
Impredicative Encodings in HoTT
(or: Toward a Realizability ∞-Topos)

Steve Awodey
Carnegie Mellon University

Big Proofs
Issac Newton Institute

Cambridge, 11 July 2017

Overview and Acknowledgements

I I will sketch some work in progress on impredicative
encodings of inductive types in Homotopy Type Theory.

I Some parts are joint work with others from the CMU HoTT
Group, particularly Jonas Frey and Pieter Hofstra, and our
excellent PhD students Floris van Doorn, Clive Newstead,
Egbert Rijke, and Sam Speight.

I For the model, we are building on recent work of Coquand et
al., Gambino & Sattler, Orton & Pitts, and others, as well as
some “classical” results.

Outline

I. Basic Ideas of Homotopy Type Theory

II. Impredicative Encodings

III. A Cubical Realizability Model

I. Basic HoTT

I Homotopy Type Theory is based on a recently discovered
connection between Logic and Topology.

I The system of intensional Martin-Löf type theory
(constructive foundations) can be interpreted into abstract
homotopy theory (mathematics of space).

I This permits computerized proof systems based on MLTT to
be used to formalize higher mathematical reasoning.

I It also suggests new logical principles, such as the univalence
axiom and higher inductive types.

I Higher inductive types are used to add some basic spaces like
the spheres Sn and constructions like quotient types X/∼.

I However, simply adding these new principles as axioms lacks a
computational justification.

Dependent Type Theory (Howard, Martin-Löf, Tait, ...)

Dependent type theory consists of:

I Types: X ,Y , . . . , A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I

∏
x :A B(x)

I Equations s = t : A

Formal calculus of typed terms and equations, presented as a
deductive system by rules of inference.

Intended as a foundation for constructive mathematics, but now
also widely used in programming languages and computerized
proof assistants.

Propositions as Types (Curry, Howard, Scott, ...)

The system has a dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is known as the Curry-Howard correspondence:

0 1 A + B A× B A→ B
∑

x :A B(x)
∏

x :A B(x)

⊥ T A ∨ B A ∧ B A⇒ B ∃x :AB(x) ∀x :AB(x)

Gives the system a constructive character.

Identity types (Martin-Löf, Lawvere)

It’s natural to add a primitive identity type between terms of the
same type, x , y : A:

IdA(x , y)

Logically this is the proposition “x = y”.

0 1 A + B A× B A→ B
∑
x :A

B(x)
∏
x :A

B(x) IdA(x , y)

⊥ T A ∨ B A ∧ B A⇒ B ∃x :AB(x) ∀x :AB(x) x = y

Terms that are “identified” may remain distinct syntactically. This
“intensionality” gives the system good computational properties.

But what is IdA(x , y) mathematically? What are the terms
p : IdA(x , y) of these new types ? Can they differ?

The homotopy interpretation (Awodey-Warren)
Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types Spaces

Terms Maps

a : A Points a : 1→ A

p : IdA(a, b) Paths p : a⇒ b

α : IdIdA(a,b)(p, q) Homotopies α : p V q

...

The homotopy interpretation (Awodey-Warren)

This takes the familiar topological interpretation of the
simply-typed λ-calculus:

types spaces

terms continuous functions

and extends it via the basic idea:

p : IdX (a, b) p is a path from point a to point b in X

This then forces:

I dependent types to be fibrations,

I Id-types to be path spaces,

I homotopic maps to be identical.

The fundamental groupoid of a type (Hofmann-Streicher)

In topology, the points and paths in any space bear the structure
of a groupoid: a category in which every arrow has an inverse.

a1a :: p
//

q·p

))

b

p−1

yy

q

��
c

In the same way the terms a, b, c : X and identity terms
p : IdX (a, b) and q : IdX (b, c) of any type X also form a groupoid.

The fundamental groupoid of a type (Hofmann-Streicher)

The provable laws of identity provide the groupoid operations:

r : Id(a, a) reflexivity a // a

s : Id(a, b)→ Id(b, a) symmetry a // b
vv

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a //

''

b

��
c

But as in topology, the groupoid equations:

p · (q · r) = (p · q) · r associativity

p−1 · p = 1 = p · p−1 inverse

1 · p = p = p · 1 unit

do not hold strictly, but only “up to homotopy”, i.e. up to
higher Id-terms.

The fundamental ∞-groupoid of a type
(Lumsdaine, Garner-van den Berg)

Thus each type bears the structure of an ∞-groupoid, with terms,
identities between terms, identities between identities, ...

��

α

�	

β*4
ϑ

a b

p

��

q

DD

Such structures occur elsewhere in Mathematics, e.g. in
Grothendieck’s homotopy hypothesis.

Homotopy Levels (Voevodsky)

The universe of types is naturally stratified by the level at which
the fundamental ∞-groupoid becomes trivial (if it ever does).

A is contractible:
∑
x :A

∏
y :X

IdA(x , y), A is essentially a point.

A is a proposition:
∏
x ,y :A

Contr(IdA(x , y)), identity is contractible.

A is a set:
∏
x ,y :A

Prop(IdA(x , y)), identity is a proposition.

A is a 1-type:
∏
x ,y :A

Set(IdA(x , y)), identity is a set.

A is an (n+1)-type:
∏
x ,y :A

nType(IdA(x , y)), identity is an n-type.

This revises Propositions-as-Types: higher types are structures,
rather than mere propositions.

II. Impredicative Encodings

In impredicative type theories such as Girard’s System F one can
form new types by quantifying

∏
X over all types X . This can be

used to “encode” some of the other type-forming operations.

For example, the encoding of N in System F is

N =
∏
X

(X → X)→ (X → X) .

Many other inductive types can be encoded in a similar way.

What good is impredicativity?

I Impredicativity allows us to construct (rather than postulate)
many inductive types within a simpler system with good
computational behavior. This provides a justification for the
rules of inductive types, a computational reduction of the
associated terms, and even a proof of formal consistency.

I Impredicative encodings of inductive types were used in the
original Calculus of Constructions of Coquand and Huet,
and are still present in the Coq proof assistant.

I Impredicative encoding of higher inductive types in HoTT
could potentially provide the same benefits.

I A drawback of the encodings of inductive types in System F
and CoC is that they do not yield the usual elimination rules.

I In HoTT we can sharpen the encodings and construct even
higher inductive types that do satisfy the usual rules.

Impredicative encoding in HoTT

For impredicative encodings in HoTT, we use the
∏

-operation
over a universe U of (small) types that is “impredicative” in the
sense that it satisfies the following rule:

A Type x : A ` B(x) : U∏
x :A B(x) : U

This is to be compared with the usual rule, which has the form:

A : U x : A ` B(x) : U∏
x :A B(x) : U

Thus U is assumed to be closed under “large” products, in
addition to the usual “small” type formers

∑
and Id.

Impredicative encoding of A+ B

Consider the System F encoding of the sum A + B of any two
types A and B,

A + B =
∏
X

(A→ X)→ ((B → X)→ X) .

The join of two propositions A and B does indeed satisfy

A ∨ B =
∏

X :Prop

(A→ X)→ ((B → X)→ X) ,

where Prop =
∑

X :U Prop(X).

NB: ∏
X :

∑
X :U Prop(X)

(. . .) '
∏
X :U

Prop(X)→ (. . .)

Impredicative encoding of A+ B

But if A and B are sets, the type:

A + B
?
=

∏
X :Set

(A→ X)→ ((B → X)→ X) ,

where Set =
∑

X :U Set(X), has only a weak elimination property.
It fails the so-called η-rule that makes the recursor unique.

This means we do not get the usual dependent elimination rule,
or induction principle, for this type. (In HoTT, dependent
elimination is equivalent to simple elimination + η by a result of
Awodey-Gambino-Sojakova 2016.)

Impredicative encoding of A

We can sharpen up the encoding using Id-types as follows.
Let A be a set. Then there is an embedding-retraction pair:

A
e //

=

))

∏
X :Set(A→ X)→ X

r

��

A

A term α :
∏

X :Set(A→ X)→ X is a family of maps,

αX : XA // X , X : Set .

We can cut this type down to the image of e by requiring that
these maps be natural in X .

Impredicative encoding of A

Naturality means that for all sets Y and all maps f : X //Y , the
following commutes.

XA αX //

f A
��

X

f
��

Y A
αY

// Y

The sharper encoding we seek is therefore:

A '
∑
α:A∗

∏
X ,Y :Set

∏
f :X→Y

Id(αY ◦ f A, f ◦ αX) ,

where
A∗ =

∏
X :Set

(A→ X)→ X .

Impredicative encoding of A

Theorem (Main Lemma)

For any set A in HoTT with an impredicative universe, there is a
natural equivalence,

A '
∑
α:A∗

∏
X ,Y :Set

∏
f :X→Y

Id(αY ◦ f A, f ◦ αX) ,

where
A∗ =

∏
X :Set

(A→ X)→ X .

Impredicative encoding of A+ B

Returning to A + B, by the main lemma we have the following
comparison with the System F encoding:

A + B ⊆ (A + B)∗ =
∏
X :Set

((A + B)→ X)→ X

'
∏
X :Set

((A→ X)× (B → X))→ X

'
∏
X :Set

(A→ X)→ ((B → X)→ X) .

We can therefore sharpen up the encoding by naturality just as
before, since (A→ X)× (B → X) is functorial in X .

Impredicative encoding of N

The encoding of N in System F was

N =
∏
X

(X → X)→ (X → X) .

Again, we can sharpen this encoding using Id-types as follows.

Theorem
For any functor T : Set // Set, the category of T -algebras has an
initial object,

i : T (I)→ I ,

where I is the limit of the forgetful functor U : TAlg // Set,

I = lim←−
A:TAlg

UA→
∏

A:TAlg

UA ⇒
∏

A,B:TAlg

h:A→B

UB .

Impredicative encoding of N
The type TAlg occurring in the index is the type of T -algebras,

TAlg =
∑
X :Set

TX → X .

So for the initial algebra i : TI → I we have,

I = lim←−
A:TAlg

UA ⊆
∏

A:TAlg

UA

'
∏

A:
∑

X :SetTX→X

UA

'
∏

(X ,t):
∑

X :SetTX→X

X

'
∏
X :Set

∏
t:TX→X

X

'
∏
X :Set

(TX → X)→ X .

The equalizer I is then definable using a suitable Id-type.

Impredicative encoding of N

Now apply the foregoing to get N as the initial algebra of the
endofunctor TX = X + 1,

N = lim←−
A:TAlg

UA ⊆
∏
X :Set

((X + 1)→ X)→ X

'
∏
X :Set

(X → X)→ (X → X) .

Again our sharper encoding is a definable subtype of the System
F encoding. As before, the induction principle follows from
recursion together with the uniqueness of the recursor.

Impredicative encoding of inductive types

Many other Set-level encodings can be done in this way: quotients,
propositional and set truncations, coproducts of families, etc.

For example, the propositional truncation of any type A is simply

||A|| =
∏

X :Prop

(A→ X)→ X .

The set truncation starts with

||A||0 ⊆
∏
X :Set

(A→ X)→ X ,

and then adds a naturality condition to sharpen it up, as before.

Impredicative encoding of higher inductive types: S1

Finally, one can do something similar for some other higher
inductive types. For example, Shulman proposed the
“System F-style” encoding,

S1 =
∏
X

∏
x :X

(x = x)→ X .

This has the same problem as the System F encoding of N: no
uniqueness for the eliminator, and so no induction principle.

But we can remedy this in the same way as before, by restricting
the

∏
X to 1-types, and then adding higher coherence conditions,

reflecting the fact that S1 is a 1-type rather than a set.

Impredicative encoding of higher inductive types: S1

Indeed, by the universal property of the circle we have

(S1 → X) '
∑
x :X

(x = x) .

By the main lemma, we therefore get

S1 ⊆
∏

X :Type1

(S1 → X)→ X

'
∏

X :Type1

(
∑
x :X

(x = x))→ X

'
∏

X :Type1

∏
x :X

(x = x)→ X .

We then sharpen up the encoding as before, but now adding
higher coherence conditions expressed using higher Id-types.

The same method encodes some other n-types, like groupoid
quotients and n-truncations ||X ||n.

That was fun ...

That was fun ... but is it safe?

I Is it consistent to have a universe U that is both
impredicative and univalent ?

I Yes! In a topos, the subobject classifier Ω is a universe of
propositions that is both impredicative and univalent.

I What about a proof-relevant universe U, i.e. not a poset?

I Models of System F and CoC can be made using realizability:
the category Asm of assemblies has an internal category M
of modest sets that is complete and is not a partial order.
(Hyland)

I A proof-relevant, impredicative universe that is also univalent
therefore lives inside the groupoid model of type theory built
inside of Asm, with the groupoid M of modest sets as a
universe (Hofmann-Streicher 1995 + Awodey-Bauer 2013).

I But the universe M in Gpd(Asm) consists only of sets, just
as the Ω in a topos consists only of propositions.

III. A Cubical Realizability Model

We can now extend the pattern in the foregoing.

I In order to get a model with arbitrary n-types, we generalize
from groupoids to ∞-groupoids inside a realizability model
Asm of impredicativity.

I These are Asm-valued Kan complexes, i.e. certain
presheaves with values in Asm.

I Our presheaves are cubical rather than simplicial, since this
makes for better Kan complexes in the constructive setting
(Coquand).

I The realizability ∞-topos RT∞ is a QMC based on cubical
presheaves in Asm.

I Our present goal is to show that the complete internal
subcategory M consisting of the modest Kan complexes
provides a univalent universe.

Some details: Graphs, Setoids, Groupoids, etc.

I The “realizability setoid model” RT0 consists of certain
graphs in the category of assemblies Asm,

RT0 ↪→ Asm(· ·oooo)

namely, those that are “setoids”, i.e. reflexive, symmetric, and
transitive. This is essentially the realizability topos RT .

I The “realizability groupoid model” RT1 consists of certain
2-graphs,

RT1 ↪→ Asm(· ·oo oo ·
oo

oo
oo
oo)

namely, those that are “groupoids”, i.e. associative and unital.

Some details: Graphs, Setoids, Groupoids, etc.

I The “realizability ∞-groupoid model” consists of certain
cubical objects,

RT∞ ↪→ Asm
(· ·oooo ·

oo

oo
oo
oo · . . .
oo

oo
oo
oo
oo

oo

oo

oo
)

namely those that are normal, uniform, cubical, Kan
complexes.

Here:

I cubical means a presheaf on the cube category,

I Kan means fillers for all open boxes,

I uniform means the fillers are given as structure,

I normal means degenerate fillers for degenerate boxes.

Some more details

We use the cartesian cube category C, the dual C = Bop of the
category B of finite, strictly bipointed sets.

The cubical presheaves valued in Asm are thus discrete fibrations
on the internal category B, forming the LCCC AsmB.

We seek to avoid the general small object argument because Asm
lacks infinite colimits. So the methods of Quillen, Garner,
Gambino-Sattler do not directly apply.

But if we restrict to the subcategory of Kan objects, we can use the
pathspace factorization in order to factor all maps “algebraically”:

A
f //

L(f) !!

B

P(f)
R(f)

==

A theorem (Awodey-Frey-Hofstra)

Let E be a LCCC with a natural numbers object.
Form the cubical presheaves EB and the subcategory K ↪→ EB
of normal, uniform Kan objects. Then:

I K has a (cloven) WFS in which the left maps are the strong
deformation retracts and the right maps are those with the
homotopy lifting property.

I for any object X in K and any R-map A // X , the canonical
factorization A→ AI → A×X A of the diagonal is a stable
L-R factorization.

I the Frobenius condition holds for pullbacks of L-maps along
R-maps.

Thus we have a “realizability model of HoTT” in the Kan objects
of AsmB, in which the identity types are the path spaces,

IdA = AI.

The impredicative univalent universe (WIP!)

The modest Kan objects in AsmB form a universe

p : M̃ → M

such that:

I p : M̃ → M is closed under 1,Σ,Π, i.e. the associated
polynomial endofunctor P(X) =

∑
A:M XA is a monad and

an algebra.

I p : M̃ → M is closed under IdA = AI, since this is a “shift”.
Moreover, this pathobject functor has a right adjoint.

I p : M̃ → M is internally complete, and so admits
impredicative encodings of (higher) inductive types.

I To do: We know that p : M̃ → M is a fibration, but we need
to show that M is fibrant! Sattler’s equivalence extension
theorem implies both this and univalence, but it uses
connections; we want to do it without them!

