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1. Frege’s puzzle about equality

What is the meaning of a word or statement?

Frege begins by considering equality:

Equality gives rise to challenging questions which are not
altogether easy to answer. Is it a relation? a relation
between objects? or between names or signs of objects?
if we were to regard equality as a relation between that
which the names ‘a’ and ‘b’ designate, it would seem
that a = b could not differ from a = a (provided a = b is
true). A relation would thereby be expressed of a thing to
itself, and indeed one in which each thing stands to itself
but to no other thing. What is intended to be said by
a = b seems to be that the signs or names ‘a’ and ‘b’
designate the same thing, so that those signs themselves
would be under discussion; a relation between them
would be asserted.

Frege, Über Sinn und Bedeuting, 1892



1. Frege’s notions of meaning and sense

I He decides that it must be a relation between things, but that
every expression (name, predicate, sentence) must have both
a meaning (Bedeutung) and a sense (Sinn).

I The meaning is the thing denoted (das Bezeichnete).

I The sense is how the meaning is presented (Art des
Gegebenseins).

I The meaning of a sentence is its “truth-value”
(Wahrheitswert).

If our conjecture that the meaning of a sentence is its
truth-value is correct, the latter must remain unchanged
when part of the sentence is replaced by an expression
with the same meaning but different sense. ... What else
but the truth-value could be found, that belongs quite
generally to every sentence ... and remains unchanged by
substitutions of the kind in question?



1. Frege’s notions of meaning and sense

If now the truth value of a sentence is its meaning, then
on the one hand all true sentences have the same
meaning and so, on the other hand, do all false sentences.

This is the conclusion that I would like to avoid: that all true
statements mean the same thing, namely True – at least for
statements of logic and mathematics.

I For mathematical objects, the role of sense can be played by a
presentation of the object.

I The meaning of a theorem should not depend on a choice of a
presentation.

I But different theorems may mean something very different,
even if both are true.



2. Martin-Löf’s intensional type theory

The system of intensional type theory of Per Martin-Löf uses two
different kinds of equality.

I a ≡ b definitional or judgmental equality,

I a = b propositional or typal equality, also written Id(a, b).

In this system, (a ≡ b) implies (a = b), but not conversely.
So these can be used to model Frege’s distinction:

I a ≡ b says a and b have the same sense:
roughly “same syntactic presentation in the system”.

I a = b says a and b have the same meaning:
roughly “same things being reasoned about by the system”.

For example, on the type N of natural numbers we may have

π1〈n,m〉 ≡ n ,
but only

m + n = n + m .



2. Martin-Löf’s intensional type theory

The basic operations of type theory are as follows:

0, 1, A + B, A× B, A→ B, Σx :AB(x), Πx :AB(x),

These correspond to the logical operations:

⊥, >, p ∨ q, p ∧ q, p ⇒ q, ∃x p(x), ∀x p(x).

I Unlike in predicate logic, where one is only concerned with
entailment p ` q, in type theory one also has terms
x : A ` t : B which can be regarded as proofs, computations,
witnesses, grounds of truth, etc.

I Provability ` p is replaced by the existence of a term ` t : A.

I Thus the meaning of a type theoretic proposition A is not just
true or false, but the collection of its “proofs” ` t : A.



3. Propositions as types
This is also called the Curry-Howard correspondence.

0 1 A + B A× B A→ B Σx :AB(x) Πx :AB(x)

⊥ T p ∨ q q ∧ q p ⇒ q ∃x p(x) ∀x p(x)

term : Type proof : Proposition

x : A assumption of A

〈a, b〉 : A× B ∧-intro

λx .t(x) : A→ B ⇒-intro

... ...



3. Propositions as types

There are, at first blush, two kinds of construction
involved: constructions of proofs of some proposition and
constructions of objects of some type. But I will argue
that, from the point of view of foundations of
mathematics, there is no difference between the two
notions. A proposition may be regarded as a type of
object, namely, the type of its proofs. Conversely, a type
A may be regarded as a proposition, namely, the
proposition whose proofs are the objects of type A. So a
proposition A is true just in case there is an object of
type A.

W.W. Tait
The law of excluded middle

and the axiom of choice (1994)



4. Equality types

I Under propositions as types, the meaning of a proposition is
its not just its truth-value, but the collection of its proofs.

I This is already a better notion of meaning than just the
truth-values derived from logical equivalence of propositions.

I But there is an even richer notion of meaning in mathematics,
related to isomorphism of algebraic structures, equivalence of
categories, etc.

I This can also be captured in type theory, using the equality
type.

IdA(a, b)



4. Equality types

I For any type A and terms a, b : A, there is a type IdA(a, b).

I For any A and a : A, there is a term r(a) : IdA(a, a).

I Two terms a ≡ b are always identified by a term p : IdA(a, b),

I The elimination rule from IdA(a, b) does not imply a ≡ b.

Thus different presentations a, b may mean the same thing.

I Moreover, every property x : A ` P(x) of A objects respects
this notion of meaning, in the sense that given a proof
p : IdA(a, b), and one t : P(a), there is an associated one
p∗t : P(b).

I This is Frege’s observation that the truth-value of P(a) does
not change when one substitutes a component by another one
with the same meaning.

I But here we see that such a substitution also has an effect on
the PAT meaning, i.e. the set of proofs.



5. The homotopy interpretation
More is actually true: the Id-type endows each type with a rich
structure that is respected by all constructions.

Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId...
(. . .)

Consider the interpretation:

Types  Spaces

Terms  Maps

a : A  Points a : 1→ A

p : IdA(a, b)  Paths p : a ∼ b

α : IdIdA(a,b)(p, q)  Homotopies α : p ≈ q

...



6. The fundamental groupoid of a type

In topology, the points and paths in any space bear the structure
of a groupoid: a category in which every arrow has an inverse.

a1a :: p
//

q·p
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In the same way the terms a, b, c : X and identity terms
p : IdX (a, b) and q : IdX (b, c) of any type X also form a groupoid.



6. The fundamental groupoid of a type

The usual laws of identity provide the groupoid operations:

r : Id(a, a) reflexivity a // a

s : Id(a, b)→ Id(b, a) symmetry a // b
vv

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a //

''

b

��
c

As in topology, the groupoid equations:

p · (q · r) = (p · q) · r associativity

p−1 · p = 1 = p · p−1 inverse

1 · p = p = p · 1 unit

hold only “up to homotopy”, i.e. up to higher Id-terms.



6. The fundamental ∞-groupoid of a type

In this way, each type in the system is endowed with the structure
of an ∞-groupoid, with terms, identities between terms, identities
between identities, ...
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Such structures also occur elsewhere in Mathematics, e.g. in
Grothendieck’s homotopy hypothesis.



7. The hierarchy of n-types

The universe of types is naturally stratified by the level at which
the fundamental ∞-groupoid becomes trivial (if it ever does).

A is a proposition:
∏
x ,y :A

IdA(x , y), at most one term a : A.

A is a set:
∏
x ,y :A

Prop(IdA(x , y)), identity is a proposition.

A is a 1-type:
∏
x ,y :A

Set(IdA(x , y)), identity is a set.

A is an (n+1)-type:
∏
x ,y :A

nType(IdA(x , y)), identity is an n-type.



7. The hierarchy of n-types

This gives a new view of the mathematical universe in which types
also have intrinsic higher-dimensional structure.

propositions sets groupoids ... n-types

U0

U1

U2

U3

h-level

size



8. Equivalence of types

I The idea of n-types refines the propositions as types
conception: types are now also higher structures, rather than
mere propositions.

I There is a corresponding notion of equivalence A ' B that is
finer than mere logical equivalence A↔ B.

I Isomorphism of types is defined as usual:

A ∼= B =df

∑
f :A→B

∑
g :B→A

Id(g ◦ f , 1A)× Id(f ◦ g , 1B)

This is good for sets, but when A and B are n-types for n > 0
the condition “g ◦ f = 1A and f ◦ g = 1B” is underspecified.



8. Equivalence of types

Equivalence of types:

A ' B =df

∑
f :A→B
g :B→A

∑
η : g◦f=1A
ε : f ◦g=1B

Coh(f , g , η, ε)

adds a further “coherence” condition Coh(f , g , η, ε) relating the
chosen η : Id(g ◦ f , 1A) and ε : Id(f ◦ g , 1B).

Equivalence subsumes:

I logical equivalence A↔ B for propositions,

I isomorphism A ∼= B for sets,

I categorical equivalence A ' B for 1-types (groupoids),

...

I homotopy equivalence A ' B for spaces (∞-groupoids).



8. Equivalence of types

I For every family of types x : A ` B(x), we saw that given a
term p : IdA(a, b), and one t : B(a), there is an associated
term p∗t : B(b).

I In fact, the map p∗ : B(a)→ B(b) is always an equivalence of
types B(a) ' B(b).

I Thus equivalence A ' B provides a finer notion of meaning
than the truth-values derived from logical equivalence A↔ B.

I This seems like a better answer to Frege’s question “what else
but the truth-value could be found ...?”



9. A Fregean test

The supposition that the truth-value of a sentence is its
meaning shall now be put to further test. We have found
that the truth-value of a sentence remains unchanged
when an expression is replaced by another having the
same meaning: but we have not yet considered the case
in which the expression to be replaced is itself a sentence.
Now if our view is correct, the truth-value of a sentence
containing another as part must remain unchanged when
the part is replaced by another sentence having the same
truth-value.

Frege, Über Sinn und Bedeuting

Of course, we must replace the truth-value in this test by our new
proposal for the meaning of a sentence, namely the '-equivalence
class, or more briefly the homotopy type.



9. A Fregean test

If the type A is, say, a set (a 0-type), and A ' B, then indeed B is
also a set.

More generally, one can prove in the system the statement

nType(A)× (A ' B)→ nType(B) .

That is to say, one can construct a term of this type.

This means that the truth-value of the type “A is an n-type”
respects equivalence, in the sense that, if “A is an n-type” is true,
and “A ' B” is true, then “B is an n-type” is true.

This is not what is required, however.



9. A Fregean test

Instead, consider the apparently stronger statement:

(A ' B)→
(
nType(A) ' nType(B)

)
This says that the homotopy type of nType(A) respects the
homotopy type of A.

More generally, let Φ[X ] be any type expression containing a type
X , and consider whether the homotopy type of Φ[X ] respects the
homotopy type of X in the foregoing sense:

(A ' B)→
(
Φ[A] ' Φ[B]

)
This can be shown by induction on the type constructors in Φ[X ].

This is an invariance principle for the type theoretic language
with respect to type equivalence.



10. Tarski’s invariance proposal

Now suppose we continue this idea, and consider still
wider classes of transformations. In the extreme case, we
would consider the class of all one-one transformations of
the space, or universe of discourse, or ‘world’, onto itself.
What will be the science which deals with the notions
invariant under this widest class of transformations? Here
we will have very few notions, all of a very general
character. I suggest that they are the logical notions,
that we call a notion ’logical’ if it is invariant under all
possible one-one transformations of the world onto itself.

Tarski, What are logical notions? (1966)



10. Tarski’s invariance proposal

Tarski observes that all concepts Φ that are definable in Russell’s
theory of types (higher-order logic) are invariant under
isomorphism, and proposes this as a definition of the notion of a
“logical concept”.

We have just seen that all concepts in Martin-Löf type theory are
invariant under a wider class than the one considered by Tarski,
namely homotopy equivalence.

(Cardinality is an example of a concept definable in HOL that is
not invariant under homotopy equivalence.)



11. Internalizing invariance

We can state the invariance principle in the system of type theory
by adding a universe of types U, so that we have variables X : U.

We then replace the type Φ[X ] by an arbitrary family of types

X : U ` P(X ) .

Finally, we consider the type:

(A ' B)→
(
P(A) ' P(B)

)
This formulates the invariance principle internally.



11. Internalizing invariance
Given the invariance principle

(A ' B)→
(
P(A) ' P(B)

)
,

we could take P(X ) to be IdU(A,X ) to get

(A ' B)→
(
IdU(A,A) ' IdU(A,B)

)
.

From this, we easily get

(A ' B)→ IdU(A,B).

This says that equivalent types are equal.

The celebrated Univalence Axiom of Voevodsky says something
even stronger, namely that equivalence is equivalent to equality:

(A ' B) ' IdU(A,B) .



12. Invariance and Univalence

Univalence
(A ' B) ' IdU(A,B)

easily implies invariance:

I Given an equivalence e : A ' B, by univalence we get an
equality e : IdU(A,B).

I But then the equality e acts on any type family X : U ` P(X )
to give an equivalence e∗ : P(A) ' P(B).

I So univalence implies the invariance principle

(A ' B)→
(
P(A) ' P(B)

)
.



12. Invariance and Univalence

Univalence
(A ' B) ' IdU(A,B)

is an internalization of the principle of invariance: it asserts that all
concepts in the system are invariant under equivalence.

Applied to itself in a higher universe U ′, the statement of
univalence becomes

IdU′
(
(A ' B), IdU(A,B)

)
.

Switching from Id to = this becomes the more readable

(A ' B) = (A = B) .



13. Univalence and Intensionality

Now consider this last version of univalence

(A ' B) = (A = B)

under our interpretation of equality as sameness of meaning, not
only for terms a, b : A, but now also for type expressions A,B, i.e.
mathematical statements formulated in type theory.

Such type expressions A,B, ... are regarded as presentations of
mathematical propositions and structures, and they present the
same mathematical object if A = B.

Under this interpretation, the univalence principle says that two
such presentations A,B have the same homotopy type just in case
they mean the same thing – indeed it says something stronger:
to say that they have the same homotopy type means the same
thing as to say that they have the same meaning.

The meaning of a mathematical statement is its homotopy type.
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