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Abstract

We develop a dynamic model of trading through market-makers that incorporates two canonical sources 
of illiquidity: trading (or search) frictions, which imply that investors can rebalance their portfolio only with 
a delay; and information frictions, which imply that market-makers face some degree of adverse selection. 
We use this model to study the effects of various technological innovations and regulatory initiatives that 
have reduced trading frictions in over-the-counter markets. Our main result is that reducing trading frictions 
can lead to less liquidity, as measured by bid-ask spreads. The key insight is that more frequent trading 
makes investors’ behavior less dependent on asset quality. As a result, dealers learn about asset quality 
more slowly and set wider bid-ask spreads to compensate for this increase in uncertainty. We also show that 
widening bid-ask spreads do not necessarily correspond to a decline in trading volume or welfare.
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1. Introduction

Many assets trade in dealer-intermediated over-the-counter (OTC) markets, including the ma-
jority of fixed-income securities, asset-backed securities, repurchase agreements (or “repo”), and 
various types of derivatives (such as interest rate, foreign exchange, and credit default swaps). 
These markets have undergone significant changes in recent years as a result of both technolog-
ical innovations and regulatory initiatives. One of the primary consequences of these changes 
has been a reduction in trading frictions: it has become easier for investors to contact dealers 
and trade. For example, in the corporate bond market, there has been a sizable shift away from 
voice-based trading, where investors contact dealers sequentially to get a quote, to electronic 
trading platforms where investors can instantaneously submit a request for quotes that is re-
ceived by many dealers.1 Similar developments have taken place in the markets for swaps, where 
regulatory mandates have forced trading activity from decentralized, OTC markets onto more 
centralized exchanges.2 As these changes continue—and, in some cases, accelerate—a natural 
question arises: What is the effect of reducing trading frictions on market liquidity?

The conventional wisdom, formalized in a number of economic models, is that enabling in-
vestors to contact dealers more quickly (or at smaller cost) puts downward pressure on transaction 
costs and thus increases market liquidity.3 However, this wisdom does not account for a second, 
canonical source of illiquidity: asymmetric information. Since the seminal work of Glosten and 
Milgrom (1985) and Kyle (1985), the contribution of information asymmetries to market liquid-
ity has been studied extensively and documented empirically in a variety of financial markets.4

Recognizing the potentially important role of asymmetric information raises additional ques-
tions: Do changes in trading frictions mitigate or exacerbate the effects of information frictions? 
Does the conventional wisdom that arises from certain models with trading frictions alone extend 
to settings with both trading and information frictions?

To answer these questions, we develop a framework based on the model of Glosten and Mil-
grom (1985)—in which bid-ask spreads derive from the fact that investors have more information 
than dealers about the quality of the asset they are trading—modified to include two key ingredi-
ents. First, in contrast to the exogenous demand of myopic investors in the Glosten and Milgrom 

1 For instance, according to the Securities Industry and Financial Markets Association (SIFMA), the fraction of total 
volume of investment-grade corporate bonds traded on electronic exchanges increased from 8% in 2013 to 23% in 2019. 
For a detailed description of the transition of several markets from dealer-based platforms to electronic platforms, and 
ever-increasing execution speeds, see Appendix A of Pagnotta and Philippon (2018).

2 In the U.S., for example, the Dodd–Frank Wall Street Reform and Consumer Protection Act has called for the in-
troduction of Swap Execution Facilities in the market for interest rate swaps. Similar regulatory requirements have been 
implemented in European markets as a consequence of MiFID II.

3 For example, in the canonical model of OTC trading in the presence of search frictions, Duffie et al. (2005) show 
that increasing the rate at which customers contact dealers will cause bid-ask spreads to fall. We discuss the existing 
literature—including papers that offer alternative predictions—in the literature review below.

4 For example, several papers, including Goldstein et al. (2006) and Edwards et al. (2007), analyze the role of adverse 
selection in the corporate bond market. The effects of asymmetric information on liquidity and spreads have also been 
studied in the OTC markets for futures (Ma et al., 1992), foreign exchange swaps (Bollerslev and Melvin, 1994), and 
municipal bonds (Harris and Piwowar, 2006; Brancaccio et al., 2017), to name just a few.
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model, we assume that investors are forward-looking, long-lived agents who experience stochas-
tic shocks to their utility from holding the asset. Second, we assume that investors do not have 
continuous access to dealers but rather face trading frictions, so that they can rebalance their port-
folio only with a delay. Taken together, these ingredients imply that the demand for transaction 
services emanating from the customer sector is endogenously determined and takes into account 
future conditions—namely, investors’ expectations about their desire to trade, the availability of 
trading opportunities, and the cost of trading at each future date.

Within the context of this model, we study the interaction between two canonical sources of 
illiquidity in financial markets: trading frictions and information frictions. Central to our anal-
ysis is the interplay between investors’ demand for transaction services, described above, and 
dealers’ beliefs about the quality of the asset being traded. Our main result is that reducing trad-
ing frictions has ambiguous effects on market liquidity, as measured by the bid-ask spread. The 
mechanism behind this result draws on the ingredients described above. On the one hand, con-
sistent with the conventional view, reducing trading frictions increases investors’ option value of 
searching for a better price, which puts downward pressure on transaction costs. On the other 
hand, however, in response to a reduction in trading frictions, we show that investors endoge-
nously adjust their behavior in a way that reveals less information to dealers. As a result, dealers 
learn more slowly about the quality of the assets being traded, which exacerbates the effects of 
asymmetric information and can ultimately lead to wider bid-ask spreads.

To understand the intuition behind our results, it’s helpful to describe a few key features of the 
model. There are two types of agents—investors and dealers—and a single, homogeneous asset 
that is either high or low quality. We introduce information frictions by assuming that investors 
know the quality of the asset but dealers do not. We introduce trading frictions by assuming 
that, in each period, investors can only contact the (competitive) dealer sector probabilistically.5

When contacted by an investor, dealers offer bid and ask prices consistent with zero profits, taking 
into account the informational advantage of the investor. The investor observes these prices and 
decides whether or not to trade based on her reservation value for the asset, along with the 
realization of contemporaneous (aggregate and idiosyncratic) preference shocks. At the end of 
each period, dealers observe aggregate trading volume, which depends on the true quality of the 
asset and the (uncorrelated, unobserved) aggregate preference shock. Hence, volume is a noisy 
signal of asset quality, and dealers update their beliefs accordingly.

Our main result then follows from a sequence of intermediate results. First, we show that 
dealers learn more quickly when investors’ behavior—which is summarized by their reserva-
tion values—is more distinct in different states of the world (i.e., under different asset qualities). 
Second, and most important, we show that reducing trading frictions implies that investors’ reser-
vation values are more similar across asset qualities. Last, we show that dealers set wider bid-ask 
spreads when they are more uncertain about asset quality. Taken together, these results imply that 
reducing trading frictions slows down dealers’ learning, and can actually reduce market liquidity 
(as measured by the bid-ask spread) in the long run.

5 In the working paper version of this paper, Lester et al. (2018), we studied the more general case in which investors 
were matched each period with a stochastic number of dealers: zero dealers, in which case the investor can’t trade; a 
single dealer, in which case the dealer has market power; or two or more dealers, in which case the dealers compete à 
la Bertrand. While incorporating the probability of meeting with just one dealer allowed us to derive additional results 
regarding the effects of trading frictions on dealers’ market power, these results complicated the analysis considerably. 
Since the main insights are largely unchanged, we focus here on the case where investors meet with either zero dealers, 
or N � 2 dealers, and refer the interested reader to the earlier working paper.
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But why do investors’ reservation values become less dependent on asset quality as trading 
frictions become less severe? Reservation values can be decomposed into two pieces: one that 
depends on the fundamental value of the asset and another that depends on the option value 
of trading the asset in the future. When investors contact dealers more easily, their reservation 
values depend less on the former and more on the latter. This is intuitive, since the option value 
of trading an asset obviously relies on the frequency with which an investor has the opportunity
to trade it when his preferences dictate a desire to do so. Moreover, the option value of trading 
is larger when the asset quality is low than it is when the asset quality is high. This is because 
an investor is more likely to want to exercise the option of selling a low-quality asset, relative to 
a high-quality asset.6 Hence, reducing trading frictions puts less weight on the component that 
makes reservation values more distinct, and more weight on the component that diminishes the 
difference between reservation values in the high- and low-quality states of the world.

The paper is organized as follows. After reviewing the related literature below, we introduce 
the model in Section 2, characterize optimal behavior, and define an equilibrium. In Section 3, we 
consider a special case of the model in which the stochastic shocks that impact investors’ direct 
utility from holding the asset are drawn from uniform distributions. We provide a full analytical 
characterization of the equilibrium, and use it to establish our main theoretical results.

Then, in Section 4, we relax these assumptions and consider a more flexible specification of 
the model. This complicates the analysis considerably, as the interaction between optimal bid and 
ask prices, reservation values, and future prices and beliefs introduce additional effects that were 
absent from our analysis with uniform distributions. However, using parameter values chosen 
to match key moments from the U.S. corporate bond market, we solve the model numerically 
and confirm that our key theoretical results are relevant in an empirically plausible region of the 
parameter space in the model with a more flexible specification.

Finally, in Section 5, we consider a stationary version of the model and discuss ramifications 
of reducing trading frictions on welfare, along with other measures of market liquidity. More 
specifically, though we focus most of our analysis on the bid-ask spread—as this is perhaps the 
most common measure of liquidity in this literature—we show that widening bid-ask spreads 
need not correspond to a decline in trading volume or in welfare. Hence, we argue, policy pro-
posals aimed at reducing trading frictions in OTC markets should not necessarily be evaluated 
by their impact on bid-ask spreads alone. Section 6 concludes.

1.1. Related literature

This paper is related to several strands of the literature. First, we contribute to the voluminous 
literature that studies the effects of asymmetric information on market activity in settings with-
out trading and/or search frictions. Perhaps the most obvious is the strand that focuses on the 
effects of asymmetric information on the bid-ask spread, following the seminal contributions of 
Copeland and Galai (1983), Glosten and Milgrom (1985), Kyle (1985), and the more recent syn-
thesis of Back and Baruch (2004), among many others. The key distinction in our framework is 
that we explicitly model long-lived, forward-looking investors who have stochastic trading needs 
but do not have continuous access to the dealer sector.

6 By a similar logic, an investor is more likely to want to exercise the option to buy a high-quality asset, relative to 
a low-quality asset, which similarly reduces the option value of acquiring a high-quality asset relative to a low-quality 
asset.
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The combination of preference shocks and stochastic opportunities to rebalance one’s port-
folio are standard ingredients in a second, related literature that formalizes trading frictions in 
OTC markets using a search-theoretic approach; see, for example, Duffie et al. (2005), Lagos and 
Rocheteau (2009), Gavazza (2016), and Hugonnier et al. (2020), who focus on bid-ask spreads 
in full information settings.7 Gehrig (1993), Spulber (1996), and, more recently, Lester et al. 
(2015) analyze pricing under asymmetric information about preferences, i.e., about investors’ 
private values of holding the asset.8 In our paper, the investors are privately informed both about 
their preferences and about a common value component of the asset, which leads to adverse se-
lection. Moreover, since the common component is an aggregate one, there is a role for learning 
over time by the uninformed market-makers.9

Our focus on learning from endogenous market signals is shared by the large literature that 
studies information aggregation in rational expectations equilibrium (REE) models, pioneered 
by Grossman and Stiglitz (1980) and Hellwig (1980). Our analysis highlights novel interactions 
between asymmetric information and search frictions, and shows how they lead to surprising and 
counterintuitive implications for liquidity and prices.10

The combination of trading frictions, adverse selection, and learning in our model is also 
present in papers such as Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), 
Duffie et al. (2009), Golosov et al. (2014), Lauermann and Wolinsky (2016), and Lauermann et 
al. (2017).11 The key difference between these papers and our own is the source of learning. 
Specifically, in these papers, agents learn only from their own trading experiences, and do not 
observe aggregate outcomes that inform their beliefs about the underlying state. In our model, we 
make several assumptions (discussed explicitly in Section 2.4) which ensure that the information 
contained in an individual trade is dominated by the information contained in the market-wide 
outcomes that dealers observe. This formulation not only captures a realistic feature of many 
markets but also simplifies the dealers’ pricing problem, as it eliminates their incentive to exper-
iment with different price offers purely for the sake of learning.

Finally, by analyzing the effects of reducing trading frictions, our analysis also makes con-
tact with the literature that studies the effects of high frequency trading, such as Biais et al. 
(2015), Pagnotta and Philippon (2018), Menkveld and Zoican (2017), and Du and Zhu (2017). 

7 While most existing search-theoretic models predict that a reduction in trading frictions leads to smaller bid-ask 
spreads—even under full information—there are exceptions. For example, in Lagos and Rocheteau (2009), changing 
trading frictions affects the endogenous distribution of asset holdings, which leads to non-monotonic effects on spreads. 
In Afonso (2011), the presence of congestion externalities plays a crucial role. In our paper, the counterintuitive effects 
stem from the interaction with asymmetric information and learning—channels that are not present in these papers.

8 Another, more recent, example is Bethune et al. (2022).
9 This latter feature distinguishes our work from papers that study adverse selection stemming from private information 

about the idiosyncratic quality of an asset; a non-exhaustive list of papers in this tradition includes Camargo and Lester 
(2014), Guerrieri and Shimer (2014), Fuchs and Skrzypacz (2015), Chiu and Koeppl (2016), Kim (2017), Kaya and Kim 
(2018), and Choi (2018). In these papers, information revealed from a particular trade is asset-specific and, therefore, is 
typically not useful in future trades involving other assets.
10 A related point appears in Rostek and Weretka (2015), who show that increasing investor participation—and, hence, 
making markets larger—can lead to a decrease in liquidity. Asriyan et al. (2021) study information aggregation in a 
dynamic setting, and find that sellers’ incentives to delay trade could lead to failure of information aggregation, even 
with a large number of investors. In contrast, in our paper, trading frictions affect the extent to which trading decisions—
and, therefore, the informational content of the endogenous signal—depend on the fundamental (common) value of the 
asset.
11 A related literature studies learning and information diffusion in network settings; see, e.g., Babus and Kondor (2018).
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A key distinction between our work and these papers—in addition to the many different modeling 
assumptions—is the crucial role that is assigned to learning over time in our framework.

To summarize, we believe our paper makes several contributions to the existing literature. 
First, it provides a single, unified framework that incorporates three ingredients that have been 
identified as crucial factors in financial markets: trading frictions, which have been studied ex-
tensively in search-based models of OTC markets; adverse selection, which lies at the heart of 
information-based models of market microstructure and the bid-ask spread; and learning, which 
is the focal point of dynamic models of information revelation. Second, despite the complex 
nature of the (dynamic, nonstationary) equilibrium in this environment, we are able to iden-
tify a special case of our model that allows for a full analytical characterization. Exploiting the 
tractability of this special case reveals a number of novel interactions between trading frictions, 
information frictions, and learning. In particular, our main result is that reducing trading frictions 
can slow down learning, leading to less liquidity over time. Finally, exploring these interactions 
numerically, our model offers new insights into the relationship between measures of liquidity—
like bid-ask spreads, trading volume, and price impact—and aggregate welfare.

2. Model

2.1. Environment

Time is discrete and indexed by t . There are two types of risk neutral, infinitely-lived agents: 
a measure N of “investors” and a mass D of “dealers.” Neither investors nor dealers discount 
future payoffs. There is a single asset of quality j ∈ {l, h}. Investors can hold either zero or one 
unit of the asset, while dealers’ positions are unrestricted, i.e., they can take on arbitrarily large 
long or short positions.

At the beginning of each period, the asset matures with probability 1 − δ, in which case the 
game ends. Differences in asset quality reflect differences in the probability distribution over 
the asset’s payoff upon maturity. For the sake of simplicity, we assume that these probability 
distributions are degenerate: an investor who owns a unit of the asset receives a payoff cj if the 
asset matures, with cl < ch.12 If the asset does not mature in period t , an investor who owns a 
unit of the asset receives a flow payoff ωt + εi,t , which we interpret as a liquidity shock. The 
aggregate portion of the shock, ωt , is an i.i.d. draw for each period from a distribution F(·). The 
idiosyncratic portion of the liquidity shock, εi,t , is an i.i.d. draw for each investor in each period 
from a distribution G(·). We assume that F(·) and G(·) have mean zero and full support over the 
real line.13

Dealers receive a payoff vj when the asset matures, with vh > vl , but they do not receive 
any flow payoff from the asset before it matures. Given our assumption that dealers can take 
unrestricted positions, it follows that the payoff to a dealer from buying or selling a unit of the 
asset of quality j ∈ {l, h} is vj and −vj , respectively.

12 There are several alternative interpretations of what it means for an asset to “mature” in period t (beyond the literal 
interpretation). For example, one interpretation is that an investor stops actively trading the asset in period t , i.e., he stops 
checking current bid and ask prices, and simply retains his current position (owner or non-owner) until the asset actually 
matures (or uncertainty about the asset’s payoffs is resolved) at some future date t ′ > t .
13 This assumption is made only for simplicity and is not essential for our results. In Section 3, we analyze a version 
where these distributions have bounded support.
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Trading and frictions There are two key frictions in the model. The first is an information fric-
tion: we assume that investors know more about the quality of the asset than dealers. For the sake 
of simplicity, we make the extreme assumption that all investors are perfectly informed about the 
quality of the asset, j ∈ {l, h}, while dealers only know the ex-ante probability that the asset is 
of quality h at t = 0, which we denote by μ0.14 The liquidity shocks are also privately observed 
by the investors. The second key friction is a trading friction: we assume that, in every period, 
each investor is able to contact the dealer market with probability π . Conditional on contacting 
the dealer market, dealers quote competitive bid and ask prices at which they’re willing to buy 
and sell a unit of the asset, respectively.

Information and learning We assume that dealers observe the aggregate volume of trade at the 
end of each trading round. As we describe in detail below, this will turn out to be a noisy signal 
about asset quality, which the dealers will use to update their beliefs over time. This assumption 
will play a crucial role in making our analysis tractable. In particular, as we will show, it implies 
that (i) all dealers have identical beliefs at the beginning of each period and (ii) the actions of an 
individual investor and/or dealer will not alter the evolution of future beliefs. In what follows, we 
let μt denote the beliefs of (all) dealers that the asset is of quality h at the beginning of trading 
at time t .

2.2. Investors’ optimal behavior

Let Wq
j,t denote the expected discounted value of an investor who owns q ∈ {0, 1} unit of the 

asset at the beginning of period t when the asset is of quality j ∈ {l, h}. Then, for q = 0, we have

W 0
j,t = δ Eω,ε

[
π max

{
−At + ωt + εi,t + W 1

j,t+1,W
0
j,t+1

}
+ (1 − π)W 0

j,t+1

]
(1)

= δ Eω,ε

[
W 0

j,t+1

]
+ δπ Eω,ε

[
−At + ωt + εi,t + W 1

j,t+1 − W 0
j,t+1

]+
,

where we adopt the notation [x]+ ≡ max{0, x}. Note that the expectation is taken over ωt and εi,t , 
which are drawn from F(ω) and G(ε), respectively. All objects inside the brackets—including 
the current ask price At and future payoffs Wq

j,t+1—can be calculated using the information 
available to an investor at time t , which includes the true quality of the asset as well as dealers’ 
current beliefs. We describe in detail below how the investor uses this information to formulate 
beliefs.

In words, the first expression inside the brackets in equation (1) represents the expected payoff 
if the asset does not mature and the investor accesses the dealer market, whereupon he may either 
purchase a unit of the asset at price At or reject the offer and continue searching in period t + 1. 
The second expression represents the expected payoff if the asset does not mature but the investor 
fails to access the dealer market. Recall that an investor with q = 0 assets receives zero payoff if 
the asset matures, which occurs with probability 1 − δ.

Similar logic can be used to derive the expected payoff of an investor who owns one unit of 
the asset,

14 One could imagine, instead, that investors simply get additional (or more accurate) signals about the quality of the 
asset being traded. Hence, under this interpretation, our model applies to any OTC market in which (at least some) 
investors have superior information, relative to dealers, about the distribution over the asset’s payoffs upon maturity. This 
situation is natural in most intermediated OTC markets, where dealers tend to hold inventory for short intervals and, thus, 
have less incentive (than investors) to acquire information about the fundamental value of the asset being traded.
7
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W 1
j,t = (1 − δ)cj + δEω,ε

[
W 1

j,t+1

]
+ δπEω,ε

[
Bt + W 0

j,t+1 − W 1
j,t+1 − ωt − εi,t

]+
.

Note that, when the asset matures, an investor who owns one unit receives a payoff cj . We 
conjecture, and later confirm, that an individual investor’s decision to accept or reject an offer 
has no effect on dealers’ beliefs, and hence no effect on the path of future prices. An immediate 
consequence is that investors’ decisions to buy or sell follow simple cutoff rules: given asset 
quality j ∈ {l, h}, an investor who does not own the asset will buy if εi,t � εj,t , and an investor 
who owns the asset will sell if εi,t � εj,t , where these cutoffs satisfy

−At + ωt + εj,t + W 1
j,t+1 = W 0

j,t+1

ωt + εj,t + W 1
j,t+1 = Bt + W 0

j,t+1.

Let us denote the reservation value of an investor at time t given asset quality j ∈ {l, h} by

Rj,t ≡ W 1
j,t − W 0

j,t .

Then, the optimal behavior of investors is succinctly summarized by the cutoffs

εj,t = Bt − ωt − Rj,t+1 , (2)

εj,t = At − ωt − Rj,t+1 , (3)

along with reservation values

Rj,t = (1 − δ)cj + δEω,ε

[
Rj,t+1

]+ δπ�j,t , (4)

where the term

�j,t = Eω,ε

{[
Bt − Rj,t+1 − ωt − εi,t

]+ − [−At + ωt + εi,t + Rj,t+1
]+}

= Eω

⎧⎪⎨
⎪⎩
⎡
⎢⎣BtG(εj,t ) +

εj,t∫
εj,t

[
ωt + εi,t + Rj,t+1

]
dG

(
εi,t

)+ At

[
1 − G(εj,t )

]⎤⎥⎦− Rj,t+1

⎫⎪⎬
⎪⎭
(5)

is the net option value of holding an asset of quality j . In words, by acquiring a unit of the asset, 
an investor gains the option of selling it later but, since holdings are restricted to {0, 1}, gives 
up the option of buying it later at a different (potentially better) price. The investor’s reservation 
value, Rj,t , includes the difference between the expected value of these two options, multiplied 
by the probability of a trading opportunity, δπ . The representation in (5) is obtained by using the 
cutoff rules described above. The expectation is taken over the aggregate shock, ωt , as well as 
prices and future payoffs, which we describe below.

Demographics Given the trading rules described above, we can now describe the evolution of 
the distribution of asset holdings across investors over time. To do so, let Nq

t denote the measure 
of investors who have asset holdings q ∈ {0, 1} at time t . When the asset is of quality j ∈ {l, h}, 
we have

N1
j,t+1 = N1

t

[
1 − π + π

(
1 − G(εj,t )

)]
+ N0

t π
[
1 − G(εj,t )

]
N0 = N1

t πG(ε ) + N0
t

[
1 − π + G(εj,t )

]
.
j,t+1 j,t

8
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Naturally, the measure of investors that own an asset in period t + 1 is equal to the measures of 
investors that owned an asset in period t and did not sell, plus the measure of investors that did not 
own an asset but chose to buy. The law of motion for the measure of investors that don’t own an 
asset follows the same logic. We assume that the initial distribution of owners and non-owners, 
(N0

0 , N1
0 = N − N0

0 ), is common knowledge. Hence, as we describe below, dealers will know 
(N0

t , N1
t ) at the beginning of each period, but they will not be able to perfectly infer j ∈ {l, h}.

2.3. Dealers’ optimal behavior

We now solve for equilibrium prices in the competitive dealer sector, which corresponds al-
most exactly to the pricing problem in the canonical setting of Glosten and Milgrom (1985). In 
particular, equilibrium bid and ask prices are set so that expected (static) profits are zero, i.e., the 
bid price Bt (ask price At ) is equal to the expected value of the asset conditional on an investor 
selling (buying) at that price. Formally, these zero profit conditions can be written

0 = At − Ej,ω

[
vj

(
1 − G(εj,t )

)]
Ej,ω

[(
1 − G(εj,t )

)] = Bt −
Ej,ω

[
vjG(εj,t )

]
Ej,ω

[
G(εj,t )

] .

Rearranging yields

At = μtvh + (1 − μt)vl + μt(1 − μt)(vh − vl)
Eω

[
G
(
εl,t

)− G
(
εh,t

)]
Ej,ω

[
1 − G

(
εj,t

)] (6)

Bt = μtvh + (1 − μt)vl − μt(1 − μt)(vh − vl)
Eω

[
G
(
εl,t

)− G
(
εh,t

)]
Ej,ω

[
G
(
εj,t

)] . (7)

These expressions show that, in a competitive setting, bid and ask prices are equal to the expected 
value of the asset to the dealer, adjusted for adverse selection. Note that

μt(1 − μt)(vh − vl)
Eω

[
G
(
εl,t

)− G
(
εh,t

)]
Ej,ω

[
1 − G

(
εj,t

)] = Covj

(
Eω

[
1 − G

(
εj,t

)]
, vj

)
Ej,ω

[
1 − G

(
εj,t

)] .

Hence, the adjustment for adverse selection depends on the covariance between the probability 
of trade and the value of the asset. For example, the ask (bid) price is higher (lower) than the 
expected value since investors are more (less) likely to buy (sell) when the state is high. This 
creates a positive bid-ask spread, exactly as in Glosten and Milgrom (1985). Also note that this 
adverse selection term disappears if dealers know the true asset quality, i.e., if μt = 0 or 1.

2.4. Learning

We now explain how dealers update their beliefs about the quality of the asset, and how 
investors form expectations about dealers’ beliefs—and hence the prices they offer—in future 
periods.

As noted above, we assume that dealers learn by observing aggregate trading activity in 

each period. Notice immediately that this is equivalent to observing the thresholds 
(
εj,t , εj,t

)
. 

Moreover, since dealers know which prices have been offered in equilibrium, these thresholds 
ultimately contain the same information. Consider, for example, εj,t , which depends on the ask 
9



B. Lester, A. Shourideh, V. Venkateswaran et al. Journal of Economic Theory 212 (2023) 105714
Fig. 1. Dealer learning.

price At , which dealers know, along with the reservation value of the investor Rj,t+1 and the 
aggregate shock ωt , both of which the dealers do not observe. The reservation value clearly de-
pends on the quality of the asset, while the aggregate liquidity shock is orthogonal to quality (by 
assumption). Hence, the volume of asset purchases is a noisy signal about asset quality, and the 
informational content can be summarized by

St ≡ Rt+1 + ωt , (8)

where Rt+1 = Rj,t+1 when the true state of the world is j ∈ {l, h}.
Let us conjecture, for now, that investors’ reservation values depend only on dealers’ beliefs, 

along with the true state j . Then, given current beliefs μt and the observed signal St , a dealer’s 
updated belief μt+1 depends on the likelihood of observing that signal when the asset quality 
is h relative to that when it is l. To arrive at this likelihood, we first calculate the value of the 
aggregate shock, ωt , that is consistent with the observed signal St . Formally, define

ω�
ι,t = St − Rι,t+1(μt+1), (9)

where we’ve made explicit that investors’ reservation values at t + 1 depend on the evolution 
of dealers’ beliefs. In words, ω�

ι,t is the value of ωt consistent with the signal St and investors’ 
optimal behavior—summarized by reservation values—when the asset is of quality ι ∈ {l, h}. 
Since both ω�

l,t and ω�
h,t are consistent with the signal St , by construction, both Rl,t+1 and Rh,t+1

in (9) are calculated under the same information sets, i.e., they both correspond to the same future 
beliefs, μt+1.

Fig. 1 illustrates the dealers’ learning process graphically. The left panel plots the density 
over signals in the two states of the world, and illustrates how a dealer uses the signal to infer the 
two possible aggregate shocks. The right panel plots the density f (ω), which the dealer uses to 
update his beliefs.

In particular, by Bayes Rule, the dealers’ updated beliefs are μt+1 = μtf
(
ω�

h,t

)
μtf

(
ω�

h,t

)
+(1−μt )f

(
ω�

l,t

) . 

Since ω�
l,t and ω�

h,t themselves depend on future beliefs, the law of motion for μt is a function 
μt+1(μt , St ) that solves the fixed point problem:

μt+1 = μt

μt + (1 − μt)
f
(
ω�

l,t

)
f
(
ω�

h,t

)
= μt

μt + (1 − μt)
f
(
St−Rl,t+1(μt+1)

)
f
(
St−Rh,t+1(μt+1)

) . (10)

Now, even though dealers’ future beliefs cannot depend directly on the true quality of the 
asset (since they do not observe it), investors (who know the true quality) can certainly use this 
10
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information to formulate expectations about dealers’ beliefs. In particular, it will be helpful to 
define the function μ̃j,t+1(μt , ωt) as the solution to the fixed point problem

μt+1 = μt

μt + (1 − μt)
f
(
ωt+Rj,t+1(μt+1)−Rl,t+1(μt+1))

)
f
(
ωt+Rj,t+1(μt+1)−Rh,t+1(μt+1))

) . (11)

In words, given current beliefs μt , the true quality of the asset j ∈ {l, h}, and the aggregate 
liquidity shock ωt , investors (correctly) anticipate that dealers’ beliefs in period t + 1 will be 
μ̃j,t+1(μt , ωt).

This recursive law of motion validates our earlier conjectures about the formation of beliefs 
in equilibrium. First, since future beliefs (and therefore, future prices) depend only on current 
beliefs and the realization of the aggregate liquidity shock ωt , it follows that investors’ reser-
vation values Rt+1 depend only on beliefs μt+1 and the true quality of the asset. Second, since 
future beliefs are independent of the actions of any one dealer or investor, both can formulate op-
timal behavior—prices for dealers and buy, sell, or don’t trade decisions for investors— without 
affecting future beliefs.

This verifies the conjecture that the dealers’ pricing problem is a static one. In particular, 
dealers do not have an incentive to deviate from the optimal prices derived above in order to 
experiment, i.e., to acquire information about the quality of the asset. To see why, note that an 
individual investor’s action is measurable with respect to the sum of her reservation value Rt+1
and the combined liquidity shock ωt +εi,t . Therefore, at any quoted price, her action can reveal at 
most Rt+1 +ωt + εi,t . For example, if the dealer quotes a bid B ′ and the investor sells, the dealer 
learns that Rt+1 + ωt + εi,t � B ′. However, at the end of the period, the dealer perfectly learns 
Rt+1 + ωt by observing market-wide volume.15 Since the idiosyncratic liquidity shock εi,t is 
independent from the quality of the asset, j , the information contained in this signal about Rt+1
(and therefore, about asset quality) dominates that contained in an individual investor’s actions. 
Thus, deviating from the static optimal price involves giving up current profits but generates no 
additional benefit.

2.5. Definition of equilibrium

We now define a Markov equilibrium, where the strategies of all agents are functions of (at 
most) current dealer beliefs, μ, and realizations of the aggregate liquidity shock, ω. This equilib-

rium can be represented recursively as a collection of functions 
{
εj , εj , Rj , A, B, μ+, μ̃+

j , N0,+
j ,

N
1,+
j

}
such that, for j ∈ {l, h}:

1. Given pricing and belief updating functions, investors’ decisions to buy or sell are deter-
mined by:

εj (μ,ω) = B(μ) − ω − Rj

(
μ̃+

j (μ,ω)
)

(12)

εj (μ,ω) = A(μ) − ω − Rj

(
μ̃+

j (μ,ω)
)

(13)

15 This follows from the assumption that liquidity shocks have full support, which guarantees non-zero volumes for 
every state/price. However, as we will show in Section 3, even if shocks are drawn from a finite support, dealers do not 
have an incentive to experiment.
11



B. Lester, A. Shourideh, V. Venkateswaran et al. Journal of Economic Theory 212 (2023) 105714
Rj(μ) = (1 − δ)cj + δ(1 − π)

∫
ω

Rj

(
μ̃+

j (μ,ω)
)

dF(ω) (14)

+ δπ

∫
ω

{[
B(μ)G

(
εj (μ,ω)

)
+

εj (μ,ω)∫
εj (μ,ω)

[
ω + ε + Rj

(
μ̃+

j (μ,ω)
)]

dG(ε)

+ A(μ)
[
1 − G

(
εj (μ,ω)

)]]}
dF(ω).

2. Given investors’ behavior and expectations about future beliefs, bid and ask prices satisfy:

A =
∑

j∈{l,h} μjvj

∫ [
1 − G

(
εj (μ,ω)

)]
dF(ω)∑

j∈{l,h} μj

∫ [
1 − G

(
εj (μ,ω)

)]
dF(ω)

(15)

B =
∑

j∈{l,h} μjvj

∫ [
G
(
εj (μ,ω)

)]
dF(ω)∑

j∈{l,h} μj

∫ [
G
(
εj (μ,ω)

)]
dF(ω)

. (16)

3. For any S ∈R, dealers’ beliefs evolve according to μ+(μ, S), which is a solution to

μ+ = μ

μ + (1 − μ)
f
(
S−Rl

(
μ+))

f
(
S−Rh

(
μ+))

, (17)

while investors’ expectations of dealers’ beliefs evolve according to μ̃+
j (μ, ω), which is a 

solution to

μ+ = μ

μ + (1 − μ)
f
(
ω+Rj

(
μ+)−Rl

(
μ+))

f
(
ω+Rj

(
μ+)−Rh

(
μ+))

. (18)

Moreover, investors’ expectations are consistent with the evolution of dealers’ beliefs condi-

tional on observing signal S = Rj

(
μ̃+

j (μ,ω)
)

+ ω, i.e.,

μ̃+
j (μ,ω) = μ+ (μ,Rj

(
μ̃+

j (μ,ω)
)

+ ω
)

for j ∈ {l, h}. (19)

4. The population evolves according to16:

N
1,+
j (μ,ω) = N1

j

[
1 − π + π

(
1 − G

(
εj (μ,ω)

))]
+ N0

j π
(
1 − G

(
εj (μ,ω)

))
(20)

N
0,+
j (μ,ω) = N1

j πG
(
εj (μ,ω)

)
+ N0

j

[
1 − π + πG

(
εj (μ,ω)

)]
. (21)

16 Note that the laws of motion for N1
j

and N0
j

depend only on the thresholds 
{
εj , εj

}
, for j ∈ {l, h}. Hence, dealers can 

always infer the distribution of assets across investors, even though they can’t directly observe asset quality. Intuitively, by 
construction, ω�

l
and ω�

h
rationalize the aggregate trading volume that dealers observe, and hence the implied thresholds. 

As a result, the evolution of N0 and N1 when the asset quality is l and the aggregate shock is ω�
l

is identical to the 
evolution of these variables when the asset quality is h and the aggregate shock is ω� .
h

12
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3. Frictions, learning, and prices: a tractable case

At the heart of the equilibrium defined above lies a complicated fixed point problem: the law 
of motion for dealers’ beliefs is a convolution of both exogenous parameters (ω) and endogenous 
variables (Rj ), which themselves depend on future prices and beliefs. This makes it difficult to 
derive analytical results for arbitrary distributions of liquidity shocks. In this section, we make a 
few parametric assumptions that allow for a full characterization of the equilibrium, and then use 
this characterization to explore how trading and information frictions affect investors’ reservation 
values, the evolution of dealers’ beliefs, and, ultimately, equilibrium bid and ask prices.17

We show that, in isolation, each of these frictions has the expected effect: holding beliefs fixed, 
a reduction in trading frictions causes bid-ask spreads to narrow; and holding trading frictions 
constant, increasing uncertainty over the quality of the asset causes bid-ask spreads to widen. 
However, the interaction between these two frictions generates novel predictions. In particular, 
a key result is that reducing trading frictions slows down learning. Intuitively, when investors 
have the opportunity to trade more frequently, their behavior in the two states of the world is 
more similar, which implies that the endogenous signal in the model—aggregate volume—is 
less informative. Since slower learning implies more uncertainty, and more uncertainty implies 
wider spreads, we show that a reduction in trading frictions can ultimately lead to an increase in 
the bid-ask spread.

3.1. Parametric assumptions

Assumption 1 (Uniform Shocks). The aggregate liquidity shock, ω, is uniformly distributed over 
the interval [−m, m] for some 0 < m < ∞, and the idiosyncratic liquidity shock, ε, is uniformly 
distributed over the interval [−e, e] for some 0 < e < ∞.

As we will show below, the assumption that ω is uniformly distributed simplifies the dealers’ 
learning process, while the assumption that ε is uniformly distributed simplifies the dealers’ 
pricing problem. Note, however, that these distributions violate our maintained assumption that 
F(·) and G(·) have full support. One might be concerned that having finite bounds would open 
up the possibility that dealers would like to experiment when setting prices, e.g., that they would 
choose to set a (statically sub-optimal) price that would reveal to them the state of the world. We 
show in Appendix B.1 that this is not the case.

Assumption 2 (Interior Thresholds). The bounds on the distributions of liquidity shocks are 
sufficiently large:

m � 1

2
(vh − vl)max

{
1,

δ

1 − δ

}
and

e

2
� vh − vl + m.

This assumption ensures that, for all prices offered in equilibrium and all realizations of ω, the 
thresholds εt,j , εt,j lie in the interior of [−e, e] for j ∈ {l, h}, so that some investors always 
buy/sell in equilibrium.

17 In the next section, we consider a more flexible specification, describe how to solve the model numerically, and 
confirm that our key results are preserved in a plausible region of the parameter space.
13
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Assumption 3 (Equal Valuations). On average, dealers and investors have the same valuation for 
an asset, i.e., vj = cj for j ∈ {l, h}.

This last assumption allows for a more direct comparison with many existing models (such as 
Glosten and Milgrom, 1985), and also simplifies the analysis.

3.2. Learning

The assumption that ω is uniformly distributed greatly simplifies the dealers’ learning process. 
To see why, note from (10) that the updating process depends on current beliefs, μ, and the 
likelihood ratio

f
(
S − Rl(μ

+)
)

f
(
S − Rh(μ+)

) .
When ω is uniformly distributed, f (ω) = 1

2m
for ω ∈ [−m, m] and f (ω) = 0 for ω /∈ [−m, m]. 

Hence, either the signal that dealers observe is uninformative or it is fully revealing about the 
state j ∈ {l, h}.

Formally, let 	j(μ) denote the set of signals (i.e., the values of aggregate trading volume) 
that are only feasible when the asset is of quality j , given current beliefs μ, and let 	b denote 
the set of signals that are feasible in both states, l and h, so that

μ+(μ,S) =
⎧⎨
⎩

0 if S ∈ 	l(μ)

μ if S ∈ 	b(μ)

1 if S ∈ 	h(μ).

We conjecture, and later confirm, that

	l(μ) = [−m + Rl(0),−m + Rh(μ)) (22)

	b(μ) = [−m + Rh(μ),m + Rl(μ)] (23)

	h(μ) = (m + Rl(μ),m + Rh(1)] . (24)

In words, suppose the true asset quality is j = h. If the signal does not reveal the true asset 
quality, then μ+ = μ. Moreover, we will show below that reservation values are increasing in μ, 
so that Rh(μ) � Rh(1). Therefore, under the candidate equilibrium, the minimum realization for 
S = ω + Rj when j = h is −m + Rh(μ); any S < −m + Rh(μ) is only feasible if j = l. Similar 
reasoning can be used to explain (23)–(24). Note that

	b(μ) �= ∅ ⇔ Rh(μ) − Rl(μ) < 2m.

Assumption 2 ensures that valuations always satisfy this condition.
Let p(μ) denote the probability that the signal S = ω + R(μ) ∈ 	l ∪ 	h, i.e., the probability 

that the quality of the asset is fully revealed to the dealers. When ω ∼ U[−m, m],

p (μ) = Rh (μ) − Rl (μ)

2m
. (25)

Since the expected number of periods before the quality is revealed is the inverse of p(μ), the 
following insight follows immediately.

Remark 1. The expected speed of learning depends positively on Rh(μ) − Rl(μ).
14
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Intuitively, learning occurs quickly when investors behave very differently when the asset is 
of high or low quality, i.e., when Rh(μ) − Rl(μ) is relatively large. When investors’ behavior 
is less dependent on asset quality, and Rh(μ) − Rl(μ) is relatively small, it is more difficult for 
dealers to extract information from trading volume, and learning occurs more slowly.

3.3. Prices

We now derive equilibrium bid and ask prices. Two aspects of our parametric specification 
simplify this derivation. First, the extreme learning process described above, which followed 
from the uniform distribution of ω, implies a straightforward relationship between current prices 
and future beliefs: beliefs are stationary until the state of the world is known with certainty. 
Second, given the uniform distribution over ε, the demand and supply functions that the dealers 
face are linear.

To start, it is helpful to define the expected continuation value of an investor when the asset 
quality is j ∈ {l, h} and dealers’ current beliefs are μ:

rj (μ) = Eω

[
Rj

(
μ+)]= (1 − p (μ))Rj (μ) + p (μ)Rj (1 [j = h]) . (26)

Using this notation, we establish in Appendix A.1 that the prices consistent with zero profits are

B (μ) = Ej rj +Ej vj − e

2
+ 1

2

√(
e +Ej

(
vj − rj

))2 − 4Covj

(
rj , vj

)
A(μ) = Ej rj +Ej vj + e

2
− 1

2

√(
e −Ej

(
vj − rj

))2 − 4Covj

(
rj , vj

)
.

In Appendix A.2, we prove that, under Assumptions 1–3,

Ej rj (μ) = Ej vj , (27)

so that the expressions for bid and ask prices simplify to:

B = Ej vj − e

2
+
√( e

2

)2 − Covj

(
rj , vj

)
(28)

A = Ej vj + e

2
−
√( e

2

)2 − Covj

(
rj , vj

)
. (29)

Again, these expressions highlight that the bid-ask spread depends on the degree of adverse 
selection that dealers face, as captured by the covariance between the probability of trade (which 
depends on rj ) and the value of the asset (vj ).

3.4. Reservation values

Using the optimal bid and ask prices, the reservation value of an investor, given current beliefs 
μ ∈ (0, 1) and asset quality j , can be written

Rj (μ) = (1 − δ)vj + δrj (μ) + δπ�j (μ), (30)

where rj (μ) is defined in (26) and �j (μ) is the net option value of holding a quality j asset, 
i.e., the option value of selling the asset at a later date less the option value of buying it. Under 
Assumptions 1–3, this reduces to
15
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�j (μ) = B − A + 2e

2e

(
B − rj (μ) − (

rj (μ) − A
)

2

)
= B − A + 2e

2e

(
Ej vj − rj (μ)

)
.

(31)

The first term in this expression is the ex ante probability (before ε and ω are realized) that the 
investor will optimally choose to trade, given prices A and B . The second term is the expected 
difference between the surplus the investor will earn from selling the asset at a later date and the 
surplus he could have earned from buying an asset at a later date.

Since the bid and ask prices are independent of asset quality (conditional on beliefs μ), the net 
option value is decreasing in the expected continuation value, rj . Moreover, one can show that 
rh (μ) > rl (μ). Hence, equation (31) directly implies that the net option value is smaller when 
the asset is of quality h. We highlight this property in the remark below, as it will play a key role 
in the ensuing results.

Remark 2. The net option value is decreasing in vj , so that �h(μ) < �l(μ) for all μ ∈ [0, 1].

Intuitively, the net option value is decreasing in vj because the high quality asset is less likely to 
be sold and more likely to be bought in equilibrium, while the low quality asset is more likely 
to be sold and less likely to be bought. Hence, the option to buy (sell) is worth relatively more 
when the asset quality is h (l).

3.5. Equilibrium characterization

To characterize the equilibrium, we can use (30)–(31) to write

Rh (μ) − Rl (μ) = (1 − δ) (vh − vl) + δ (rh (μ) − rl (μ)) + δ [�h(μ) − �l(μ)] . (32)

Then, using (25)–(26) and (28)–(29), we can rewrite (32) as an equation in a single unknown, p, 
for any given belief μ18:

2mp = (1 − δ) (vh − vl) + δ (1 − π) (p (vh − vl) + 2mp (1 − p)) (33)

− δπ

2

√
1 − 4

e2 (vh − vl)μ (1 − μ) [2m(1 − p)p + p (vh − vl)]

× (p (vh − vl) + 2mp (1 − p)) .

Proposition 1. Under Assumptions 1–3, there exists a unique p�(μ) that solves (33).

Importantly, solving for p�(μ) is sufficient for a full characterization of the model: one can use 
it to construct reservation values 

{
Rj (μ)

}
j∈{l,h} and equilibrium prices {A,B} using (28)-(31), 

which we can exploit to understand how the key frictions in the model affect equilibrium out-
comes.

3.6. Comparative statics

In this section, we explore how the frequency of trading opportunities affects the speed of 
learning and, ultimately, observable outcomes (like bid-ask spreads). We proceed in two steps. 

18 We provide a more detailed derivation in the proof of Proposition 1 in the Appendix.
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We start by examining how reservation values, the speed of learning, and bid-ask spreads depend 
on the dealers’ beliefs, μ. Then, we explore the effects of the frequency of trading opportunities 
on the evolution of beliefs.

3.6.1. The effect of beliefs
The first result establishes that both spreads and the speed of learning are maximized when 

dealers are most uncertain.

Lemma 1. The following objects are hump-shaped in μ with a maximum at μ = 0.5: (i) the bid-
ask spread, A − B; (ii) the difference in reservation values, Rh − Rl; and (iii) the probability 
that the true asset quality is revealed, p.

Recall from the pricing equations (28)–(29) that the bid-ask spread is increasing in the covari-
ance between reservation values and asset quality. At the core of Lemma 1 is the observation that 
this covariance is maximized when uncertainty is maximal (i.e., when μ = 0.5). To see why, we 
establish in the Appendix that

Covj (rj , vj ) = μ(1 − μ)(vh − vl)
2
[

1 − (1 − p(μ))

(
1 − Rh(μ) − Rl(μ)

vh − vl

)]
. (34)

The first term on the right-hand side of (34) captures the direct effect of μ on the bid-ask 
spread: this term is simply the prior variance about the asset’s quality, and is clearly maximized 
at μ = 0.5. The second term captures the novel, indirect effects of μ on the bid-ask spread. 
Understanding this term requires understanding the equilibrium interaction between spreads, 
reservation values, and learning.19 In particular, when dealers are uncertain, the wider spreads 
from the direct effect make investors less likely to trade, as a larger fraction of idiosyncratic liq-
uidity shocks lie in the “inaction region.” As the likelihood of trade falls, the difference in the net 
option values (across the two states) narrows. Intuitively, a decline in the probability of trading 
causes a disproportionate decline in the option value to sell when the asset quality is l, and in 
the option value of buying when the asset quality is h, causing �h − �l to be less negative. This 
leads to an increase in Rh − Rl and p = (Rh − Rl)/2m, i.e., the gap between reservation val-
ues widens and thus learning speeds up. As a result, Cov(rj , vj ) increases, leading to a further 
increase in spreads.

3.6.2. The effect of trading frictions
Our next result states that an increase in π—or, equivalently, a decrease in the severity of 

search frictions—unambiguously slows down learning.

Proposition 2. For any μ ∈ (0, 1), ∂p
�(μ)
∂π

< 0.

To understand the intuition, recall from (25) that p is proportional to Rh − Rl . From (32), we 
have

d(Rh − Rl)

dπ
= δ

[
(�h − �l) + d(rh − rl)

dπ
+ π

d (�h − �l)

dπ

]
. (35)

19 Indeed, if the investors did not account for the option value of future trading—i.e., if Rj = vj —then the second term 
would drop out and beliefs would only affect spreads through the typical, direct effect captured in the first term.
17
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Again, the first term in this expression represents the direct effect of increasing π : it places more 
weight on the difference in net option values, �h − �l , which is negative. As a result, the direct 
effect of raising π is to attenuate the difference in reservation values, Rh − Rl . The remaining 
two terms in (35) capture the indirect effects of a change in trading frictions, which operate 
through the expected reservation values rj . These effects are similar to the feedback channel 
described in the discussion of Lemma 1: an increase in π raises the likelihood of trading, making 
the difference in net option values more negative. Hence, these indirect effects further reduce the 
difference in reservation values.

We now turn to the ultimate effect of trading frictions on bid-ask spreads. There are two, 
opposing effects of increasing π . The first, which we call the static effect, has the usual sign: 
holding beliefs constant, an increase in π causes spreads to shrink. As discussed above, an in-
crease in π causes the difference in reservation values to narrow, which implies a decrease in 
Cov(rj , vj ). Recall from (28)–(29), the bid-ask spread is given by

A − B = e −
√

e2 − 4Covj

(
rj , vj

)
.

Hence, holding beliefs fixed, a decline in trading frictions leads to a lower spread. Intuitively, 
since the increase in π makes investors behave more similarly in the two states of the world—
i.e., the likelihood of an investor buying or selling at a given price becomes more similar for 
j ∈ {l, h}—the problem of adverse selection is diminished and spreads fall.

However, even though an increase in π causes bid-ask spreads to fall for a given level of 
beliefs, in equilibrium it also influences how beliefs change over time. We refer to this as the 
dynamic effect: an increase in π implies that dealers will remain uncertain about the true as-
set quality for longer (Proposition 2). Since bid-ask spreads are larger when dealers are more 
uncertain (Lemma 1), this dynamic effect implies that an increase in π puts upward pressure on 
spreads. We will show that this dynamic effect eventually dominates, implying that more frequent 
trading opportunities lead to wider spreads in the long run.

To state this formally, we let Yj,t denote the expected spread in period t when the asset is of 
quality j ∈ {l, h}, which can be written

Yt,j = (1 − p (μ0))
t︸ ︷︷ ︸

Prob(No revelation)

[
e −

√
e2 − 4Covj

(
rj , vj

)]
,

where μ0 is the dealers’ initial beliefs. Thus, Yj,t is the product of probability that the state has 
not yet been revealed by time t and the bid-ask spread when dealers remain uncertain of the asset 
quality (note that the spread after quality is revealed falls to 0). The former is determined by the 
speed of learning, p(·). Differentiating with respect to π yields

∂Yt,j

∂π
= 2 (1 − p (μ0))

t√
e2 − 4Covj

(
rj , vj

)
︸ ︷︷ ︸

> 0

∂Covj (rj , vj )

∂π︸ ︷︷ ︸
<0

+ −t (1 − p (μ0))
t−1︸ ︷︷ ︸

< 0

∂p

∂π︸︷︷︸
< 0

[
e −

√
e2 − 4Covj

(
rj , vj

)]
︸ ︷︷ ︸

> 0

. (36)

The first term in (36) reflects the static effect: holding beliefs fixed, an increase in π reduces the 
covariance between the quality of the asset and reservation values, reducing adverse selection 
18
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and, therefore, spreads. The second term captures the dynamic effect: an increase in π reduces 

the probability that the state is revealed 
(

∂p
∂π

< 0
)

, which puts upward pressure on the spread. 

As t grows and (1 − p(μ))t → 0, the first term shrinks relative to the second term, and thus 
the dynamic effect eventually dominates. That is, an increase in π pushes the spread wider for 
sufficiently large t . The following result summarizes.

Proposition 3. There exists a τ < ∞ such that ∂Yt,j

∂π
> 0 for all t � τ .

4. Numerical analysis

In Section 3, we established a sequence of analytical results under several assumptions, most 
notably that aggregate and idiosyncratic liquidity shocks were drawn from uniform distributions. 
In this section, we relax these assumptions. This complicates the analysis considerably, as the 
interaction between optimal bid and ask prices, reservation values, and future prices and be-
liefs introduces additional effects that were absent from our analysis with uniform distributions. 
However, while these complications make analytical results harder to derive, it is straightfor-
ward to solve the model numerically. In what follows, we parameterize the model, solve for the 
equilibrium numerically, and confirm that the key results established in the model with uniform 
shocks—which afforded us tractability—are relevant in an empirically plausible region of the 
parameter space in the model with a more flexible specification.

4.1. Solving the model

Before specifying our parametric assumptions, we briefly describe the iterative process used 
to solve the general model. Given a grid for the state variables μ and ω, we start with an initial 
guess for the reservation values, Rj(μ), for j ∈ {l, h}. Then, given Rj(μ), traders’ expectations 
of dealer beliefs μ+ for each ω are obtained by solving (11). Using these updating equations, we 
compute optimal prices for any beliefs μ. The processes for beliefs and prices are then combined 
to form an updated guess for the reservation value functions Rj(μ) using (4). We use this to 
update the original guess and repeat until convergence.

4.2. Parameterization

We assume that both aggregate and idiosyncratic liquidity shocks are drawn from a mean-
zero normal distribution, i.e., that ω ∼ N(0, σ 2

ω) and ε ∼ N(0, σ 2
ε ). The normality of aggregate 

liquidity shocks implies that learning occurs gradually, unlike the stark form it took under a 
uniform distribution.

To assign parameter values, we choose a widely studied over-the-counter market as a guide: 
the market for U.S. corporate bonds. To start, we interpret differences in asset quality as stem-
ming from changes in credit ratings. Consider a bond that is rated AAA at some initial point in 
time. Conditional on not being downgraded, we interpret vh as the expected payoff of the bond 
upon maturity. If it is downgraded (most likely, to AA), we assume that the expected payoff 
drops to vl . Since bid-ask spreads and beliefs are only a function of the relative payoff in the two 
states (i.e., vh − vl), we can normalize vl = 0. Then, we map the relative payoff to the drop in 
the market price of the bond in the event of a downgrade. Feldhütter (2011) reports that average 
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spreads on AA bonds are about 20 bps higher than spreads on AAA-rated bonds.20 For a 5-year 
par bond with face value $100 and a coupon of 2%, this difference in spread translates into a 
price change of $0.95. Hence, we set vh = 0.95.

Next, we choose the initial belief μ0 to match the unconditional probability of a rating tran-
sition. According to the 2016 Annual Global Corporate Default Study and Rating Transitions 
published by Standard & Poor’s, the likelihood of a AAA-rated U.S. corporate bond retaining 
that rating over a 5-year horizon is 0.50. Accordingly, we set μ0 = 0.50.

To pin down the parameters governing the distribution of liquidity shocks and the meeting 
probabilities, we again rely on estimates from Feldhütter (2011). He estimates the parameters of 
a continuous time model of over-the-counter trading along the lines of Duffie et al. (2005), using 
data on secondary market transactions in U.S. corporate bonds. We map his estimate of holding 
costs, the sole source of gains from trade in his environment, to the magnitude of liquidity shocks 
in our model.21 Assuming that aggregate and idiosyncratic components are of equal magnitude, 
this procedure yields σ 2

ω = σ 2
ε = 0.16.22

Feldhütter (2011) also provides estimates for the arrival rate of meetings with dealers from 
the perspective of traders in the market. We map his estimate—an annualized rate of 40—into 
the probability of meeting a dealer, π .23 Interpreting a period in our model as 5 business days 
or 0.02 years (since a year is assumed to have 250 business days) yields our baselines value of 
π = 0.55.24

The final variable to parameterize is δ. As we discussed in Section 2.1, this parameter value 
can be interpreted in several ways. In particular, one could interpret it as the likelihood of the 
asset not maturing in each period, so that 1/(1 − δ) represents an asset’s expected maturity. 
Alternatively, one could interpret δ as the probability that an individual trader remains active in 
the market, so that 1/(1 − δ) represents the expected amount of time a trader devotes to actively 
buying or selling a particular asset, before settling on a position and holding until maturity. We 
adopt the latter interpretation and adopt a baseline value of δ = 0.8, which implies that a trader 
actively adjusts his position in the market for about 5 weeks.

Table 1 summarizes our parameter choices. Again, these parameter values are not intended 
to provide a precise quantitative estimate of the effects of trading and/or information frictions 
in the corporate bond market; this would require additional ingredients to account for a number 
of institutional details, which is beyond the scope of the current paper. Instead, these parameter 
values are intended to convince the reader that the theoretical mechanisms identified in Section 3
are both active and relevant in a plausible region of the parameter space, despite the complications 
introduced in the general model.

Fig. 2 plots the two key equilibrium objects—reservation values and spreads—as a function 
of dealers’ beliefs, μ. The solid line plots these objects under our baseline parameterization with 

20 See Table 1 of that paper. The average spread on a AAA bond is 5 bps (for trades greater than USD 100,000 in size), 
while the corresponding spread for AA bonds is 25 bps.
21 Specifically, he estimates a flow holding cost of 2.91, which lasts for an average of 0.31 years or equivalently, a total 
expected cost of (2.91)(0.31) = 0.90. We interpret this as the average difference in valuations between agents receiving 
positive liquidity shocks and those receiving negative shocks. With normally distributed shocks, this translates into a 
variance of 0.32.
22 Assuming that aggregate and idiosyncratic components are of equal magnitude is not crucial to our results. We have 
explored alternative specifications regarding the relative size of aggregate and idiosyncratic shocks, and found similar 
results.
23 Feldhütter (2011) estimates arrival rates separately for different trade sizes. We use the one for the smallest trade size.
24 Note that this frequency of trade is also consistent with the estimates in He and Milbradt (2014).
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Table 1
Parameters.

Parameter Value Description

Payoffs:
vh 0.95 Payoff of h-quality asset
vl 0 Payoff of l-quality asset
σ 2
ω 0.16 Variance of aggregate liquidity shock

σ 2
ε 0.16 Variance of idiosyncratic liquidity shock

Meeting technology:
1 − δ 0.20 Pr(asset maturing)
π 0.55 Pr(meeting at least 1 dealer)

Beliefs:
μ0 0.50 Initial dealer belief

π = 0.55. To illustrate the effects of trading frictions, we repeat the plots when frictions become 
more severe (π = 0.35, the dashed line) and when they are less severe (π = 0.95, the dotted 
line).

The plots confirm our key findings from Section 3. The left panel, which plots Rh(μ) −Rl(μ), 
confirms that reservation values in the two states become closer to each other as π increases. The 
right panel plots the model-implied spread and confirms that the spread is hump-shaped in μ, 
as the effects of asymmetric information are most pronounced when uncertainty is highest (i.e., 
for intermediate values of μ). The figure also confirms that spreads are decreasing in π for any 
given μ, i.e., that more frequent trading opportunities reduce spreads for any fixed set of beliefs. 
Intuitively, as noted above, increasing π reduces Rh − Rl for any given μ. As a result, traders 
behave more similarly in the two states of the world, so that dealers’ optimal prices require a 
smaller adjustment for asymmetric information.

However, note that the plots in Fig. 2 illustrate only the static effects of varying π , i.e., holding 
beliefs fixed. Fig. 3 illustrates the dynamic effects by plotting the evolution of beliefs and spreads 
over time for different values of π , given the true quality of the asset is h. The panels plot the 
average values across 40,000 sample paths; recall that the realized path of beliefs (and thus 
prices) depends on the realized sequence of ωt .

From the figure, one can see that dealers’ beliefs (top left panel) start at μ0 = 0.5 and drift 
upwards. Since the true state is h, beliefs in all three cases eventually converge to 1. However, 
the pace is clearly slower when π is higher; more frequent trading opportunities lead to slower 
learning, exactly as in the model in Section 3. Spreads are initially tighter in the high π case, but 

Fig. 2. Effect of π on reservation values and spreads.
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Fig. 3. Effect of π on beliefs and spreads over time.

eventually end up wider. This is because, initially, beliefs are very similar in both cases (since 
they both start at the same level, by assumption), so the static effect dominates and spreads 
narrow with higher π . Over time, however, the differential pace of learning kicks in, keeping 
uncertainty high and spreads wide.

So far, we have focused on bid-ask spreads. In Fig. 4, we plot two other metrics for liquidity 
that are commonly used in the literature. The left panel plots average trading volume, defined 
as the sum of buys and sells by traders, averaged across sample paths. The right panel plots 
price impact, defined as the elasticity of the change in prices with respect to net volume.25 The 
figure highlights that different measures of liquidity need not move together in markets where 
both information and trading frictions are present. In particular, the left panel illustrates that 
trading volume increases monotonically with the frequency of trading opportunities; even when 
spreads widen, the direct effect of more meetings dominates the indirect effect of fewer trades 
per meeting. Hence, unlike many traditional models, our framework can rationalize a positive 
relationship between spreads and trading volume, as documented in, e.g., Lin et al. (1995) and 
Chordia et al. (2001).26 Price impact, on the other hand, displays a pattern similar to that of 
bid-ask spreads: higher values of π lead to smaller price impact initially, but larger price impact 
in later periods. Intuitively, when π is high, dealers learn more slowly. For fixed beliefs, this 
manifests itself as a reduced impact of trading activity on prices. However, this also implies that 
uncertainty is greater in later rounds, which increases the scope for learning from volume. As 
with bid-ask spreads, this dynamic effect eventually dominates and so, price impact goes up in 
later rounds.

On a final note, our results point to a more general insight: the conventional predictions from 
models with only one friction do not necessarily extend to setting with multiple frictions. While 
we have focused exclusively on the effect of reducing trading frictions, our framework can also 
be used to investigate the implications of mitigating asymmetric information. For example, it is 
possible to show that, for certain parameter values, bid-ask spreads are convex in dealer beliefs, 

25 Formally, price changes and net volume are defined as follows:

PrcChgt = log

(
At + Bt

2

)
− log

(
At−1 + Bt−1

2

)

NetV olt−1 = log(Buyst−1) − log(Sellst−1) = log
(
N0

t−1π(1 − G(ε̄t−1))
)

− log
(
N1

t−1πG(εt−1)
)

We regress (separately for each t ) PrcChgt on NetV olt−1 and a constant. The graph plots the coefficient on NetV olt−1.
26 Also see Liu and Wang (2016).
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Fig. 4. Effect of π on volume and price impact over time.

μ. This implies that additional information, which induces a mean-preserving spread in beliefs, 
can lead to lower liquidity in the form of wider bid-ask spreads.27

5. A stationary version

In this section, we modify our baseline framework to allow the asset quality to change over 
time. This implies that the equilibrium, conditional on the asset not maturing, can be character-
ized in terms of prices, allocations, and the distribution of beliefs that prevail in the stochastic 
steady state.

5.1. Characterizing the stochastic steady state equilibrium

We assume that the asset quality changes in each period with probability ρ. Otherwise, the 
model remains unchanged. The equations characterizing the equilibrium change only slightly 
relative to the baseline, non-stationary version. Dealers’ beliefs about asset quality at the end of 
each period are still given by equation (18). However, to obtain beliefs in the following period, we 
need to adjust for the possibility that asset quality has changed. In particular, if dealers’ beliefs at 
the end of a period are given by μ, then beliefs in the following period (before pricing decisions 
are made) can be written

M(μ) = μ(1 − ρ) + (1 − μ)ρ. (37)

Similarly, the expressions for traders’ reservation values also must be adjusted to reflect the 
possibility of the asset quality changing. Given asset quality j ∈ {l, h}, let ρj ≡ ρ and ρ−j ≡
1 − ρ. Then we have

Rj (μ) = (1 − δ)cj + δ(1 − π)
∑

j ′∈{j,−j}
ρj ′

∫
ω

Rj ′
(
μ̃+

j ′(M(μ),ω)
)

dF(ω)

+ δπ
∑

j ′∈{j,−j}
ρj ′

∫
ω

{[
B(M(μ))G

(
εj ′(M(μ),ω)

)

+
εj ′(M(μ),ω)∫

εj ′(M(μ),ω)

[
ω + ε + Rj ′

(
μ̃+

j ′(M(μ),ω)
)]

dG(ε)

27 For additional details, see the working paper version Lester et al. (2018).
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Fig. 5. Effect of π in stationary version.

+ A(M(μ))
[
1 − G

(
εj ′(M(μ),ω)

)] ]}
dF(ω).

The dealers’ valuations of the asset in the two states, (ṽh, ṽl), solve the following linear system

ṽh = (1 − δ)vh + δ(1 − ρ)ṽh + δρṽl

ṽl = (1 − δ)vl + δ(1 − ρ)ṽl + δρṽh.

The pricing equations take the same form as in the baseline, non-stationary version, with (ṽh, ṽl)

replacing (vh, vl). The iterative algorithm described in Section 4 can then be applied to this 
modified system of equations to solve for the laws of motion for beliefs, reservation values, and 
prices. The stochastic steady state is then obtained by simulation.

5.2. Comparative statics

We now turn to the effects of varying trading frictions on the stochastic steady state. We set the 
switching probability ρ to 0.5% and hold all other parameters fixed at their baseline values. Fig. 5
shows the results for three different values of π . The left panel plots the distribution of beliefs in 
the long run (again, conditional on the asset not maturing). It shows that higher π shifts the mass 
of the distribution towards the center, where dealers are more uncertain about asset quality. As in 
the non-stationary model, more frequent trading opportunities reduce the speed of learning and 
keep uncertainty high.

The effect on average spreads, illustrated in the remaining 3 panels, is more complicated. 
As in the non-stationary version, there are two opposing forces. On the one hand, increasing π
reduces adverse selection and, therefore, pushes spreads down for any level of beliefs, μ. How-
ever, increasing π also pushes the long-run distribution of beliefs towards intermediate values of 
μ, which are associated with higher spreads. Whether average spreads are wider or narrower in 
the stochastic steady state depends on which of these two effects dominates. For example, when 
spreads rise from 0.35 to 0.55, the latter effect dominates and average spreads widen. However, 
when π rises further, from 0.55 to 0.95, the former effect dominates and spreads narrow.

Welfare Next, we explore implications for welfare, defined as the sum of the payoffs of all 
agents (traders and dealers) in the economy. As payments between traders and dealers cancel 
out, welfare depends only on the extent to which gains from trade (arising from the aggregate 
and idiosyncratic liquidity shocks) are exploited. This, in turn, depends on the thresholds that 
govern trading. Formally, let

Qjt ≡ N1
t Q1

j (μt ,ωt ) + N0
t Q0

j (μt ,ωt ),
24



B. Lester, A. Shourideh, V. Venkateswaran et al. Journal of Economic Theory 212 (2023) 105714
Fig. 6. Effect of π on welfare (Qjt ) and spreads.

where

Q1
j (μ,ω) = (1 − π)

⎡
⎣ ∞∫
−∞

(ω + ε) dG(ε)

⎤
⎦+ π

∞∫
εj

(ω + ε) dG(ε)

= (1 − π)ω + π

⎡
⎢⎣ω

(
1 − G

(
εj

))
+

∞∫
εj

εdG(ε)

⎤
⎥⎦ ,

Q0
j (μ,ω) = π

∞∫
ε̄j

(ω + ε) dG(ε)

= π

⎡
⎢⎣ω

(
1 − G

(
ε̄j

))+
∞∫

εj

εdG(ε)

⎤
⎥⎦ .

In words, Qjt represents the gains from trade that are realized in period t when the asset is of 
quality j . The first component of Qjt is the gains from trade that are realized by those traders 
who enter period t owning a unit of the asset: there are N1

t such agents, and the average gains 
from trade that accrue to these agents, Q1

j , is the average liquidity shock, adjusted for the fact 
that those with idiosyncratic realizations below εj sell their asset if they have the opportunity to 
do so. The second component is the gains from trade that are realized by those traders who enter 
period t not owning a unit of the asset.

The expressions above illustrate the two channels through which reducing trading frictions 
affects welfare. The first channel is standard: more meetings per period imply more opportunities 
for exploiting gains from trade. The second channel acts through the thresholds ε̄j and εj , which 
depend on prices and, therefore, beliefs. Again, an increase in π slows down learning, causing 
spreads to widen and thus fewer trades per meeting. In the left panel of Fig. 6, we plot the 
average value of Qjt in the stochastic steady for the three values of π analyzed earlier. It shows 
that, under our calibration, the first channel dominates, i.e., welfare increases with π , even though 
bid-ask spreads are hump-shaped (as shown in the right panel, which is reproduced from Fig. 5). 
Hence, we show that a deterioration in market liquidity—as measured by a widening bid-ask 
spread—need not correspond to a decline in welfare.
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6. Conclusion

Many assets have traditionally traded in markets with frictions: the process of finding a coun-
terparty, receiving price quotes, and executing trades was costly and/or took significant amounts 
of time. As a result of both technological innovations and regulatory mandates, these frictions 
have been reduced in recent years. What are the expected effects of these changes on observable 
outcomes like prices, spreads, and trading volume?

In order to answer to this question, we develop a framework that incorporates two canonical 
sources of illiquidity: search frictions and information frictions. Our analysis reveals novel in-
teractions between these two frictions, which can overturn the conventional wisdom that derives 
from studying them in isolation. In particular, we show that reducing search frictions can slow 
down the process of information revelation, thus exacerbating the effects of asymmetric informa-
tion and causing a deterioration in (standard measures of) market liquidity. These results can help 
us understand existing empirical evidence, and evaluate the effects of future reforms. In addition, 
our analysis highlights that various measures of liquidity need not respond to shocks in the same 
direction, nor are these measures of liquidity necessarily informative about welfare.

Our framework opens up a variety of opportunities for future research. For one, prelimi-
nary results suggest that reducing information frictions—say, through regulations that promote 
transparency or require more disclosure—can also have counterintuitive effects on liquidity and 
welfare. Second, our equilibrium analysis offers a structural framework to disentangle the effects 
of search and information frictions on empirical measures of liquidity such as bid-ask spreads, 
price impact, or trading volume that are reported in recent, transaction-level data sets from OTC 
markets. Lastly, our model is amenable to a variety of extensions, including other sources of 
market illiquidity (e.g., inventory costs).
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Appendix A. Omitted proofs from Section 3

A.1. Optimal prices

In this section, we derive the optimal prices set by dealers given current beliefs μ ∈ (0, 1).28

In what follows, we will conjecture, and later confirm, that the trading thresholds {ε, ε} always 
lie in the interior of the support [−e, e].

Using the definition of rj in equation (26), a few simple algebraic steps reveal that the dealers’ 
zero profit condition requires that the bid price satisfies

−B2 + (
Ej rj +Ej vj − e

)
B − (

Ej vj

(
rj − e

))= 0.

28 Optimal prices under full information are standard, and hence we omit the explicit derivation here.
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While this equation has two solutions, only the larger solution is consistent with perfect compe-
tition. To see why, let B1 < B2 denote the roots of this equation and suppose that the equilibrium 
bid price is B1. We claim that a dealer could deviate to B2 − ε, for some ε > 0, and achieve 
strictly positive profits. To see why, note that profits are negative for all B > B2. Since the equa-
tion above has only two roots, profits must be positive for some value of B ∈ (B1,B2). Therefore, 
the equilibrium bid must be the larger of the two roots, i.e.,

B = Ej rj +Ej vj − e +
√(

Ej rj +Ej vj − e
)2 − 4Ej vj

(
rj − e

)
2

. (38)

Using straightforward algebra, (38) can be re-written as

B = Ej

(
vj + rj

)− e +
√(

Ej

(
vj − rj

)+ e
)2 − 4Covj

(
rj , vj

)
2

.

In order for B to be a valid (i.e., real) solution, we require the discriminant to be positive, or e +
Ej

(
vj − rj

)
� 2

√
Covj

(
vj , rj

)
. We will verify below that, in the equilibrium we characterize, 

this condition is indeed satisfied under Assumptions 1-3.
A similar derivation reveals that the ask price must be

A = Ej

(
rj + vj

)+ e −
√(

Ej

(
rj − vj

)+ e
)2 − 4Covj

(
vj , rj

)
2

.

For this solution to be valid, we require

e +Ej

(
rj − vj

)
� 2

√
Covj

(
vj , rj

)
which we also verify is satisfied in the equilibrium we characterize under Assumptions 1-3.

A.2. Valuations of traders and dealers are equal in expectation

Here we establish (27) from the main text, which states that, given dealers’ beliefs, the ex-
pected valuations of dealers and traders are equal, i.e., Ej rj (μ) = Ej vj . We first show that this 
is true when dealers are fully informed about asset quality, i.e., when μ ∈ {0, 1}. For example, 
when μ = 1, Covj

(
rj , vj

)= 0 and thus

B (1) = rh (1) + vh − e

2
+ 1

2

√
(e + vh − rh (1))2 = vh,

A(1) = rh (1) + vh + e

2
− 1

2

√
(e + vh − rh (1))2 = vh.

Since rh (1) = Rh (1), the expected reservation value can be written as

rh (1) = (1 − δ) vh + δrh (1) + δπ
(B − A + 2e)

2e

(
A + B

2
− rh (1)

)
or, equivalently,

(1 − δ) rh (1) = (1 − δ) vh + δπ (vh − rh (1)) .

The unique solution is clearly rh (1) = vh. It is equally straightforward to show that rl (0) = vl .
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As a result, for any μ,

rj (μ) = (1 − p (μ))Rj (μ) + p (μ)vj

and, in expectation,

Ej rj (μ) = (1 − p (μ))EjRj (μ) + p (μ)Ej vj .

Now, suppose by way of contradiction that Ej rj > Ej vj , so that EjRj (μ) > Ej vj . Recall that 
the traders’ reservation values are given by

Rj (μ) = (1 − δ) vj + δrj (μ) + δπ
(B − A + 2e)

2e

(
A + B

2
− rj (μ)

)
.

Using the expressions for prices, we can write

Rj (μ) = (1 − δ) vj + δrj (μ)

+ δπ
�(μ) + �(μ) + e

2

(
vj − rj (μ) + �(μ) − �(μ)

2

)
,

where

�(μ) = 1

2

√(
Ej

(
rj − vj

)+ e
)2 − 4Covj

(
rj , vj

)
�(μ) = 1

2

√(
Ej

(
vj − rj

)+ e
)2 − 4Covj

(
rj , vj

)
.

Taking expectation with respect to j yields

EjRj = (1 − δ)Ej vj + δEj rj

+ δπ

(
�(μ) + �(μ) + e

2

)
Ej vj −Ej rj + �(μ) − �(μ)

2
.

Note that Ej rj > Ej vj implies � (μ) > � (μ). Hence, under the initial assumption that Ej rj >

Ej vj , the last term on the right-hand side is negative. As a result,

EjRj < (1 − δ)Ej vj + δEj rj = (1 − δ + δ (1 − p (μ)))Ej vj + δp (μ)EjRj ,

which implies

(1 − δp (μ))EjRj (μ) < (1 − δp (μ))Ej vj .

This inequality contradicts the initial assumption that Ej rj > Ej vj . A symmetric argument can 
be used to show that Ej rj < Ej vj cannot hold. Hence, we must have Ej rj = Ej vj and EjRj =
Ej vj .

A.3. Proof of Proposition 1

To prove that the equilibrium is characterized by a unique value, p∗(μ), consider first the 
difference in traders’ reservations values. From (31)–(32), the difference in reservation values 
can be written

Rh − Rl = (1 − δ) (vh − vl) + δ (rh − rl) − δπ
B − A + 2e

2e
(rh − rl) (39)
28
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where, for ease of notation, we have suppressed the dependence of Rj , rj , and p on μ. Next, we 
will show that the right-hand side of (39) can be expressed as a function of p, Rh − Rl , and the 
exogenous primitives, which we denote �. Since p = (Rh −Rl)/2m, this is sufficient to establish 
that (39) is an equation in a single variable, p. Finally, we prove that for any μ, there is a unique 
p∗(μ) which satisfies (39).

From (28)–(29), we can write the difference in traders’ reservation values as

Rh − Rl = (1 − δ) (vh − vl) + δ (rh − rl) − δπ
rh − rl

2

e +
√

e2 − 4Cov
(
rj , vj

)
e

. (40)

Since rj = (1 − p)Rj + pvj ,

Covj

(
rj , vj

)= (1 − p)Covj

(
Rj , vj

)+ pV arj
(
vj

)
= (1 − p)Covj

(
Rj , vj

)+ pμ(1 − μ) (vh − vl)
2 .

Moreover, since EjRj = Ej vj , tedious but straightforward algebra can be used to show that

Covj

(
Rj , vj

)= μ(1 − μ) (vh − vl) (Rh − Rl) .

Substituting into the earlier expression for Covj(rj , vj ) yields

Covj

(
rj , vj

)= (1 − p)μ(1 − μ) (vh − vl) (Rh − Rl) + pμ(1 − μ) (vh − vl)
2

= μ(1 − μ) (vh − vl)
2
[
(1 − p)

(Rh − Rl)

(vh − vl)
+ p

]
.

Re-arranging yields (34) in the main text.
Finally, we note that rh − rl = (1 − p) (Rh − Rl) + p (vh − vl). The above expressions allow 

us to write (39) as an equation in p given by

2mp = (1 − δ) (vh − vl) + δ [(1 − p)2mp + (vh − vl)p]

− δπ

√
e2 − 4μ(1 − μ) (vh − vl) [2mp (1 − p) + p (vh − vl)] + e

2e

× [(1 − p)2mp + (vh − vl)p] .

Re-arranging yields (33) in the main text.
Let Z (p,μ;�) denote the right-hand side of (33). We now show that Z (p,μ;�) has a unique 

solution on the interval p ∈ [0, vh−vl

2m
].29 To see this, note that

Z (0,μ;�) = (1 − δ) (vh − vl) > 0

and

Z

(
vh − vl

2m
,μ;�

)
= − (vh − vl) + (1 − δ) (vh − vl) + δ

(
1 − π

2

)
(vh − vl)

− δπ

2

√
1 − 4

e2 μ(1 − μ) (vh − vl)
2 (vh − vl)

= − π

2
δ (vh − vl)

[
1 +

√
1 − 4

e2 μ(1 − μ) (vh − vl)
2

]
< 0

29 Since p = (Rh − Rl)/2m, a solution to Z(p, μ; �) = 0 with p � (vh − vl)/2m would imply Rh − Rl � vh − vl , 
which is a contradiction.
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Hence, there exists a p∗ ∈ [0,
vh−vl

2m

]
that solves (33). Defining the auxiliary function

g (p) = p (2m(1 − p) + vh − vl) , (41)

the derivative of Z with respect to p is

Zp = − 2m + δ
(

1 − π

2

)
g′ (p)

− δπ

2

√
1 − 4

e2 μ(1 − μ) (vh − vl) g (p)g′ (p)

+ δπ

4

g (p) 4
e2 μ(1 − μ) (vh − vl) g′ (p)√

1 − 4
e2 μ(1 − μ) (vh − vl) g (p)

= − 2m + δ
(

1 − π

2

)
g′ (p)

− δπ
2g′ (p)

[
1 − 4

e2 μ(1 − μ) (vh − vl) g (p)
]
− g (p) 4

e2 μ(1 − μ) (vh − vl) g′ (p)

4
√

1 − 4
e2 μ(1 − μ) (vh − vl) g (p)

= − 2m + g′ (p) δ
(

1 − π

2

)
− δπ

g′ (p)
[
2 − 12

e2 μ(1 − μ) (vh − vl) g (p)
]

4
√

1 − 4
e2 μ(1 − μ) (vh − vl) g (p)

. (42)

Note that

g′ (p) = 2m(1 − 2p) + vh − vl.

From Assumption 2, we know that

−2m + (vh − vl)
δ

1 − δ
< 0 ⇒ −2m + (vh − vl)

δ
(
1 − π

2

)
1 − δ

(
1 − π

2

) < 0

⇒ −2m + (vh − vl + 2m)δ
(

1 − π

2

)
< 0

Since vh − vl + 2m = g′(0) and g′′(p) < 0, it follows that, for all p ∈ [0,
vh−vl

2w

]
,

−2m + g′ (p) δ
(

1 − π

2

)
< 0.

Assumption 2 also implies30

12μ(1 − μ)

e2 (vh − vl) g (p) � 3

e2 (vh − vl)
2 < 2

and g′ (p) > 0 for all p ∈ [
0,

vh−vl

2m

]
. Hence, the last term in (42) is negative and, therefore, 

Zp (p,μ;�) < 0 for all p ∈ [0,
vh−vl

2m

]
. We conclude that Z (p∗,μ;�) = 0 has a unique solution 

in 
[
0,

vh−vl

2m

]
. Note that since Rj (μ) is increasing in μ for j ∈ {l, h}, Rh (μ) � vh and Rl (μ) �

vl . This implies that Rh (μ) − Rl (μ) � vh − vl , which then implies that p � vh−vl

2m
.

30 Notice, since e � 2(vh − vl) + 2m and m � (vh − vl)/2, Assumption 2 implies e � 3(vh − vl). Hence, e2 �
(3/2)(vh − vl)

2.
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A.4. Verification of equilibrium

First, we verify that the solutions to the quadratic equation that defines p∗(μ) are indeed real 
numbers. Notice,

e2 − 4Covj (rj , vj ) = e2 − 4μ(1 − μ)(vh − vl)[2mp(1 − p) + p(vh − vl)].
Since the negative expression is maximized at μ = 1/2, e2 − 4Covj (rj , vj ) � 0 as long as

e2 − (vh − vl)[2mp(1 − p) + p(vh − vl)] � 0.

Since p � (vh − vl)/2m, this inequality holds as long as

e2 − (vh − vl)
2 � 0,

which is satisfied by Assumption 2.
Next, we verify our conjecture that traders’ thresholds implied by the equilibrium bid and ask 

prices are interior, which fully verifies our earlier conjectures about the nature of the equilibrium. 
That is, we show that, for all j ∈ {l, h} and ω ∈ [−m, m],

A − ω − Rj(μ
′
j (μ,ω)) ∈ [−e, e]

B − ω − Rj (μ
′
j (μ,ω)) ∈ [−e, e].

Consider first the ask price and suppose j = l. Given the definition of μ̃+
l (μ, ω), above, it is 

sufficient to prove that A − ω − Rl(0) ∈ [−e, e] for all ω � −m + Rh(μ) − Rl(μ), and A − ω −
Rl(μ) ∈ [−e, e] for all ω � −m + Rh(μ) − Rl(μ). Since Rl(0) � Rl(μ), it suffices to prove

A − ω − Rl(0) � e (43)

and

−e � A − ω − Rl(μ). (44)

Note that the ask price can be written as

A = Ej rj (μ) +Ej vj + e

2
− �(μ) <

Ej rj (μ) +Ej vj + e

2
= EjRj + e

2
≡ A, (45)

since �(μ) = 1
2

√
e2 − 4Covj (rj , vj ) > 0 and EjRj = Ej vj . Since A is increasing in μ and 

limμ→1 A = Rh(1) + e/2, (43) holds if

Rh(1) + e

2
+ m − Rl(0) � e.

Since Rh(1) = vh and Rl(0) = vl , this condition reduces to

vh − vl + m � e

2
,

which is guaranteed by Assumption 2.
Substituting for the ask price in inequality (44) yields

μ(Rh(μ) − Rl(μ)) − �(μ) � m − 3
e

2
.

Since �(μ) � e/2, it suffices to prove that μ(Rh(μ) −Rl(μ)) � m − e. This result follows since 
m − e < m − e/2 and, under Assumption 2, m − e/2 < 0.
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Consider next the ask price when j = h. Much like when j = l, to verify that traders’ thresh-
olds are interior in equilibrium, it suffices to prove that

A − ω − Rh(μ) � e (46)

and

−e � A − ω − Rh(1). (47)

Note that A − ω − Rh(μ) � e if

−(1 − μ)(Rh(μ) − Rl(μ)) + e

2
− m � e

or

− e

2
− m � (1 − μ)(Rh(μ) − Rl(μ)),

which is necessarily true since Rh(μ) � Rl(μ). Hence, (46) is satisfied since A < A.
Finally, to prove that (47) is satisfied, note that A is minimized at μ = 0 and equal to vl . 

Hence, to verify (47), it suffices to prove that

vl − m − vh � −e,

which is also implied by Assumption 2.
A symmetric argument applies for establishing the interiority of the bid price under the stated 

assumptions. Hence, we omit the proof.

A.5. Proof of Lemma 1

From (33), one can see that Z (p,μ;�) depends on μ only through μ (1 − μ). Moreover, 
Z (p,μ;�) is increasing in μ (1 − μ). Therefore, Zμ > 0 when μ < 1/2 and Zμ < 0 when 
μ > 1/2.

From the proof of Proposition 1 we know that Zp < 0. Therefore, dp∗
dμ

= −Zμ

Zp
> 0 when 

μ < 1/2 and < 0 when μ > 1/2. Moreover, bid-ask spreads are given by

A − B = e −
√

e2 − 4μ(1 − μ) (vh − vl) [(1 − p∗)2mp∗ + (vh − vl)p∗].

The right-hand side is increasing in μ (1 − μ) and p∗. Since both of these are hump-shaped in μ
with maximum at μ = 1/2, so too is the bid-ask spread.

Finally, recall that

Rh − Rl = 2mp∗ ,

and hence Rh − Rl is also hump-shaped in μ and maxed at μ = 1/2. This concludes the proof.

A.6. Proof of Proposition 2

We have

Zπ = − δ

2
[(1 − p)2mp + (vh − vl)]

− δαc

2

√
1 − 4

e2 μ(1 − μ) (vh − vl) [(1 − p)2mp + (vh − vl)p]

× [(1 − p)2mp + (vh − vl)p] < 0 .
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Hence, dp
∗

dπ
= −Zπ

Zp
< 0.

A.7. Proof of Proposition 3

From the text, we have

∂

∂π
Yt,j = − t

(
1 − p∗)t−1 ∂p∗

∂π

(
1 −

√
1 − 4

e2 (vh − vl)μ (1 − μ)g (p∗)
)

+ (
1 − p∗)t 4

e2 (vh − vl)μ (1 − μ)g′ (p∗) ∂p∗
∂π√

1 − 4
e2 (vh − vl)μ (1 − μ)g (p∗)

= (
1 − p∗)t ∂p∗

∂π

⎡
⎢⎣ 4

e2 (vh − vl)μ (1 − μ)g′ (p∗)√
1 − 4

e2 (vh − vl)μ (1 − μ)g (p∗)

− t

1 − p∗

(
1 −

√
1 − 4

e2 (vh − vl)μ (1 − μ)g (p∗)
)]

.

The expression in the brackets is negative for sufficiently large values of t . Hence, since ∂p
∗

∂π
< 0, 

∂
∂π

Yt,j > 0 is also negative for sufficiently large values of t .

Appendix B. Additional results for the special case

B.1. Dealers have no incentive to experiment with prices

Here we establish that dealers have no incentive to set statically sub-optimal prices that 
might reveal to them the state of the world. To see why, note that the set of bids that could 
potentially reveal the state of the world lie in the set �1 = (Rl(μ) − m − e,Rh(μ) − m − e) or 
�2 = (Rl(μ) + m + e,Rh(μ) + m + e).31 For any bid in the first interval, observing a trader 
with an asset accept the offer would reveal that the state is l. For any bid in the second interval, 
observing a trader with an asset reject the offer would reveal that the state is h.

Now, suppose the dealer sets a bid B̂ ∈ �2; the argument for a bid in �1 is symmetric. An 
optimal offer would never generate zero trades in both states of the world. Hence, after observing 
the volume of sells, there are three possibilities for the corresponding signal S:

1. S ∈ 	l(μ) ≡ [−m + Rl(0),−m + Rh(μ)). In this case, the state of the world was revealed 
anyway, so there are no benefits to experimentation.

2. S ∈ 	h(μ) ≡ (m + Rl(μ),m + Rh(1)]. Again, in this case the state of the world was re-
vealed anyway, so there are no benefits to experimentation.

3. S ∈ 	b(μ) ≡ [−m + Rh(μ),m + Rl(μ)]. In this case, all traders accept the offer B̂ , and the 
state of the world is not revealed to the dealer.

31 The argument for the ask price is symmetric.
33



B. Lester, A. Shourideh, V. Venkateswaran et al. Journal of Economic Theory 212 (2023) 105714
References

Afonso, G., 2011. Liquidity and congestion. J. Financ. Intermed. 20, 324–360.
Asriyan, V., Fuchs, W., Green, B., 2021. Aggregation and design of information in asset markets with adverse selection. 

J. Econ. Theory 191, 105124.
Babus, A., Kondor, P., 2018. Trading and information diffusion in over-the-counter markets. Econometrica 86, 

1727–1769.
Back, K., Baruch, S., 2004. Information in securities markets: Kyle meets Glosten and Milgrom. Econometrica 72, 

433–465.
Bethune, Z., Sultanum, B., Trachter, N., 2022. An information-based theory of financial intermediation. Rev. Econ. 

Stud. 89, 2381–2444.
Biais, B., Foucault, T., Moinas, S., 2015. Equilibrium fast trading. J. Financ. Econ. 116, 292–313.
Blouin, M.R., Serrano, R., 2001. A decentralized market with common values uncertainty: non-steady states. Rev. Econ. 

Stud. 68, 323–346.
Bollerslev, T., Melvin, M., 1994. Bid-ask spreads and volatility in the foreign exchange market: an empirical analysis. J. 

Int. Econ. 36, 355–372.
Brancaccio, G., Li, D., Schürhoff, N., 2017. Learning by trading: the case of the US market for municipal bonds. Working 

paper.
Camargo, B., Lester, B., 2014. Trading dynamics in decentralized markets with adverse selection. J. Econ. Theory 153, 

534–568.
Chiu, J., Koeppl, T.V., 2016. Trading dynamics with adverse selection and search: market freeze, intervention and recov-

ery. Rev. Econ. Stud. 83, 969–1000.
Choi, M., 2018. Imperfect information transmission and adverse selection in asset markets. J. Econ. Theory 176, 

619–649.
Chordia, T., Roll, R., Subrahmanyam, A., 2001. Market liquidity and trading activity. J. Finance 56, 501–530.
Copeland, T.E., Galai, D., 1983. Information effects on the bid-ask spread. J. Finance 38, 1457–1469.
Du, S., Zhu, H., 2017. What is the optimal trading frequency in financial markets? Rev. Econ. Stud. 84, 1606–1651.
Duffie, D., Gârleanu, N., Pedersen, L.H., 2005. Over-the-counter markets. Econometrica 73, 1815–1847.
Duffie, D., Malamud, S., Manso, G., 2009. Information percolation with equilibrium search dynamics. Econometrica 77, 

1513–1574.
Duffie, D., Manso, G., 2007. Information percolation in large markets. Am. Econ. Rev. 97, 203–209.
Edwards, A.K., Harris, L.E., Piwowar, M.S., 2007. Corporate bond market transaction costs and transparency. J. Fi-

nance 62, 1421–1451.
Feldhütter, P., 2011. The same bond at different prices: identifying search frictions and selling pressures. Rev. Financ. 

Stud. 25, 1155–1206.
Fuchs, W., Skrzypacz, A., 2015. Government interventions in a dynamic market with adverse selection. J. Econ. The-

ory 158, 371–406.
Gavazza, A., 2016. An empirical equilibrium model of a decentralized asset market. Econometrica 84, 1755–1798.
Gehrig, T., 1993. Intermediation in search markets. J. Econ. Manag. Strategy 2, 97–120.
Glosten, L.R., Milgrom, P.R., 1985. Bid, ask and transaction prices in a specialist market with heterogeneously informed 

traders. J. Financ. Econ. 14, 71–100.
Goldstein, M.A., Hotchkiss, E.S., Sirri, E.R., 2006. Transparency and liquidity: a controlled experiment on corporate 

bonds. Rev. Financ. Stud. 20, 235–273.
Golosov, M., Lorenzoni, G., Tsyvinski, A., 2014. Decentralized trading with private information. Econometrica 82, 

1055–1091.
Grossman, S.J., Stiglitz, J.E., 1980. On the impossibility of informationally efficient markets. Am. Econ. Rev. 70, 

393–408.
Guerrieri, V., Shimer, R., 2014. Dynamic adverse selection: a theory of illiquidity, fire sales, and flight to quality. Am. 

Econ. Rev. 104, 1875–1908.
Harris, L.E., Piwowar, M.S., 2006. Secondary trading costs in the municipal bond market. J. Finance 61, 1361–1397.
He, Z., Milbradt, K., 2014. Endogenous liquidity and defaultable bonds. Econometrica 82, 1443–1508.
Hellwig, M.F., 1980. On the aggregation of information in competitive markets. J. Econ. Theory 22, 477–498.
Hugonnier, J., Lester, B., Weill, P.-O., 2020. Frictional intermediation in over-the-counter markets. Rev. Econ. Stud. 87, 

1432–1469.
Kaya, A., Kim, K., 2018. Trading dynamics with private buyer signals in the market for lemons. Rev. Econ. Stud. 85 (4), 

2318–2352.
34

http://refhub.elsevier.com/S0022-0531(23)00110-2/bib9BB22DCAD92C8BC55F13FA544F2B43D3s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib2ACB61A482CD20D3DB2EE39742049082s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib2ACB61A482CD20D3DB2EE39742049082s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibE53024A00623F3495F16CAA6A36EEE57s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibE53024A00623F3495F16CAA6A36EEE57s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib07625F849BAE0FEE9C37E5A8634448B5s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib07625F849BAE0FEE9C37E5A8634448B5s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib96FF11B641D82F99FD91645CA371B864s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib96FF11B641D82F99FD91645CA371B864s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib57B367B9D1A7F41F5B47276C204D8EF9s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib206AAB43C6D25ED3B6E36A07689A9435s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib206AAB43C6D25ED3B6E36A07689A9435s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibDCD8DB198523525B5809572C0EB9047Cs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibDCD8DB198523525B5809572C0EB9047Cs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib763B8D8BC8D87D4EBB64F835F26EFB6As1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib763B8D8BC8D87D4EBB64F835F26EFB6As1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib1BC9E9F8AC729705AF48ABE92A405FD3s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib1BC9E9F8AC729705AF48ABE92A405FD3s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibCB61401109AA583D597A28C9DF39EC71s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibCB61401109AA583D597A28C9DF39EC71s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibA3C3E37C49B2138279E2E6368647A489s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibA3C3E37C49B2138279E2E6368647A489s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibAD14899ECCF85580E0A18C5ADC338354s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib5C49EDF048438FE6DB76E705048B2671s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib077F6A95F9454D082FB1E6CB913956BAs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibDF3936333AA20FA08EEC9CE1B94BBDB7s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib87F01A79725485F38C71168C0ECBC444s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib87F01A79725485F38C71168C0ECBC444s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib970244AF8EEBF023BF89A54C3F434141s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib4B31A4DAA05B7E1ED8210F0773E68E65s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib4B31A4DAA05B7E1ED8210F0773E68E65s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibE597643E0890C84D29C2B54F4B8DF329s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibE597643E0890C84D29C2B54F4B8DF329s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib12DF18F9B24A20CE3D59E9B35F986B71s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib12DF18F9B24A20CE3D59E9B35F986B71s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib4B2EEDB06903493E7E7F2671D8FCE004s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib635AF280800269EDF8EE81384DB8E03Fs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib9BEA726D60647922A3B7810EC1492816s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib9BEA726D60647922A3B7810EC1492816s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib316A859F413585E9C6F893B9620DA57Ds1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib316A859F413585E9C6F893B9620DA57Ds1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibA4EA8F142158B532B4DAD20676DB8106s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibA4EA8F142158B532B4DAD20676DB8106s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib957307542CDCE23BC5CAA1BC3BF73267s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib957307542CDCE23BC5CAA1BC3BF73267s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib6E701E92D028DDA7AAD5EC4C19262FC3s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib6E701E92D028DDA7AAD5EC4C19262FC3s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib7CBC526CBBC93767AF05A3DA9C9ACFCEs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibF2CD1387DDE52A65B5670B4AD1FA93B9s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib23B9E5EE89AF3923FAD8D791AD7DA998s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibC311FFE4A9BA2F14AEFA507BEC7D6966s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibC311FFE4A9BA2F14AEFA507BEC7D6966s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib275CB1E3849D7CBDEE00058D785FB4A2s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib275CB1E3849D7CBDEE00058D785FB4A2s1


B. Lester, A. Shourideh, V. Venkateswaran et al. Journal of Economic Theory 212 (2023) 105714
Kim, K., 2017. Information about sellers’ past behavior in the market for lemons. J. Econ. Theory 169, 365–399.
Kyle, A.S., 1985. Continuous auctions and insider trading. Econometrica, 1315–1335.
Lagos, R., Rocheteau, G., 2009. Liquidity in Asset Markets with Search Frictions. Econometrica 77, 403–426.
Lauermann, S., Merzyn, W., Virág, G., 2017. Learning and price discovery in a search market. Rev. Econ. Stud. 85, 

1159–1192.
Lauermann, S., Wolinsky, A., 2016. Search with adverse selection. Econometrica 84, 243–315.
Lester, B., Rocheteau, G., Weill, P.-O., 2015. Competing for order flow in OTC markets. J. Money Credit Bank. 47, 

77–126.
Lester, B., Shourideh, A., Venkateswaran, V., Zetlin-Jones, A., 2018. Market-Making with Search and Information Fric-

tions. Federal Reserve Bank of Philadelphia working paper series.
Lin, J.-C., Sanger, G.C., Booth, G.G., 1995. Trade size and components of the bid-ask spread. Rev. Financ. Stud. 8, 

1153–1183.
Liu, H., Wang, Y., 2016. Market making with asymmetric information and inventory risk. J. Econ. Theory 163, 73–109.
Ma, C.K., Peterson, R.L., Sears, R.S., 1992. Trading noise, adverse selection, and intraday bid-ask spreads in futures 

markets. J. Futures Mark. 12, 519–538.
Menkveld, A.J., Zoican, M.A., 2017. Need for speed? Exchange latency and liquidity. Rev. Financ. Stud. 30, 1188–1228.
Pagnotta, E.S., Philippon, T., 2018. Competing on speed. Econometrica 86, 1067–1115.
Rostek, M., Weretka, M., 2015. Information and strategic behavior. J. Econ. Theory 158, 536–557.
Spulber, D.F., 1996. Market making by price-setting firms. Rev. Econ. Stud. 63, 559–580.
Wolinsky, A., 1990. Information revelation in a market with pairwise meetings. Econometrica, 1–23.
35

http://refhub.elsevier.com/S0022-0531(23)00110-2/bibFB6C0B311232BACB8CCCB01063AFDD91s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib8C8E71D61807ED60B574244FB0A592E4s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib38672884EE05092A11F995862F2462ABs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib347B76EA4BF14053CF9C900CD308397Es1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib347B76EA4BF14053CF9C900CD308397Es1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibF8D57D63C73099F3FA497671994F3983s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib32CA6C3354D93938570128D5BDEC5BFFs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib32CA6C3354D93938570128D5BDEC5BFFs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib4C7D5A68D6CD594D0B6A7017667F99D5s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib4C7D5A68D6CD594D0B6A7017667F99D5s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibAB259D594512B5D1F1FDE548648DF08Fs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibAB259D594512B5D1F1FDE548648DF08Fs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib5DD476D36F9D2360A368F66BA877CCBAs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibF4C310C0C6C8CEF93F61BF30791B681Cs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibF4C310C0C6C8CEF93F61BF30791B681Cs1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib21229E9DA88B9879D2D9DA0BD4FD8A51s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib8B63A97E19B3956B6A1BA73B922E3495s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib882BEE8A0FA3715D2F981C3A5DC9B737s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bib3506B4C5F6803D2220B476066B398B49s1
http://refhub.elsevier.com/S0022-0531(23)00110-2/bibEFB024E98EB3A2C25E3CC887113AA966s1

	Market-making with search and information frictions
	1 Introduction
	1.1 Related literature

	2 Model
	2.1 Environment
	2.2 Investors’ optimal behavior
	2.3 Dealers’ optimal behavior
	2.4 Learning
	2.5 Definition of equilibrium

	3 Frictions, learning, and prices: a tractable case
	3.1 Parametric assumptions
	3.2 Learning
	3.3 Prices
	3.4 Reservation values
	3.5 Equilibrium characterization
	3.6 Comparative statics
	3.6.1 The effect of beliefs
	3.6.2 The effect of trading frictions


	4 Numerical analysis
	4.1 Solving the model
	4.2 Parameterization

	5 A stationary version
	5.1 Characterizing the stochastic steady state equilibrium
	5.2 Comparative statics

	6 Conclusion
	Declaration of competing interest
	Data availability
	Appendix A Omitted proofs from Section 3
	A.1 Optimal prices
	A.2 Valuations of traders and dealers are equal in expectation
	A.3 Proof of Proposition 1
	A.4 Verification of equilibrium
	A.5 Proof of Lemma 1
	A.6 Proof of Proposition 2
	A.7 Proof of Proposition 3

	Appendix B Additional results for the special case
	B.1 Dealers have no incentive to experiment with prices

	References


