Quillen model structures on cubical sets

Steve Awodey

HoTT 2019

Acknowledgements

- Parts are joint work with Coquand and Riehl.
- Parts are also joint with Cavallo and Sattler.
- Ideas are also borrowed from Joyal and Orton-Pitts.

Models of HoTT from QMS

The first models of HoTT were built from Quillen model categories.

- A-Warren: general Quillen model structures and weak factorization systems
- van den Berg-Garner: special weak factorization systems on spaces and simplicial sets

► Voevodsky: the Kan-Quillen model structure on simplicial sets In each case, more specific QMS led to "better" models of type theory, with coherent Id, Σ , Π and eventually univalent U.

QMS from models of HoTT

But one can also start from a model of HoTT and construct a Quillen model structure (cf. Gambino-Garner, Lumsdaine).

Definition (pace Orton-Pitts)

A premodel of HoTT consists of $(\mathcal{E}, \Phi, \mathbb{I}, \mathsf{V})$ where:

- *E* is a topos
- $\blacktriangleright \ \Phi$ is a representable class of monos $\Phi \rightarrowtail \Omega$ that form a dominance and ...
- I is an interval $1 \rightrightarrows I$ in \mathcal{E} that is $tiny (-)^{\mathbb{I}} \dashv (-)_{\mathbb{I}}$ and ...
- $\blacktriangleright~\dot{V} \rightarrow V$ is a universe of small families, closed under Σ,Π and ...

A model of HoTT is then constructed internally using the *extensional* type theory of \mathcal{E} (see Orton-Pitts).

Our goal here is to show that from such a set-up for modelling HoTT one can also construct a QMS:

Construction

From a premodel $(\mathcal{E}, \Phi, \mathbb{I}, V)$ one can construct a QMS on \mathcal{E} .

The resulting QMS is right proper and has descent, so it also admits a model of HoTT in the pre-Orton-Pitts sense.

The construction of a QMS (C, W, F) from a premodel (E, Φ, I, V) is general, but the details depend on the specifics of the premodel.

We consider three special cases of cubical sets.

$$\mathcal{E} = \mathsf{Set}^{\mathbb{C}^{op}}$$

- 1. Cartesian cubical sets
- 2. Cartesian cubical sets with equivariance
- 3. Dedekind cubical sets

The construction of a QMS (C, W, F) from a premodel (E, Φ, I, V) is general, but the details depend on the specifics of the premodel. We consider three special cases of *cubical sets*.

$$\mathcal{E} = \mathsf{Set}^{\mathbb{C}^{op}}$$

- 1. Cartesian cubical sets (new)
- 2. Cartesian cubical sets with equivariance (new jww/CCRS)
- 3. Dedekind cubical sets (Sattler)

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathsf{V})$ be a premodel of HoTT where $\mathcal{E} = \mathsf{cSet}.$

We construct a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{E} in 3 steps:

- 1. use Φ to determine an awfs (C, TFib),
- 2. use $\mathbb I$ to determine another awfs (TCof, $\mathcal F$),
- 3. let $W = TFib \circ TCof$ and prove 3-for-2 from FEP (done!)

To prove the Fibration Extension Property:

- 4. show that $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfies the EEP,
- 5. use V and \mathbb{I} to construct a universe U of fibrations,
- 6. use EEP to show that U is fibrant, which implies FEP.

NB: (5) seems to be a detour; maybe one can prove FEP directly?

1. The cofibration awfs (C, TFib)

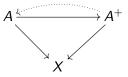
The monos classified by $\Phi \rightarrow \Omega$ are called *cofibrations*. The generic one $1 \rightarrow \Phi$ determines a polynomial endofunctor,

$$X^+ := \sum_{\varphi:\Phi} X^{\varphi},$$

which is a (fibered) monad,

$$+:\mathsf{cSet}/\cdot \ \longrightarrow \ \mathsf{cSet}/\cdot$$

Algebras for the pointed endofunctor of this monad,



form the right class of an awfs - they are the trivial fibrations.

2. The fibration awfs $(\mathsf{TCof}, \mathcal{F})$

For any $c: A \rightarrow B$ in cSet², the Leibniz adjunction

$$(-) \otimes c \dashv c \Rightarrow (-)$$

relates the pushout-product with c and the pullback-hom with c. These operations satisfy

$$(f \otimes c) \boxtimes g \Leftrightarrow f \boxtimes (c \Rightarrow g)$$

with respect to the diagonal filling relation $f \square g$.

Definition

A map $f: Y \to X$ is a *biased fibration* if $\delta_{\varepsilon} \Rightarrow f$ is a +-algebra for both endpoints $\delta_0, \delta_1: 1 \to \mathbb{I}$. Equivalently, $f \in \mathcal{F}$ if for all cofibrations $c \in \mathcal{C}$ and $\varepsilon = 0, 1$,

$$c\otimes \delta_{arepsilon} arepsilon f$$
 .

This notion of fibration is used for the Dedekind cubes.

2. The fibration awfs (TCof, \mathcal{F})

For the *Cartesian cubes*, we pass to the slice category cSet/I, where there is a *generic point* $\delta : 1 \rightarrow I$.

Definition

A map $f : Y \to X$ is an *(unbiased) fibration* if $\delta \Rightarrow f$ is a +-algebra. Equivalently, $f \in \mathcal{F}$ if $c \otimes \delta \boxtimes f$ for all $c \in \mathcal{C}$.

Proposition

There is an awfs $(TCof, \mathcal{F})$ with these fibrations as \mathcal{F} .

Remark

There is also an *equivariant* version of this awfs, in which the fibration structure respects the symmetries of the cubes \mathbb{I}^n (this is explained in Emily's talk).

3. The weak equivalences $\ensuremath{\mathcal{W}}$

Now define

 $\mathcal{W} = \mathsf{TFib} \circ \mathsf{TCof}$

thus a map is a weak equivalence if it factors as a trivial cofibration followed by a trivial fibration.

It is easy to show that

 $\mathsf{TCof} = \mathcal{W} \cap \mathcal{C}$ $\mathsf{TFib} = \mathcal{W} \cap \mathcal{F}$

so we just need the 3-for-2 property for $\ensuremath{\mathcal{W}}.$

We will compare $\ensuremath{\mathcal{W}}$ with the following, which does satisfy 3-for-2. Definition

A map $f: Y \rightarrow X$ is a *weak homotopy equivalence* if the map

$$K^f: K^X \longrightarrow K^Y$$

is a bijection on connected components for all fibrant objects K.

The QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$

Definition (FEP)

The *Fibration Extension Property* says that fibrations extend along trivial cofibrations:

Lemma

If the FEP holds, then a map $f : Y \rightarrow X$ is a weak equivalence iff it is a weak homotopy equivalence.

Corollary

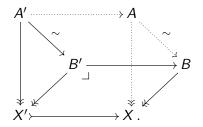
If the FEP holds, then $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a QMS.

:-)

4. The equivalence extension property

Definition (EEP)

The EEP says that weak equivalences extend along any cofibration $X' \rightarrow X$: given a fibration $B \rightarrow X$, and a weak equivalence $A' \simeq B'$ over X', where $A' \rightarrow X'$ and $B' = X' \times_X B$,



there is a fibration $A \longrightarrow X$, and a weak equivalence $A \simeq B$ over X that pulls back to $A' \simeq B'$.

This is was shown by Voevodsky for modelling univalence in Kan simplicial sets. A related proof by Sattler works in our setting.

There is a *universal (small) fibration* $\dot{U} \longrightarrow U$. Every small fibration $A \longrightarrow X$ is a pullback of $\dot{U} \longrightarrow U$ along a canonical classifying map $X \rightarrow U$.

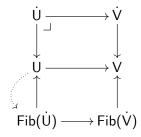
Take $U \to V$ to be the object of fibration structures on $V \to V$.

 $\mathsf{U}=\mathsf{Fib}(\dot{\mathsf{V}})$

Then define $\dot{U} \rightarrow U$ by pulling back the universal small family.

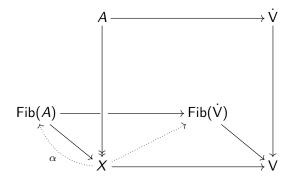
We said $U=\mathsf{Fib}(\dot{V}),$ and we defined $\dot{U}\to U$ by:

But Fib(-) is stable under pullback, so there is a section

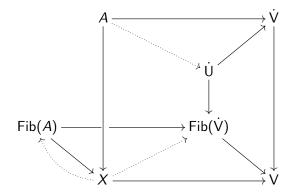


Thus $\dot{U} \longrightarrow U$ is a fibration.

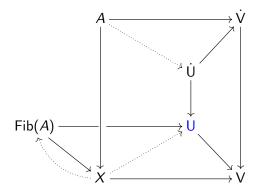
A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\dot{V} \rightarrow V$.



A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\dot{V} \rightarrow V$.



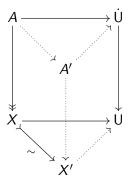
A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\dot{V} \rightarrow V$ through the fibration classifier $\dot{U} \longrightarrow U$.



The construction of Fib uses the root functor $(-)^{\mathbb{I}} \dashv (-)_{\mathbb{I}}$.

FEP and EEP in terms of U

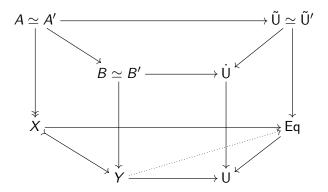
Given a universe U, the EEP and FEP take on new meaning. The FEP says just that U is fibrant:



Voevodsky proved this for Kan simplicial sets.

FEP and EEP in terms of U

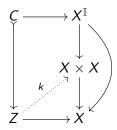
The EEP says that Eq $\longrightarrow U$ is a TFib:



Shulman gave a neat proof of FEP from EEP, but it uses 3-for-2.

Coquand gave a proof of FEP from EEP using *Kan composition*. Definition

An object X has (biased) composition if for every cofibration $C \rightarrow Z$ and commutative rectangle as on the outside below,



there is an arrow $k: Z \longrightarrow X \times X$ making the diagram commute.

Lemma

If X has composition, then X is fibrant.

We can now show:

Proposition

The universe U is fibrant.

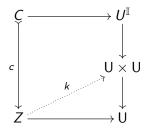
By the previous lemma it suffices to show:

Lemma

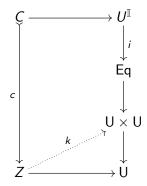
The universe U has composition.

Proof.

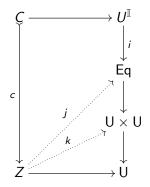
Consider a composition problem



The canonical map $U^{\mathbb{I}} \longrightarrow U \times U$ factors (over $U \times U$) through the object Eq of equivalences via i = IdtoEq,



The canonical map $U^{\mathbb{I}} \longrightarrow U \times U$ factors (over $U \times U$) through the object Eq of equivalences via i := IdtoEq,



But the projection $Eq \longrightarrow U$ is a trivial fibration by EEP, so there is a diagonal filler *j*. Composing gives the required *k*.

Done!

But is our QMS right proper?

Postscript: Frobenius

Definition (Frobenius)

The *Frobenius Property* says that trivial cofibrations pull back along fibrations,

It is equivalent to the condition that fibrations "push forward" along fibrations,

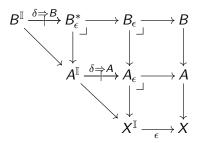
This is related to the existence of Π -types. It implies that our QMS is *right proper*.

Frobenius

Proposition

The Frobenius property holds for $(TCof, \mathcal{F})$.

Proof.

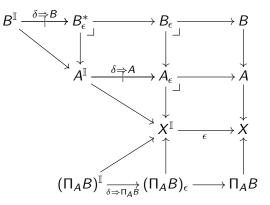


Frobenius

Proposition

The Frobenius property holds for $(TCof, \mathcal{F})$.

Proof.



Frobenius

Proposition

The Frobenius property holds for $(TCof, \mathcal{F})$.

Proof. $B^{\mathbb{I}} \xrightarrow{\delta \Rightarrow B} B^*_{\epsilon} \xrightarrow{}$ $\rightarrow B_{\epsilon} -$ → B $\delta \Rightarrow A$ $A^{\mathbb{I}}$ х $(\Pi_A B)^{\mathbb{I}} \xrightarrow[\delta \Rightarrow \Pi_A B] (\Pi_A B)_{\epsilon} \longrightarrow \Pi_A B$ $\Pi_{A^{\mathbb{I}}}B^{\mathbb{I}} \longrightarrow \Pi_{A^{\mathbb{I}}}B^{*}_{\epsilon}$

That's all Folks!