is consumer i’s risk based on the obfuscation p,

I(p) is an indicator of a correct prediction for a given utility, p, the obfuscation parameter. As we know, as

p increases, I(p) and ri(p) both decrease. To stay consistent with this monotonic property, we assume I(p)

as a Beta(1,3) distribution. For ri(p), we consider linear ri(p) = ri(1− p) and a concave ri(p) = ri(1− p)2

functional formulations. Given these, we maximize the objective function using the standard gradient descent

approach over the parameter p.

When compared to the early stopping grid-based approach, the minimum value attained is 5.42% lower

(when ri is linear), and 8.65% lower when ri(p) is convex. At the outset, this is expected given the grid-based

approach is a heuristic in comparison to a structure descent based approach. However, the descent based

approach comes with simplifying assumptions for I(p) and ri(p) which heavily restrict the generalizability of

such a obfuscation scheme – one of our key contributions in this work. Note that we present this analysis for

illustrative purposes only. A more accurate way to capture such cost and benefit is by conducting counter-

factual analysis in a structural model framework, wherein an agent (here, the data aggregator) maximizes

its profit. We leave this for future research.
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Appendix G: Robustness Tests and Additional Analyses

G.1. Suppression based on Recency and Time Spent

The proposed obfuscation scheme uses a structured grid search by varying the grid parameter p to identify

the two consumer-specific parameters {s⃗i, zi} that balance the risk and utility. Recall that s⃗i captures the

informativeness of each location in Ti based on the visit frequency of the location (Figure 4). Here, we further

augment the empirical study and showcase the scheme’s flexibility by assigning s⃗i based on the recency and

time spent at each location in Ti. For brevity, we only consider the home inference risk and visualize the

risk-utility trade-off in Figures 10a and 10b. Similar to Figure 4, for a given % decrease in the risk, there is

a lesser corresponding % decrease in the utility.
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(a) Suppression based on recency
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(b) Suppression based on time spent

Figure 10 Proposed framework for home inference risk, location prediction utility, and suppression based on

recency and time spent

G.2. Varying Sample Sizes

To verify the robustness of the results in Figure 4, we repeat the same empirical exercise on three random

samples: 25%, 50% and 75% of the consumers in the data. For brevity, the suppression is performed only for

the home inference risk based on the visit frequency of each location (similar to Figure 4). Figures 11a, 11b,

and 11c show that even with smaller samples, the Y
X

slope (i.e., the % decrease in the utility divided by the

% decrease in risk) at different values of p remains similar to that in the full sample (Figure 4a).

G.3. Varying Dimensionalities

We further demonstrate the framework’s robustness by varying the dimensionality of the trajectories. For each

trajectory, we perform 25%, 50%, or 75% truncation for each consumer each day, and repeat the empirical

exercise. For brevity, the suppression is performed for the home inference risk based on the visit frequency of

each location (similar to Figure 4). Figures 12a, 12b, and 12c suggest that the proposed framework performs

reasonably well on the sparser dimensions (25% and 50%) and remains comparable to the full sample (Figure

4a) on the 75% of the trajectories considered.
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(a) 25% of consumers
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(b) 50% of consumers
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(c) 75% of consumers

Figure 11 Proposed framework for home inference risk, location prediction utility, and varying sample sizes
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(a) 25% of daily trajectories
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(b) 50% of daily trajectories
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(c) 75% of daily trajectories

Figure 12 Proposed framework for home inference risk, location prediction utility, and varying dimensionality
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Appendix H: Rule-based Obfuscations

The first three baselines use practical rules of obfuscating locations with certain timestamps. Specifically,

the data aggregator could remove all locations during the sleep hours (10 PM - 7 AM daily), sleep and work

hours (9 AM - 6 PM on weekdays), or all timestamps of the entire data. These obfuscations would reduce

the amount of information that can be extracted from the obfuscated data, and hence the data’s utility

to the advertiser. For instance, if all timestamps were removed, both the mobility features, time entropy,

time rog, average dwell (Table 4), and consumer-consumer, consumer-location affinity features based on

time spent at a location cannot be computed. When compared to these baselines (Table 12), the proposed

framework (Figure 4) offers a better choice set of the risk-utility trade-off. For instance, the proposed method

can reduce the home inference risk by 15% with merely 1% decrease in the utility (Figure 4a, p = 0.7, k

= 1), whereas for a comparable 13.45% decrease in the risk, removing all timestamps reduces the utility by

as high as 33.16% (Table 12); conversely, for the same 33.16% decrease in the utility, the proposed method

can reduce the risk by 34% (Figure 4a). Similar patterns are observed across all methods in Table 6 when

compared to the proposed method (Figures 4b, 4d).

Obfuscation
rule

% decrease in
home inference risk

% decrease in
re-identification risk

% decrease in
location prediction utility (MAP@1)

% decrease in
location prediction utility (MAR@1)

Remove
sleep hours

2.43 1.41 11.83 12.69

Remove sleep
and work hours

10.72 21.49 34.45 23.72

Remove all
timestamps

13.45 0 33.16 32.97

Table 12 Alternative obfuscation schemes: rule-based obfuscation
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Appendix I: Risk-based Obfuscations

We further compare the proposed method with three alternative risk-based obfuscations that also leverage

the same mobility features, to demonstrate the advantages of personalized risk quantification and person-

alized suppression via the consumer-specific parameters {s⃗i, ri}. The first is a random baseline, where the

suppression is performed randomly instead of based on consumer-level parameters, although the same num-

ber of locations are suppressed for comparability. The second is a mean-risk baseline, where the suppression

is based on the mean risk without variations across consumers, and hence not personalized. That is, we

replace ri with r = 1
N

∑
i
ri and suppress locations using r, p and s⃗i for each Ti, as in most prior studies.

The third is a global baseline, where all locations in T have the same chance (based on the mean risk) to

be suppressed irrespective of the risk variations across consumers. For a given decrease in the risk (same

X-value), the proposed obfuscation displays the least decrease in the utility across all risks (lowest Y-values

in Figure 13). The random baseline performs the worst, justifying the need for the risk quantification either

at a location-level (global baseline) or consumer-level (mean-risk baseline and proposed method).
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(a) Home inference
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(b) Re-identification

0

10

20

30

40

0 10 20 30
% Dec. in Risk at p

%
 D

ec
. i

n 
M

A
R

@
k

Global 
Mean Risk 
Proposed 
Random

0.4 0.8p

(c) Home inference
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(d) Re-identification

Figure 13 Proposed framework vs risk-based obfuscations: MAP@1 and MAR@1
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