Efficiency and Adverse Selection: On The Role of Mutual Contracts

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones

UMN & CMU

ASSA, January 2020

Introduction

- Economies with adverse selection: classic examples of "inefficient" economies
 - Akerlof (1970): markets can fully shut down
 - Rothschild and Stiglitz (1976): pure strategy equilibria do not exist (with screening)
 - mixed strategy exists but is inefficient
 - Guerrieri, Shimer, and Wright (2011): existence but inefficiency (with capacity constraints)

Introduction

- Economies with adverse selection: classic examples of "inefficient" economies
 - Akerlof (1970): markets can fully shut down
 - Rothschild and Stiglitz (1976): pure strategy equilibria do not exist (with screening)
 - mixed strategy exists but is inefficient
 - Guerrieri, Shimer, and Wright (2011): existence but inefficiency (with capacity constraints)
- Common result: equilibria do not exist or are often inefficient

Introduction .

- Economies with adverse selection: classic examples of "inefficient" economies
 - Akerlof (1970): markets can fully shut down
 - Rothschild and Stiglitz (1976): pure strategy equilibria do not exist (with screening)
 - mixed strategy exists but is inefficient
 - Guerrieri, Shimer, and Wright (2011): existence but inefficiency (with capacity constraints)
- Common result: equilibria do not exist or are often inefficient
- Common feature: contracts are not rich enough

This Paper _

- Enrich contract space using insights from mechanism design
 - Facing many agents: contracts depend on composition of reports
- Main Results: once we allow for interdependence
 - Efficient equilibrium exists
 - Under some restriction all equilibria are constrained efficient
- Interdependence resembles mutual contracts/cooperatives
 - Interpretation: customers as shareholders

Customers as Shareholders _

- Payoff of each customer depends on the aggregate loss experience of the firm
 - Insurance: mutual insurance is a prevalent form of insurance
- Life insurance in the U.S.
 - $\circ~$ in 2014: 1/3 of all life insurance in force mutualized
- Health insurance in the U.S.
 - Aggregate loss experience leads to adjustment of future premia

Related Literature

- Blandin, Boyd, and Prescott (2016)
 - Use core as solution concept
- Wilson (1980)
 - Contracts depend on contracts offered by other firms
- Netzer and Scheuer (2014)
 - Give firms an option to exit
- Large literature on adverse selection and screening: often deliver inefficient market outcomes:
 - Dubey and Geanakoplos (2002), Guerrieri, Shimer and Wright (2010), Azevedo and Gottlieb (2017), among many many others.

Environment

Players _

- Continuum of households of unit mass:
 - low risk (good) and high risk (bad): $j \in \{g, b\}$
 - $\circ~$ endowment: $\omega \in \{\omega_2 < \omega_1\};$ 2 is loss state
 - risk: $\Pr(\omega_1|j) = \pi_j; \pi_g > \pi_b$
 - Population fractions: $\Pr(j) = \mu_j; \mu_g + \mu_b = 1$
 - Concave utility function u(c)
- 2 risk-neutral insurance companies (firms)

Allocations, Payoffs, ... __

- Allocations: $\mathbf{c} = {\mathbf{c}_g, \mathbf{c}_b} = {(c_{1j}, c_{2j})}_{j \in {g, b}}$
- Payoffs:
 - Households:

$$U_j(\mathbf{c}_j) = \pi_j u(c_{1j}) + (1 - \pi_j) u(c_{2j})$$

• Firms – from type *j*:

$$\Pi_{j}\left(\mathbf{c}_{j}\right) = \pi_{j}(\omega_{1} - c_{1j}) + (1 - \pi_{j})(\omega_{2} - c_{2j})$$

• Total firm profits:

$$\Pi(\mathbf{c}) = \sum_{j=b,g} \lambda_j \Pi_j\left(\mathbf{c}_j\right)$$

 $\boldsymbol{\lambda}=\left(\lambda_{b},\lambda_{g}\right)$ measure of types that a firm trades with

Incentive Compatibility

- Risk types: private information to household
- Focus on direct mechanisms: $(c_{1g}, c_{2g}, c_{1b}, c_{2b})$
- Incentive Compatibility:

$$\begin{aligned} \pi_b u(c_{1b}) + (1 - \pi_b) u(c_{2b}) &\geq \pi_b u(c_{1g}) + (1 - \pi_b) u(c_{2g}) \\ \pi_g u(c_{1g}) + (1 - \pi_g) u(c_{2g}) &\geq \pi_g u(c_{1b}) + (1 - \pi_g) u(c_{2b}) \end{aligned}$$

• Relevant IC: *b* pretending to be *g*

EFFICIENT ALLOCATIONS

Efficiency _

- Our Notion of Efficiency: constrained efficiency
- Defines an interim pareto frontier
- One example: low risk efficient allocation
 - Max welfare of g subject to
 - IC
 - resource constraint
 - participation by *b*: must be better off than autarkic full insurance
 - autarkic full insurance: full insurance with premium

$$(1-\pi_b)(\omega_1-\omega_2)$$

• One candidate for equilibrium

Interim Pareto Frontier

• Interim Pareto Frontier is characterized by

 $\max U_g\left(\mathbf{c}_g\right)$

subject to

IC,
$$\mu_{g}\Pi_{g}(\mathbf{c}_{g}) + \mu_{b}\Pi_{b}(\mathbf{c}_{b}) \ge 0$$

 $U_{b}(\mathbf{c}_{b}) \ge v_{b}$

- Varying *v*_b traces out the frontier.
- Low-risk efficient: best from g's perspective

Low Risk Efficiency

For any composition of types (λ_b, λ_g)

$$V_g^{eff}(\lambda_b, \lambda_g) = \max_{c_{1j}, c_{2j}} \pi_g u(c_{1g}) + (1 - \pi_g)u(c_{2g})$$

subject to

$$\begin{aligned} \pi_b u(c_{1b}) + (1 - \pi_b) u(c_{2b}) &\geq \pi_b u(c_{1g}) + (1 - \pi_b) u(c_{2g}) \\ \sum_j \lambda_j \left[\pi_j (\omega_1 - c_{1j}) + (1 - \pi_j) (\omega_1 - c_{2j}) \right] &\geq 0 \\ \pi_b u(c_{1b}) + (1 - \pi_b) u(c_{2b}) &\geq V_b^f \end{aligned}$$

• Equivalently defines
$$V_b^{eff}(\lambda_b, \lambda_g)$$

Low Risk Efficient Allocations

• Utilities are homogenous of degree 0 in (λ_b, λ_g)

Low Risk Efficient Allocations

- Utilities are homogenous of degree 0 in (λ_b, λ_g)
- If $\frac{\lambda_g}{\lambda_g + \lambda_b} \leq \lambda^*$ then
 - efficiency coincides with least-cost separating allocation
 - participation constraint binds
 - incentive constraint binds
 - no cross-subsidization; profits are zero on each type

Low Risk Efficient Allocations _

• If
$$\frac{\lambda_g}{\lambda_g + \lambda_b} > \lambda^*$$
 then

- participation constraint slack
- incentive constraint binds
- cross-subsidization
 - positive profits on g
 - negative profits on b

Low Risk Efficient Allocations _

• If
$$\frac{\lambda_g}{\lambda_g + \lambda_b} > \lambda^*$$
 then

- participation constraint slack
- incentive constraint binds
- cross-subsidization
 - positive profits on g
 - negative profits on b
- Any interim pareto efficient allocation must involve cross-subsidization

Low Risk Efficient Allocations _

• If
$$\frac{\lambda_g}{\lambda_g + \lambda_b} > \lambda^*$$
 then

- participation constraint slack
- incentive constraint binds
- cross-subsidization
 - positive profits on g
 - negative profits on *b*
- Any interim pareto efficient allocation must involve cross-subsidization
- Focus only on $\mu_g \ge \lambda^*$

Low Risk Efficient Allocations

• The functions
$$V_j^{eff}(\lambda_g, \lambda_b)$$
:

$$\circ~$$
 increasing in $\frac{\lambda_g}{\lambda_g+\lambda_b}$ (constant below $\lambda^*)$

- necessarily discontinuous at (0, 0)
 - value at (0,0) not defined
 - impossible to extend $V_{j}^{e\!f\!f}(\lambda_{g},\lambda_{b})$ to (0,0) in a continuous way

OUR EXTENSIVE FORM GAME

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Extensive Form Game

• Insurance companies move first:

• Offer menus

$$i \in \{1,2\}: \mathbf{c}^{i}(\boldsymbol{\lambda}^{i}) = (c_{1g}^{i}(\boldsymbol{\lambda}^{i}), c_{2g}^{i}(\boldsymbol{\lambda}^{i}), c_{1b}^{i}(\boldsymbol{\lambda}^{i}), c_{2b}^{i}(\boldsymbol{\lambda}^{i}))$$

Households choose between the two firms

σⁱ_j(**c**¹, **c**²): probability of choosing firm *i* by type *j*λⁱ = (λⁱ_g, λⁱ_b) measures of households at firm *i*;λ = (λ¹, λ²)

Rothschild-Stiglitz as Restricted Version of Our Game

- Restriction: menus are independent of λ
- $\mu_g \leq \lambda^*$: Unique pure strategy equilibrium least cost separating; interim efficient
- $\mu_g > \lambda^*$: no pure strategy equilibrium exists
 - Dasgupta and Maskin (1986):
 - mixed strategy equilibrium exists
 - equilibrium is interim inefficient

Standard Notion of Equilibrium

Definition. A Symmetric Equilibrium is defined by a pair of menus $\mathbf{c}^{i}(\boldsymbol{\lambda}) : [0, \mu_{b}] \times [0, \mu_{g}] \to \mathbb{R}^{4}, i = 1, 2$ together with house-holds' strategies $\sigma_{j}^{i} : (\mathbf{c}^{1}, \mathbf{c}^{2}) \to \Delta(\{1, 2\}^{2})$ such that:

• Households maximize: given any $\mathbf{c} = \left(\hat{\mathbf{c}}^{1}\left(\cdot \right), \hat{\mathbf{c}}^{2}\left(\cdot \right) \right)$

$$\sigma_j^i(\mathbf{c}) \left[U_j(\sigma_g^i(\mathbf{c}), \sigma_b^i(\mathbf{c})) - U_j(\sigma_g^{-i}(\mathbf{c}), \sigma_b^{-i}(\mathbf{c})) \right] \geq 0$$

Firms maximize

$$\mathbf{c}^i \in \arg\max_{\mathbf{c}^i} \Pi^i(\mathbf{c}(\sigma^i(\mathbf{c}^i,\mathbf{c}^{-i}))).$$

• Assumption: $c^i(\lambda)$ is continuous everywhere but at $\lambda = (0,0)$ V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Main Theorems _

Theorem 1. The game has a symmetric equilibrium whose outcome coincides with the low-risk efficient allocation.

Main Theorems _

Theorem 1. The game has a symmetric equilibrium whose outcome coincides with the low-risk efficient allocation.

• Under appropriate restrictions/refinments

Proof of Theorem in Steps _

- Propose equilibrium strategies
- Show equilibrium in restricted strategy space
- Remove restrictions on strategies
 - subgame might not have an equilibrium for arbitrary pair of menus offered.

Equilibrium Strategies

- 1st step: construct "Mirror" Strategies
 - Construct strategy from the low-risk efficient allocation

$$V_j^*(\boldsymbol{\lambda}) = \max\left\{V_j^{e\!f\!f}(\boldsymbol{\lambda}), V_j^{e\!f\!f}(\boldsymbol{\lambda}^c)
ight\}$$

where

$$\boldsymbol{\lambda}^{c} = (\mu_{b} - \lambda_{b}, \mu_{g} - \lambda_{g})$$

Associated menus are given by $\mathbf{c}^*(\boldsymbol{\lambda})$

• Note that both types rank low-risk efficient allocations the same way so this is well-defined

- 2nd step: "Mirror" Strategies equilibrium in restricted strategy set
- $S = \{ \mathbf{c}(\boldsymbol{\lambda}) : \text{ The subgame with } (\mathbf{c}(\boldsymbol{\lambda}), \mathbf{c}^*(\boldsymbol{\lambda})) \text{ has an equilibrium} \}$

- 2nd step: "Mirror" Strategies equilibrium in restricted strategy set
- $S = \{ \mathbf{c}(\boldsymbol{\lambda}) : \text{ The subgame with } (\mathbf{c}(\boldsymbol{\lambda}), \mathbf{c}^*(\boldsymbol{\lambda})) \text{ has an equilibrium} \}$

Proposition 1. Consider the restricted game in which each firm offers menus in *S*. Then the low-risk efficient allocation is an equilibrium outcome of the game.

- 2nd step: "Mirror" Strategies equilibrium in restricted strategy set
- $S = \{ \mathbf{c}(\boldsymbol{\lambda}) : \text{ The subgame with } (\mathbf{c}(\boldsymbol{\lambda}), \mathbf{c}^*(\boldsymbol{\lambda})) \text{ has an equilibrium} \}$

Proposition 1. Consider the restricted game in which each firm offers menus in *S*. Then the low-risk efficient allocation is an equilibrium outcome of the game.

- Why restriction: subgames are discontinuous non-atomic games:
 - Equilibrium does not necessarily exist!

- Idea of proof:
 - $\,\circ\,$ Suppose that firm 2–incumbent–offers the mirror strategy ${\bf c}^*({\boldsymbol \lambda})$
 - Firm 1–deviant–offers $\hat{\mathbf{c}}(\lambda) \in S$

- Idea of proof:
 - $\circ\,$ Suppose that firm 2–incumbent–offers the mirror strategy ${\bf c}^*({\boldsymbol \lambda})$
 - Firm 1–deviant–offers $\hat{\mathbf{c}}(\lambda) \in S$
 - Suppose that deviant attracts both types (the argument is similar for other cases)

- Idea of proof:
 - Suppose that firm 2-incumbent-offers the mirror strategy c*(λ)
 - Firm 1–deviant–offers $\hat{\mathbf{c}}(\lambda) \in S$
 - Suppose that deviant attracts both types (the argument is similar for other cases)
 - If deviant attracts type *j*:

$$U_{j}(\hat{\mathbf{c}}(\boldsymbol{\lambda}^{1})) \geq V_{j}^{*}(\boldsymbol{\lambda}^{1c}) = \underbrace{\max\left\{V_{j}^{eff}(\boldsymbol{\lambda}^{1c}), V_{j}^{eff}(\boldsymbol{\lambda}^{1})\right\}}_{\text{Mirror Strategy}} \geq V_{j}^{eff}(\boldsymbol{\lambda}^{1})$$

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

- Idea of proof:
 - Suppose that firm 2-incumbent-offers the mirror strategy c*(λ)
 - Firm 1–deviant–offers $\hat{\mathbf{c}}(\lambda) \in S$
 - Suppose that deviant attracts both types (the argument is similar for other cases)
 - If deviant attracts type *j*:

$$U_{j}(\hat{\mathbf{c}}(\boldsymbol{\lambda}^{1})) \geq V_{j}^{*}(\boldsymbol{\lambda}^{1c}) = \underbrace{\max\left\{V_{j}^{e\!f\!f}(\boldsymbol{\lambda}^{1c}), V_{j}^{e\!f\!f}(\boldsymbol{\lambda}^{1})\right\}}_{\text{Mirror Strategy}} \geq V_{j}^{e\!f\!f}(\boldsymbol{\lambda}^{1})$$

o implies firm 1 cannot make positive profits

Removing Restriction on Strategies

- Every subgame is a discontinuous non-atomic game between a continuum of households
- Potentially does not have an equilibrium
- Our approach: discretize the game (finitely many households) and take limits (send number of households to infinity)
- Use Nash/Dasgupta-Maskin's existence result and convergence of binomial distributions
- We can show that Theorem 1 goes through under limit equilibria Discretization

Possible Problems with Mirror Strategies.

- Main idea behind existence of equilibria with cross-subsidization:
 - Block deviations by committing to lose against cream-skimming
- Potentially too costly: why should firm commit to lose money in case somone tries to poach thei good customers?
- Similar logic can be used to show there are other equilibria
 - Similar to the literature on supply function equilibria: Klemperer and Meyer (1989)
- In what follows: restriction on strategies; use as refinement

Equilibrium Refinement

A restricted equilibrium is an equilibrium that satisfy the following properties:

R1. Off path non-negative profits:

$$\sum_{j=g,b} \lambda_{j} \Pi_{j} \left(\mathbf{c}_{j} \left(\boldsymbol{\lambda} \right) \right) \geq 0, \forall \boldsymbol{\lambda} \in [0, \mu_{b}] \times \left[0, \mu_{g} \right]$$

R2. Non-negative profits on each type at (0, 0):

$$\Pi_{j}\left(\mathbf{c}_{j}\left(0,0\right)\right) \geq 0, j = b, g$$

R3. For any pair of menus $(\mathbf{c}^1, \mathbf{c}^2)$, equilibria in the subgame should be pareto efficient.

R4. Equilibrium menus must be H.O.D. 0, i.e., $\mathbf{c}^{i}(\boldsymbol{\lambda}) = \mathbf{c}^{i}(\alpha \boldsymbol{\lambda}).$

- Idea of Proof:
 - For any pareto optimal allocation:
 - offer a menu that implements the allocation at population measure
 - Upon a deviation all household choose the incumbent

- Idea of Proof:
 - For any other allocation by an incumbent:

- Idea of Proof:
 - For any other allocation by an incumbent:
 - Construct a Bertrand type deviation: A contract that attracts all households and makes higher profit

- Idea of Proof:
 - For any other allocation by an incumbent:
 - Construct a Bertrand type deviation: A contract that attracts all households and makes higher profit
 - Construct it so that all the other equilibria (in the subgame) are pareto dominated than everyone choosing deviant

- Idea of Proof:
 - For any other allocation by an incumbent:
 - Construct a Bertrand type deviation: A contract that attracts all households and makes higher profit
 - Construct it so that all the other equilibria (in the subgame) are pareto dominated than everyone choosing deviant
 - by R3 the only equilibrium upon deviation would be everyone choosing the deviant

- Idea of Proof:
 - For any other allocation by an incumbent:
 - Construct a Bertrand type deviation: A contract that attracts all households and makes higher profit
 - Construct it so that all the other equilibria (in the subgame) are pareto dominated than everyone choosing deviant
 - by R3 the only equilibrium upon deviation would be everyone choosing the deviant
 - In the paper, we show such a construction is always possible

Conclusion ____

• A game theoretic construction of efficient market arrangements with adverse selection and screening

Conclusion

- A game theoretic construction of efficient market arrangements with adverse selection and screening
- Ali and Ariel's conclusion:
 - Mutual contracts can achieve efficiency in markets with adverse selection
 - Perhaps policies which support mutualization more important than mandates

Conclusion

- A game theoretic construction of efficient market arrangements with adverse selection and screening
- Ali and Ariel's conclusion:
 - Mutual contracts can achieve efficiency in markets with adverse selection
 - Perhaps policies which support mutualization more important than mandates
- Chari's conclusion:
 - Beware of theorists who say adverse selection leads to inefficiency!

Additional Slides

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Discretization: A Clarifying Example _

- Suppose two firms setting prices faces a continuum of consumers
- Suppose firms post vⁱ(α): the value of customer choosing firm *i* when fraction α also choose *i*

$$v^{1}(\alpha) = \begin{cases} 0 & \alpha \neq 0\\ 2 & \alpha = 0 \end{cases}$$
$$v^{2}(\alpha) = 1$$

Discretization: A Clarifying Example _

- Suppose two firms setting prices faces a continuum of consumers
- Suppose firms post vⁱ(α): the value of customer choosing firm *i* when fraction α also choose *i*

$$\nu^{1}(\alpha) = \begin{cases} 0 & \alpha \neq 0\\ 2 & \alpha = 0 \end{cases}$$
$$\nu^{2}(\alpha) = 1$$

• No symmetric equilibrium exists

Discretization ____

- Consider instead approximation with N customers
- Firm payoffs given by

$$v^{1}(\alpha) = \begin{cases} 0 & \alpha \neq \frac{1}{N} \\ 2 & \alpha = \frac{1}{N} \\ v^{2}(\alpha) = 1 \end{cases}$$

• For all N, symmetric mixed strategy equilibrium exists

Discretization _

- Consider instead approximation with N customers
- Firm payoffs given by

$$v^{1}(\alpha) = \begin{cases} 0 & \alpha \neq \frac{1}{N} \\ 2 & \alpha = \frac{1}{N} \end{cases}$$
$$v^{2}(\alpha) = 1$$

- For all *N*, symmetric mixed strategy equilibrium exists
- If p_N is probability of choosing firm 1, then

$$2(1-p_N)^{N-1} = 1 \Rightarrow p_N = 1 - \left(\frac{1}{2}\right)^{\frac{1}{N-1}}$$

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Discretization

- Consider instead approximation with N customers
- Firm payoffs given by

$$\mathbf{v}^{1}(\alpha) = \begin{cases} 0 & \alpha \neq \frac{1}{N} \\ 2 & \alpha = \frac{1}{N} \\ \mathbf{v}^{2}(\alpha) = 1 \end{cases}$$

- For all N, symmetric mixed strategy equilibrium exists
- If p_N is probability of choosing firm 1, then

$$2(1-p_N)^{N-1} = 1 \Rightarrow p_N = 1 - \left(\frac{1}{2}\right)^{\frac{1}{N-1}}$$

• As
$$N \to \infty$$
, $p_N \to 0$

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts
Discretization

- Discretization yields sensible equilibrium: everyone chooses firm 2
- Our equilibrium concept: discretize the game and take limits as number of households goes to infinity
- Next: apply discretization to our game

Discretized Subgame

- For any pair of contracts $(\mathbf{c}^1, \mathbf{c}^2)$, let $G(N_g, N_b)$ be the discretized subgame:
- N_j is number of households of type j
 - Payoffs:

$$U_j\left(\mathbf{c}^i\left(\mu_g \frac{n_g^i}{N_g}, \mu_b \frac{n_b^i}{N_b}\right)\right)$$

where n_j^i is number of households of type *j* at firm *i*

Discretized Subgame Equilibrium

- Symmetric mixed strategy $\mathbf{p} = \left\{ p_j^i \right\}_{i,i}$
- Payoffs using binomial expansion

$$U_{j}^{i}(\mathbf{p}) = \sum_{k_{j}=0}^{N_{j}-1} \sum_{k_{-j}=0}^{N_{-j}} \binom{N_{j}-1}{k_{j}} (p_{j}^{i})^{k_{j}} (1-p_{j}^{i})^{N_{j}-1-k_{j}} \\ \times \binom{N_{-j}}{k_{-j}} (p_{-j}^{i})^{k_{-j}} (1-p_{-j}^{i})^{N_{-j}-k_{-j}} V_{j}^{i} \left(\mu_{g} \frac{k_{g}}{N_{g}}, \mu_{b} \frac{k_{b}}{N_{b}}\right)$$

Lemma (Nash (1950)). A symmetric Nash equilibrium exists in the discretized subgame.

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Discretized Subgame Equilibrium

- Symmetric mixed strategy $\mathbf{p} = \left\{ p_j^i \right\}_{i,i}$
- Payoffs using binomial expansion

$$\begin{split} U_{j}^{i}(\mathbf{p}) &= \sum_{k_{j}=0}^{N_{j}-1} \sum_{k_{-j}=0}^{N_{-j}} \left(\begin{array}{c} N_{j}-1\\ k_{j} \end{array} \right) (p_{j}^{i})^{k_{j}} (1-p_{j}^{i})^{N_{j}-1-k_{j}} \\ &\times \left(\begin{array}{c} N_{-j}\\ k_{-j} \end{array} \right) (p_{-j}^{i})^{k_{-j}} (1-p_{-j}^{i})^{N_{-j}-k_{-j}} V_{j}^{i} \left(\mu_{g} \frac{k_{g}}{N_{g}}, \mu_{b} \frac{k_{b}}{N_{b}} \right) \end{split}$$

• Nash Equilibrium: $p_j^i \left[U_j^i(\mathbf{p}) - U_j^{-i}(\mathbf{p}) \right] \ge 0, \forall j, i$

Lemma (Nash (1950)). A symmetric Nash equilibrium exists in the discretized subgame.

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Subgame Limit Equilibrium

Definition (Limit Equilibrium). Given a subgame assiociated with menus $\mathbf{c} = (\mathbf{c}^1(\cdot), \mathbf{c}^2(\cdot))$, an allocation $\{\lambda^i\}_{i=1,2}$ in the subgame is a limit equilibrium if a sequence of discretized games $G^m = G(N_g^m, N_b^m)$ exists and their mixed strategy equilibria \mathbf{p}^m satisfy

$$\lim_{m \to \infty} \frac{N_g^m}{N_b^m} = \frac{\mu_g}{\mu_b}$$
$$\lim_{k \to \infty} \mu_j p_j^{i,m} = \lambda_j^i$$

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

m

Subgame Limit Equilibrium

Definition (Limit Equilibrium). Given a subgame assiociated with menus $\mathbf{c} = (\mathbf{c}^1(\cdot), \mathbf{c}^2(\cdot))$, an allocation $\{\lambda^i\}_{i=1,2}$ in the subgame is a limit equilibrium if a sequence of discretized games $G^m = G(N_g^m, N_b^m)$ exists and their mixed strategy equilibria \mathbf{p}^m satisfy

$$\lim_{m \to \infty} \frac{N_g^m}{N_b^m} = \frac{\mu_g}{\mu_b}$$
$$\lim_{m \to \infty} \mu_j p_j^{i,m} = \lambda_j^i$$

Lemma. A limit equilibrium always exist.

m

V. V. Chari, Ali Shourideh, and Ariel Zetlin Jones Efficiency and Adverse Selection: On The Role of Mutual Contracts

Theorem. If in any subgme the profits for the firms are given by a limit equilibrium, then the low-risk efficient allocation is an equilibrium outcome of the game.

• Proof

- Proof
 - Suppose firm 2 offers $\mathbf{c}^*(\boldsymbol{\lambda})$ and firm 1 offers $\hat{\mathbf{c}}(\boldsymbol{\lambda})$

- Proof
 - $\,\circ\,$ Suppose firm 2 offers $c^*(\lambda)$ and firm 1 offers $\hat{c}(\lambda)$
 - Take the limit equilibrium of the subgame represented by the sequence \mathbf{p}^m and random variables $X_j^{1,m}$ (the number of type *j*'s choosing firm 1 as fraction of total population)

- Proof
 - $\,\circ\,$ Suppose firm 2 offers $c^*(\lambda)$ and firm 1 offers $\hat{c}(\lambda)$
 - Take the limit equilibrium of the subgame represented by the sequence **p**^m and random variables X_j^{1,m} (the number of type *j*'s choosing firm 1 as fraction of total population)
 X_j^{1,m} is binomially distributed

• Case 1: Suppose
$$\exists j, \lim_{m \to \infty} p_j^{2,m} \neq 0$$

Theorem. If in any subgme the profits for the firms are given by a limit equilibrium, then the low-risk efficient allocation is an equilibrium outcome of the game.

• Case 1: Suppose $\exists j, \lim_{m \to \infty} p_j^{2,m} \neq 0$

• $X_j^{1,m} \to^D \delta_{\lambda_j^1}$ and payoffs uniformly continuous away from (0,0) implies can just calculate payoffs for λ

- Case 1: Suppose $\exists j, \lim_{m \to \infty} p_j^{2,m} \neq 0$
 - $X_j^{1,m} \to^D \delta_{\lambda_j^1}$ and payoffs uniformly continuous away from (0,0) implies can just calculate payoffs for λ
 - In other words, limit equilibrium is an equilibrium of the limit game

- Case 1: Suppose $\exists j, \lim_{m \to \infty} p_j^{2,m} \neq 0$
 - $X_j^{1,m} \to^D \delta_{\lambda_j^1}$ and payoffs uniformly continuous away from (0,0) implies can just calculate payoffs for λ
 - In other words, limit equilibrium is an equilibrium of the limit game
 - Have already shown firm 1 cannot make positive profits in this case

• Case 2: Suppose $\forall j, \lim_{m \to \infty} p_j^{2,m} = 0$

- Case 2: Suppose $\forall j, \lim_{m \to \infty} p_j^{2,m} = 0$
 - $X_j^m \to^D \delta_{\lambda_j^1}$ implies payoff of households converges to $V_j^1(\mu_g, \mu_b)$

- Case 2: Suppose $\forall j, \lim_{m \to \infty} p_j^{2,m} = 0$
 - X_j^m →^D δ_{λ_j¹} implies payoff of households converges to V_j¹(μ_g, μ_b)
 Let p̂ = lim_{k→∞} p_g^{2,m_k}/p_h^{2,m_k}

- Case 2: Suppose $\forall j, \lim_{m \to \infty} p_j^{2,m} = 0$
 - $X_j^m \to^D \delta_{\lambda_j^1}$ implies payoff of households converges to $V_j^1(\mu_g, \mu_b)$

• Let
$$\hat{p} = \lim_{k \to \infty} p_g^{2, m_k} / p_b^{2, m_k}$$

Equilibrium implies

$$V_j^1(\mu_g,\mu_b) = V_j^*(\mu_g \hat{p}\alpha,\mu_b\alpha) = V_j^*(\mu_g \hat{p},\mu_b) \ge V_j^{e\!f\!f}(\mu_g,\mu_b)$$

some $\alpha > 0$ (inequality follows from mirror strategy)

- Case 2: Suppose $\forall j, \lim_{m \to \infty} p_j^{2,m} = 0$
 - $X_j^m \to^D \delta_{\lambda_j^1}$ implies payoff of households converges to $V_j^1(\mu_g, \mu_b)$

• Let
$$\hat{p} = \lim_{k \to \infty} p_g^{2, m_k} / p_b^{2, m_k}$$

Equilibrium implies

$$V_j^1(\mu_g,\mu_b) = V_j^*(\mu_g \hat{p}\alpha,\mu_b\alpha) = V_j^*(\mu_g \hat{p},\mu_b) \ge V_j^{eff}(\mu_g,\mu_b)$$

some $\alpha > 0$ (inequality follows from mirror strategy)

• So firm 1 cannot make positive profits