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Abstract

In this dissertation I prove several results which serve to relate Martin-Löf’s
intensional type theory to certain structures arising in homotopy theory and higher-
dimensional category theory. First, I describe a general semantics for type theory
utilizing Quillen’s model categories and study the coherence issues arising in this
setting. Secondly, I introduce the notion of an interval I in a category. I show
that, when E possesses an interval, there exists a distinguished collection of maps
in E , called split fibrations, which give rise to a model of type theory. This model,
moreover, avoids the coherence problems related to the interpretation of the elimi-
nation terms for identity types. This result allows us, for example, to obtain models
of type theory using internal groupoids. Finally, I extend the groupoids model of
type theory, due to Hofmann and Streicher, to the setting of strict ω-groupoids. In
particular, I prove that strict ω-groupoids soundly model intensional type theory.
As a consequence I obtain new independence results for type theory relating to the
higher-dimensional structure induced by the intensional identity types.
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Introduction

The principal aim of this dissertation is to establish several connections between
Martin-Löf’s intensional type theory and homotopy theory. In particular, we obtain
new models of intensional type theory using structures that arise in homotopy
theory and higher-dimensional category theory.

Martin-Löf’s type theory was introduced as a foundation for constructive math-
ematics and can also be regarded as extending the propositions-as-types paradigm
— under which Church’s [14] simple type theory corresponds to propositional in-
tuitionistic logic — to (a form of) intuitionistic logic (cf. [63, 60, 62, 61, 67]).
For us, the most distinctive feature of this theory are the identity types. Identity
types are intended to correspond, under the propositions-as-types idea [19, 37], to
the equality relation. Explicitly, given a type A together with terms a and b both
of type A, there exists a new type IdA(a, b) called the identity type of A at a and
b. This type can be thought of as the proposition which states that a and b are
identical terms of type A. In the extensional forms of the theory these identity
types are trivial in the sense that if there exists any term p of type IdA(a, b), then
a = b, where = denotes the “definitional” or “real” equality between terms. In the
intensional form of the theory this is not the case and the identity types possess
a richer structure. Moreover, type-checking is decidable in the intensional, but not
extensional theory (cf. [60, 32]). The question which naturally arises, and which is
one of the motivations for the research contained herein, is, “What kind of structure
and properties do the identity types in intensional type theory possess?”

A significant step toward an answer to this question was provided by Hofmann
and Streicher [35], who suggested that the identity type endows its base type with
a certain algebraic structure like a category. Thus, we think of terms a and b
of type A as objects and the identity type IdA(a, b) as a kind of “hom-set” of
arrows. Then, for example, the reflexivity terms rA(a) of type IdA(a, a), which
are guaranteed to exist by the introduction rule for identity types, can be thought
of as being like “identities” 1a. At the time, it was an important open question
whether the existence of terms f and g both of type IdA(a, b) implies either that
f = g or (even) that there exists a term of type IdIdA(a,b)(f, g). This problem
of the uniqueness of identity proofs — which from the perspective just described
amounts to the question whether these algebraic gadgets behave like preorders —
was solved in the negative by Hofmann and Streicher by constructing a particular
model of intensional type theory which refuted these principles. In particular, they
interpreted contexts, and so also closed types, as groupoids and types in context as
functors C //Gpd, where C is the groupoid denoting the context. Identity types
in this model are then interpreted as actual (discrete) hom-groupoids A(a, b), when
A is a closed type.
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2 INTRODUCTION

The clue which led idem to arrive at groupoids was the fact that, under the
aforementioned view of IdA(a, b) as a kind of hom-set, the types themselves satisfy
forms of the familiar groupoid laws. For example, given terms f of type IdA(a, b)
and g of type IdA(b, c), there exists a “composite” (g · f) of type IdA(a, c). How-
ever, this composition and the identities mentioned above fail to satisfy the actual
category axioms “on-the-nose”, but only up to the existence of terms of further
“higher-dimensional” identity types. Thus, given f and g as above together with a
further term h of type IdA(c, d), the type

IdIdA(a,d)

(
h · (g · f), (h · g) · f

)
is inhabited; but it is not in general the case that h·(g ·f) = (h·g)·f . The additional
laws governing groupoids are likewise satisfied up to the existence of further terms
of identity type. Thus, we are naturally led by these observations to regard this
algebraic structure on types as being a kind of “higher-dimensional groupoid”. In
particular, the syntax of Martin-Löf type theory appears to impart on the types
themselves a variety of weak higher-dimensional structure (cf. [54] for some of the
proposed definitions of weak higher-dimensional categories).

Algebraic topology can be regarded as (among other things) that branch of
mathematics which is concerned with studying the connection between topological
spaces, on the one hand, and (higher-dimensional) algebraic structures, on the
other. The attempt to understand the algebraic structure of spaces — specifically,
the attempt to classify homotopy types — leads naturally, via the early work of
Eilenberg, Mac Lane and Whitehead, also to the category of groupoids (cf. [13]).
Specifically, regular (1-dimensional) groupoids classify homotopy 1-types (those
connected CW-complexes whose homotopy groups vanish above dimension 1). I.e.,
the category of groupoids is equivalent to the category of 1-types. In order to
classify higher homotopy types, it has been similarly necessary to consider weak
higher-dimensional generalizations of groupoids (cf. [6]). Indeed, regarding spaces
as algebraic “gadgets” in much the same way as we did above for types (i.e., a
space has “objects” points and “arrows” paths, et cetera) yields, intuitively, a
weak ω-groupoid (cf. [29, 5, 49]). This situation is strikingly similar to the type
theoretic situation and it therefore suggests that it may be profitable to search
for novel models of type theory among the kinds of structures homotopy theorists
and higher-dimensional category theorists have developed for these purposes. On
the one hand, such models would clearly be beneficial to type theory since they
would surely lead to new independence results. On the other hand, the existence of
such models should also be beneficial to homotopy theory and higher-dimensional
category theory. For instance, knowing that the categories (and related structures)
employed in homotopy theory admit models of type theory indicates that the theory
itself may be employed as an “internal language” for the categories in question. In
topos theory, to take one example, the existence of a logically rich internal language
has the potential to yield new results which would not be tractable using the “näıve”
diagrammatic reasoning [59, 41]. It is the aim of the present work to provide one
step in the direction of such a connection between homotopy theory and type theory
by providing several new models of type theory using structures and techniques from
homotopy theory and higher-dimensional category theory.

We now turn to a summary of the four chapters of this dissertation. Each
chapter itself begins with a more detailed summary than that given here.
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Chapter 1: Forms of Type Theory. This preliminary chapter introduces
the versions of type theory with which the latter chapters will be concerned. Specif-
ically, we recall the rules governing identity types and then introduce a hierarchy
of theories obtained by augmenting the basic form of type theory Tω with various
truncation rules which serve to restrict the behavior of the identity types in certain
ways. We then offer some basic observations regarding the comparison of these the-
ories. Intuitively, this hierarchy of theories can be thought of as the type theoretic
analogue of the hierarchy of (categories of) homotopy n-types:

1-Types ⊆ 2-Types ⊆ · · · ⊆ n-Types ⊆ · · · ⊆ ω-Types.

Chapter 2: Homotopical Semantics of Type Theory. The semantics of
extensional Martin-Löf type theory have been thoroughly studied and it is known,
for example, that its models correspond, in an appropriate sense, to locally carte-
sian closed categories [72, 38, 33]. In addition to the groupoid model of Hofmann
and Streicher mentioned above, the only other models of the intensional theory that
we know of are syntactic, realizability and domain-theoretic models (cf. [80, 32]).
These models, however, are not well suited, in the way that the groupoid model
is, to studying the higher-dimensional structure of identity types. In Chapter 2,
following a suggestion of Moerdijk, we describe a general semantics for type theory
using weak factorization systems and Quillen’s model categories [70]. Model cate-
gories arose out of an attempt to axiomatize, based on a number of examples such
as the category of simplicial sets or chain complexes, the relevant features of those
categories in which it is possible to develop a homotopy theory. The resulting ax-
iomatization has proven to be very successful and these tools now predominate the
field. Indeed, they have been used by Voevodsky and others in algebraic geometry
[66, 82]. Model categories have also been employed in the work of Joyal [45, 44] on
quasi-categories and in the related work of Lurie [56] on higher-dimensional topos
theory. As such, the general approach to the semantics of intensional type theory
offered here has potential to yield further interesting models.

Regarding the specific contents of the chapter, after reviewing the basic defini-
tions and examples, we discuss the interpretation of types as fibrations in a weak
factorization system (or model category). Interpreting types in this way always
gives rise to a model of a form of type theory. However, the type theory of which
it is a model may nonetheless fail to validate all of the rules governing identity
types. Yet, these models do always offer a “hint” of how to interpret the identity
types. Namely, in weak factorization systems we may form what are called path
objects, which we can think of as the fibration consisting of paths in a given space.
Such path objects, provided they are stable under pullback in a sense which we
make precise, will always very nearly support the interpretation of identity types.
Voevodsky [84] has considered, in a somewhat different setting, a similar interpre-
tation of identity types in the particular case of simplicial sets. In particular, they
will necessarily satisfy (up to isomorphism) all of the rules governing identity types
except for the coherence (or Beck-Chevalley) rule for the elimination J terms. We
call such structures (which almost model identity types in this way) quasi-models
of identity types. Our first main result, Theorem 2.29, is that every simplicial
model category in which the cofibrations are the monomorphisms is a quasi-model
of identity types.
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The final sections are concerned with providing an answer to the question,
“When does a weak factorization system give rise to an actual model (and not just
a quasi-model) of type theory?” Specifically, we describe conditions on a weak fac-
torization system under which the interpretation of types as fibrations and identity
types as path objects yields a model (up to isomorphism) of intensional Martin-Löf
type theory. Such models still suffer from the familiar coherence problems afflicting
models of (extensional) type theory in locally cartesian closed categories (cf. [18]).
As such, our next task is to establish that genuine split models of intensional type
theory can be obtained, as for extensional type theory, by applying Bénabou’s [7]
fibred Yoneda lemma. This is indeed the case and extends the familiar result due
to Hofmann [33] to the intensional setting. This is Theorem . We mention that
Gambino and Garner [23] have recently constructed in the category of contexts of
intensional type theory a weak factorization system, thereby showing the complete-
ness of the corresponding fragment of type theory with respect to the semantics
developed here.

Chapter 3: Cocategories and Intervals. In Chapter 3 we study one gen-
eral class of models of type theory which includes the original groupoid model of
Hofmann and Streicher discussed above. Namely, we describe a way in which mod-
els can be obtained using certain cocategory objects which we call intervals. Using
such an interval I it is possible to define many of the notions from homotopy theory
such as homotopy, strong deformation retract, Hurewicz fibration, et cetera. The
first several sections of the chapter are concerned with studying these and related
notions in the setting of a category equipped with such an interval. We mention
that related techniques, also employing cocategory objects, have been employed
in the setting of the homotopy theory of categories enriched in simplicial modules
(and related structures) by Stanculescu [74].

An interval I in E necessarily induces a 2-category structure on E , with 2-cells
homotopies, and our next task is to investigate this higher-dimensional structure.
In particular, we describe necessary and sufficient conditions for such an interval
to induce a representable (or finitely complete) 2-categorical structure. In the case
where this structure is representable there exists, by a result due to Lack [51],
a model structure on the underlying category wherein fibrations are isofibrations
(defined representably using the notion of isofibration in Cat).

When E possesses an interval it is possible, by adapting an approach due to
Street [75] to this setting, to define a reasonable notion of split fibration in E . In
particular, the split fibrations are (strict) algebras for a 2-monad on E defined using
the interval I. The first main type theoretic result of this chapter, Theorem 3.47
is that, given an interval I in a finitely bicomplete category E which is cartesian
closed, the split fibrations in E defined in this way are a model of intensional
type theory which satisfies all of the required stability properties from Chapter 2.
Finally, we apply Theorem 3.47 to the special case of internal groupoids Gpd(E)
in a category E and show also that when E is locally cartesian closed the resulting
model using split fibrations supports the interpretation of dependent products (all
of the models described in this dissertation soundly model dependent sums). This
essentially recovers the original Hofmann-Streicher model as a special case.
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Chapter 4: ω-Groupoids. Although Chapter 3 develops techniques for ob-
taining models of intensional type theory like the original groupoid model of Hof-
mann and Streicher [35] the resulting models will only be 1-dimensional in the sense
that they validate the truncation principles from Chapter 1 for dimensions n > 1.
E.g., in such 1-dimensional models, if α and β are both of type IdIdA(a,b)(f, g), then
it follow that α = β. I.e., in such models all identity types of identity types sat-
isfy the uniqueness of identity proofs. This is related to the fact that the intervals
considered in Chapter 3 are required only to be 1-dimensional cogroupoids rather
than higher-dimensional ones. In Chapter 4, we take a page out of the homotopy
theorist’s book and turn our attention to ω-groupoids (cf. [49]).

In particular, we extend the original groupoid model of Hofmann and Streicher
[35] to higher dimensions by proving that, interpreting closed types as strict ω-
groupoids (for a suitable notion of strict ω-groupoid), and types in context as
(strict ω-)functors C // ω-Gpd, yields a sound model of intensional type theory
(Theorem 4.25). Moreover, this model is truly higher-dimensional in the sense that
it refutes all of the truncation principles introduced in Chapter 1. For example,
it refutes all higher-dimensional generalizations of the principle of “uniqueness of
identity proofs”. The rather technical proof of Theorem 4.25 proceeds according
to the following steps. First, we describe, for a functor A : C // ω-Cat of strict
ω-categories (with C small), two kinds of Grothendieck construction

∫
A and

∫ ∗
A

which yield in turn ω-categories. When C is a (small) strict ω-groupoid and A :
C //ω-Gpd, both

∫
A and

∫ ∗
A are also ω-groupoids and we prove that there exists

a functor ¬ :
∫
A //

∫ ∗
A which acts by turning certain triangles occurring in the

construction of
∫
A “inside-out”. Using ¬ we show that it is then possible to define

the interpretation of identity types in this setting. In particular, when A is a type
in the empty context with a and b terms (objects) of A, the identity type IdA(a, b)
is interpreted as expected as the hom-ω-groupoid A(a, b). Moreover, all of the
constructions can be truncated at any n ≥ 1 and therefore also yield corresponding
models using n-groupoids. We obtain in this way new models of type theory and
corresponding novel independence results. These independence results — that the
truncation principles from Chapter 1 are not derivable in intensional type theory
— provide us with a much better picture of the behavior of identity types and
also confirm the suspicion that the algebraic structure of identity types is genuinely
higher-dimensional.

Finally, it is our hope that these constructions can be generalized to yield
models using other kinds of higher-dimensional structures such as, e.g., the weak
ω-groupoids of Kapranov and Voevodsky [49].





CHAPTER 1

Forms of Type Theory

In this chapter we introduce the forms of Martin-Löf type theory with which
we will be concerned. We assume that the reader is familiar with the syntax of such
theories and refer the reader to Appendix B for an overview of the syntax of such
theories. Further details can be found in the literature [60, 34, 80, 38, 67]. Part
of the purpose of this section is to exhibit a hierarchy of type theories, related to the
higher-dimensional structure introduced into the general setting by the intensional
identity types, with which we will be concerned. This hierarchy of theories is
analogous to the kind of “dimensional” hierarchies arising in higher-dimensional
category theory and homotopy theory.

Remark 1.1. One feature of our presentation of type theory which is perhaps
worth mentioning is that we do not work explicitly in a logical framework. This
is essentially a pragmatic decision and does not reflect any deeper preference for
one formulation of the theory over the other. The reader may assume that we are
implicitly using the logical framework from [67].

1.0.1. Identity types. The basic forms of type theory with which we will be
concerned all have six forms of judgement as summarized in Figure 1.1.

Figure 1.1 Forms of Judgement

` Γ : context
` Γ = ∆ : context

Γ ` A : type
Γ ` A = B : type

Γ ` a :A
Γ ` a = b :A

Moreover, all of the theories we study possess dependent products and depen-
dent sums. We denote by T− the basic form of Martin-Löf type theory which is
given only by the rules for dependent products and sums in addition to the basic
structural rules. The specific rules we adopt for dependent products and sums are
given in Appendix B. All of the other theories we consider are obtainable by adding
to T− various rules governing identity types. The first rules for identity types we
consider are the standard (intensional) rules. Because of their importance in what
follows we review these rules explicitly here. First, the formation rule for identity
types is stated as follows:

7



8 1. FORMS OF TYPE THEORY

Γ ` A : type Γ ` a, b : A
Id formation

Γ ` IdA(a, b) : type

Several remarks about this rule are in order. To begin with, we adopt the convention
of omitting some judgements when they are understood. For example, this rule,
properly stated, should include the additional judgement ` Γ : context. Similarly,
rather than stating two typing judgements Γ ` a : A and Γ ` b : A we adopt the
convention of condensing using the obvious abbreviation Γ ` a, b : A as above.
Additionally, we often write rules in the empty context and it is always assumed
that these rules apply also in non-empty contexts. Thus, with these conventions
the introduction rule for identity types is stated as follows:

` a : A
Id introduction

` rA(a) : IdA(a, a)

The term rA(a) is referred to as the reflexivity term for a. Next we have the
elimination rule:

x : A, y : A, z : IdA(x, y) ` B(x, y, z) : type

u : A ` b(u) : B
(
u, u, rA(u)

)
` p : IdA(a, a′)

Id elimination
` JA,B([u : A]b(u), a, a′, p) : B(a, a′, p)

Here the presence of the expression [u : A]b(u) indicates that the variable u
occurring in b(u) is bound in the subexpresion b(u) of the elimination term
JA,B([u : A]b(u), a, a′, p). Sometimes we omit the [u : A] and the subscripts and
simply write J(b, a, a′, p) when no confusion will result. The conversion rule, which
describes the behavior of the elimination term when applied to the reflexivity term,
is as follows:

x : A, y : A, z : IdA(x, y) ` B(x, y, z) : type

u : A ` b(u) : B
(
u, u, rA(u)

)
` a : A

Id conversion
` JA,B

(
[u : A]b(u), a, a, rA(a)

)
= b(a) : B

(
a, a, rA(a)

)
Finally, there are coherence (or “Beck-Chevalley”) rules governing the behavior of
identity types, reflexivity terms and elimination terms with respect to substitution.
Technically these are meta-theoretic rules and are therefore really trivial. However,
we state them here “for the record”. It is perhaps convenient for the reader to
regard them as rules in the logical framework. The semantic understanding of
these rules is important and will play a significant part in Chapter 2. First we have
the coherence condition for the identity types themselves:

x : C ` A(x) : type x : C ` a(x), b(x) : A(x) ` c : C
Id coherence

`
(
IdA(x)(a(x), b(x))

)
[c/x] = IdA(c))(a(c), b(c))
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Under the same hypotheses the coherence conditions for reflexivity terms is given
by the following judgement of definitional equality:

`
(
rA(x)(a(x))

)
[c/x] = rA[c/x]

(
a(c)

)
: IdA(c)

(
a(c), a(c)

)
.

Finally, the coherence condition for elimination terms is as follows:

x : C, v : A(x), w : A(x), z : IdA(x)(v, w) ` B(x, v, w, z) : type

x : C, u : A(x) ` b(x, u) : B
(
x, u, u, rA(x)(u)

)
x : C ` p(x) : IdA(x)(a(x), a′(x)) ` c : C(

J
(
[u : A(x)]b(x, u), a(x), a′(x), p(x)

))
[c/x] = J

(
[u : A(c)]b(c, u), a(c), a′(c), p(c)

)
We will sometimes refer to rules for identity types just given as the categorical

rules for identity types. However, the rules may also profitably be formulated in
a hypothetical form. Namely, the hypothetical version of the formation rule is
given as follows:

` A : type
Id form. (hypothetical)

x : A, y : A ` IdA(x, y) : type
Similarly, the hypothetical versions of the introduction, elimination and conversion
rules are listed in Section B.2.3 of Appendix B. In general (assuming the basic
structural rules governing type theory) these two forms of rules for identity types
are equivalent. Nonetheless, the hypothetical versions are convenient as they are
sometimes easier to verify in particular models. These matters are discussed in
more detail in Appendix B.

1.0.2. Truncation rules. In order to most efficiently (and readably) state
some of the additional principles for identity types which we will consider it will
be useful to introduce an alternate notation for identity types. Letting a type A
in some ambient context be given, we introduce the (at this stage superfluous)
notation

A0 := A.

When we are given terms a and b of type A we then define

A1(a, b) := IdA(a, b).

In this case, we sometimes omit the superscript and simply write A(a, b) for the
identity type. This notation is suggestive of the connection we have in mind between
identity types and hom-sets in higher-dimensional category theory. But more on
this later. At the next stage, given a1 and b1 of type A together with

` a2, b2 : A(a1, b1),

we define

A2(a1, b1; a2, b2) := IdA(a1,b1)(a2, b2).

In general, assuming given

` an+1, bn+1 : An(a1, b1; · · · ; an, bn),
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we define

An+1(a1, b1; · · · ; an, bn; an+1, bn+1) := IdAn(a1,b1;··· ;an,bn)(an+1, bn+1).

With this notation to hand, we recall that the reflection rule for identity types is
stated as follows:

` a, b : A ` p : A(a, b)
Reflection

` a = b : A

When the reflection rule is assumed identity types are trivial. This is one of the
distinguishing features between intensional and extensional type theory. Namely, a
theory T extending T− with identity types is extensional if the reflection rule is
derivable. On the other hand, we will often say that a theory is intensional or has
intensional identity types if the reflection rule is not derivable. However, we should
mention that there are additional criteria which have been proposed as constituting
the notion of intensionality and, as such, it would be perhaps better to speak of
a theory being non-extensional (for more on these matters we refer the reader to
[80]).

Although we will not be concerned here with extensional type theory, we will
consider type theories satisfying additional “truncation” principles related to the
reflection principle. The most significant such principle is precisely the higher-
dimensional generalization of the reflection rule, which we call the n-truncation
rule:

` an+1, bn+1 : An(a1, b1; · · · ; an, bn) ` p : An+1(a1, b1; · · · ; an+1, bn+1)
TRn

` an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

Thus, the 0-truncation rule is exactly the usual reflection rule.

1.0.3. Uniqueness of identity proofs. One of the principles for identity
types which as been considered is the following principle of (definitional) unique-
ness of identity proofs:

` a2, b2 : A(a1, b1)
UIP1

` a2 = b2 : A(a1, b1)

This principle was shown by Hofmann and Streicher [35] to be independent of the
basic rules for identity types from Section 1.0.1 by constructing a model of the
theory using groupoids. We will discuss the results of [35] in more detail below
once we have introduced the various theories under consideration.

As the subscript UIP1 indicates, there are generalizations of uniqueness of
identity proofs to higher dimensions. For n ≥ 1, the principle of (definitional)
n-dimensional uniqueness of identity proofs is

` an+1, bn+1 : An(a1, b1; · · · ; an, bn)
UIPn

` an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

Informally, thinking of a type as a kind of higher-dimensional groupoid, these princi-
ples state that types are like preorders and hence discrete above certain dimensions.



1. FORMS OF TYPE THEORY 11

We denote by UIP'n the corresponding propositional n-dimensional unique-
ness of identity proofs principle

` an+1, bn+1 : An(a1, b1; · · · ; an, bn)
UIP'n` an+1 ' bn+1 : An(a1, b1; · · · ; an, bn)

where we write ` d ' e : D to indicate that the identity type D(d, e) is inhabited.
We will discuss these principles further below. Obviously UIPn implies UIP'n .

1.0.4. Connection with the truncation rules. One consequence of the
reflection rule is that all identity proofs p : A(a, b) are reflexivity terms. I.e., the
(definitional) ordinary unit principle

` a : A ` p : A(a, a)
OUP0

` p = rA(a) : A(a, a)
follows from the reflection rule and also implies UIP1. Indeed, in the presence of
the reflection rule OUP0 and UIP1 are equivalent (cf. Appendix B). Similarly, we
define higher-dimensional generalizations of the ordinary principle as follows:

` an+1 : An(a1, b1; · · · ; an, bn) ` p : An+1(a1, b1; · · · ; an+1, an+1)
OUPn

` p = rAn(a1,b1;··· ;an,bn)(an+1) : An+1(a1, b1; · · · ; an+1, an+1)

There are also propositional versions of these rules stated in the obvious way and
denoted by OUP'n .

Whereas the various uniqueness of identity proofs principles can be thought
of as requiring that the identity types are discrete above certain dimensions, the
ordinary unit rules indicate that all loops (above certain dimensions) are necessarily
identities. For strict ω-groupoids the principles corresponding to UIPn+1 and OUPn
are easily seen to be equivalent using the fact that inverses are unique. In the present
situation we instead obtain the following:

Scholium 1.2. For any n ≥ 0, the following hold:
(1) UIPn+1 implies OUPn.
(2) OUPn implies UIP'n+1.
(3) UIP'n+1 is equivalent to OUP'n .

Proof. (1) is trivial and (2) follows, using the idea of the proof sketched
above for groupoids, from the propositional forms of the groupoid identities from
[35]. The proof of (3) is straightforward. �

The ordinary unit principles also allow us to relate the truncation rules and
uniqueness of identity proofs (the idea for this proof comes essentially from results,
which are not “stratified” in the way considered here, from [80]).

Lemma 1.3. Assuming the rules of T− and the usual rules for identity types
from Section 1.0.1, the following implications hold:

(1) TRn implies OUPn.
(2) TRn implies UIPn+1.
(3) UIPn implies TRn.

for n ≥ 0.



12 1. FORMS OF TYPE THEORY

Proof. For the proof of (1) we will use Streicher’s [80] K elimination rule
which is stated in Appendix B). Recall that in the presence of reflection, the usual
rules for identity types imply the K rule. This fact justifies the use of this rule made
below in the presence of TRn. First, let a term an+1 of type An(a1, b1; · · · ; an, bn)
and a “loop” p of type An+1(a1, b1; · · · ; an+1, an+1) be given. Then, by TRn it
suffices to show that

` p ' r(an+1) : An+1(a1, b1; · · · ; an+1, an+1).

To this end, define the type

D(x, y) := An+2
(
y, r(x)

)
in the context

(
x : An(a1, b1; · · · ; an, bn), y : An+1(a1, b1; · · · ; an, bn;x, x)

)
. Clearly,

x : An(a1, b1; · · · ; an, bn) ` r
(
r(x)

)
: D
(
x, r(x)

)
,

and therefore the K elimination rule yields the required term of type

D(an+1, p) = An+2(p, r(an+1)),

as required.
Suppose, for the proof of (2), that we are given terms an+2 and bn+2 of type

An+1(a1, b1; · · · an+1, bn+1). Then, by TRn, an+1 = bn+1. By (1) it follows that
OUPn holds and therefore we obtain

an+2 = r(an+1) = bn+2,

as required.
Finally, (3) holds trivially. �

1.0.5. The hierarchy of type theories. We are now in a position to describe
the type theories we will be concerned with. First, we denote by Tω the theory
obtained by adding to T− the usual rules for identity types from Section 1.0.1. Tω is
the principal theory which we aim to study. The justification for this nomenclature,
and that adopted below, is that we think of the types in Tω as being, in virtue of
the structure imparted by the identity types, weak ω-groupoids. Of course, weak
ω-groupoids are not terribly easy things with which to deal — indeed, the issue
of which definition to adopt is perhaps not entirely settled — and so it will be
convenient at times to consider theories whose identity types are somewhat more
manageable. From this perspective, the theory which is simultaneously the most
well-behaved and least interesting is ordinary extensional Martin-Löf type theory
[62, 61]. This theory, the types of which we regard as being simply discrete sets,
is denoted by T0. The additional theories we consider are obtained by truncating,
in various ways, the identity types at certain dimensions and constitute a spectrum
or hierarchy of theories fitting between Tω on the one hand and T0 on the other.

To take one example, we may consider the theory obtained by forcing all (iter-
ated) identity types of the form Ak(a1, b1; · · · ; ak, bk) to be “preorders” for k ≥ n.
Explicitly, this theory is obtained by setting

Pn := Tω + UIPn.

The original issue of the independence of UIP1 which motivated the groupoids
model of Hofmann and Streicher [35] can the be stated as the question whether
P1 and Tω are identical. On the other hand, in the same way we may consider
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the theories obtained by adding to Tω the truncation principles and in this way we
obtain the theories

Tn := Tω + TRn

for n ≥ 0. By the foregoing discussion of the relation between the truncation rules
and uniqueness of identity proofs we obtain:

Proposition 1.4. The following inclusions hold:

Tn+1 ⊆ Pn+1 ⊆ Tn
for n ≥ 0.

Proof. By definition and Lemma 1.3. �

In light of Proposition 1.4 we obtain a hierarchy of theories as indicated in
Figure 1.2. In order to better understand the connection between the theories
occurring in this hierarchy we will turn next to study the semantics of such theories.
Ultimately, it follows as a corollary of Theorem 4.25 that all of the theories occuring
in this hierarchy are distinct.

Figure 1.2 The Hierarchy of Theories

Tω ⊆ · · · ⊆ Tn+1 ⊆ Tn ⊆ · · · ⊆ T1 ⊆ T0





CHAPTER 2

Homotopical Semantics of Type Theory

In this chapter we introduce and study a homotopical semantics for intensional
type theory utilizing weak factorization system and (closed) model categories. The
principal feature of a weak factorization system in a category C which makes such
a semantics possible is the existence of a distinguished class of maps called fi-
brations which possess several nice properties. In particular, fibrations are stable
under pullback and therefore, by a familiar result from the semantics of type the-
ory (cf. [38, 79, 81, 34]), give rise to a model of type theory (albeit one which
may not support the interpretation of many type formers). As is well-known, weak
factorization systems admit the construction of what are called path objects and
it turns out that these path objects exhibit many of the features of Martin-Löf’s
identity types. The idea behind this interpretation is to think of a type A as a(n)
(abstract) space and the type IdA(a, b) as the corresponding space of “paths” from
a to b. The aim of this chapter is to provide a precise mathematical articulation of
this idea.

In summary, weak factorization systems and the resulting homotopical seman-
tics are introduced in Section 2.1 and are related to the well-known semantics for
type theory using comprehension categories (cf. Section B.3 of Appendix B for the
definition and basic details of this semantics). In particular, we will see that every
weak factorization system gives rise to a comprehension category. Although weak
factorization systems admit the construction of path objects, these path objects
need not be well-behaved in the ways necessary to interpret type theory. In prac-
tical terms this defect exhibits itself by the presence of certain “coherence” issues.
Indeed, at least two distinct kinds of coherence issue arise for the interpretation of
intensional type theory (both in the homotopical semantics and in general). The
first issue amounts to the question whether the coherence rules governing identity
types, reflexivity terms and the elimination J terms for identity types are satisfied.
I.e., whether the structures interpreting these syntactic constructs are stable under
pullback. E.g., in an arbitrary weak factorization system path objects themselves
need not be stable under pullback and, in order to validate the coherence condi-
tions for the identity type and reflexivity term, it is necessary to restrict to those
weak factorization systems which possess this additional property. Such weak fac-
torization systems are said to have stable path objects. This notion is made precise
in Section 2.1 and it is the aim of Section 2.2 to show that a particularly broad
class of examples of weak factorization systems — namely, those arising from sim-
plicial model categories — possess stable path objects. Even if path objects, and
therefore also the interpretations of identity types and reflexivity terms, are stable
under pullback it does not immediately follow that the elimination terms are stable
under pullback. This further issue is considered in Section 2.3 where the abstract
conditions corresponding to this property are described (the actual examples of

15
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models which have “coherent” elimination terms are considered in the subsequent
chapters). Finally, in Section 2.4 we address the other coherence problem affecting
the homotopical interpretation of type theory. This is the problem of interpreting
substitution in general and is quite well-known as it also arises for the interpreta-
tion of extensional type theory in locally cartesian closed categories. For locally
cartesian closed categories, Hofmann [33] has shown that Bénabou’s [7] theorem
which states that every Grothendieck fibration is equivalent to a split fibration can
be used to turn “non-split” models into “split” ones and thereby solved this coher-
ence problem in the extensional case. The principal result of Section 2.4 is to show
that this construction also yields “split” models of intensional type theory when
applied to those weak factorization systems which satisfy certain conditions (given
in Section 2.3). This useful technical result will be employed in Chapter 3 to obtain
“split” models.

Remark 2.1. Throughout we attempt to adhere to terminological convention
which should ensure that the various coherence problems addressed above are not
confused. Namely, we generally employ the adjective stable to refer to the satis-
faction up to isomorphism of the coherence rules for identity types and reflexivity
terms (but not elimination terms); coherent is used to refer to the case where the
coherence condition for elimination J terms is also satisfied up to isomorphism;
and split refers to the case where whatever “up to isomorphism” structure is under
consideration is actually “on the nose”.

Remark 2.2. Some of the results of this chapter occur originally (albeit in a
somewhat condensed form) in the joint paper [3] with Steve Awodey.

Remark 2.3. We state here some of our category theoretic notation for the
record. Given an arrow f : B // A in a category C with pullbacks we write
∆f : C/A // C/B or f∗ for the pullback functor. Similarly, the left-adjoint to ∆f

is written as Σf : C/B // C/A and the right adjoint to ∆f , if it exists, is denoted
by Πf : C/B // C/A.

We often employ “ordered pair” notation to denote induced maps into pull-
backs. I.e., given a pullback square

A′ A
g
//

B′

A′

f ′

��

B′ B
g′ // B

A

f

��

and an object X together with maps x0 : X // A′ and x1 : X // B such that
f ◦ x1 = g ◦ x0, we will sometimes denote the induced map X // B′ by 〈x0, x1〉.
Similar notation [x0, x1] will also be employed for the induced map out of a pushout.

2.1. Homotopical semantics

In this section we introduce the basic homotopy theoretic semantics using weak
factorization systems and Quillen model categories. For more on weak factorization
systems and Quillen model categories in homotopy theory the reader should consult
the references [70, 10, 36, 31, 48, 20, 2].
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2.1.1. Weak factorization systems and model categories. In any cate-
gory C, given maps f : A //B and g : C //D, we write

f t g

to indicate that f possesses left-lifting property (LLP) with respect to g. I.e.
for any commutative square

B D
k
//

A

B

f

��

A C
h // C

D

g

��
B

C

l

??

there exists a map l : B // C such that g ◦ l = k and l ◦ f = h. In this situation
we also say that g possesses the right-lifting property (RLP) with respect to F .
Similarly, if M is any collection of maps we denote by tM the collection of maps
in C having the LLP with respect to all maps in M. The collection of maps Mt is
defined similarly.

Definition 2.4. A weak factorization system (L,R) in a category C con-
sists of two collections L (the “left-class”) and R (the “right-class”) of maps in C
such that

(WFS0): Every map f : A //B has a factorization as

A

B

f ��???????A C
i // C

B

p���������

where i is a member of L and p is a member of R.
(WFS1): Lt = R and L = tR.

Definition 2.5. A (closed) model category [70] is a bicomplete category
C equipped with subcategories F (fibrations), C (cofibrations) and W (weak
equivalences) satisfying the following two conditions:

(MC0): (“Three-for-two”) Given a commutative triangle

A

C

h ��???????A B
f // B

C

g���������

if any two of f, g, h are weak equivalences, then so is the third.
(MC1): Both (C,F ∩W) and (C ∩W,F) are weak factorization systems.

The form of Definition 2.5 given here is, although equivalent to Quillen’s original
definition, due in this form to Adámek et al [2]. A map f is an acyclic cofibration
if it is in C∩W, i.e. both a cofibration and a weak equivalence. Similarly, an acyclic
fibration is a map in F ∩W, i.e. which is simultaneously a fibration and a weak
equivalence. An object A is said to be fibrant if the canonical map A // 1 is a
fibration. Similarly, A is cofibrant if 0 //A is a cofibration. We denote by Cf the
full subcategory of C with objects the fibrant objects.
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Because it is convenient to have a name for maps in the classes L and R, and
since many of the examples of weak factorization systems we consider arise from
model categories, we will often refer to maps in the left-class L of a weak factoriza-
tion system as acyclic cofibrations and those in the right class R as fibrations when
no confusion will arise.

Example 2.6. Examples of model categories include the following:
(1) The category Top of topological spaces with fibrations the Serre fibra-

tions, weak equivalences the weak homotopy equivalences and cofibrations
those maps which have the LLP with respect to acyclic fibrations. The
cofibrant objects in this model structure are retracts of spaces constructed,
like CW-complexes, by attaching cells.

(2) The category SSet of simplicial sets with cofibrations the monomor-
phisms, fibrations the Kan fibrations and weak equivalences the weak
homotopy equivalences. The fibrant objects for this model structure are
the Kan complexes. This example, like that of Top is due to Quillen [70].

(3) The category Gpd of (small) groupoids with cofibrations the functors in-
jective on objects, fibrations the Grothendieck fibrations and weak equiv-
alences the categorical equivalences. Here all objects are both fibrant and
cofibrant. This example follows from the natural model structure on Cat
due to Joyal and Tierney [47].

This brief list is far from being exhaustive and we will encounter additional
examples of both model categories and weak factorization systems later. For now
though we simply mention an example due to Gambino and Garner [23] that is
especially relevant here.

Example 2.7 (Gambino and Garner). It is shown in [23] that there exists a
weak factorization system in C(Tω) in which the left-class L is defined to be tD
and the right-class is Lt. Here D is the set of the dependent projections. Moreover,
it is shown in ibid that the classes L and R of maps admit explicit descriptions
as the type theoretic injective equivalences and type theoretic normal isofibrations,
respectively. We refer the reader to Section B.4 of Appendix B for more on the two
notions of dependent projection.

As far as we know it is not possible to extend Example 2.7 to provide a “model
structure” on C(Tω) (where the quotes emphasize the fact that, officially, a category
must be bicomplete in order to possess a model structure).

2.1.2. The interpretation of dependent types. Whereas the idea of the
Curry-Howard correspondence is often summarized by the slogan “Propositions as
Types”, the idea underlying the homotopical semantics is

Fibrations as Types.
In order to make this idea precise we first introduce some additional notation.
Assume C is a category with a weak factorization system (L,R). Then the category
CR is defined to be the full subcategory of the arrow category C→ with objects
elements of R. Similarly, we obtain a category CL. The restriction of the codomain
map ∂1 : C→ // C to CR is denoted also by ∂1.

Lemma 2.8. Assume C is a finitely complete category with a weak factorization
system (L,R), then the codomain projection ∂1 : CR //C together with the inclusion
CR // C→ gives C the structure of a comprehension category.



2.1. HOMOTOPICAL SEMANTICS 19

Proof. When (L,R) is a weak factorization system the right class R is nec-
essarily stable under pullback, therefore ∂1 : CR // C is a Grothendieck fibration
and CR // C→ is fibred. �

By Lemma 2.8 it follows that any finitely complete category C equipped with
a weak factorization system gives rise to a (non-split) model of dependent type
theory. Note that Lemma 2.8 also holds when we restrict to the full subcategory
of C consisting of fibrant objects. It is this case of the result which we will employ
below.

2.1.3. Path objects and cellular resolutions. We begin by recalling the
following standard definition for model categories:

Definition 2.9. Given an object A of a model category C, a path object for
A consists of a factorization

(1)

A

A×A
∆ ��???????A P

r // P

A×A
p���������

of the diagonal map ∆ : A //A×A as a weak equivalence r followed by a fibration
p. Such a path object is said to be very good if r is also a cofibration.

When C is only assumed to possess a weak factorization system (L,R), the
definition of very good path object still makes sense by regarding the left class L
as the acyclic cofibrations and the right class R as the fibrations. It follows then
from the the factorization axiom for weak factorization systems that every object
of C possesses a very good path object.

We would like to interpret identity types using very good path objects. For
example, given a fibrant object A which we think of as a closed type, we would like
to be able to view the map p : Path(A) //A×A as the judgement

x, y : A ` IdA(x, y) : type .

Of course, because the axioms for weak factorization systems ensure only the exis-
tence of very good path objects and not the existence of “distinguished” or func-
torial path objects, it follows that we must restrict to those weak factorization
systems which have such a choice of very good path objects. In order to make this
precise we will first introduce some auxiliary notions.

Given a category C with finite limits the category RGraphsC of reflexive
graphs in C has as objects pairs of objects (V,E) of C together with arrows

V E
r // EV

s

ee EV

t

yy

such that

s ◦ r = 1V = t ◦ r.

Homomorphisms of reflexive graphs are then defined in the obvious way.
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Definition 2.10. When C is a finitely complete category with a distinguished
class of arrows R in C which are stable under pullback, the category CRes1

R of
1-cellular resolutions (with respect to R) has as objects tuples (A, V,E) where
A is an object of C and (V,E) is a reflexive graph in C/A such that the maps
V // A and 〈s, t〉 : E // V ×A V are in R. We sometimes refer to the map
V // A as the augmentation map. Homomorphisms of 1-cellular resolutions
(B, V ′, E′) // (A, V,E) are tuples (f, f0, f1), where f : B //A, f0 : V ′ // V and
f1 : E′ // E, such that these maps make the following diagram commutes

E′

E

f1

��

V ′E′ oo

VE oo

E′ V ′
s

++
E′ V ′

t

33

E V
s

++
E V

t

33

V ′

V

f0

��

V ′ B//

V A//

B

A

f

��

Although there is a more general notion of cellular resolution for n > 1 we
will only be dealing with the case where n = 1. Accordingly, we often omit the
prefix “1-” and simply refer to cellular resolutions. Similarly, when C is a category
equipped with a weak factorization system (L,R) and this is understood, we will
often write CResC . When (A, V,E) is an object of CResC we say that (V,E) is a
cellular resolution of A. Henceforth, when discussing cellular resolutions we always
assume that the resolutions are with respect to a weak factorization system on C
unless otherwise stated.

Example 2.11. Given an object A of C, any path object factorization of the
diagonal ∆ : A //A×A is a cellular resolution of the terminal object.

Example 2.11 generalizes to slices C/A. I.e., a path object factorization of the
diagonal B // B ×A B of a map f : B // A gives a cellular resolution of A. The
converse — that every cellular resolution of A is a path object of an object in C/A
— does not hold since the map r : V // E is not necessarily a weak equivalence
(or element of L). The reason for not requiring that the maps r are in L is the
following lemma (which would not hold under this additional condition):

Lemma 2.12. The projection π : CResC //C which sends a cellular resolution
(V,E) of A to A and a map (f, f0, f1) to f is a Grothendieck fibration.

Proof. It is straightforward to verify that cellular resolutions are stable under
pullback and that therefore the projection is a Grothendieck fibration. �

There exists also a functor χ : CResC // C→ which sends a cellular resolution
(V,E) of A to the augmentation map V // A and sends an arrow (f, f0, f1) of
cellular resolutions to the commutative square

B A
f
//

V ′

B
��

V ′ V
f0 // V

A
��

We note that this functor is fibred from π : CResC // C to ∂1 : CResC // C and
therefore CResC itself has the structure of a comprehension category.
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With these definition at our disposal we may precisely state the conditions un-
der which it is possible to interpret (the formation and introduction rules governing)
identity types in a category which possesses a weak factorization system. Hence-
forth, as we will be predominately concerned with fibrant objects, we denote by
CR the full subcategory of the arrow category of Cf with objects fibrations between
fibrant objects. Similarly, CResC will denote the category of cellular resolutions of
fibrant objects.

Definition 2.13. Assume C is a finitely complete category with a weak fac-
torization system (L,R). We say that this weak factorization system has stable
path objects if there exists a fibred functor

CR

Cf
∂1 ��??????CR CResC

ι // CResC

Cf
π��������

such that the following conditions are satisfied:
• The augmentation of ι(f) is f itself. When this condition is satisfied we

denote by IA(f) the object of “edges” of ιA(f). I.e., I(f) is the codomain
of the reflexivity map of ι(f).

• For any object f : B //A of CR, the reflexivity map r : B // IA(f) is in
L.

• If

A′ A
σ
//

B′

A′

f ′

��

B′ B
σ′ // B

A

f

��
(2)

is an arrow in CR which is a pullback in Cf, then

A′ A
σ
//

IA′(f ′)

A′
��

IA′(f ′) IA(f)// IA(f)

A
��

is a pullback in Cf.

Given an arrow of the form (2) in CR we denote by I(σ, σ′) the third component
of the resulting map ι(σ, σ′) =

(
σ, σ′, I(σ, σ′)

)
of cellular resolutions.

Example 2.14. The category of contexts, equipped with the weak factorization
system from Example 2.7 has stable path objects. Indeed, this is essentially a
modification of the proof of the familiar observation that the category of contexts
gives rise to a (split) comprehension category which models identity types (cf. [32])
using the results of [23].

2.1.4. Coherence and quasi-models. Weak factorization systems also sug-
gest a method for interpreting the elimination rule for intensional identity types.
In particular, interpreting identity types using path objects, given a fibration g :
B // Path(A) together with a map b : Path(A) //B for which the composite g ◦ b
is identical to the acyclic cofibration r : A // Path(A), we may use the fact that
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r possesses the left-lifting property with respect to g to obtain an “elimination”
term J : Path(A) //B. However, because, as defined, the diagonal fillers featuring
in the definition of weak factorization systems are not assumed to be given by an
operation (and are not, in particular, assumed to be given functorially) the cor-
responding “interpretations” of the elimination terms must be chosen arbitrarily
and so fail to satisfy the coherence conditions for identity types. Nonetheless, the
resulting notion of a quasi-model of type theory is of some interest in that the inter-
nal language associated to a category with a weak factorization system is always a
quasi-model and, moreover, although the chosen representatives of the elimination
terms are not operations “on-the-nose”, they are coherent up to the existence of
(right) homotopies. The issue of coherence of elimination terms, and the distinct
issue of existence of split models, will be discussed in Section 2.3. The subsequent
chapters are concerned exclusively with the construction of models which satisfy
the coherence rule. However, we will now introduce and study quasi-models in
more detail. We begin by describing our notational conventions for comprehension
categories.

Remark 2.15. Given a comprehension category P(−) : P // C with compre-
hension χ and an object A of C, we denote by P(A) the fibre of P(−) over A. If
α ∈ P(A), we denote by πα : Aα // A the arrow χ(α) in C. Assuming a cleavage
for P(−), when f : B // A, we denote by (α · f) the domain of the cartesian lift
fα : (α · f) //α of f . We will sometimes abuse notation and denote also by fα the
map indicated in the following pullback square χ(fα)

B A
f
//

Bα·f

B

πα·f

��

Bα·f Aα
fα // Aα

A

πα

��

Given an arrow σ : B //A in C together with an element α of P(A) and a section
a : A // Aα of πα : Aα // A, we denote by a[σ] the canonical map B // Bα·σ
indicated in the following diagram:

B A
σ //

B Aσ //

Bα·σ Aα
σα //

B

B
1

''

A

A

1

((

Aα

A
yy

A

Aα
a

11

B

Bα·σa[σ] 11 Bα·σ

B
yy

For our final bit of notation, given an object A of C and α ∈ P(A), there exists a
pullback square

Aα A,
πα
//

A+
α

Aα

π+
α

��

A+
α Aα

π−α // Aα

A,

πα

��
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where

A+
α :=

(
Aα
)
α·πα

,

π−α :=
(
πα
)
α
,

π+
α := πα·πα .

Further details regarding comprehension categories can be found in Section B.3 of
Appendix B.

Definition 2.16. A comprehension category P(−) : P //C is a quasi-model
(of identity types) if for every object Γ of C and every object α of P(Γ), there
exists an object

ı(α) ∈ P(Γ+
α )

such that the following conditions are satisfied:
• Writing Iα as an abbreviation for (Γ+

α )ı(()α), there exists a map ρα :
Γα // Iα such that the following diagram commutes:

Γα

Γ+
α

∆ ��??????Γα Iα
ρα // Iα

Γ+
α

πı(α)��������

where ∆ is the diagonal.
• Given any β ∈ P(Iα) and any map b : Γα // (Iα)β making the following

square commute:

Iα Iα
1Iα

//

Γα

Iα

ρα

��

Γα
(
Iα
)
β

b //
(
Iα
)
β

Iα

πβ

��

there exists a diagonal filler J(α, β, b) : Iα // (Iα)β which makes both of
the resulting triangle commute. I.e.,

πβ ◦ J(α, β, b) = 1Iα ,

J(α, β, b) ◦ ρα = b.

A quasi-model is split if the underlying comprehension category is a split Grothendieck
fibration.

Although they are not quite models of type theory in its usual form, the exis-
tence of a quasi-model is useful insofar as it sometimes suggests the existence of an
underlying (genuine) model.

Assume that C is a finitely complete category with a weak factorization system
(L,R). We will now show that, if C has stable path objects, then the comprehension
category structure from Lemma 2.8 is a quasi-model. The following theorem rep-
resents an important first step towards relating homotopy theory and intensional
type theory:

Theorem 2.17. Let C be a finitely complete category with a weak factorization
system (L,R) and stable path objects, then, as a comprehension category, CR is a
quasi-model.
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Proof. Given a fibrant object A of C and fibration f : B //A we define ı(f)
to be the fibration 〈s, t〉 : IA(f) //B ×A B obtained using the stable path objects
of C. I.e., explicitly, IA(f) is the object of edges of ι(f). The reflexivity term ρf is
then defined to be r : B // IA(f).

To see that the elimination and conversion rules are satisfied suppose we are
given a fibration g : D // IA(f) together with a map d : B // D such that the
following diagram commutes

IA(f) IA(f)
1IA(f)

//

B

IA(f)

r

��

B D
b // D

IA(f)

g

��

Then, because r is in L and g is in R there exists a diagonal filler J : IA(f) //D,
as required.

IA(f) IA(f)
1IA(f)

//

B

IA(f)

r

��

B D
b // D

IA(f)

g

��
IA(f)

D

J

::tttttttttt

Selecting a filler J for every such elimination rule situation (g, d) yields interpreta-
tions of all elimination J terms. �

There are numerous examples of categories satisfying the hypotheses of Theo-
rem 2.17 including the category Gpd of groupoids and the category SSet of simpli-
cial sets. We now turn to consider one important source of examples of categories
satisfying the hypotheses of Theorem 2.17.

2.2. Simplicial model categories

Simplicial model categories play an important role in homotopy theory provid-
ing, as they do, a setting for the development not only of the homotopy theory of
spaces, but also the theory of higher-stacks. In this section we will show that many
simplicial model categories — and, indeed, the most interesting examples of such
— possess stable path objects in the sense of Definition 2.13.

2.2.1. Simplicial categories. In the literature on homotopy theory there are
several different definitions, not all of which are even equivalent, of what are called
simplicial categories (cf. [70, 11, 26, 31]). Indeed, the definition we give below is
not as common in the literature as one would expect. Yet, from the perspective of
enriched category theory, the definition which we give is certainly the most natural.
This difference will cause no confusion since the notion of simplicial model category
will agree with the standard definition given in the literature (cf. ibid).

Definition 2.18. A simplicial category C is a category enriched in the cat-
egory SSet of simplicial sets.

When C is a simplicial category, and A and B are objects of C we denote by
C(A,B) the simplicial set of arrows from A to B. By definition, any simplicial
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category is also has an underlying category with the hom-set

C(A,B) := C(A,B)0

∼= SSet
(
∆[0], C(A,B)

)
.

Given an arrow f : X // Y in C(X,Y ) we write f∗ for the induced map

C(Y,W )
C(f,W ) // C(X,W )

and f∗ for

C(W,X)
C(W,f) // C(W,Y ),

when the object W of C is understood. When emphasizing that we are regarding
a simplicial category C as a mere category we will sometimes write |C|. I.e., |C|
denotes the underlying category of C. We refer the reader to [50] for further details
regarding enriched category theory.

2.2.2. Simplicial model categories. We now define what it means for a
simplicial category C to be a simplicial model category. We will then mention
several important examples.

Definition 2.19. A simplicial category C is a simplicial model category if
the following conditions are satisfied:

(SMC0): The underlying category |C| of C is a model category.
(SMC1): C is tensored and cotensored over SSet.
(SMC2): Given a cofibration i : X // Y and a fibration p : E //B in |C|,

the canonical map

C(Y,E)
〈p∗,i∗〉 // C(Y,B)×C(X,B) C(X,E)(3)

in SSet is a Kan fibration which is trivial if either of i or p is a weak
equivalence.

In general the cotensor of a simplicial set K with an object X of a simplicial
model category C is denoted by (K t X), although we sometimes write XK instead.
The tensor product is denoted (K ⊗X). As a consequence of the requirement that
C be tensored and cotensored over SSet, there exist natural isomorphisms

C(K ⊗X,Y ) ∼=
[
K, C(X,Y )

]
∼= C(X,K t Y )

in SSet, where [−,−] denotes the internal hom in SSet, and

C(K ⊗X,Y ) ∼= SSet
(
K, C(X,Y )

)
∼= C(X,K t Y )

in Set.

Example 2.20. The following are a few examples of simplicial model categories
(cf. [70, 31, 26]):

(1) The categories SSet of simplicial sets and Top of compactly generated
spaces (with their “standard” model structures) are both examples of sim-
plicial model categories. These examples, as well as the case of simplicial
groups, were studied already by Quillen [70].
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(2) Given a category E , the category of simplicial objects in E is denoted by
S(E). When E is a Grothendieck topos there are two significant model
structures on S(E). In one — called the projective model structure —
the weak equivalences and fibrations are defined pointwise and the cofibra-
tions are given by the lifting property. In the other — called the injective
model structure — it is the cofibrations and weak equivalences which
are pointwise. When E is the category of sheaves on a space the injective
model structure on S(E) was verified by Brown and Gersten [12]. The
injective model structure on S(E), for E an arbitrary Grothendieck topos,
was demonstrated by Joyal [43] (cf. also [47] and [40]). The proof of this
result should be of particular interest to logicians due to the fact that it
crucially employs the internal language of the topos E in conjunction with
Barr’s theorem [4]. When E is a Grothendieck topos the projective model
structure is due to Jardine [39]. These examples are of particular interest
due in part to their connection with the theory of higher-stacks (cf. [82]).

2.2.3. Enriched slicing. We will now prove several basic lemmata regard-
ing slices in the setting of categories enriched over a cartesian closed category.
Throughout this section we assume that V is a finitely complete cartesian closed
category.

Lemma 2.21. If C is a V-category and X is an object of C, then |C|/X can also
be given the structure of a V-category.

Proof. Given arrows f : Y // X and g : Z // X in |C|, define the object
(C/X)(f, g) of V to be the following equalizer

(C/X)(f, g)
ef,g // C(Y,Z)

g∗ //
pfq

// C(Y,X)

taken in V. Moreover, because the map

(C/X)(f, g)× (C/X)(g, h)
ef,g×eg,h // C(Y,Z)× C(Z,W )

µ // C(Y,W )

equalizes the maps h∗ and pfq : C(Y,W ) //// C(Y,X), where h : W //X, it follows
that there exists a canonical multiplication map

(C/X)(f, g)× (C/X)(g, h)
µf,g,h // (C/X)(f, h)

such that µf,g,h ◦ (ef,g × eg,h) = h∗ ◦ µY,Z,W . It is then straightforward to verify
that gives C/X the structure of a V-category. �

Scholium 2.22. If C is a tensored (cotensored) V-category, then for any object
X of C,

1⊗X ∼= X(
1 t X ∼= X

)
.

Lemma 2.23. Assume that C is a V-category which is tensored and cotensored
over V and for which |C| is finitely complete. Then C/X is also tensored and
cotensored.
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Proof. Given an arrow f : Y //X in C and an object K of V, define (K⊗f)X ,
where the subscript indicates that this is not the arrow (K⊗f) : (K⊗Y ) //(K⊗X)
in C, to be the composite

K ⊗ Y
1⊗f //K ⊗X !⊗1 // 1⊗X ∼= X.

With this definition it is routine to show that there exists a V-natural isomorphism:

Hom
(
K ⊗ f, g

) ∼= Hom
(
K, C/A[f, g]

)
.

The cotensor (K t f)X is defined as the map pf indicated in the following
pullback diagram:

X (K t X)
r

//

[K, f ]

X

pf

��

[K, f ] (K t Y )
qf // (K t Y )

(K t X)

(Ktf)

��

where r is the arrow of |C| obtained as the transpose of the map

K // 1
1X // C(X,X)

in V. With these definitions it is routine to verify that the required V-natural
transformations exist. �

2.2.4. Stability of simplicial model categories under slicing. We now
show that simplicial model categories are stable under slicing.

Proposition 2.24. If C is a simplicial model category and A is an object of C,
then C/A is a simplicial model category.

Proof. By Lemma 2.23, C/A is a simplicial category. As such, it suffices to
show that condition (SMC2) from Definition 2.19 is satisfied. To this end, let
objects e : E // A, b : B // A, x : X // A and y : Y // A of C/A be given
together with maps p : e // b and i : x // y such that p is a fibration and i is a
cofibration.

Form the usual pullback, which is here denoted by (i, p)A,

C/A(y, b) C/A(x, b)
i∗A

//

(i, p)A

C/A(y, b)
��

(i, p)A C/A(x, e)// C/A(x, e)

C/A(x, b)

pA∗
��

where i∗A and pA∗ denote the usual action of the representable functors and the
subscript and superscript distinguish these from the representable functors for C.

The following square is a pullback

C(Y,E) (i, p)
q

//

C/A(y, e)

C(Y,E)
��

C/A(y, e) (i, p)A
q′ // (i, p)A

(i, p)
��



28 2. HOMOTOPICAL SEMANTICS OF TYPE THEORY

As such, if C is a simplicial model category, then q′ is a fibration which is acyclic
when either i or p is. �

2.2.5. Path objects in simplicial model categories. We now consider
path objects in simplicial model categories and whether these are, in general, stable
in the sense of Definition 2.13. The “unit interval” ∆[1] of SSet is here denoted by
I. Note the following standard result (cf. [26]):

Lemma 2.25. If X is a fibrant object of a simplicial model category C, then

XI 〈∂0,∂1〉 //X ×X

is a fibration.

Proof. It suffices to observe that, up to composition with an isomorphism,
〈∂0, ∂1〉 is

XI //X∂(I),

where ∂(I) is the usual simplicial boundary of I. I.e., ∂(I) is the union of the faces
of I.

Since the inclusion ∂(I) // I is a cofibration and X is fibrant it follows by
standard results that this map is a fibration (cf. Proposition 9.3.9 of [31]). �

We recall for the reader the notion of simplicial homotopy equivalence.

Definition 2.26. A map f : X // Y in SSet is a simplicial homotopy
equivalence if there exists a map f ′ : Y //X together with maps α : X× I //X
and β : Y × I // Y such that the following diagrams commute

X X × I
〈1X ,∂1〉//X

X

1X
""EEEEEEEEEE X × I Xoo〈1X ,∂0〉
X × I

X

α

��

X

X

f ′◦f
||yyyyyyyyyy

Y Y × I
〈1Y ,∂1〉 //Y

Y

1Y
""EEEEEEEEEE Y × I Yoo〈1Y ,∂0〉
Y × I

Y

β

��

Y

Y

f◦f ′
||yyyyyyyyyy

Note that we have the following (cf. Lemma 9.5.16 of [31]):

Lemma 2.27. Let C be a simplicial model category. If f : X //Y is a simplicial
homotopy equivalence (i.e., a homotopy equivalence with respect to I), then f is a
weak equivalence in C.

Lemma 2.28. In a simplicial model category C, the “constant loop” map r :
X //XI is, for any object X, a weak equivalence.

Proof. In fact, r is seen to be a simplicial strong deformation retract of Xd0 :
XI // X using the multiplication map Z : I × I // I to construct the required
homotopy. Here Z : I × I // I is given in simplices by

(f Zn g)(x) := min{f(x), g(x)},

when f, g are in In and x is in [n]. �
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Although we have, under the rather general assumption that C is a simplicial
model category, been able to show that the factorization

X

X ×X
∆ ��???????X XIr // XI

X ×X
πX���������

gives a good path object whenever X is fibrant, it is a bit more delicate to obtain a
very good path object in this way. Nonetheless, for a great many interesting simpli-
cial model categories r will be a cofibration. In particular, for all simplicial model
categories in which the cofibrations are exactly the monomorphisms. This class
of examples contains, among others, simplicial sheaves and simplicial presheaves.
Accordingly we ask whether the construction of path objects in this way is stable.

Theorem 2.29. Assume C is a simplicial model category in which the cofibra-
tions are exactly the monomorphisms, then C has stable path objects.

Proof. Given a fibration f : B // A in C, we define ι(f) to be the cellular
resolution given by

B[I, f ]
r

oo[I, f ] B

s

%%
[I, f ] B

t

99 B A
f //

where [I, f ] denotes the domain of (I t f)A as in the proof of Lemma 2.23. By
Lemmata 2.25 and 2.28 and the fact that r is a monomorphism it follows that in
C/A this data constitutes a very good path object. Thus, it is an object of CResC
and the condition that r be an acyclic cofibration is satisfied. To see that this
assignment is functorial let a commutative square

A′ A
σ
//

B′

A′

f ′

��

B′ B
σ′ // B

A

f

��
(4)

in C be given with f ′ and f fibrations. Then there exists a canonical map as
indicated in the following diagram

A AI
r
//

[I, f ]

A

pf

��

[I, f ] BI
qf // BI

AI

fI

��

[I, f ′]

BI

(σ′)I◦qf′

""

[I, f ′]

A

σ◦pf′

&&

[I, f ′]

[I, f ]

(σ,σ′)∗

%%

We define

ι(σ, σ′) :=
(
σ, σ′, (σ, σ′)∗

)
.

This assignment is functorial by the fact that (I t −) is functorial. That it is a
homomorphism of cellular resolutions follows from the universal property of pull-
backs.
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To see that this functor ι : CF //CResC is fibred assume that (4) is a pullback
and let a homomorphism (h, h0, h1) : (C, V,E) //(A,B, [I, f ]) of cellular resolutions
such that h = σ ◦ g for some g : C //A′ be given. Because (4) is a pullback there
exists a canonical map g0 : V //B′ such that f ′ ◦g0 = g ◦ε and σ′ ◦g0 = h0, where
ε is the augmentation V // C. Because (I t −) is a right adjoint and therefore
preserves limits, it follows that

A′ A
σ

//

[I, f ′]

A′

pf′

��

[I, f ′] [I, f ]
(σ,σ′)∗ // [I, f ]

A

pf

��

is a pullback (and therefore the third condition of Definition 2.13 is satisfied). Thus,
there also exists a canonical map g1 as indicated in the following diagram:

A′ [I, f ′]oo
pf′

[I, f ′] [I, f ]
(σ,σ′)∗

//

E

A′

g◦ε◦s

{{wwwwwwwwwwww
E

[I, f ′]

g1

��

E

[I, f ]

h1

##GGGGGGGGGGG

It follows from the definitions and the universal property of pullbacks that (g, g0, g1)
is a homomorphism such that(

σ, σ′, (σ, σ′)∗
)
◦ (g, g0, g1) = (h, h0, h1).

Moreover, it is, by definition, the canonical homomorphism with this property.
Thus, we have shown that C possesses stable path objects. �

Corollary 2.30. Any simplicial model category C satisfying the hypotheses of
Theorem 2.29 is a quasi-model of type theory.

2.3. Coherence of elimination terms

Although we have shown that using arbitrary weak factorization systems it is
possible to choose maps J which can be used to interpret the elimination terms,
because these choices are entirely arbitrary they need not be compatible with pull-
back. I.e., the coherence condition

x : C, y : A(x), z : A(x), v : IdA(x)(y, z) ` D(x, y, z, v) : type

x : C, u : A(x) ` d(u) : D
(
x, u, u, rA(x)(u)

)
x : C ` p(x) : IdA(x)(a(x), b(x)) ` c : C

J coherence(
JA(x),D

(
d(x), a(x), b(x), p(x)

))
[c/x] = JA(c),D

(
d(c), a(c), b(c), p(c)

)

(5)

need not be satisfied by the choice of maps made in an arbitrary weak factorization
system. It is the aim of this section to investigate this condition in more detail.
Examples of models which satisfy this condition will be given in Chapter 3.
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2.3.1. The coherence condition. Although, as we have seen, weak factor-
ization systems are in general capable of satisfying some of the axioms of type
theory, when it comes to obtaining models of type theory which possess pullback
stable elimination terms it is often convenient to restrict the interpretation of types
to certain well-behaved fibrations. In such situations one is then able to simply
ignore the left-class L of the factorization system and work with the special fibra-
tions. As such, it will be convenient to phrase the discussion of the coherence of
elimination terms in this more general setting. This task involves first reformulating
the discussion of cellular resolutions from above in terms of arbitrary comprehen-
sion categories. This generalization is necessary because the examples we present
in Chapter 3 fit in this setting and not in the setting of models derived from a weak
factorization system.

Definition 2.31. Given a comprehension category P(−) : P //C, the category
CRes(P(−) : P // C) of cellular resolutions with respect to P(−) : P // C
has objects tuples (α, α′, r) such that α is an object of P, α′ is in the fibre P(A+

α )
of P(−) over A+

α , where A = P(α), and r is as indicated in the following diagram

Aα

A+
α

∆ ��??????Aα (A+
α )α′

r // (A+
α )α′

A+
α

πα′��������

An arrow (α, α′, r) // (β, β′, r) in CRes(P(−) : P // C) consists of a pair (f, f ′)
such that f : α // β and f ′ : α′ // β′ are arrows in P such that f ′ lies over the
induced map f1 ×f0 f1 : A+

α
//B+
β where

A B
f0

//

Aα

A

πα
��

Aα Bβ
f1 // Bβ

B

πβ
��

is χ(f). Finally, we require that

(A+
α )α′ (B+

β )β′
f ′1

//

Aα

(A+
α )α′

r
��

Aα Bβ
f1 // Bβ

(B+
β )β′

r
��

commutes, where f ′1 as indicated in the following commutative square χ(f ′):

A+
α B+

βf1×f0f1

//

(A+
α )α′

A+
α

πα′
��

(A+
α )α′ (B+

β )β′
f ′1 // (B+

β )β′

B+
β

πβ′
��

The category of cellular resolutions from Definition 2.31 is more general than
Definition 2.10 in that it makes sense for arbitrary comprehension categories. We
note that it is an actual generalization in the sense indicated in the following
Scholium:
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Scholium 2.32. When the comprehension category P(−) is the codomain map
∂1 : CR // Cf associated to a weak factorization system (L,R) on C, then CResC
is isomorphic to CRes(∂1 : CR // Cf).

We also note that, via the projection π : CRes(P(−)) // C which sends
(α, α′, r) to A = P(α) is a Grothendieck fibration. The following definition general-
izes the notion of stable path objects to the setting of an arbitrary comprehension
category.

Definition 2.33. Assume P(−) : P // C is a comprehension category with
comprehension χ. Then P(−) : P // C is said to have stable identity types if
there exists a fibred functor

P

C
P(−) ��???????P CRes(P(−))ι // CRes(P(−))

C
π��������

such that:

• ι is a section of the first projection π0 : CRes(P(−)) // P which sends
(α, α′, r) to α and similarly for maps; and

• If an arrow ϕ : α // β in P is cartesian over f : A //B, then the second
component ϕ′ of ι(ϕ) = (ϕ,ϕ′) is cartesian over (f1 ×f f1) : A+

α
//B+
β .

When P(−) : P // C has stable identity types, we denote by i(α) the second
component of ι(α). I.e., ι(α) =

(
α, i(α), r

)
. Similarly, I(α) denotes the object

(A+
α )i(α), for α ∈ P(A). Similar notation is employed for the result of applying ι

to arrows. We also write 〈s, t〉 for the map πα′ : I(α) //A+
α .

Clearly when P is CR for a weak factorization system (L,R) in C, the existence
of stable identity types follows from the existence of stable path objects in the
sense of Definition 2.13. The converse, however, need not hold since the reflexivity
maps need not be in L. In particular, this further condition from Definition 2.13
will be unnecessary in light of the additional condition governing the existence of
elimination terms which we now consider.

Example 2.34. The motivating example of a comprehension category with sta-
ble identity types is the syntactic comprehension category P(−) : C(Tω)D

//C(Tω),
where D is the collection of dependent projections (cf. Section B.4 of Appendix B).

Assume α ∈ P(A) and let Υα denote the functor

P
(
I(α)

)
// Set

which sends an object β in the fiber P
(
I(α)

)
to the hom-set

(
C/I(α)

)
(r, πβ), where

πβ : I(α)β //I(α), as usual and r : Aα //I(α) is the “reflexivity” term associated
to ι(α), as above. There is also a functor Γα : P

(
I(α)

)
// Set which sends a β

to the set P
(
I(α)

)
[1, πβ ] of sections of πβ : I(α)β // I(α). Precomposition with

r : Aα // I(α) yields a natural transformation

Γα
ϑα,− +3Υα.
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Definition 2.35. A choice of elimination terms for a comprehension cat-
egory P(−) : P // C with stable identity types consists of a family of sections

Υα(β)
Jα,β // Γα(β)

of the maps (of sets) ϑα,β for all objects α of P and β of P
(
I(α)

)
.

It is straightforward to verify that a choice of elimination terms amounts exactly
to, as the nomenclature suggests, a choice of diagonal fillers for diagrams of the
following form:

I(α) I(α)

Aα

I(α)

r

��

Aα
(
I(α)

)
β

d //
(
I(α)

)
β

I(α)

πβ

��
I(α)

(
I(α)

)
β<<

(6)

Remark 2.36. We emphasize that the maps Jα,β are, if they exist, arrows in
Set and not arrows in C. Such a function Jα,β between sets is a choice of diagonal
fillers: it assigns to every commutative square (6) a corresponding diagonal filler
Jα,β(d). Thus, when, as in Definition 2.35, we say that a comprehension category
P(−) has a choice of elimination terms we mean that P(−) comes equipped with
a fixed choice of sections Jα,β for all α and β. I.e., a choice of elimination terms is
additional structure on P(−) and not merely a property of P(−).

In particular, the fact that, given a map d as indicated in the diagram, Jα,β(d)
is in Γα(β) means that the bottom triangle commutes. Likewise the fact that Jα,β
is a section of ϑα,β means precisely that the upper triangle commutes.

Remark 2.37. The reason for requiring “pointwise” sections Jα,β in Definition
2.35 rather than stipulating the existence of a section Jα,− of ϑα,− in the functor
category

[
P
(
I(α)

)
,Set

]
is that, syntactically, naturality of Jα,− is too strong of a

requirement. To see this observe that naturality of Jα,− can be stated syntactically
as the requirement that, when D(x, y, z) and E(x, y, z) are both types in the context(
x, y : A, z : A(x, y)

)
,

x, y : A, z : IdA(x, y), w : D(x, y, z) ` h(x, y, z, w) : E(x, y, z)

x : A ` d(x) : D(x, x, rA(x))
Nat.

x, y : A, z : IdA(x, y) `

h
(
x, y, z, J(d, x, y, z)

)
= J

(
[x : A]h(x, x, rA(x), d(x)), x, y, z

)
: E(x, y, z)

where we have, for ease of presentation, omitted the ambient context Γ. However,
this principle is implies the η-rule for identity types:

Γ, x, y : A, z : IdA(x, y) ` D(x, y, z) : type

Γ, x, y : A, z : IdA(x, y) ` e(x, y, z) : D(x, y, z)
η

Γ, x, y : A, z : IdA(x, y) ` e(x, y, z) = J
(
[x : A]e(x, x, rA(x)), x, y, z

)
: D(x, y, z)

which Streicher [80] has shown to be equivalent to the reflection rule. To see this,
observe that (Nat) trivially implies (η) by taking E(x, y, z) to be D(x, y, z) and
h(x, y, z, w) to be e(x, y, z) with the variable w weakened in.
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Definition 2.38. Let P(−) : P //C be a comprehension category with stable
identity types as above and assume given α ∈ P(A), β ∈ P(B) and an arrow ϕ :
α //β in P which is cartesian over f : A //B in C. Then, when δ ∈ P

(
I(β)

)
, there

exists an arrow I(ϕ)δ : δ ·I(ϕ) //δ in P which is cartesian over I(ϕ) : I(α) //I(β).
Applying the comprehension to this map yields the following pullback square:

I(β) I(α)
I(ϕ)

//

I(α)δ·I(ϕ)

I(β)
��

I(α)δ·I(ϕ) I(β)δ
ψ // I(β)δ

I(α)
��

We say that P has coherent identity types if it comes equipped with a choice
of elimination terms such that if, for any element d of Υβ(δ),

I(α)δ·I(ϕ) I(β)δ
ψ
//

I(α)

I(α)δ·I(ϕ)

Jα,δ·I(ϕ)(d
′)

��

I(α) I(β)
I(ϕ) // I(β)

I(β)δ

Jβ,δ(d)

��
(7)

commutes, where d′ is the canonical element of Υα

(
δ · I(ϕ)

)
obtained from d via

pullback.

When C has a weak factorization system (L,R) such that CR //Cf has coherent
identity types in the sense of Definition 2.38 we sometimes say that C has coherent
path objects.

In general, it is unreasonable to expect a weak factorization system (L,R) in a
category C to possess coherent path objects since the lifts are not often given func-
torially. One possible method, which has been suggested by Richard Garner, for
resolving this difficulty is to consider instead what are called natural weak factoriza-
tion systems [27, 24]. The approach we pursue here, motivated by the groupoids
model of Hofmann and Streicher [35], is instead to consider cases where it is pos-
sible to restrict the interpretation of types to certain well-behaved fibrations. For
now we simply state the following definition and mention that the examples of such
categories can be found in Chapter 3.

Definition 2.39. Assume C is a category equipped with a weak factorization
system (L,R). A coherent restriction of (L,R) consists of a category S together
with a fibred functor k as indicated in the following diagram

S

Cf
P(−) ��???????S CR

k // CR

Cf
∂1��������

such that k is faithful and the resulting comprehension category P(−) : S // Cf
has coherent identity types. In this situation we think of the objects (in the image
of) of S as “special” distinguished fibrations.

In some cases we can say more about S. In particular, it will sometimes occur
that the inclusion functor k : S //CR possesses one or both adjoints. Simply having
a comprehension category equipped with coherent identity types is not enough to
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model on the nose all rules of type theory. We now turn to the issue of turning a
coherent model of type theory (one where the rules are satisfied up to isomorphism)
into a split model of type theory (one where the rules are satisfied on the nose).

2.4. Split models via the Bénabou construction

Although we have seen that categories C possessing weak factorization systems
(L,R) provide non-split models of type theory it is desirable to have models which
are also split. For extensional type theory Hofmann [33] observed that given a
locally cartesian closed category C, it is possible to obtain a split fibration equivalent
to the codomain fibration C→ // C using a construction due to Jean Bénabou
[7, 25, 38]. In this section we study the behavior of this construction for those
comprehension categories resulting from the discussion above.

2.4.1. Identity types in the associated split fibration. We assume that
the reader is familiar with the technique, due to Jean Bénabou [7], for construct-
ing an equivalent split fibration from a given fibration. When P(−) : P // C is
a comprehension category with stable identity types as above, we would like to
investigate the properties of the split fibration Ps(−) : Ps // C which corresponds
in this way to P(−). First, recall that when A is an object of C, Ps(−) is given in
fibers by

Ps(A) := Fib(C)
(
C/A ∂0 // C, P

P(−)// C
)
,

where Fib(C) is the usual category of Grothendieck fibrations over C, and, when
σ : A′ //A is an arrow between fibrant objects and α ∈ Ps(A),

(α · σ) :=
(
C/A′ Σσ // C/A α // P

)
∈ Ps(A′).

The comprehension for Ps(−) : Ps // C, which we leave nameless, sends an object
α ∈ Ps(A) to the arrow χ

(
α(1A)

)
in C. Similarly, given β ∈ Ps(B), an arrow α //β

— which, recall, is given by a pair (f, f ′) where f : A //B is an arrow in C and f ′

is a fibred natural transformation from α to (β · f) — is sent to χ(f ′1A).

Remark 2.40. We mention that the construction given below of the identity
types for the associated split fibration requires that we make a choice of pullbacks
in C. Because this choice is only required for the definition of the action of the
identity types on objects the entire construction remains functorial. (This is the
same as for the treatment of identity types by Hofmann in [33].)

Given α ∈ Ps(A), we will abbreviate the element α(1A) ∈ P(A) by α̃ in order to
simplify some of the notation below. In this notation, applying the comprehension
χ of Ps(−) to α yields the arrow πα̃ : Aα̃ //A in C. For sections a, b : A ////Aα̃ of
πα̃ : Aα̃ //A, the identity type ı(α, a, b) ∈ Ps(A) is defined as follows.

Objects: Given an object f : B //A of C/A, we have α(f) ∈ P(B). Apply-
ing ι therefore yields an object ι

(
α(f)

)
=
(
α(f), i(α), r

)
of CRes(P(−)).

In particular, i(α(f)) ∈ P(B+
α(f)). Moreover, in C we have the arrow

〈a[f ], b[f ]〉 : B // B+
α(f). Therefore, we define ı(α, a, b)(f) to be the do-

main of the (chosen) cartesian lift of 〈a[f ], b[f ]〉 with respect to i(α(f)).
I.e.,

ı(α, a, b)(B
f //A) := i(α(f)) · 〈a[f ], b[f ]〉,
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which is an object of P.
Arrows: To define the action of ı(α, a, b) on arrows let an arrow

C

A

g ��???????C B
h // B

A

f���������

in C/A be given. Applying α yields an arrow α(h) : α(g) // α(f)
in P which is cartesian over h. Therefore, applying ι yields an arrow
ι
(
α(h)

)
: ι
(
α(g)

)
// ι
(
α(f)

)
in CRes(P(−)). In particular, ι

(
α(h)

)
=(

α(h), i(α(h))
)

and the arrow

ı(α, a, b)(g)
〈a[g],b[g]〉i(α(g)) // i

(
α(g)

) i(α(h)) // i
(
α(f)

)
in P lies over (hα̃ ×h hα̃) ◦ 〈a[g], b[g]〉 : C //B+

α(f). Now,

B B+
α(f)〈a[f ],b[f ]〉

//

C

B

h

��

C C+
α(g)

〈a[g],b[g]〉 // C+
α(g)

B+
α(f)

hα̃×hhα̃
��

commutes and therefore, using the fact that 〈a[f ], b[f ]〉i(α(f)) is cartesian,
we define ı(α, a, b)(h) : ı(α, a, b)(g) // ı(α, a, b)(f) to be the canonical
map over h for which

〈a[f ], b[f ]〉i(α(f)) ◦ ı(α, a, b)(h) = i
(
α(h)

)
◦ 〈a[g], b[g]〉i(α(g)).

Lemma 2.41. As defined, ı(α, a, b) : C/A // P is a fibred functor from ∂0 to
P(−).

Proof. Functoriality is routine since the action of ı(α, a, b) on arrows is defined
in a canonical way. That ı(α, a, b) is fibred follows from the second condition from
Definition 2.33. �

2.4.2. Properties of the identity types. We now turn to investigating the
properties of the identity types just defined.

Lemma 2.42. The identity types for Ps(−) : Ps // C defined above satisfy the
coherence condition for identity types.

Proof. Given any σ : A′ //A in the base and any object f : B //A′ of C/A′
we have (

ı(α, a, b) · σ
)
(f) = ı(α, a, b)(σ ◦ f)

= i
(
α(σ ◦ f)

)
· 〈a[σ ◦ f ], b[σ ◦ f ]〉

= i
(
(α · σ)(f)

)
· 〈a[σ][f ], b[σ][f ]〉

= ı(α · σ, a[σ], b[σ])(f),

as required. The case of arrows is similarly straightforward. �
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Given α ∈ Ps(A) as above and a section a of Aα̃ //A, we will now describe the
reflexivity term ρ(α, a). First, note that applying ı(α, a, a) to the object 1A : A //A
of C/A yields a cartesian arrow

ı(α, a, a)(1A)
〈a,a〉i(α̃) // i

(
α̃
)

over 〈a, a〉 : A //A+
α̃ . Therefore, applying the comprehension χ to this data yields

a pullback square

A A+
α〈a,a〉

//

P1A

A

l

��

P1A I(α̃)m // I(α̃)

A+
α

〈s,t〉
��

where we have written P1A instead of the more cumbersome Aı(α,a,a)(1A) and l in
place of πı(α,a,a)(1A). The interpretation of the reflexivity term is then the section
ρ(α, a) : A // P1A of l : P1A

// A induced the composite r ◦ a : A // I(α̃)
where r is the reflexivity map r : Aα̃ // I(α̃). I.e., r is the final component of
ι
(
α̃
)

=
(
α̃, i(α̃), r

)
.

Lemma 2.43. The reflexivity terms for Ps(−) : Ps // C satisfy the coherence
condition for reflexivity terms.

Proof. Suppose given σ : A′ //A. Then,

A′

A

σ ��???????A′ A
σ // A

A

1A���������

is an arrow in C/A and applying χ ◦ ı(α, a, a) yields a pullback square

A′ A
σ

//

Pσ

A′

l′

��

Pσ P1A
σ̂ // P1A

A

l

��

in C, where we have made similar abbreviations to those mentioned above. By
definition, ρ(α, a)[σ] is then the canonical section A′ // Pσ of l′ : Pσ // A′ for
which σ̂ ◦ ρ(α, a)[σ] = ρ(α, a) ◦ σ where

On the other hand, ρ(α · σ, a[σ]) is the canonical section of l′ for which m′ ◦
ρ(α · σ, a[σ]) = r ◦ a[σ] where m′ : Pσ // I

(
α(σ)

)
is the map obtained, for σ, as m

was for 1A above. In this case it is straightforward to verify that both ρ(α · σ, a[σ])
and ρ(α, a)[σ] make the following diagram commute when inserted as the dotted
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arrow:

A′ A′+α(σ)〈a[σ],a[σ]〉
//

Pσ

A′

l′

��

Pσ I(α(σ))m′ // I(α(σ))

A′+α(σ)

��

I(α(σ)) I(α̃)// I(α̃)

A+
α̃

��
A′+α(σ) A+

α̃
//

A′ A
σ // A

I(α̃)

r◦a

((

A′

A′

1A′

##

A′

Pσ
$$

To see that this is the case we emphasize that it must be used that I(α(σ)) :
I(α(σ)) // I(α̃) commutes with r maps and that m ◦ σ̂ = I(α(σ)) ◦ m′, which
follows from the definition of ı(α, a, a)(σ : σ // 1A). �

With these lemmata at our disposal we obtain a preliminary result regarding
homotopical models.

Proposition 2.44. Assume C if a finitely complete, locally cartesian closed
category equipped with a weak factorization system (L,R) which has stable path
objects for which pullback σ∗ along a fibration σ : A′ // A between fibrant objects
preserves maps in L. Then the split fibration Ps(−) : Ps // Cf associated to the
fibration CR // Cf is a model of T− together with the formation and introduction
rules governing identity types. Moreover, the coherence conditions for identity types
and reflexivity terms are satisfied, and Ps(−) is a split quasi-model of identity types.

Proof. Under these conditions it follows by a standard argument relating
adjunctions and lifting properties that, since σ∗ preserves maps in L, the corre-
sponding dependent product Πσ preserves elements of R. Thus the formation rule
for dependent products is valid. The underlying model always possesses dependent
sums since R is stable under composition. As Hofmann [33] has already shown
that these operations are preserved, and satisfy all of the corresponding rules on
the nose, in the associated split fibration Ps(−) : Ps // Cf, it suffices to show that
Ps(−) validates the rules governing quasi-models of identity types. By Lemmata
2.42 and 2.43 it suffices to check that the introduction, elimination and conver-
sion rules are satisfied in the quasi-model sense. However, in the discussion above
we have already seen that the introduction rule is valid. Finally, validity of the
elimination and conversion rules follows from the argument given in the proof of
Theorem 2.17. �

Remark 2.45. Note that the assumption that pullback along a fibration be-
tween fibrant objects preserves L maps is required only for the interpretation of
dependent products.

The hypothesis of Proposition 2.44 relating to dependent products is satisfied
in many (locally cartesian closed) model categories. Recall that a model category
C is right proper if and only if weak equivalences are stable under pullback along
fibrations. Many model categories, including both the category SSet of simplicial
sets and the category Top of spaces, are right proper (cf. [31, 36]).

Corollary 2.46. Assume C is a right-proper simplicial model category in
which the cofibrations are the monomorphisms. Then if C is locally cartesian closed,
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the associated split fibration P(−) : P // Cf is a model of T− as well as the for-
mation and introduction rules for identity types, and the coherence conditions on
identity types and reflexivity terms. Moreover, it is a split quasi-model of identity
types.

2.4.3. Elimination terms. Assume given an object A of C and α in Ps(A).
We would like to see that elimination terms are stable under substitution along a
map σ : A′ //A in the base. In this situation, when there exists δ in Ps

(
I(α̃)

)
and

a map

Aα̃

I
(
α̃
)r ��??????Aα̃ D

d // D

I
(
α̃
) g��������

where we have written D for
(
I(α̃)

)
δ(1I(α̃))

and g for πδ(1I(α̃)), it follows that there
is a distinguished section J : I(α̃) // D of g defined to be Jα̃,δ(d), where this
notation is as in Section 2.3.1. There also exists a map J ′ : I(α(σ)) //D′ obtained
by applying Jα(σ),δ(σ) to the map d′ indicated in the following diagram:

I(α(σ)) I(α̃)
I(α(σ))

//

A′α(σ) Aα̃//A′α(σ)

I(α(σ))
))

D′ D
σ′ //

Aα̃

I(α̃)**

Aα̃

Dd
11D′

I(α(σ))

g′

��

D

I(α̃)

g

��

A′α(σ)

D′d′
11

where D′ is
(
I(α(σ))

)
δ·I(α(σ))

and g′ is the associated projection. Because the path
objects in C are assumed to be coherent the following diagram commutes:

D′ D
σ′

//

I(α(σ))

D′

J′

��

I(α(σ)) I(α̃)
I(α(σ)) // I(α̃)

D

J

��
(8)

Now, let sections a, b : A //Aα̃ of πα̃ be given together with a section f : A //Q1A

of the projection l : Q1A
// A where the notation Q1A , et cetera corresponds to

the P1A notation from above as indicated in the following pullback diagrams:

A A+
α̃〈a,b〉

//

Q1A

A

l

��

Q1A I(α̃)m // I(α̃)

A+
α̃

��
A′ (A′)+

α(σ)〈a[σ],b[σ]〉
//

Qσ

A′

l′

��

Qσ I(α(σ))m′ // I(α(σ))

(A′)+
α(σ)

��

We would now like to compare two different sections which arise given this data.
On the one hand, we have J [m][f ][σ] which is obtained by repeatedly substituting
into J as indicated in the following diagram (see Remark 2.15 for the definition of
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this notation):

A′ Aσ
// A Q1Af

// Q1A I(α̃)
m

//

A′ A// A Q1A
// Q1A I(α̃)//A′

A′
1 ��????? A

A
1 ��????? Q1A

Q1A

1 ��????? I(α̃)

I(α̃)
1 ��????

D

I(α̃)
��

I(α̃)

D
J

55lllllll
·

Q1A

��

Q1A

·J[m] 55llllllll
· D//·

A
��

A

·J[m][f ] 55lllllllll

· ·//·

A′
��

A′

·J[m][f ][σ] 55lllllllll

· ·//

The section J ′[m′][f ′] is constructed in an analogous way, where f ′ is the canonical
section A′ // Qσ of the projection Qσ // A′ such that the following diagram
commutes:

Q1A I(α̃)
m

//

A′

Q1A

f◦σ
��

A′ Qσ
f ′ // Qσ

I(α̃)

I(α(σ))◦m′

��

One of the first steps to verifying the coherence condition for the elimination terms
is to compare this section with J [m][f ][σ].

Lemma 2.47. Given the data as above,

J [m][f ][σ] = J ′[m′][f ′]

Proof. It suffices to prove that

σ′ ◦ J ′ ◦m′ ◦ f ′ = J ◦m ◦ f ◦ σ,

which is seen to obtain as follows:

J ◦m ◦ f ◦ σ = J ◦ I(α(σ)) ◦m′ ◦ f ′

= σ′ ◦ J ′ ◦m′ ◦ f ′

where the first equation is by definition of f ′ and the second equation is by (8). �

In the case where the data above comes from the interpretation of judgements
in type theory additional care is required. Namely, when the object A is the inter-
pretation [[∆]] of a context and α is the interpretation [[∆ ` T : type]], the object
I(α̃) need not denote the context (∆, x : T, y : T, z : IdT (x, y)). In particular, to
see how this context is interpreted, note that, in order to obtain the judgement

∆, x, y : T ` IdT (x, y) : type

we must first regard T itself as a type in context (∆, x, y : T ) and then form
the identity type with respect to this context and the weakened term judgements
∆, x, y : T ` ξ : T for ξ = x, y. Now, where π̂ : A+

α̃
// A is the projection, we

have

[[∆, x, y : T ` T : type]] = (α · π̂), and

[[∆, x, y, z : T ]] = B,
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where B is (A+
α̃ )α̃ as indicated in the following pullback square:

A+
α̃ A

π̂
//

B

A+
α̃

πα(π̂)

��

B Aα̃
π̂α̃ // Aα̃

A

πα̃

��

As such, there exist canonical sections pξ : A+
α̃

////B, for ξ = +,−, of the resulting
projection B //A+

α̃ such that

π̂α̃ ◦ pξ = πξα̃,

in the notation of Remark 2.15. These interpret the weakened judgements ∆, x, y :
T ` x : T and ∆, x, y : T ` y : T , respectively. In light of the interpretation of
identity types given above, the context (∆, x : T, y : T, z : IdT (x, y)) is interpreted
as the object Ĩ(α̃) obtained by applying ı(α̃ · π̂, p+, p−) to 1Aα̃+ . In particular, Ĩ(α̃)
fits into the following pullback square

A+
α̃ B+

〈p+,p−〉
//

Ĩ(α̃)

A+
α̃

τ

��

Ĩ(α̃) I(α(π̂))
q // I(α(π̂))

B+

〈s,t〉
��

Because this construction involves making a choice of cartesian lifts, it will not in
general be the case that Ĩ(α̃) is equal to I(α̃). Nonetheless, it is straightforward
to prove that, as objects of CRes(P(−)), ι(α̃) =

(
α̃, i(α̃), r

)
and

(
α̃, i(α(π̂)) ·

〈p+, p−〉, r
)

are isomorphic via a canonical isomorphism. Namely, we have

i
(
α(π̂)

)
· 〈p+, p1〉

〈p+,p−〉i(α(π̂))// i
(
α(π̂)

) i(α(π̂)) // i(α̃)

cartesian over 1A+
α̃

, where we use the fact that π̂ : π̂ // 1A in C/A. Let us denote
this map by ϕ. It is easily shown, using the fact that ϕ is cartesian, that there
exists an inverse ϕ−1 : i(α̃) //i

(
α(π̂)

)
·〈p+, p1〉, and that ϕ and its inverse commute

with the required structure to be maps in CRes(P(−)). Bearing this isomorphism
in mind we may now correctly interpret elimination terms in the split fibration
Ps(−) : Ps // C.

Theorem 2.48. If P(−) : P // C is a comprehension category with coher-
ent identity types and fibred dependent products and sums, then the split fibration
Ps(−) : Ps // C associated to P(−) is a split model of Tω.

Proof. By the Corollary to Proposition 2.44 it suffices to show that the elimi-
nation, conversion and coherence rules for elimination terms is satisfied. Explicitly,
the hypotheses of the elimination rule give us an element δ of Ps(Ĩ(α̃)) together
with a commutative triangle:

Aα̃

Ĩ(α̃)

r ��??????Aα̃ D
d // D

Ĩ(α̃)

g��������
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where D now abbreviates
(
Ĩ(α̃)

)
δ(1Ĩ(α̃))

and g denotes the associated projection.

Thus, the isomorphism ϕ̄ : Ĩ(α̃) // I(α̃), obtained by applying χ to ϕ, yields the
the appropriate data from which we have a section Jα̃,ϕ̄◦g(d) : I(α̃) // D of the
composite ϕ̄ ◦ g : D // I(α̃). Precomposing with ϕ̄ yields the interpretation of the
elimination term:

[[∆, x, y : T, z : IdT (x, y) ` JT,D(d, x, y, z) : D(x, y, z)]] := Jα̃,ϕ̄◦g(d) ◦ ϕ̄.
Diagrammatically, we have

Aα̃ D
d //Aα̃

I(α̃)

r

��

Ĩ(α̃)

I(α̃)

ϕ̄

??�������

D

Ĩ(α̃)

g��
Ĩ(α̃)

I(α̃)

ϕ̄
��

I(α̃) I(α̃)
1I(α̃)

//

Aα̃

Ĩ(α̃)

r

��
Ĩ(α̃) Ĩ(α̃)

1Ĩ(α̃)

//

D

Ĩ(α̃)

g



I(α̃)

Ĩ(α̃)
��???????

I(α̃)

D

J(d)

;;

With this definition the elimination and conversion rules are clearly satisfied. The
coherence rule then follows, taking into account the interpretation of the J terms
just given, from Lemma 2.47.

Finally, although the proof in [33] does not consider the case of the split fi-
bration associated to an arbitrary comprehension category with fibred dependent
sums and products, the arguments given there, for the specific case of the codomain
fibration of a locally cartesian closed category, generalize directly to this setting. �

Corollary 2.49. If C is a locally cartesian closed category with a weak fac-
torization system (L,R) and coherent identity types such that the pullback σ∗ along
a fibration σ : A′ // A between fibrant objects preserves maps in L, then the split
fibration associated to ∂1 : CR // Cf is a split model of Tω.

In particular, we remark that Theorem 2.48 implies that, when P(−) : S // C
is a coherent restriction of a weak factorization system in C which has coherent
identity types and satisfies the pullback stability condition of Corollary 2.49, the
associated split fibration is a split model of Tω.



CHAPTER 3

Cocategories and Intervals

Approached from an abstract perspective, one of the most fundamental features
of the category of spaces which makes a homotopy theory possible is the presence
of an object I by which the notions of paths and appropriate deformations thereof
may be defined. When dealing with topological spaces I is most naturally taken
to be the unit interval; but there are other instances where the homotopy theory
of a category is, in an appropriate sense, determined by a suitable interval. For
example, the simplicial interval I = ∆[1] determines (in an appropriate sense) the
classical model structure on the category of simplicial sets. The sense in which this
holds has been recently clarified by the work of Cisinski [15, 16]. Another example
comes from the natural model structure on Cat due to Joyal and Tierney [47],
in which the role of I is played by the category 2 which is the free category on
the graph consisting of two vertices and one edge between them. Finally, we also
mention the work of Berger and Moerdijk [8] who employ Hopf intervals in order
to study the homotopy theory of operads.

In this chapter, we introduce and study one notion of interval — namely, co-
category objects endowed with additional structure — which yields in the ambient
category a useful notion of homotopy. The leading example is the category Gpd
of small groupoids where the appropriate interval is the free connected groupoid
with two distinct objects. Every such interval I gives rise to a 2-category structure
on its ambient category and the initial sections of this chapter are devoted to in-
troducing and studying the 2-categories which arise in this way. Along these lines,
Section 3.2 is concerned with studying Hurewicz fibrations in a category equipped
with an interval. In particular, whether certain maps are Hurewicz fibrations is
related to the existence of additional algebraic structure on the interval. In Section
3.3 we address the question of when the 2-category structure induced by an inter-
val is representable or finitely complete (in the 2-categorical sense). The principal
result is Theorem 3.36 which provides a characterization of those intervals which
give rise to representable 2-category structures. By a theorem due to Lack [51],
any representable 2-category possesses a Quillen model structure. As a corollary
of this result it follows that, whenever an interval I gives rise to a representable
2-category, the ambient category possesses a model structure in which the weak
equivalences are exactly the “I-homotopy equivalences”. Section 3.4 contains the
main type theoretic results of this chapter. In particular, modifying a construction
due to Street [75] to the present setting, whenever I possesses an interval there
result (2-)monads on all of the slice (2-)categories of the ambient category. The
strict algebras for these monads may be regarded as split fibrations induced by the
interval. The main result of this chapter, Theorem 3.47, is that, when I is “invert-
ible” in a suitable sense, restricting to these split fibrations yields a coherent model
of type theory. Finally, in Section 3.5 we apply these results to show that categories

43
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of internal groupoids always admit coherent models of type theory. Moreover, when
the ambient category is locally cartesian closed, the resulting model validates also
the rules governing dependent products.

The results of this chapter regarding intervals should be of independent interest
in homotopy theory and 2-dimensional category theory. Those regarding type the-
ory extend the original Hofmann-Streicher [35] model to cover groupoids internal
in categories other than the category of sets and also promise to yield further, more
exotic, models of type theory.

Henceforth, unless otherwise stated, we assume that the ambient category E is
a (finitely) bicomplete category which is also cartesian closed.

3.1. Cocategory objects

The definition of internal cocategory (or cocategory object) in E is exactly dual
to the definition of internal categories. However, in order to fix notation and provide
a bit more motivation for this concept we will rehearse the definition in full. For
us, the principal motivation of the definition of cocategories is that a cocategory in
E provides (more than) sufficient data to define a reasonable notion of homotopy in
E . In thinking about cocategory objects it is often instructive to view them as anal-
ogous to the unit interval in the category of topological spaces. However, we should
emphasize that the unit interval is not a cocategory object (e.g., cocomposition is
only associative up to homotopy) as the reader can easily verify.

3.1.1. The definition. Rather than rehearse the definition of internal cate-
gories and force the reader to dualize, we state the definition of cocategory object
directly.

Definition 3.1. An internal cocategory or cocategory object C in a
category E with pushouts consists of the following data.

Objects: C0 (object of coobjects), C1 (object of coarrows) and C2

(object of cocomposable coarrows).
Arrows: ⊥,> : C0

// //C1 (bottom and top), i : C1
//C0 (coidentities),

↓, ↑: C1
// // C2 (initial segment and final segment), and ? : C1

// C2

(cocomposition).

Satisfying the following list of requirements.

• The following square is a pushout:

C1 C2.↓
//

C0

C1

>
��

C0 C1
⊥ // C1

C2.

↑
��

(9)

• The following diagram commutes:

C0 C1
⊥ //C0

C0.

CCCCCCC

CCCCCCC
C1

C0.

i
��

C1 C0
oo >C1

C0.
��

C0

C0.
{{{{{{{

{{{{{{{
(10)
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• The following diagrams commute:

C1 C2,↓
//

C0

C1

⊥
��

C0 C1
⊥ // C1

C2,

?

��
C1 C2.↑

//

C0

C1

>
��

C0 C1
> // C1

C2.

?

��
and(11)

• The following co-unit laws hold:

C1 C2
oo
[⊥◦i,1C1 ]

C2 C1.
[1C1 ,>◦i]

//

C1

C1

ttttttttttt

ttttttttttt
C1

C2

?

��

C1

C1.

JJJJJJJJJJ

JJJJJJJJJJ

(12)

• Finally, let the object C3 (the object of cocomposable triples) be
defined as the the following pushout:

C2 C3,q0
//

C1

C2

↓
��

C1 C2
↑ // C2

C3,

q1

��

and observe that (by the dual of the “two-pullbacks” lemma) C3 may be
alternatively described as the following pushout:

C1 C3,r0
//

C0

C1

>
��

C0 C2
↓◦⊥ // C2

C3,

q0

��

where r0 := q1◦ ↓ or as the pushout of ↑ ◦> along ⊥:

C1 C3,r1
//

C0

C1

⊥
��

C0 C2
↑◦> // C2

C3,

q1

��

where r1 := q0◦ ↑.
The coassociative law then states that the following diagram com-

mutes:

C2 C3.
[q1◦?,r1]

//

C1

C2

?

��

C1 C2
? // C2

C3.

[r0,q0◦?]
��

(13)

Several comments on this definition are in order. Although some of the nomen-
clature employed is at this point unfamiliar it is justified below when we explain
our intended interpretation (also, it allows us to avoid such repugnant locutions as
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“cocodomain”). In particular, ⊥ is the dual of a domain map, > is the dual of a
codomain map, and ↓ and ↑ are dual to the first and second projections, respectively.

Proposition 3.2. If C is a cocategory object in E, then, for any object D
of E, the slice category E/D also possesses a cocategory object CD. Moreover, if
f : B // D is an arrow in E, then ∆f : E/D // E/B preserves the cocategory
structure.

Proof. The cocategory object CD is given by forming the product with D.
I.e., the object of coobjects is simply the projection ∆D(C0) given by D×C0

//D.
Since E is cartesian closed all of the relevant pushout diagrams are preserved. Since
all of the other data is equational it is clear that this is a cocategory object in E/D.
It is also clear that this structure is preserved by pullback. �

In general, if C = (C0, C1, C2) is a cocategory object and A is any object of E ,
then A×C = (A×C0, A×C1, A×C2) is also a cocategory object in E . Moreover,
if C is a cocategory object in E and A is any object, then one obtains an internal
category AC by exponentiation.

3.1.2. Cogroupoids. We are often interested in cocategory objects which
possess additional structure. In particular, the cocategories with which we will be
predominately concerned are all examples of cogroupoids.

Definition 3.3. A cocategory C in E is a cogroupoid if there exists a map
ρ : C1

// C1 such that the following diagrams commute:

C0 C1
⊥ //C0

C1

> ��?????? C1 C0
oo >C1

C1

ρ

��

C0

C1

⊥��������

C0 C1>
//

C1

C0

i
��

C1 C2
? // C2

C1

[ρ,1C1 ]

��
and

C0 C1⊥
//

C1

C0

i
��

C1 C2
? // C2

C1

[1C1 ,ρ]

��

The map ρ : C1
// C1 is called the coinverse map.

In particular, if C is a cogroupoid in E and A is an object of E , then AC0 is the
object of objects of an internal groupoid taking its structure from C.

Definition 3.4. A cocategory object C in a category E is pointed if the object
C0 of coobjects is the terminal object of E . C is symmetric if there exists a map
σ : C1

// C1 (the symmetry map) such that σ(⊥) = > and σ(>) = ⊥. Finally,
C is a (strict) interval object if it is both pointed and symmetric. When C is an
interval object we write I for C1 and I2 for C2. When an interval I is a cogroupoid
and its coinverse map is also its symmetry, I is said to be invertible.

The reader should see Appendix C for a “schematic” illustration of the defini-
tion of interval object.

Example 3.5. (1) Every object A of a category E determines a cocate-
gory object given by setting Ai := A for i = 0, 1, 2 and defining all of
the structure maps to be the identity 1A. This is said to be the discrete
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cocategory on A. When A is the terminal object 1 of E this cocate-
gory is the terminal object in the categories Cocat(E) and Cocat•(E)
of cocategory objects in E and pointed cocategory objects in E , respec-
tively (which have as arrows tuples of maps commuting with all of the
cocategory structure).

(2) Assuming E possesses a terminal object and all finite coproducts, then
there is a cocategory object C in E obtained by setting C0 := 1 and
C1 := 1+1, with ⊥ and > the coproduct injections. This is said to be the
codiscrete interval in E . This is the initial object in Cocat•(E). As a
special case of this, we note that a topos E is Boolean if and only if its
subobject classifier Ω is (the object of coarrows of) an invertible interval.

(3) In Cat the category 2 which is the free category on the graph consisting of
two vertices and one edge between them is a cocategory object. Similarly,
the free groupoid I on 2 is an invertible interval in Cat and in Gpd with
the following structure:

⊥ >
u

::⊥ >
zz

d

such that u and d are inverse and where ⊥,> : 1 //// I are the obvious
functors. I2 is then the result of gluing I to itself along the top and
bottom:

⊥ µ

u↓

::⊥ µ
zz
d↓

µ >.
u↑

::µ >.
{{
d↑

Cocomposition ? : I // I2 is the functor given by ?(⊥) := ⊥ and ?(>) :=
>, and the initial and final segment functors are defined in the evident
way. Finally, σ : I //I is defined by σ(⊥) := > and σ(>) := ⊥. In fact, we
will see below that if E is any finitely bicomplete category, then Gpd(E)
possesses an invertible interval object (which is essentially described as
above).

(4) Let Ch+ be the category of (non-negatively graded) chain complexes of
abelian groups, then there exists a cocategory object I in Ch+ which we
now describe. I0 is the chain complex which consists of Z in degree 0 and
is 0 in all other degrees. I1 is given by

· · · d // 0 d // Z // Z⊕ Z
x � // (x,−x),

where x is an arbitrary integer. I2 consists of

· · · d // 0 d // Z⊕ Z d // Z⊕ Z⊕ Z
(x, y) � // (x, y − x,−y),

for integers x and y. ↓ and ↑ are the left and right inclusions (in both
non-trivial degrees), respectively. Similarly, ⊥ and > are the left and right
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inclusions, respectively. i : I1 // I0 is the zero-map. Finally, cocomposi-
tion ? : I1 // I2 is given defined as follows:

?1(x) := (x, x)

?0(x, y) := (x, 0, y),

for integers x and y. There is also a symmetry map σ : I1 // I1 defined
in the obvious way. These structures describe the homological structure
of the unit interval together with the result of pasting the unit interval to
itself (cf. [57]).

The topological unit interval I in Top fails to satisfy the co-associativity and
co-unit laws on the nose (they are satisfied up to homotopy) and is therefore not
an interval in this sense.

3.1.3. Homotopy. The first way in which we make use of the existence of an
interval object in E is to define the notion of homotopy. The notion of homotopy
we obtain is ubiquitous in homotopy theory (cf. the classical notion of simplicial
homotopy [22] or its various generalizations [66, 16]).

Definition 3.6. Let C be a cocategory object in E . A homotopy with
respect to C (or C-homotopy) η : f +3 g between two maps f, g : A ////B in E
is a map η : A× C1

//B such that the following triangles commute:

A× C0 A× C1
A×⊥ //A× C0

B

f
$$JJJJJJJJJJJ A× C1 A× C0

oo A×>A× C1

B

η

��

A× C0

B

g
zzttttttttttt

When C is pointed we often write I for C1 and write A0 for 〈1A,⊥〉 and A1 for
〈1A,>〉 so that the above becomes

A A× IA0 //A

B

f
$$JJJJJJJJJJJJ A× I Aoo A1
A× I

B

η

��

A

B

g

zztttttttttttt

When an object A is fixed, we also often write ∂0, ∂1 : AI ////A for the maps induced
by ⊥ : 1 // I and > : 1 // I, respectively.

Example 3.7. The cocategory objects from Example 3.5 give rise to the fol-
lowing notions of homotopy:

(1) The terminal cocategory object 1 generates the most coarse notion of
homotopy. I.e., there exists a homotopy between maps f and g with
respect to this cocategory if and only if f and g are identical.

(2) The initial pointed cocategory object 1 + 1 generates the finest relation
of homotopy: all maps are homotopic. Indeed, given maps f and g there
exists, with respect to this cocategory, a unique homotopy f +3 g.

(3) In Cat, homotopies f +3 g are in bijective correspondence with natural
transformations f +3 g and similarly in Gpd with respect to I.

(4) In Ch+, I induces the usual notion of chain homotopy.
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Remark 3.8. Notice that, when C is symmetric, any homotopy η : f +3 g
between maps f, g : A ////B induces a homotopy η̄ : g +3 f by composing with the
symmetry:

η̄ := η ◦ (1A × σ).

In what follows we will often assume, for the sake of presentational clarity, that
the cocategory objects with which we deal are pointed. Note though that in many
cases this assumption can be dropped without affecting the validity of the claims
made. Nonetheless, nearly all of the examples we consider are pointed and every
cocategory gives rise to a pointed one in the slice category.

3.1.4. Induced 2-categorical structure. Assume that E possesses a pointed
cocategory object I. Then E can be equipped with the structure of a 2-category as
follows. First, the 0-cells of E are simply the objects of E and the 1-cells are the
arrows of E . We then define

E(A,B)1 := E(A× I,B),

which endows E(A,B) with the structure of a category since BI is an internal
category in E . Explicitly, given α in E(A,B)1, the domain of α is the arrow α◦A0 :
A //B and the codomain is the arrow α ◦A1 : A //B. Given arrows η : f +3 g
and γ : g +3h in E(A,B), the vertical composite f +3h is defined as follows. Since
E is cartesian closed the following square is a pushout:

A× I A× I2.
1A×↑

//

A× 1

A× I

1A×⊥
��

A× 1 A× I1A×> // A× I

A× I2.

1A×↓
��

Because η ◦A1 = γ ◦A0, there exists a canonical map δ : A× I2 //B such that:

δ ◦ (1A× ↑) = γ, and

δ ◦ (1A× ↓) = η.

Recalling the third clause from the definition of cocategory object, it is easily veri-
fied that δ◦(1A×?) is the required vertical composite (γ ·η) : f +3h. It is convenient
to introduce notation for the “mediating map” δ. As such, we write c[γ, η] instead
of δ and observe that (γ ·η) = c[γ, η]◦ (1A×?). I.e., c[γ, η] is the composition (γ ·η)
prior to being “fused” or “merged” by precomposition with (1A × ?).

Remark 3.9. Given homotopies α, β : A × I // B for which the vertical
composite (β · α) exists and a map g : D //A, the following equation holds:

c[β, α] ◦ (g × 1I2) = c[β ◦ (g × 1I), α ◦ (g × 1I)].

The induced composition functor

E(A,B)× E(B,C) // E(A,C)

is then given by defining the horizontal composite γ ∗ η of a pair of 2-cells

A B

f

!!
A B

g

>>η
�� B C.

h

!!
B C.

k

>>γ
��
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to be the composite

A× I 1A×∆ // A× I × I
η×1I //B × I

γ // C,

where ∆ : I // // I× I is the diagonal. This is clearly a homotopy h◦f +3k ◦g. The
proof of the following proposition is essentially well known (cf. [78]) and follows
from the Yoneda lemma:

Proposition 3.10. Suppose I is an interval object in E. Then E is a 2-category
with the same objects and arrows, and with 2-cells the homotopies.

Remark 3.11. Note that, by Yoneda, every 2-category embedds fully into one
in which the 2-category structure is given in this way by an interval.

In light of this 2-categorical structure on E we can define a reasonable notion
of “homotopy equivalence” as follows.

Definition 3.12. A map f : A //B is a lax homotopy equivalence (with
respect to I) if and only if there exists a map f ′ : B //A together with homotopies
f ◦ f ′ +3 1B and f ′ ◦ f +3 1A. A map f : A // B is a homotopy equivalence
(with respect to I) if it is a lax homotopy equivalence for which the associated
homotopies are invertible.

I.e., the homotopy equivalences are defined to be precisely the usual (strong)
categorical equivalences in E regarded as a 2-category. With these definitions we
have the following corollary to Proposition 3.10.

Corollary 3.13. If E is a finitely bicartesian cartesian closed category with an
interval object I, then the (lax) homotopy equivalences satisfy the “three-for-two”
axiom.

Proof. Let maps f : A // B and g : B // C be given. First, assume g ◦ f
and g are lax homotopy equivalences. As such, there exist maps g′ : B // C
and h : C // A together with homotopies γ0 : g′ ◦ g +3 1B , γ1 : g ◦ g′ +3 1C ,
η0 : h ◦ (g ◦ f) +3 1A and η1 : (g ◦ f) ◦ h +3 1C . Define f ′ := h ◦ g and observe that
η0 : f ′ ◦ f +3 1A. To construct the other required 2-cell f ◦ f ′ +3 1B note that,
since (E , I) is a 2-category, we need only provide a pasting-diagram as follows:

B B

1B

88B

Cg
44 C

Ah 11 A

B

f

##
B

B

1B

  

C

C
1C --

B

C
gqqC

B
g′

33

η1 ��

γ0 ��

γ̄0��

where γ̄0 : 1B +3 g′ ◦ g is the “reverse homotopy” as discussed in Remark 3.8. The
other two cases are similarly verified. �

Using the categories E(A,B) it is possible to provide an alternative character-
ization of when a pointed cocategory is a cogroupoid.

Proposition 3.14. Assume I is a pointed cocategory object in E, then the
following are equivalent:
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(1) For every object A and B of E, the category E(A,B) is a groupoid.
(2) I is an invertible interval object.

Proof. Suppose that (1) holds to prove (2). Observe that the identity map
1I is an arrow ⊥ +3 > in E(I0, I). Therefore there exists an inverse ρ : > +3 ⊥.
It is straightforward to verify that, with this definition, ρ is a coinverse map for I.
The converse is trivial. �

3.2. Join, Meet and Hurewicz Fibrations

For topological spaces there exists a useful notion of fibration due to Hurewicz
(cf. [73]) which is formulated in terms of a lifting condition with respect to the unit
interval I. Namely, a map f : X // Y of spaces is a Hurewicz fibration provided
that, for any space Z, if

Z × I Y//

Z × {0}

Z × I
��

Z × {0} X// X

Y

f

��

commutes, then there exists a diagonal filler. In this section we will consider a
notion of Hurewicz fibration in E formulated as an analogous lifting property with
respect to the interval object I. Because one of the examples we have in mind
is Cat we will, however, require instead that f possess the lifting property with
respect to the inclusion of the opposite end Z × {1} of the cylinder. We will also
introduce in this section operations of “join” and “meet” on the interval I which
will arise later in connection with the interpretation of type theory. The main
result of this section is Proposition 3.19 which establishes an equivalence between
the existence of joins and, for all A, the map AI // A × A induced by ∂0 and ∂1

being a Hurewicz fibration.

3.2.1. Hurewicz fibrations. Explicitly, Hurewicz fibrations with respect to
the interval object I are defined as follows:

Definition 3.15. A map p : E // B in E is a Hurewicz fibration for the
interval I if for any object A, and maps f : A //E and h : A× I //B there exists
a diagonal filler:

A× I B.
h
//

A

A× I

A>
��

A E
f // E

B.

p

��
A× I

E==

I.e., I t p where I is the collection of all maps of the form A> for A an object of
E . A map p which possesses the analogous lifting property with respect to maps of
the form A⊥ is said to be a Hurewicz opfibration.

Scholium 3.16. The collection of Hurewicz fibrations in E has the following
properties:

(1) Hurewicz fibrations are stable under composition. I.e., if f : A //B and
g : B // C are both Hurewicz fibrations, then so is the composite g ◦ f .
Moreover, all isomorphisms are Hurewicz fibrations.

(2) The collection of Hurewicz fibrations is stable under retracts.
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(3) The collection of Hurewicz fibrations is stable under pullback along arbi-
trary maps. I.e., in any pullback square:

B′ B//

A′

B′

f ′

��

A′ A// A

B

f

��

if f is a Hurewicz fibration, then so is f ′.
(4) For every object A, the canonical map A // 1 is a Hurewicz fibration.

As Lemma 3.16 suggests the Hurewicz fibrations in this abstract setting already
possess useful properties. The Hurewicz fibrations can alternative be charactered
in terms of the 2-categorical structure of E .

Scholium 3.17. A map f : A // B is a Hurewicz fibration if and only if, for
every object E, the induced functor

E(E,A)
f∗ // E(E,B)

has the property that, for every arrow φ : g +3 f∗(h) in E(E,B), there exists an
arrow φ′ : g′ +3 h in E(E,A) such that f∗(φ′) = φ.

3.2.2. Join. We now establish necessary and sufficient conditions under which
the factorization

A

A×A
∆ ��???????A AI

r // AI

A×A
ι���������

of the diagonal induced by the interval object I in E consists of a homotopy equiv-
alence followed by a Hurewicz fibration

Definition 3.18. An object A of E is lax contractible if and only if the
canonical map !A : A // 1 is a lax homotopy equivalence. A subobject m : S // //A
is a lax strong deformation retract of A if there exists a retraction r : A //S
and a homotopy η : m ◦ r +3 1A such that the following diagram commutes:

S A.
m

//

S × I

S

πS
��

S × I A× Im×1I // A× I

A.

η
��

We obtain the ordinary (non-lax) versions of these notions by requiring that the
homotopies in question be invertible.

Proposition 3.19. The following are equivalent:

(1) For any object A of E, the map ι : AI //A×A defined by ι := 〈A⊥, A>〉
is a Hurewicz fibration.

(2) The interval I is lax contractible in the strong sense that the map > : 1 //I
is a lax strong deformation retract of I.
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(3) There exists a “binary operation” Y : I × I // I such that the following
equations hold in the internal language:

x Y> = >
= > Y x,

x Y⊥ = x,

for x : I. I.e., Y is such that the following diagrams commute:

I × I I,
Y
//

I

I × I

I>

��

I I × II> // I × I

I,

Y

��

I

I,

>◦!
????

��????

and:

I

I,
1I ��?????I I × II⊥ // I × I

I,
Y�������

where I> := 〈>◦!, 1I〉.

Proof. (2) and (3) are clearly equivalent. To see that (1) implies (3) notice
that since ι is a fibration there exists a lift λ : I // II as indicated in the following
diagram:

I I × I.
I>

//

1

I

>
��

1 II
r◦> // II

I × I.

ι

��
I

II

λ

??

The desired map Y is then defined to be the exponential transpose of λ.
To see that (3) implies (1), assume given maps ϕ : X //AI and f : X //A×A

together with a 2-cell γ : f +3 ι∗(ϕ). Diagrammatically:

X × I A×A
γ
//

X

X × I

X>
��

X AI
ϕ // AI

A×A

ι

��
(14)

Let α : X × I × I //A be the following composite

X × I × I 1X×Y //X × I
π0◦γ //A.

Similarly, let β and δ be the following composites:

X × I × I 1X×1I×σ// X × I × I 1X×Y //X × I
π1◦γ //A,

X × I × I
〈π0,π2〉 //X × I

ϕ //A,
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respectively. Observe that qua 2-cells in E(X × I, A), these three arrows are com-
posable in the sense that (β ·δ ·α) exists. To see that this is the case it is convenient
to argue using the internal language as follows:

α(x, t,>) = π0 ◦ γ(x, t Y>)

= π0 ◦ γ(x,>)

= ϕ(x,⊥)

= δ(x, t,⊥),

for t : I and x : X. Similarly,

β(x, t,⊥) = π1 ◦ γ(x, t Y σ(⊥))

= π1 ◦ γ(x,>)

= ϕ(x,>)

= δ(x, t,>).

Define ϕ′ : X × I // AI to be the exponential transpose of (β · δ · α). We claim
that ϕ′ is the required lift.

First, that ι∗(ϕ′) = γ is straightforward using the definition of δ. Secondly, to
see that ϕ′ ◦X> = ϕ notice that(

(β · δ) · α
)
◦ (X> × 1I) = c[(β · δ) ◦ (X> × 1I), α ◦ (X> × 1I)] ◦ (1X × ?).

Moreover,

α ◦ (X> × 1I) = π0 ◦ γ ◦ (1X ×>◦!I),
which is the identity 2-cell 1π0◦γ◦X> : π0◦γ◦X> +3π0◦γ◦X>. A similar calculation
shows that β ◦ (X> × 1I) is the identity 2-cell 1π1γ◦X> . Combining this with the
foregoing we obtain:(

(β · δ) · α
)
◦ (X> × 1I) = (β · δ) ◦ (X> × 1I)

= c[β ◦ (X> × 1I), δ ◦ (X> × 1I)] ◦ (1X × ?)
= δ ◦ (X> × 1I)
= ϕ.

Therefore ϕ′ ◦X> = ϕ, as required. �

Observe that the proof of Proposition 3.19 uses the fact that the interval is
strict in the sense that all of the cocategory equations commute “on the nose” and
not up to the existence of higher dimensional isomorphisms. The intuition behind
this proof is that Y : I × I // I is a sort of join or maximum operation on the
interval. I.e., we think of the action of Y as taking the maximum:

x Y y := max{x, y},
for x, y real numbers in the closed unit interval. Of course, this intuition should
not be taken too seriously since Y need not be commutative. If I is an interval
which satisfies the equivalent conditions from Proposition 3.19, then we say that I
has joins.

Corollary 3.20. If the interval I in E has joins then, for any object A, the
“constant loop” (or “reflexivity”) map r : A // AI is a lax strong deformation
retract of AI .
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Proof. Clearly r is a section of A> : AI // A. The required homotopy
η : r ◦A> +3 1AI is constructed as the transpose of the composite:

AI × I × I
1AI×Y// AI × I ev //A.

Then η is a homotopy r ◦ A> +3 1AI by definition of Y. Finally, η is a strong
deformation retract since ev ◦ (r × 1I) = πA. �

3.2.3. Meet. There is a dual development to that of Section 3.2.2 for Hurewicz
opfibrations. Namely, the map ι : AI // A × A being a Hurewicz opfibration
is equivalent to the existence of a meet or minimum operation Z : I × I // I.
Explicitly, we have the following proposition, the proof of which is dual to that of
Proposition 3.19:

Proposition 3.21. The following are equivalent:
(1) For any object A of E, the map ι : AI //A×A is a Hurewicz opfibration.
(2) The map ⊥ : 1 // I is a lax strong deformation retract of I.
(3) There exists a map Z : I × I // I such that the following equations hold

in the internal language:

x Z⊥ = ⊥
= ⊥ Z x,

x Z> = x,

for x : I.

When I is itself a cogroupoid existence of such a meet operation is equivalent
to the existence of a join.

Scholium 3.22. If I is invertible, then a map f : X // Y is a Hurewicz
fibration if and only if it is a Hurewicz opfibration.

3.3. Representability

In this section we study the important 2-categorical notion of representabil-
ity (finite completeness) [75, 28] in the context of the 2-category structure on E
induced by an interval I. When E is representable, the interval I can be shown
to possess additional useful structure. For example, such an I comes equipped
with distinguished meet and join operations which satisfy additional equations.
The main result of this section, Theorem 3.36 provides a characterization of those
intervals I for which the induced 2-category structure on E is representable.

3.3.1. Conical limits and representability. Recall (cf. [76, 50]) that, when
K is a 2-category and F : C // K is a functor such that C is itself a category —
regarded as a 2-category in which the only 2-cells are identities, the conical limit
of F is given by an object L of E such that there exists an isomorphism

K(X,L) ∼= [C,K](∆(X), F )(15)

in Cat which is 2-natural in X. I.e., L is the weighted limit of F with weight the
functor ∆(1) : C //Cat. If the 2-limit of F exists, the object L is isomorphic to
the usual 1-dimensional limit lim←−F in K (cf. [50, Section 3.8]). Accordingly, we will
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employ the same notation for both the conical limit and the regular 1-dimensional
limit. When C is the free category on

• // • oo •

we say that lim←−F , if it exists, is a 2-pullback. By dualizing, the notion of conical
colimit is similarly obtained.

The following definition is due to Gray [28] and Street [75]:

Definition 3.23. A 2-category K is said to be representable if and only if K
has 2-pullbacks and, for each object A of K, the cotensor 2 t A with the category
2 exists.

In much of the literature on 2-category theory representability is also called
finite completeness (cf. [76]). We would like to make some observations regarding
the connection between the 2-categorical structure induced by a cocategory object
C and this notion of representability. As a first step, we investigate the existence
of certain weighted limits in our ambient category E .

Lemma 3.24. If C is a (small) category, then every functor F : C //E possesses
a conical limit.

Proof. As remarked above, if the conical limit of F exists, then it will be
isomorphic to lim←−F . As such, let L be lim←−F . Then, in Cat, there exists a functor
E(X,L) //[C, E ](∆(X), F ) defined by sending an object f : X //L to the 2-natural
transformation f̂ which has as its component at an object C of C the composite

X
f // L

pC // FC,

where p− is the cone ∆(L) +3 F . Because C possesses only trivial 2-cells this is
2-natural. Likewise, a 2-cell α : f +3 g is sent to (pC ∗ α) at the object C of C.
This yields a modification α̂ since

Fh ∗ α̂C = Fh ∗ pC ∗ α
= pD ∗ α = α̂D

for any h : C //D in C. Functoriality is by the interchange law.
Going the other way, a 2-natural transformation γ : ∆X // F is sent to the

induced map γ̌ : X //L and a modification t : γ // δ is sent to the canonical map
ť : X × I // L such that pC ◦ ť = tC for each object C of C.

These processes are trivially seen to be inverse to one another. �

Indeed, the analogue of Lemma 3.24 for conical colimits also holds.

3.3.2. Meet and join for representable intervals. In order to show that
the 2-category structure on E induced by an interval I is representable it suffices,
by Lemma 3.24, to prove that cotensor with the category 2 exists.

Lemma 3.25. If the cotensor (2 t A) exists, then it is isomorphic to AI .

Proof. The 2-natural isomorphism:

E(X,2 t A) ∼= E(X,A)→(16)
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of categories restricts to a natural isomorphism of their respective collections of
objects:

E(X,2 t A) ∼= E(X × I, A).

�

Note that it does not follow that AI is (2 t A). This remark should be
compared with the fact, mentioned above, that a 2-category which possesses all 1-
dimensional conical limits need not possesses all 2-dimensional conical limits. This
leads to the following definition.

Definition 3.26. An interval I in E is representable if cotensors with 2 exist
with respect to the 2-category structure on E induced by I.

The reason for the nomenclature of Definition 3.26 is that when I is repre-
sentable, the induced 2-category structure on E is also representable in the sense of
Definition 3.23.

We will make use of the following general result about arbitrary 2-categories
(this result has nothing to do with intervals and we therefore none of the categories
in question are assumed to possess intervals).

Scholium 3.27. Let an arbitrary 2-category E be given together with categories
C and D and a functor f : C //D. If both cotensor products (C t A) and (D t A)
exist, then there exists a canonical arrow (f t A) : (D t A) // (C t A) such that
the following diagram commutes:

E(B,C t A) [C, E(B,A)]∼=
//

E(B,D t A)

E(B,C t A)

(ftA)∗

��

E(B,D t A) [D, E(B,A)]
∼= // [D, E(B,A)]

[C, E(B,A)]

f∗

��

for any object B of E.

Proof. The required map is easily seen to be given by applying the following
composite to 1DtA:

E(D t A,D t A)
∼= // [D, E(D t A,A)]

f∗ // [C, E(D t A,A)]
∼= // E(D t A,C t A).

To see that the square commutes when given a 2-cell it is necessary to use the fact
that (16) is required to be 2-natural. �

Lemma 3.28. If I is representable, then, for all objects A and B of E, the
following diagram in Cat commutes:

E(B,AI)

E(B,A)
E(B,∂i) !!CCCCCC

E(B,AI) E(B,A)→
∼= // E(B,A)→

E(B,A)
∂i}}{{{{{{

when i = 0, 1.
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Proof. It suffices, by Scholium 3.27, to show that ∂i : AI // A is, qua an
object of E(AI , A), the same as the result of applying

E(AI , AI)
∼= // E(AI , A)→

∂i // E(AI , A)

to 1AI . This is a trivial verification in light of the fact, which follows from Lemma
3.25, that the isomorphisms (16) must act on objects by exponential transpose. �

Using Lemma 3.28 it will be possible to obtain additional structure on a repre-
sentable interval I. In particular, we will see that such an I is equipped with both
meets and joins, and that these meets and joins satisfy additional special properties.

Proposition 3.29. If I is representable, then it possesses distinguished meets
Z : I × I // I and joins Y : I × I // I satisfying the further equations

> Z x = x(17)

⊥ Y x = x(18)

for x : I

Proof. Because I is representable it follows from Lemma 3.25 that there exists
a 2-natural isomorphism

E(1, I)→
∼= // E(1, II)(19)

of categories which is given at the level of objects by exponential transpose. In
E(1, I) the following diagram commutes

⊥ >
1I
//

⊥

⊥

⊥◦!
��

⊥ ⊥⊥◦! // ⊥

>

1I

��

Thus, by Lemma 3.25, applying (19) to this arrow of E(1, II)→ yields a map � :
I // II such that

1 I
⊥ //1

II
p⊥◦!q

��???????? I 1oo >I

II

�

��

1

II
p1Iq����������

commutes. On the other hand, by Lemma 3.28,

I IIoo
∂0

II I
∂1

//

I

I

⊥◦!

�����������
I

II

�

��

I

I

1I

��?????????

also commutes. It then follows that the exponential transpose Z : I × I // I of �
is a meet operation which satisfies (17).
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In the same way, applying the isomorphism (19) to the arrow

> >
>◦!
//

⊥

>

1I

��

⊥ >1I // >

>

>◦!
��

of E(1, I)→ yields a map � : I // II with exponential transpose Y : I × I // I a
join operation satisfying (18). �

Definition 3.30. We say that I has unital meets if equation (17) is satisfied
and, similarly, that I has unital joins if (18) is satisfied.

Henceforth, when I is representable, we refer to the operations Z and Y defined
in Proposition 3.29 as the meet and join for I. In addition to the existence of meets
and joins, knowing that I is representable tells us much more. For example, we
may apply (19) to the following additional arrows in E(1, I)→:

⊥ >
1I
//

⊥

⊥

⊥◦!
��

⊥ >1I // >

>

>◦!
��

> >
>◦!
//

⊥

>

1I

��

⊥ ⊥⊥◦! // ⊥

>

1I

��
and

to obtain operations I × I // I. Indeed, in the case of these commutative squares,
we obtain the projections π0, π1 : I × I // I, respectively. We establish this fact
for π0 in the following Lemma and the proof for the projection π1 is essentially
identical.

Lemma 3.31. The image of the commutative diagram

⊥ >
1I
//

⊥

⊥

⊥◦!
��

⊥ >1I // >

>

>◦!
��

(20)

under the isomorphism (19) is the reflexivity map r : I // II regarded as a 2-cell
p⊥q +3 p>q.

Proof. By Lemmata 3.25 and 3.28 it follows that the result of applying the
isomorphism (19) to the reflexivity map r : I // II is (20). �

Proposition 3.32. Given a representable interval I, the meet and join opera-
tions for I satisfy the following absorption law:

x Y (x Z y) = x(21)

for x, y : I.
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Proof. In E(1, I)→ the following identity holds:

⊥ >
1I
//

⊥

⊥

⊥◦!
��

⊥ ⊥⊥◦! // ⊥

>

1I

��
> >

>◦!
//

⊥

>
��

⊥ >1I // >

>

>◦!
��

⊥ >
1I
//

⊥

⊥

⊥◦!
��

⊥ >1I // >

>

>◦!
��

=

By functoriality of the natural isomorphism (19) and Lemma 3.31, this gives the
following equation between arrows in the category E(1, II):

� ·� = r.

Transposing yields

I I

⊥◦!

��
I I

>◦!

CCI 1I1I I//

Z◦˜
��

Y◦˜
��

= I I

⊥◦!

##
I I

>◦!

;;π1
��

where ˜ : I × I // I × I is the “twist” map. By the unit and interchange laws we
obtain,

(Y ◦ )̃ · (Z ◦ )̃ = (Y ◦ )̃ ∗ (Z ◦ )̃.

By the definition of horizontal composition, this map acts as follows:

(x, y) � //
(
y Y (y Z x)

)
,

for x, y : I. Thus, we have shown that (21) holds, as required. �

3.3.3. Parameterized squares. When A and B are objects of E , we say that
a map α : B×I×I //A is a square in A parameterized by B. The boundary
of such a square, written ∂(α), is the tuple (α0, α1, α

0, α1) where α0, α
0 : B×I ////A

are the maps defined by setting

α0(x, s) := α(x,⊥, s)
α0(x, s) := α(x, s,⊥),

for x : B and s : I, and similarly for α1, α
1.

Lemma 3.33. If I is representable, then, for all objects A and B of E, squares
in A parameterized by B are completely determined by their boundaries. I.e., when
α and β are such squares, ∂(α) = ∂(β) implies that α = β.

Proof. Let squares α and β in A parameterized by B be given. Both of these
determine arrows α̃ and β̃ in the category E(B,AI). Moreover, because they agree
on their boundaries, they share a common domain f : B // AI and a common
codomain g : B //AI . It suffices to prove that the functor

E(B,AI) Φ // E(B,A)→
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acts on arrows by projecting such a transposed square α̃ to its boundary

∂1f ∂1g
∂1∗α̃
//

∂0f

∂1f

f̂

��

∂0f ∂0g
∂0∗α̃ // ∂0g

∂1g

ĝ

��
(22)

which commutes by the interchange law. This is an immediate consequence of
Lemma 3.25 and Lemma 3.28. �

Throughout the remainder of this section we assume that I possesses meets
and joins. Given a map α : B× I //A we can construct the squares α[, α] and α\

in A parameterized by B defined as follows:

α[(x, s, t) := α(x, s Z t),

α](x, s, t) := α(x, s Y t), and

α\(x, s, t) := α(x, t),

where x : B and s, t : I. Assume henceforth that the meets and joins are both
unital (I.e., they satisfy (17) and (18), respectively). Given a composable pair of
arrows

B A

f

��
B A

h

CCB A
g //

ϕ��

ψ��

in E(B,A), it follows that both composites (ψ\ · ϕ]) and (ψ[ · ϕ\) are defined. For
example,

ϕ\(x, s,>) = ϕ(x,>)

= g(x)

= ψ(x,⊥)

= ψ(x, s Z⊥)

= ψ[(x, s,⊥),

for x : B and s : I. Moreover, the exponential transpose ˜(ψ[ · ϕ\) : B × I //AI is

itself an arrow ϕ̃ +3 (̃ψ · ϕ) in E(B,AI). To see that this is the case observe that

(ψ[ · ϕ\) ◦ (B⊥ × 1I) = c[ψ[ ◦ (B⊥ × 1I), ϕ\ ◦ (B⊥ × 1I)] ◦ (1B × ?)
= c[1ψ◦B⊥ , ϕ] ◦ (1B × ?)
= ϕ.

A similar calculation, and the fact the assumption that Z is unital, shows that

(ψ[ · ϕ\) ◦ (B> × 1I) = c[ψ,ϕ] ◦ (1B × ?)
= (ψ · ϕ).
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In order to simplify notation, we will denote the map ˜(ψ[ · ϕ\) by τϕ,ψ : ϕ̃ +3 ψ̃ · ϕ.

By a dual argument it follows that ˜(ψ\ · ϕ]) is an arrow (̃ψ · ϕ) +3 ψ̃ and we will
denote it by υϕ,ψ.

Lemma 3.34. Assume I satisfies the conclusion of Lemma 3.33 and let arrows
ϕ : f +3 g, ψ : g +3 h and χ : h +3 k in E(B,A) be given. Then τ−,− and υ−,−
satisfy the following “cocycle conditions”:

τϕ,1g = 1ϕ̃
= υ1f ,ϕ

τ(ψ·ϕ),χ · τϕ,ψ = τϕ,(χ·ψ)(23)

υψ,χ · υϕ,(χ·ψ) = υ(ψ·ϕ),χ(24)

Proof. It suffices to test (the exponential transposes of) these maps on their
boundaries. To see that they agree on the boundaries is a straightforward calcu-
lation. For example, where τ ′ is the exponential transpose of the left-hand side of
(23):

(τ ′)0 = c[ ˜τ(ψ·ϕ),χ, τ̃ϕ,ψ] ◦ (1B × ?× 1I) ◦ (1B × 1I ×⊥)

= c[ ˜τ(ψ·ϕ),χ ◦ (1B × 1I ×⊥), τ̃ϕ,ψ ◦ (1B × 1I ×⊥)] ◦ (1B × ?)

= c[(ψ · ϕ)\ ◦ (1B × 1I ×⊥), ϕ\ ◦ (1B × 1I ×⊥)] ◦ (1B × ?)
= c[ϕ ◦ (1B ×⊥◦!), ϕ ◦ (1B ×⊥◦!)] ◦ (1B × ?)
= (1f · 1f )
= 1f

= ϕ\ ◦ (1B × 1I ×⊥)

=
(
(χ · ψ)[ · ϕ\

)0
.

All of the other boundaries, as well as those for (24), are by similar calculations. �

Lemma 3.35. Assume I satisfies the conclusion of Lemma 3.33 and let a com-
mutative diagram

g g′
β
//

f

g

ϕ

��

f f ′
α // f ′

g′

ψ

��
g′ g′′

β′
//

f ′

g′
��

f ′ f ′′
α′ // f ′′

g′′

χ

��

be given in E(B,A), then

υα,(χ·α′) · τ(β·ϕ),β′ = τψ,β′ · υα,ψ.(25)

Proof. As with the proof of Lemma 3.34 it suffices to test the boundaries of
these two maps, and these are straightforward calculations. �

3.3.4. Characterization of representable intervals. We have already seen
that a representable interval I in E will possess additional properties which a priori
an arbitrary interval in E need not possess. The following theorem establishes pre-
cisely which additional structure on I is required in order for it to be representable.
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Theorem 3.36. An interval I in E is representable if and only if the following
conditions are satisfied:

(1) I possesses meets and joins which are both unital; and
(2) for any objects A and B of E, squares in A parameterized by B are com-

pletely determined by their boundaries in the sense of Lemma 3.33.

Proof. It follows from Proposition 3.29 and Lemma 3.33 that a representable
interval possesses the required properties.

For the other direction of the equivalence, by Lemmata 3.24 and 3.25, it suffices
to prove that there exist 2-natural isomorphisms

E(B,AI) ∼= E(B,A)→

of categories. Moreover, we have already seen that the functor Φ : E(B,AI) //E(B,A)→

should send an object f : B //AI to its exponential transpose

B A,

∂0f

&&
B A,

∂1f

88f̂��

and an arrow α : f +3g in E(B,AI) to the “boundary diagram” (22). Functoriality
of Φ follows, and the 2-naturality of this construction, is a trivial consequence of
the definitions.

The inverse Ψ : E(B,A)→ // E(B,AI) of Φ is defined as follows. An arrow
ϕ : f +3 f ′ in E(B,A) is sent to its exponential transpose ϕ̃ : B // AI . Next, let
a commutative diagram

g g′
β
//

f

g

ϕ

��

f f ′
α // f ′

g′

ψ

��
(26)

be given in E(B,A) and denote by ζ the composite (β · ϕ) = (ψ · α). We also
write ζ̃ for the exponential transpose of ζ. By the discussion in Section 3.3.3, we
have that τϕ,β : B × I // AI is an arrow an arrow ϕ̃ +3 ζ̃ in E(B,AI). Similarly,
υα,ψ : B × I //AI is an arrow δ : ζ̃ +3 ψ̃ in E(B,AI). Let Ψ send the arrow (26)
to to composite (υα,ψ · τβ,ϕ). Functoriality of Ψ follows from Lemmata 3.34 and
3.35.

Φ and Ψ are easily seen to be inverse on objects. For arrows, let an arrow (26)
be given. We must show that, where δ and γ are as above, ∂0 ∗ (υα,ψ · τϕ,β) = α
and ∂1 ∗ (υα,ψ · τβ,ϕ) = β. For the first equation, observe that

c[α, 1f ] = c[α] ◦ (1B × 1I ×⊥), ϕ\ ◦ (1B × 1I ×⊥)]

= c[υ̃α,ψ ◦ (1B × 1I ×⊥), τ̃β,ϕ ◦ (1B × 1I ×⊥)]

Thus, ∂0 ∗ (δ · γ) = α and, by a similar calculation, ∂1 ∗ (δ · γ) = β.
Going the other direction, let an arrow α : f +3 g in E(B,AI) be given. It

suffices, by the hypotheses of the theorem, to prove that Ψ ◦ Φ(α) has the same
boundary as α. But this follows from the fact that, by what we have just proved,

Φ ◦Ψ ◦ Φ(α) = Φ(α).
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�

3.3.5. The isofibration model structure. Recall that, when E is an ar-
bitrary 2-category, a map f : A // B is an equivalence if there exists a map
f ′ : B // A such that both f ◦ f ′ ∼= 1B and f ′ ◦ f ∼= 1A. A functor F : C //D in
Cat is said to be an isofibration when isomorphisms in D whose codomains lie in
the image of F can be lifted to isomorphisms in C. This notion also makes sense in
arbitrary 2-categories E . In particular, we define a map f : A // B in E to be an
isofibration if, for any object E of E , the induced map

E(E,A)
f∗ // E(E,B)

is an isofibration in Cat. With these definitions, Lack [51] proved the following
theorem:

Theorem 3.37 (Lack). If E is a representable 2-category, then there exists
a model structure on E in which the weak equivalences are the equivalences, the
fibrations are the isofibrations and the cofibrations are those maps having the left-
lifting property with respect to maps which are simultaneously fibrations and weak
equivalences.

Lack refers to this as the trivial model structure on E . However, we will refer
to it as the isofibration model structure on E . Every object is both fibrant and
cofibrant in this model structure. This model structure is not in general cofibrantly
generated [51].

It is an immediate consequence of Theorem 3.37 that, when E is a bicomplete
cartesian closed category with a representable interval I, there is always a model
structure on E in which the weak equivalences are exactly the homotopy equiva-
lences.

Proposition 3.38. When I is an invertible interval, there exists a model struc-
ture on E in which the weak equivalences are the homotopy equivalences and the
fibrations are the Hurewicz fibrations.

Proof. By Theorem 3.37 it suffices to observe that, when I is invertible, isofi-
brations and Hurewicz fibrations coincide. This, in turn, is a consequence of Propo-
sition 3.14 and Scholium 3.17. �

3.4. Split fibrations

In this section we introduce a definition, inspired by the work of Street [75],
of split fibration for categories E possessing an interval I. The setting of [75]
is a representable 2-category. However, we will see that, when dealing with the
2-category structure induced by an interval I, the definitions, and many results
regarding them, make sense independent of the assumption that I is representable.
Accordingly, unless otherwise stated, we assume throughout this section only that
I is an interval. The main result of this section is Theorem 3.47 which states that,
when I is invertible, E supports the structure of a coherent model of type theory.
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3.4.1. The split fibration monad. Before giving the definition of split fi-
brations it will be convenient to introduce some notation. Given an object A and
a map f : B //A in E we denote by (A ↓ f) the following pullback:

AI A
∂1

//

(A ↓ f)

AI

f ′

��

(A ↓ f) B
πB // B

A

f

��

Intuitively, (A ↓ f) is like the comma category: it consists of paths in A whose
codomains lie in the image of f . The composite

(A ↓ f)
f ′ //AI

∂0 //A

is denoted by πA. The map (A ↓ g) // (A ↓ f), induced by an arrow h : g // f in
E/A, is written as h∗.

Recall that each slice category E/A has the structure of a 2-category induced
by the 2-category structure of E . Namely, a 2-cell α : h +3 k as indicated in the
following diagram

C

A

g ��??????? B

A

f���������
C B

h

��
C B

k

33
α
��

(27)

consists of a 2-cell α : h +3 k in E such that f ∗ α = g. With this structure, the
comma construction induces a 2-monad SA : E/A // E/A on each slice E/A which
we will now describe.

Given an arrow f : B //A in E , SA(f) is defined to be the projection

(A ↓ f)
πA //A.

As such, SA clearly has a functorial action on arrows. Now, given a 2-cell (27),
there exists a canonical map (A ↓ g)× I // (A ↓ f) induced by the commutativity
of the following diagram:

(A ↓ g) A
∂1◦g′

//

(A ↓ g)× I

(A ↓ g)

π0

��

(A ↓ g)× I B
α◦(πC×1I) // B

A

f

��

In particular, this map is a 2-cell (A ↓ h) +3 (A ↓ k). Defining SA(α) in this way,
it is easily seen that SA is a 2-functor.

Proposition 3.39. As defined, SA : E/A // E/A is the 2-functor part of a
2-monad on E/A.
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Proof. Given a map f : B // A, the unit ηf : f // SA(f) is defined to be
the canonical map indicated in the following diagram:

AI A.
∂1

//

(A ↓ f)

AI
��

(A ↓ f) B// B

A.

f

��

B

AI

r◦f

))

B

B

1B

  

B

(A ↓ f)

ηf ''

For the multiplication µf : S2
A(f) // SA(f), let us first fix some notation. We

abbreviate the map (A ↓ SA(f)) //AI by f ′′ and the map (A ↓ SA(f)) // (A ↓ f)
by p. Then the maps f ′′, f ′ ◦ p : (A ↓ SA(f)) //// AI are composable in the sense
that

AI A
∂0

//

(A ↓ SA(f))

AI

f ′◦p
��

(A ↓ SA(f)) AI
f ′′ // AI

A

∂1

��

commutes. Define m : (A ↓ SA(f)) // AI to be the composite A? ◦ 〈f ′′, f ′ ◦ p〉,
where ? is the internal cocomposition map so that A? : AI ×A AI // AI . I.e., m
is the exponential transpose of the composite ( ˜(f ′ ∗ p) · f̃ ′′) in E((A ↓ SA(f)), A).
Finally, µf : (A ↓ SA(f)) // (A ↓ f) is defined follows:

AI A.
∂1

//

(A ↓ f)

AI
��

(A ↓ f) B// B

A.

f

��

(A ↓ SA(f))

AI

m

))

(A ↓ SA(f))

B

πB◦p

  

(A ↓ SA(f))

(A ↓ f)
µf ''

With these definitions, it is straightforward to verify that η− and µ− are natural.
The unit laws are then a consequence of the co-unit laws I and the multiplication
law follows from the co-associativity law for I. �

Remark 3.40. Although SA is a 2-monad, as far as obtaining models of type
theory is concerned it will only be necessary to consider the 1-dimensional aspect
of SA. Accordingly, in our discussion of SA-algebras below we assume these to be
only ordinary (strict) algebras for a (1-dimensional) monad.

Definition 3.41. SA-algebras are called split fibrations over A with re-
spect to I. The Eilenberg-Moore category is denoted by Sp(A).

3.4.2. Properties of split fibrations. We now exhibit some of the useful
properties of split fibrations which we will need in order to interpret type theory.
To begin with, we will show that split fibrations are stable under pullback. The
argument given here is identical to the argument given to establish the same fact
for split fibrations in Cat.
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Lemma 3.42. Split fibrations are stable under pullback. I.e., given a map σ :
D //A, if f : B //A is a SA-algebra, then ∆σ(f) is a SD-algebra.

Proof. Suppose f : B // A has an action α : SA(f) // f and form the
pullback

D A.
σ
//

E

D

∆σ(f)

��

E B
σ′ // B

A.

f

��

Let ξ : (D ↓ g) // (A ↓ f) be the induced map. Then the action β : SD(g) // g is
the canonical map (D ↓ g) // E such that

σ′ ◦ β = α ◦ ξ
g ◦ β = πD.

It is straightforward to verify that, with these definitions, β is an action. �

Lemma 3.43. For any arrow σ : D //A, the functor ∆σ : E/A //E/D restricts
to a functor Sp(σ) : Sp(A) // Sp(D).

Proof. By Lemma 3.42 it suffices to show that, given split fibrations f :
B // A and g : C // A, if h : B // C is a SA-algebra homomorphism f // g,
then ∆σ(h) is a SD-algebra homomorphism. This, however, is a straightforward
calculation using the description of the actions induced by pullback from Lemma
3.42. �

3.4.3. The interpretation of type theory. It is an immediate consequence
of the results of Section 3.4.2 that the subcategory of the arrow category E→ with
objects split fibrations and arrows the algebra homomorphisms determines a com-
prehension category. I.e., the inclusion χ indicated in the following diagram is a
fibered functor:

Sp(E)

E
P(−) ��??????

Sp(E) E→
χ // E→

E
∂1���������

where Sp(E) is the subcategory of E→ with objects split fibrations. This data
therefore determines a (non-split) model of type theory. We will now show that
this model possesses coherent identity types as defined in Chapter 2.

Given an object A of E , an object in the fiber P(A) is precisely a split fibration
with codomain A. Given such a split fibration f : B // A with action β we may
form the weakened context

B A
f
//

B ×A B

B

π1

��

B ×A B B
π0 // B

A

f

��

and ask whether there exists an identity type in P(B ×A B). It is to this question
which we now turn.
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Although E will not in general be locally cartesian closed, we may nonetheless
form the exponential [I, f ] of an arrow f : B // A by the interval I. This is the
object of E/A defined, as in Section 2.2 of Chapter 2, by the following pullback:

A AI
r
//

[I, f ]

A

p

��

[I, f ] BI
q // BI

AI

fI

��

Intuitively, [I, f ] consists of pairs (x, ϕ) such that x is inA and ϕ is a path inB which
never leaves the fiber Bx. Indeed, this process is functorial and [I,−] : E/A //E/A
witnesses the exponentiability of ∆A(I) in E/A.

There exist domain and codomain maps as indicated in the following diagram:

[I, f ]

A

p ��??????
[I, f ] B

∂i // B

A

f���������

with i = 0, 1. Accordingly, these induce a map ι : [I, f ] //B ×A B in E/A.

Lemma 3.44. Let I be an invertible interval, then, for any arrow f : B // A
in E, the induced map ι : [I, f ] //B ×A B is a split fibration.

Proof. Denote by B̂ the object (B×AB ↓ ι). I.e., B̂ is given by the following
pullback:

BI ×AI BI B ×A B
∂1×∂1∂1

//

B̂

BI ×AI BI

ι′

��

B̂ [I, f ]
π[I,f] // [I, f ]

B ×A B

ι

��

where we have used the fact that (−)I preserves limits. Write ϕ,ψ, ξ for the arrows
in E(B̂, B) obtained by transposing the maps πi ◦ ι′, for i = 0, 1, and qf ◦ π[I,g],
respectively. Let v : B̂ // B denote the domain of ϕ, x its codomain, and w the
domain of ψ. By construction,

v
ϕ // x

ξ // y oo
ψ

w

in E(B̂, B). Moreover, we also have by construction that

f ∗ ξ = 1f(x), and
f ∗ ϕ = f ∗ ψ.

Let α : B̂ //BI be the exponential transpose of (ψ−1 · ξ · ϕ). Then, since

f ∗
(
ψ−1 · (ξ · ϕ)

)
= (f ∗ ψ−1) ·

(
(f ∗ ξ) · (f ∗ ϕ)

)
= (f ∗ ψ)−1 · (f ∗ ϕ)
= 1f(v),
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it follows that

A AI
r
//

B̂

A

f◦∂0◦π◦ι′

��

B̂ BI
α // BI

AI

fI

��

commutes, where π is the projection BI ×AI BI //AI . We claim that the induced
map β̂ : Ĝ // [I, g] is an action for SA. To begin with, observe that, by definition,
the square

B̂

B ×A B
πB×AB ��???????B̂ [I, f ]

β̂ // [I, f ]

B ×A B
ι��������

commutes.
For the unit law, note that, by a straightforward calculation, p ◦ β̂ ◦ η is equal

to p. On the other hand, we must show that α ◦ η is q. To see that this is the case
notice that, since ξ ◦ (η × 1I) = q̃, ψ ◦ (η × 1I) = 1z and ϕ ◦ (η × 1I) = 1y,(

ψ−1 · (ξ · ϕ)
)
◦ (1B̂ × η) = c

[
1z, c[ξ ◦ (η × 1I), 1y] ◦ (1[I,f ] × ?)

]
◦ (1[I,f ] × ?)

=
(
1z · (q̃ · 1y)

)
= q̃.

For the multiplication law, we abbreviate S2
A(ι) by D as indicated in the following

pullback square:

BI ×AI BI B ×A B
∂1×∂1∂1

//

D

BI ×AI BI

d

��

D B̂
πB̂ // B̂

B ×A B

πB×AB

��

Denoting by εi : D × I // B, for i = 0, 1, the exponential transposes of the maps
πi ◦ ι′′, we see that ι′ ◦ µ : D // BI ×AI BI has components δ0 and δ1 which are
the exponential transposes of (ϕ ∗ πB̂) · ε0 and (ψ ∗ πB̂) · ε1, respectively. To begin
with, we have that p ◦ β̂ ◦ SA(β̂) is equal to p ◦ β̂ ◦ µ since,

f ∗
(
(ϕ ∗ πB̂) · ε0

)
= (f ∗ ϕ ∗ πB̂) · (f ∗ ε0),

which has the same domain, f ◦ u, as (f ∗ ε0).
Next, standard calculations show that the transpose of q ◦ β̂ ◦ SA(β̂) is the

composite

ε−1 ·
(
(ψ−1 · ξ · ϕ) ∗ πB̂

)
· ε0,

and that the transpose of q ◦ β̂ ◦ µ is(
(ψ ∗ πB̂) · ε1

)−1 · (ξ ∗ πB̂) ·
(
(ϕ ∗ πB̂) · ε0

)
.

However, both of these composites are equal, by the interchange law, and therefore
β̂ ◦ SA(β̂) is equal to β̂ ◦ µ, as required. �
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Remark 3.45. Note that we have crucially used the cogroupoid structure of I
in the proof of Lemma 3.44.

Assume that the interval I in E possesses joins satisfying equation (18). Then
there exists an induced operation

[I, f ]
df // [I, f ]I

To construct df , observe that, where υf : [I, f ] × I // BI is the exponential
transpose of the composite

[I, f ]× I × I
q×Y //BI × I ev //B

the following diagram commutes:

A AI
r

//

[I, f ]× I

A

p◦π0

��

[I, f ]× I BI
υf // BI

AI

fI

��

by definition of r and the fact that f I ◦ q = r ◦ p. Thus, we may define df to be
the transpose of the induced map [I, f ]× I // [I, f ].

Lemma 3.46. The map df : [I, f ] // [I, f ]I satisfies the following equations:

∂0 ◦ df = 1[I,f ],(28)

∂1 ◦ df = rf ◦ ∂1,(29)

df ◦ rf = r ◦ rf ,(30)

where rf : B // [I, f ] is the canonical map induced by the reflexivity map rB :
B // BI and r : [I, f ] // [I, f ]I is the usual reflexivity term. I.e., rf is the
canonical map such that p ◦ rf = f and q ◦ rf = rB.

Proof. Equations (28) and (29) are direct consequences of the corresponding
equations for Y. (30) is by the commutativity of the following square:

B BI × Ioo
ev

B × I × I

B

π0

��

B × I × I BI × I × Ir×1I×1I // BI × I × I

BI × I

1BI×Y
��

commutes. �

Theorem 3.47. If I is an invertible interval in E which is equipped with a fixed
join operation satisfying (18), then (Sp(E), χ,P(−)) is a comprehension category
with coherent identity types.

Proof. Given a split fibration f : B //A, the identity type I(f) in P(B×AB)
is defined to be the map ι : [I, f ] //B ×A B, which is a split fibration by Lemma
3.44. The reflexivity map r : B // [I, f ] is as described above and clearly yields a
factorization of the diagonal. The identity types are easily seen to be stable using an
argument essentially identical to the argument given in the proof of Theorem 2.29.
As such, it remains only to construct and verify the coherence of the elimination
terms.
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We first describe the construction of the elimination term for the case where A
is the terminal object (i.e., in the empty context). Suppose given a split fibration
g : D //BI together with a map d : B //D such that the triangle

B

BI
r ��??????B D

d // D

BI
g��������

(31)

commutes. Then there exists a canonical map J̃ : BI // (BI ↓ g) as indicated in
the following diagram:

BI×I BI .
BI>
//

(BI ↓ g)

BI×I

g′

��

(BI ↓ g) D// D

BI .

g

��

BI

BI×I

BY

''

BI

D

d◦∂1

  

BI

(BI ↓ g)
J̃ ''

where we make evident use of the fact that (BI)I ∼= BI×I . Now, where γ denotes
the action of g, we define J(d, g) to be the composite γ ◦ J̃ .

In the general case, where A is not assumed to be the empty context, the appro-
priate map J̃ : [I, f ] // ([I, f ] ↓ g) is obtained using the map df : [I, f ] // [I, f ]f

constructed above. It follows from (29) that the induced map J̃ exists. I.e., J̃ is
the canonical map [I, f ] // ([I, f ] ↓ g) such that the following diagram commutes:

[I, f ]I ([I, f ] ↓ g)oo
g′

([I, f ] ↓ g) D
πD

//

[I, f ]

[I, f ]I

df

zzuuuuuuuuuu
[I, f ]

([I, f ] ↓ g)

J̃

��

[I, f ]

D

d◦∂1

$$IIIIIIIIIIII

Again, defining J(d, g) to be γ ◦ J̃ it follows that J(d, g) is a section of g since

g ◦ J(d, g) = g ◦ γ ◦ J̃
= ∂0 ◦ df
= 1[I,f ],

where the final equation is by (28). Next, it follows from (30) that J̃ ◦ rf = ηg ◦ d,
where ηg : D // ([I, f ] ↓ g) is the unit of the monad at g. Thus,

J(d, g) ◦ rf = γ ◦ ηg ◦ d
= d,

since γ is an action.
Finally, to see that the elimination terms are coherent, observe that all of

the structure employed in the construction of these terms is itself stable under
pullback. �

The following corollary relates Theorem 3.47 to the homotopical semantics from
Chapter 2:
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Corollary 3.48. If I is representable, then (Sp(E), χ,P(−)) is a coherent
restriction with respect to the isofibration model structure from Section 3.3.5.

Corollary 3.49. When I is an interval satisfying the hypotheses of Theo-
rem 3.47, there exists coherent model of type theory consisting only of the cloven
fibrations (i.e., pointed algebras for the endofunctors SA).

Proof. An examination of the proof of Theorem 3.47 reveals that the compat-
ibility of actions with multiplication is not required in order to construct a coherent
model of type theory. Lemma 3.44 ensures that identity types exist when restricting
to cloven fibrations. �

Lemma 3.50. If I is invertible and parameterized squares are completely de-
termined by their boundaries in the sense of Lemma 3.33, then the resulting model
(Sp(E), χ,P(−)) is 1-dimensional. I.e., UIP2 is valid in all such models.

Proof. Suppose given a split fibration f : B //A together with sections a, b
of f and maps ϕi as indicated in the following diagram

A

B ×A B
〈a,b〉 ��???????A [I, f ]

ϕi // [I, f ]

B ×A B
ι��������

for i = 0, 1. Let IdA(a, b) be the following object

A B ×A B〈a,b〉
//

IdA(a, b)

A

ν
��

IdA(a, b) [I, f ]
µ // [I, f ]

B ×A B

ι
��

and assume that there exist maps αi

A

IdA(a, b)×A IdA(a, b)
〈ϕ̂0,ϕ̂1〉 ��???????A [I, ν]

αi // [I, ν]

IdA(a, b)×A IdA(a, b)
ιν��������

for i = 0, 1, where ϕ̂i : A // IdA(a, b) is the obvious map induced by ϕi. There are
squares α̂i in B parameterized by A obtained via the composites

A
αi // [I, ν] // IdA(a, b)I

µI // [I, f ]I
qI // (BI)I ,

for i = 0, 1. In order to see that α0 = α1 it suffices to show that α̂0 and α̂1 agree
on their boundaries. It is straightforward to confirm that both squares possess the
same boundary. Namely, they both have boundary (q̃ ◦ ϕ, q̃ ◦ ψ, a◦π0, b◦π0), where
q̃ ◦ ϕ denotes the exponential transpose of q ◦ ϕ. �

Lemma 3.50 implies, in particular, that whenever an invertible interval I is
representable, the resulting model of type theory is 1-dimensional. There is a
partial converse of Lemma 3.50 which we may obtain by restricting attention to
certain parameterized squares.
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Definition 3.51. A square α : A × I × I // B in B parameterized by A is
globular if its faces αi, for i = 0, 1, are constant. I.e., there exist maps a, b : A ////B
such that α0 = a ◦ π0 and α1 = b ◦ π0.

Note that the proof of Lemma 3.50 requires only the hypothesis that globular
squares are completely determined by their boundaries in the sense of Lemma
3.33. This is of course due to the fact that parameterized squares are cubical in
shape, whereas the parameterized squares arising from this form of type theory are
globular.

Proposition 3.52. Let I be an interval in E which satisfies the hypotheses of
Theorem 3.47. Under these conditions, (Sp(E), χ,P(−)) is 1-dimensional if and
only if, for any objects A and B of E, globular squares in B parameterized by A are
completely determined by their boundaries.

Proof. By Lemma 3.50 and the foregoing observation about its proof, it suf-
fices to prove that 1-dimensionality implies the corresponding property of param-
eterized squares. Let globular squares α, β : A × I × I // // B which agree on their
boundaries be given. Let us denote by a, b : A // // B the maps occurring as the
boundaries αi for i = 0, 1, respectively. I.e., α0 is a ◦ π0, et cetera. The projection
A × B // A is a split fibration. Define sections â and b̂ of this projection to be
〈1A, a〉 and 〈1A, b〉, respectively. Define arrows ϕ and ψ from a to b in E(A,B) as
follows:

ϕ(x, s) := α(x,⊥, s), and

ψ(x, s) := α(x,>, s),

for x : A and s : I. In type theoretic notation, these maps induce terms ϕ̂ and ψ̂:

x : A ` ϕ̂(x), ψ̂(x) : IdA×B
(
â(x), â(x)

)
.

Similarly, α and β themselves induce terms

x : A ` α̂(x), β̂(x) : IdIdA×B(â(x),b̂(x))

(
ϕ̂(x), ψ̂(x)

)
.

Therefore, since this model is 1-dimensional, these terms α̂ and β̂ are identical. It
follows from the construction of α̂ and β̂ that α = β. �

Remark 3.53. Although we have shown that the identity types are modelled
soundly in the abstract setting of a cartesian closed category with an invertible
interval I, we have said nothing about dependent products and sums. Indeed, it
does not appear to be possible to interpret these in this setting without requiring
additional structure. Even the assumption that E is locally cartesian closed does
not seem to suffice on its own. We turn now to one natural source of examples
of categories with invertible intervals which do support the interpretation of these
additional type formers.

3.5. Internal groupoids

The aim of this section is to develop our principal application of the results from
Section 3.4.3. Namely, we show that whenever E is a finitely bicomplete cartesian
closed category the category Gpd(E) of internal groupoids possesses a representable
and invertible interval I and therefore yields a coherent model of Martin-Löf type
theory. Moreover, we show that when E is itself locally cartesian closed, the category
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of internal groupoids also supports the interpretation of dependent products. In
the case where E is the category Set of sets the resulting model is equivalent (in
an appropriate categorical sense) to the Hofmann-Streicher groupoids model [35]
using the familiar equivalence, via the Grothendieck construction, between split
fibrations of groupoids and functors from small groupoids into Gpd, together with
the fact, due to Street [75], that split fibrations of categories (and consequently also
groupoids) are algebras for the 2-monad described in Section 3.4.1. By the results
of Chapter 2 it follows that the split Grothendieck fibrations associated to these
models are genuine models of type theory which are split in the sense of Remark 2.1
from Chapter 2. Unless otherwise stated E is assumed to be a (finitely) bicomplete
category which is cartesian closed. We refer the reader to Appendix A for further
details regarding internal groupoids.

3.5.1. The unit interval. A useful feature of the category Gpd(E) is that
it possesses a strict unit interval I. I is defined to be ∇(1 + 1), where ∇ is the
right-adjoint to the forgetful functor Gpd(E) // E as described in Appendix A. I
is given the structure of a strict interval as follows. First, the object of coarrows is
defined to be I and the object I2 of cocomposable arrows is then obtained as the
following pushout:

I I2

↑
//

1

I

⊥
��

1 I> // I

I2

↓
��

where ⊥ and > are the internal functors induced by the respective coproduct in-
jections 1 //// 1 + 1.

The cocomposition map ? : I // I2 is constructed by first noting that

I1
∼= I0 + I0.

Accordingly, the arrow part ?1 : I1
//I2

1 is described completely in terms of the four
distinguished global sections of I1 denoted by (⊥,⊥), (>,⊥), (⊥,>) and (>,>) of
I1. In particular we define

?1(x, y) :=


i◦ ↓0 ◦⊥ if x = y = ⊥
c ◦ υ if x = ⊥, y = >
c ◦ δ if x = >, y = ⊥
i◦ ↑0 ◦> if x = y = >,

where υ, δ : 1 // //I2
1×I2

0
I2
1 are the canonical maps indicated in the following diagrams:

I2
1 I2

0t
//

I2
1 ×I2

0
I2
1

I2
1

p0
��

I2
1 ×I2

0
I2
1 I2

1

p1 // I2
1

I2
0

s
��

1

I2
1

↓1◦〈⊥,>〉
++

1

I2
1

↑1◦〈⊥,>〉

$$

1

I2
1 ×I2

0
I2
1

υ
((

I2
1 I2

0t
//

I2
1 ×I2

0
I2
1

I2
1

p0
��

I2
1 ×I2

0
I2
1 I2

1

p1 // I2
1

I2
0

s
��

1

I2
1

↑1◦〈>,⊥〉
++

1

I2
1

↓1◦〈>,⊥〉

$$

1

I2
1 ×I2

0
I2
1

δ ((
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It is straightforward to show that these maps are nicely related in the sense that

r̄ ◦ υ = δ and r̄ ◦ δ = υ(32)

where r̄ is as in A.1.2 above.
Similarly, the object part ?0 : I0

// I2
0 can be described in terms of the global

sections ⊥ and > of I0 as follows:

∗0(x) :=

{
↓0 ◦⊥ if x = ⊥
↑0 ◦> if x = >.

I.e., ∗0 is [↓0 ◦⊥, ↑0 ◦>]. It is easily shown that the source, target and identity
conditions for ∗ : I //I2 to be an internal functor are met. It remains only to show
that ∗ behaves functorially with respect to composition. I.e., that the following
diagram commutes:

I1 I2
1∗1
//

I1 ×I0 I1

I1

c
��

I1 ×I0 I1 I2
1 ×I2

0
I2
1

γ // I2
1 ×I2

0
I2
1

I2
1

c
��

where γ : I1 ×I0 I1
// I2

1 ×I2
0

I2
1 is map induced by ∗. To see that this is the case

we use the fact that

I1 + I1
∼= I0 × I1.

In fact, using the definition of I, it is easily seen that

I0 × I1
∼= I1 ×I0 I1.

This is routine to verify and the isomorphism φ : I0 × I1
// I1 ×I0 I1 is described

informally as follows:

φ
(
x, (y, z)

)
:=
(
(y, x), (x, z)

)
φ−1

(
(x, y), (y, z)

)
:=
(
y, (x, z)

)
.

That cocomposition ∗ behaves functorially with respect composition follows easily
from the fact that, by this observation, I1 ×I0 I1 is a coproduct. In particular, one
may test on elements of the form

(
(x, y), (y, z)

)
for x, y, z ∈ {⊥,>}. The only cases

which are not straightforward are those of
(
(⊥,>), (>,⊥)

)
and

(
(>,⊥), (⊥,>)

)
.

For example, the first is seen to hold as follows:

∗1 ◦ c
(
(⊥,>), (>,⊥)

)
= ∗1(⊥,⊥)
= i◦ ↓0 ◦⊥
= i ◦ s◦ ↓1 〈⊥,>〉
= i ◦ s ◦ p0 ◦ υ
= i ◦ s ◦ c ◦ υ
= c(c ◦ υ, r ◦ c ◦ υ)

= c(c ◦ υ, c ◦ r̄ ◦ υ)

= c(c ◦ υ, c ◦ δ)
= c ◦ γ

(
(⊥,>), (>,⊥)

)
.
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The other case is dual using the other half of (32). Therefore ∗ : I // I2 is an
internal functor.

Proposition 3.54. With these definitions I is an interval in Gpd(E).

Proof. The “cosource” and “cotarget” equations

↓ ◦⊥ = ∗ ◦ ⊥
↑ ◦> = ∗ ◦ >

are trivial by definition of the cocomposition map. The “counit” and “coassociativ-
ity” equations, because they have domain I, can be tested on “elements” as above
in both the “object” and “arrow” cases. For instance, where i0 is the canonical
map I2 // I such that i0◦ ↓= ⊥ and i0◦ ↑= 1I, the case of the “arrow” (>,⊥) is
as follows:

i01 ◦ ∗1(>,⊥) = i01 ◦ c ◦ δ
= c
(
i01◦ ↑1 ◦(>,⊥), i01◦ ↓1 ◦(>,⊥)

)
= c
(
(>,⊥), (⊥,⊥)

)
= (>,⊥),

where the second equation is by functoriality of i0. All of the additional cases are
of a similar elementary nature. �

3.5.2. Representability of I. We now establish that, with the 2-category
structure induced by I, Gpd(E) is a representable 2-category. This follows from the
well-known fact that Gpd(E) is representable with respect to its usual 2-category
structure together with the following observation:

Scholium 3.55. The 2-category structure on Gpd(E) induced by I coincides
with the usual 2-category structure on Gpd(E).

Nonetheless, it is instructive to establish the representability of Gpd(E) using
Theorem 3.36 since we will the meets and joins used to establish this will be required
later.

Lemma 3.56. Gpd(E) possesses unital meets and joins.

Proof. The map Z0 : I0 × I0
// I0 is specified by:

Z0(s, t) :=

{
⊥ if s = ⊥ or t = ⊥
> otherwise,

for s, t : I0. This definition clearly extends to Z1. Similarly, Y0 is given by

Y0(s, t) :=

{
> if s = > or t = >
⊥ otherwise,

for s, t : I0. �

Proposition 3.57. The interval I in Gpd(E) is invertible and representable.
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Proof. By Theorem 3.36 it suffices together with Lemma 3.56 above, it suffices
to prove that parameterized squares in Gpd(E) are completely determined by their
boundaries in the sense of Lemma 3.33. To see that this is the case suppose given
squares α and β in A parameterized by B. Clearly α0 = β0 by the definition of
I. To see that α1 = β1 it suffices to test on the elements (⊥,>) and (>,⊥) of
I1. Denoting these elements by u and d, respectively, this is easily verified by the
following calculation in the internal language:

α1(f, u, u) = α1

(
f, c(1⊥, u), c(u, 1>)

)
= c
(
α1(f, 1⊥, u), α1(f, u, 1>)

)
= c
(
α1(f, 1⊥, u), β1(f, u, 1>)

)
= β1(f, u, u),

where f : B1 and the final equation follows from the hypotheses. Similarly we see
that α1(f, g, h) = β1(f, g, h) for g, h = u, d. �

Corollary 3.58. Gpd(E) is a coherent (non-split) model of type theory which
is 1-dimensional.

Proof. By Proposition 3.57, Theorem 3.47 and Proposition 3.52. �

Remark 3.59. In this setting it is trivial to prove that split fibrations com-
pose and therefore that models of the form Gpd(E) support the interpretation of
dependent sums.

3.5.3. Dependent products. It is well known that Gpd is not locally carte-
sian closed (cf. [42, 68]). However, the reindexing functor ∆σ : Sp(A) // Sp(B)
for σ : B // A does possess a right-adjoint. We will now show that this is true
also in the internal setting provided we assume E is itself locally cartesian closed.
Because the construction is quite involved we make significantly more use of the
(traditional) internal logic of E qua locally cartesian closed category. The following
construction is inspired by both the construction of dependent products due to Hof-
mann and Streicher [35] and Palmgren’s [68] 2-dimensional dependent products.
That dependent products exist can alternatively be seen using the theory of Kan
extensions.

Let a split fibration g : G // J of internal groupoids, with action γ, and an
internal functor σ : J //K be given. We describe a new internal groupoid P (σ, g)
together with a split fibration π : P (σ, g) //K as follows. Intuitively, the object
P (σ, g)0 should be thought of as consisting of pairs (x, h) such that x is an object
of K and, where (σ ↓ x) is the comma category, h is a homomorphism (σ ↓ x) //G
of split fibrations as indicated in the following commutative triangle:

(σ ↓ x)

J

π ��??????
(σ ↓ x) G

h // G

J

g
���������

(33)

This description is internalized using the locally cartesian closed structure of E . In
particular, we begin by observing that, in Gpd(E), we may construct the object
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(σ ↓ i) as the following pullback:

∆(K0) K
i
//

(σ ↓ i)

∆(K0)

πK0

��

(σ ↓ i) (σ ↓ K)i′ // (σ ↓ K)

K

πK

��

taken in Gpd(E), where i is the insertion of identity arrows.

Lemma 3.60. The map 〈πJ ◦ i′, πK0〉 : (σ ↓ i) //J ×∆(K0) is a split fibration.

Proof. Let us denote 〈πJ ◦ i′, πK0〉 by ξ and consider the following pullback
used to define SJ×∆0(K)(ξ):

JI ×∆(K0)I J ×∆(K0)
∂1×∂1∂1

//

(J ↓ ξ)

JI ×∆(K0)I

ξ′

��

(J ↓ ξ) (σ ↓ i)
π(σ↓i) // (σ ↓ i)

J ×∆(K0)

ξ

��

In Gpd(E)
(
(J ↓ ξ),K

)
there exist composable maps α and β defined by letting α

be the transpose of the composite

(J ↓ ξ)
π(σ↓i) // (σ ↓ i) i′ // (σ ↓ K) σ′ //KI ,

and letting β be the transpose of

(J ↓ ξ)
π0◦ξ′ // JI

σI //KI .

It is straightforward to verify that the composite (α ·β) is defined. Let υ denote its
exponential transpose. Then there exists an induced map υ′ making the following
diagram commute:

KI (σ ↓ K)oo
σ′

(σ ↓ K) J
πJ
//

(J ↓ ξ)

KI

υ

{{vvvvvvvvv
(J ↓ ξ)

(σ ↓ K)

υ′

��

(J ↓ ξ)

J

∂0◦π0◦ξ′

##HHHHHHHHHH

This map in turn induces the action υ̂ : (J ↓ ξ) // (σ ↓ i) in the evident way. �

Now, we regard g : G // J as a split fibration G×∆(K0) // J ×∆(K0) and
form the object P (σ, g)0

// K0 of E/K0 which has as its fiber over x in K0 the
collection of all homomorphisms (33). All of the subsequent arguments we give
may be “internalized” in a similar way and, as such, we argue henceforth using the
internal language.

Given objects (x, h) and (y, k) of P (σ, g), an arrow θ : (x, h) // (y, k) consists
of an arrow θ : x // y of K together with a 2-cell η as indicated in the following
diagram:

(σ ↓ x)

G
h ��??????

(σ ↓ x) (σ ↓ y)
(σ↓θ) // (σ ↓ y)

G
k��������η +3
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Due to the presence of I in Gpd(E), and the equational nature of the definition of
2-cells, this definition makes sense. Given arrows a composable pair of arrows (θ, η)
and (θ′, η′) the composite (θ′, η′) ◦ (θ, η) is given by θ′ ◦ θ together with the 2-cell

(η′ ∗ (σ ↓ θ)) · η.

It is easily seen that these definitions yield a groupoid in E .

Lemma 3.61. The projection π : P (σ, g) //K functor is a split fibration.

Proof. Given an object h in the fiber P (σ, p)x over x and an arrow φ : y //x
in A, define k : (σ ↓ y) // E to be the composite

(σ ↓ y)
(σ↓φ) // (σ ↓ x) h // E.

Taking φ : (y, k) // (x, h) to be the (cartesian) lift of φ : y // x, with 2-cell the
identity, this trivially defines an action. �

We may now use π : P (σ, g) //K to interpret dependent products in Gpd(E)
as the following Theorem shows:

Theorem 3.62. If σ : J //K is a map in Gpd(E), then the induced functor
∆σ : Sp(K) // Sp(J) possesses a right adjoint P (σ,−).

Proof. Let split fibrations p : E //J and q : F //K be given. First, assume
we have a map f : J ×K F //E in Sp(J). Given an object z of F we define f̂(z)
to consist of the pair consisting of x = q(z) and the map f̂(z) : (σ ↓ x) // E over
J defined by

f̂(z)
(
j, φ
)

:= f(j, z · φ),

where φz : (z · φ) // z is the cartesian lift of φ given by the fact that q is a split
fibration. Similarly, given an arrow ψ : (j, φ) // (j′, φ′) in (σ ↓ x), f̂(z)(ψ) is
defined as follows:

f̂(z)
(
ψ
)

:= f
(
ψ, σ(ψ)(z·φ′)

)
.

f̂(z) is a homomorphism of split fibrations since, given (j, φ) in (σ ↓ x) and γ :
j′ // j in B, we have

f̂(z)
(
γ(j,φ)

)
= f̂(z)

(
γ : (j′, φ ◦ σ(γ)) // (j, φ)

)
= f

(
γ, σ(γ)(z·φ)

)
= γf(j,z·φ)

= γf̂(z)(j,φ),

where the third equation is by the fact that f is a homomorphism of split fibrations.
Now, suppose given a map g : v // z in F with q(g) the map γ : y // x in

A. Then f̂(g) : f̂(v) // f̂(z) is the pair consisting of γ itself together with a 2-cell
which we also call f̂(g) as indicated in the following diagram:

(σ ↓ y)

E.
f̂(v) ��??????

(σ ↓ y) (σ ↓ x)
(σ↓γ) // (σ ↓ x)

E.
f̂(z)��������f̂(g)+3
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Here we define the component of f̂(g) at an object φ : σ(j) // y of (σ ↓ y) as
follows

f̂(j)(j,φ) := f
(
1j , (γ ◦ φ)−1

z ◦ g ◦ φv
)
.

With these definitions it is routine to verify both naturality of f̂(g) and that the
resulting map f̂ is a homomorphism of split fibrations.

Going the other way, assume given a homomorphism g : F // P (σ, p) of split
fibrations over K. Then, for an object j of J and an object z of F such that
σ(j) = q(z) = x, we have, by definition, a functor g(z) : (σ ↓ x) // E over J . As
such, ǧ : J ×K F // E is defined on objects as follows:

ǧ(j, z) := g(z)(j, 1σ(j)).

Let an arrow (h, k) : (j, z) // (j′, z′) in J ×K F be given and define x := q(z),
y := q(z′) and δ := q(k). Observe that h : (j, δ) // (j′, 1y) in (σ ↓ y) and therefore
applying g(z′) yields a map

g(z′)(j, δ)
g(z′)(h) // g(z′)(j′, 1y) = ǧ(j′, z′).

Additionally, applying g to k yields a natural transformation

(σ ↓ x)

E.
g(z) ��??????

(σ ↓ x) (σ ↓ y)
(σ↓δ) // (σ ↓ y)

E.
g(z′)��������g(k)+3

In particular, we have

ǧ(j, z) = g(z)(j, 1x)
g(k)(j,1x) // g(z′)(j, δ).

Therefore we define ǧ(h, k) as follows:

ǧ(h, k) := g(z′)(h) ◦ g(k)(j,1x).

Functoriality is a routine verification. To see that ǧ is a homomorphism, suppose
given (j, z) in J ×K F and γ : c // j in J . Then we have

ǧ
(
γ(j,z)

)
= g(z)(γ) ◦ g

(
σ(γ)z

)
(j′,1σ(j′))

= g(z)(γ) ◦
(
σ(γ)g(z)

)
(j′,1σ(j′))

= g(z)(γ)

= g(z)(γ(j,1σ(j)))

= γg(z)(j,1σ(j))

= γǧ(j,z),

where the second equation is by the fact that g is a homomorphism, the third is by
definition of lifts for P (σ, p) and the fifth is by the fact that g(z) is a homomorphism.

The processes ˆ(−) and ˇ(−) are easily seen to be inverse to one another. �

Corollary 3.63. If E is a (finitely) bicomplete category which is locally carte-
sian closed, then Gpd(E) is a coherent (non-split) model of T2.

Proof. By Corollary 3.58 and Theorem 3.62. �
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3.5.4. Higher-dimensional groupoids. It is well known (cf. [78]) that the
categories n-Gpd and ω-Gpd as well as their internal variants n-Gpd(E) and
ω-Gpd(E) possess distinguished higher-dimensional intervals. For example, the 2-
dimensional interval I2 in 2-Gpd is the free 2-groupoid generated by the following
2-globular set:

⊥ >

u1
0

##
⊥ >

u1
1

;;u2

��

Just as the usual interval I in Gpd can be regarded as (the object of co-arrows
of) a co-groupoid, so too I2 can be regarded as (the object of co-2-cells of) a co-2-
groupoid. In general, let In be the free n-groupoid generated by the n-globular set
consisting of the following data:

• two 0-cells u0
0 = ⊥ and u0

1 = >;
• two parallel m-cells um0 , u

m
1 : um−1

0
//// um−1

1 for 1 ≤ m < n; and
• a single n-cell un : un−1

0
// un−1

1 .
Then In is a co-n-groupoid in the category of n-groupoids. Similarly, by carrying
on this process — with two parallel n-cells at every dimension n — ad infinitum
we obtain a co-omega-groupoid Iω in the category of ω-groupoids. One would
expect these objects also to give rise to interpretations of the identity types in the
corresponding categories. Indeed, exponentiation by Iω (or at least its “cousin”
in ω-Cat) has been studied by Métayer [64] and used by Lafont, Métayer and
Worytkiewicz [52] as a path object in their verification of the “folk” model structure
on ω-Cat.

Indeed, it is already possible, using the results above, to obtain models of type
theory in n-Gpd (and ω-Gpd) by truncating In (or Iω) at any given dimension
k ≤ n. In particular, fixing n ≥ 2, we obtain an invertible interval I(n, k) by taking
as the object of co-objects the terminal object (as usual) and the object of co-
arrows Ink . Just as any n-category C gives rise a regular category C(n, k) by taking
objects to be 0-cells and arrows x // y to be k-cells α bounded at dimension 0 by
x and y, so too Ink is an invertible interval. While this construction does provide
novel models of type theory in n-Gpd (and similarly in ω-Gpd), it is easily seen
that these models are 1-dimensional in the type theoretic sense of validating UIP2.
In order to obtain truly higher-dimensional models in this way it is necessary to
generalize also the notion of split fibration to higher-dimensions. The notion of
Grothendieck 2-fibration has been studied by Hermida [30] and, for 2-groupoids,
by Moerdijk and Svennson [65]. However, we are unaware of similar work in higher-
dimensions. As a first step toward developing this approach, we turn in Chapter 4 to
consider models of type theory in categories of higher-dimensional groupoids using
a “functorial” approach, which has its origins in Lawvere’s notion of hyperdoctrine
[53], which generalizes directly the approach taken in the original groupoids model
of Hofmann and Streicher [35]. The “internalization” of such higher-dimensional
models — analogous to the present treatment of the basic 1-groupoid model — can
then proceed from that basis.





CHAPTER 4

ω-Groupoids

The aim of this chapter is to construct models of type theory which are gen-
uinely higher-dimensional —in the sense that they refute such truncation principles
as UIPn, et cetera— and which interpret type theory in a split and coherent way.
In particular, we prove that it is possible to interpret intensional type theory us-
ing (strict) ω-groupoids. The resulting model directly generalizes the (1-)groupoid
model due to Hofmann and Streicher [35] and, by truncation, also yields models
using n-groupoids. In the interpretation, contexts and therefore also closed types
are interpreted as ω-groupoids. In particular, when the ω-groupoid A interprets a
closed type and objects a and b of A correspond to terms, the ω-groupoid A(a, b)
provides the interpretation of the identity type. Because identity types are inter-
preted in this way using ω-groupoids, we are able to refute all higher-dimension
versions of the principle of uniqueness of identity proofs. Similarly, it follows that
all of the truncation principles from Chapter 1 are also refuted in this model. We
now turn to a summary of the chapter.

We have seen that closed types are to be interpreted as ω-groupoids. Types
Γ ` A : type in context, on the other hand, will be interpreted as functors
A : C // ω-Gpd where C is the ω-groupoid interpreting the context Γ. Note that
here and henceforth, unless otherwise stated, functor refers to strict ω-functors
and similarly for “natural transformations” and “transformations”. We refer the
reader to Section A.3 of Appendix A for a description of the (large) ω-categorical
structure of ω-Gpd and related notions. In [35], the extended context (Γ, x : A) is
interpreted using the familiar Grothendieck construction

∫
A which takes a functor

A : C //Gpd to the associated split op-fibration. Accordingly, in order to gener-
alize the interpretation from ibid to the present setting it is necessary to describe
a corresponding Grothendieck construction for functors A : C // ω-Gpd. To that
end, in Section 4.1 we introduce the corresponding Grothendieck construction in
full generality for functors A : C //ω-Cat of ω-categories. As far as we know, this
is the first place that such a construction has been explicitly given in the literature
on ω-categories and, as such, should be of general interest. The combinatorics in-
volved here (as well as throughout) is reminiscent of that occurring in to work of
Street and Verity on (simplicial) nerves of ω-categories [77, 83].

In Section 4.2 we shift our attention to ω-groupoids with the aim of obtaining
a “duality” functor ¬ which is required in order to describe the identity types in
higher-dimensions. Given A : C //ω-Gpd, there is, in addition to the Grothendieck
construction

∫
A, also an ω-groupoid

∫ ∗
A which we call the dual Grothendieck con-

struction of A obtained by orienting the Grothendieck construction in the opposite
direction. For example,

∫ ∗
A has the same objects as

∫
A, but arrows are given

the opposite orientation. Although
∫ ∗
A exists in general, when we are dealing

83
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with ω-groupoids there is a distinguished functor ¬ :
∫
A //

∫ ∗
A which will prove

useful.
With the duality functor at our disposal we arrive in Section 4.3 at the descrip-

tion of the functors used to interpret identity types. Section 4.4 is then concerned
with the description of the maps which interpret the elimination J terms. Finally,
Section 4.5 contains a description of the interpretation, as well as a discussion of
additional type formers. We end with the main results of the chapter: Theorem
4.25 and its corollaries.

4.1. The Grothendieck construction

In this section we introduce the basic combinatorial structure which makes
higher-dimensional models of type theory (of the form we are considering) possible.
This structure is a generalization to higher-dimensions of the familiar Grothendieck
construction [25].

4.1.1. Notational conventions. Given a small ω-category C and a functor
A : C // ω-Cat we denote by Ax the ω-category obtained by applying A to an
object x of C and, when f : x // y is an arrow in C, Af : Ax // Ay denotes the
induced functor. We employ similar notation for higher-dimensional cells. This
convention will later allow us to avoid excessive use of parentheses. When z is
any 0-cell of Ax we denote Af (z) by (z.f). Similarly, by the definition of (n + 1)-
cells in ω-Cat, Aγ , for γ a (n + 1)-cell with n ≥ 1, is given by a family of n-cells
parameterized by 0-cells of its domain category (say) Ax and we denote by (z.γ)
the n-cell

(
Aγ
)
z

where z is an object of Ax, as above.
It will be convenient to introduce some conventions governing diagrams in

higher-dimension. In particular, we will often want to describe the various bound-
aries of m-cells ϕ in ω-categories. In particular, we may wish to indicate diagram-
matically the n-cells bounding such a ϕ even when m > n+ 2 so that drawing the
details of the diagram would be cumbersome. As such, we will instead often include
diagrams such as the following:

a b

f

""
a b

g

<<ϕ

where f and g are n-cells. Such diagrams are oriented from “top-to-bottom” unless
otherwise stated. I.e., the diagram indicates that

sm−n(ϕ) = f, and

tm−n(ϕ) = g.

In the few cases where there is no “top-to-bottom” option available, the cells should
be oriented “left-to-right”. In this section, and throughout this chapter, we will
often be dealing with “hom-ω-categories” of the form A(a, b) where A is an ω-
category and a, b are parallel cells of A. In this setting, or similar ones, the index
of a composition (γ ∗n δ) always refers to the dimension in A and not in A(a, b).
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4.1.2. The underlying globular set. Assume given a small ω-category C
and a functor A : C //ω-Cat. We describe here the Grothendieck construction∫
A of A which is itself a small ω-category. In the first two dimensions

∫
A is the

familiar Grothendieck construction (or category of elements) of A.
(0-Cells): The 0-cells of

∫
A are pairs (x, x−) such that x is an object of C

and x− is an object of Ax.
(1-Cells): The 1-cells (x, x−) // (y, y−) are pairs (f, f−) consisting of a

1-cell f : x // y in C and a 1-cell f− : (x−.f) // y− in Ay.

Remark 4.1. We often employ vector notation ~x = (x, x−), ~f = (f, f−), . . . for
cells of the Grothendieck construction. The reason for the notation x−, and related
notation, will become clear later when we consider the construction of identity
types.

Already at this low dimension there are several features of the definition which
should be emphasized. First, in order to define the component f− of arrows in

∫
A

we have made a choice of “weight” or “orientation”. Namely, we have determined
that the codomain of f− should be y− where we could have as easily determined
that its domain should be this same object of Ay. Secondly, fixing objects ~x and ~y
of
∫
A, there exists a functor

C1(x, y)
d1
~x,~y //Ay

defined by

d1
~x,~y(γ) := (x−.γ),

for any m-cell γ of C(x, y). Although this functor depends on ~x and ~y we often
write d1 when no confusion will result. With this definition we observe that an
arrow ~f : ~x // ~y has

s(f−) = d1(f).

In this situation, the object d1(f) is said to be the weighted face of f−. We will
see that the higher-dimensional cells resulting from the construction of

∫
A also

possess suitably “weighted” faces.

(2-Cells): Given 1-cells ~f and ~g with common source and target ~x and ~y,
respectively, a 2-cell ~f // ~g consists of a 2-cell α : f // g in C together
with a 2-cell α− of Ay as indicated in the following diagram:

d1(f) y−
f− //

d1(g)

y−

g−

GGd1(f)

d1(g)

d1(α)

��

α−
��

Now, holding ~f and ~g fixed, there exists a functor

C2(f, g)
d2
~f,~g // (Ay)1

(
d1
~x,~y(f), y−

)
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defined by

d2
~f,~g

(γ) := g− ∗0 d1
~x,~y(γ)

where γ is a n-cell of C2(f, g). Note that in this case d1(γ) is a (n+ 1)-cell
of Ay so that this definition makes sense. It is straightforward to verify
that this is functorial. Note that an arrow ~α : ~f // ~g has

t(α−) = d2
~f,~g

(α).

As above, d2(α) is the weighted face of α−. In general, we will see that (n+ 1)-
cells of

∫
A are given by pairs (ϕ,ϕ−) and that each component ϕ− comes equipped

with a weighted face. Namely, the weighted face of ϕ− is s(ϕ−) if (n + 1) is even
and it is t(ϕ−) if (n+ 1) is odd. At each stage n we will construct, along with the
definition of the n-cells, a functor dn(−) which gives an explicit description of the
weighted faces of n-cells.

In general, (
∫
A)n is defined by induction on n alternating between even and

odd steps in such a way that the following conditions are satisfied:
(1) At each stage n an element of (

∫
A)n is a pair (f, f−) such that f is an

n-cell of C and f− is an n-cell of Ay.
(2) At each stage (n + 1), for n ≥ 1, there is also constructed, for each pair

~α, ~β of parallel n-cells with source ~f and target ~g, a functor dn+1

~α,~β
such

that

Cn+1(α, β)
dn+1
~α,~β // (Ay)n

(
dn~f,~g(α), g−

)
if (n+ 1) is even and

Cn+1(α, β)
dn+1
~α,~β // (Ay)n

(
f−, d

n
~f,~g

(β)
)

if (n+ 1) is odd. The functor dn+1 is called the weighted face functor
(in dimension (n+ 1) determined by ~α and ~β).

(3) At each stage (n+1), for n ≥ 0, it is required that the following weighted
face conditions are satisfied:

s(ϕ−) =


α− if (n+ 1) is even, and

dn+1

~α,~β
(ϕ) if (n+ 1) is odd;

and:

t(ϕ−) =


dn+1

~α,~β
(ϕ) if (n+ 1) is even, and

β− if (n+ 1) is odd,

when ~ϕ is an (n+ 1)-cell ~ϕ : ~α // ~β.
By the discussion above, the base cases n = 0, 1, 2 satisfy these conditions. We now
consider the induction steps.

((n+ 1) is odd): Fix parallel n-cells ~f and ~g of
∫
A. A (n+ 1)-cell ~f +3 ~g

consists of a pair (α, α−) with α : f +3 g an (n + 1)-cell in C and α−
is a (n + 1)-cell of Ay subject to conditions which we will now describe.
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Let ~v = s(~f) and ~w = t(~f). Then ~v and ~w are (n − 1)-cells of
∫
A

and therefore, by the induction hypothesis, there exists a weighted face

functor Cn(v, w)
dn~v,~w // (Ay)n−1

(
dn−1(v), w−

)
. As such, α− is required to

be a (n+ 1)-cell of Ay as indicated in the following diagram:

v− dn(f)
f− //v−

dn(g)

g−

))

dn(f)

dn(g)

dn(α)

��

α−
��

For the weighted functor, we hold ~f and ~g fixed and define

d
(n+1)
~f,~g

(γ) := dn(γ) ∗(n−1) f−,

for γ a m-cell of C(n+1)(f, g). The weighted face conditions are then
trivially satisfied.

((n+ 1) is even): Given parallel n-cells ~f and ~g of
∫
A, a (n+1)-cell ~f +3~g

consists, as above, of a pair (α, α−) with α : f +3g in C and α− a (n+1)-
cell of Ay as indicated in the following diagram:

dn(f) w−
f− //

dn(g)

w−

g−

GGdn(f)

dn(g)

dn(α)

��

α−
��

Finally, we define:

d
(n+1)
~f,~g

(γ) := g− ∗(n−1) dn(γ),

for γ a m-cell of C(n+1)(f, g). The weighted face conditions are then trivial.
Putting the foregoing together we obtain the following basic fact:

Lemma 4.2. If A : C // ω-Cat is a functor, then
∫
A is a reflexive globular

set.

Before moving on to discuss composition it will be convenient to mention here
a useful fact regarding the behavior of the weighted face functors which is an im-
mediate consequence of the construction given above:

Lemma 4.3. Given a m-cell ~ϕ together with n-cells ~α and ~β of
∫
A with m > n,

if

s(m−n)(~ϕ) = ~α, and

t(m−n)(~ϕ) = ~β,

then

s(α−) = s(m−n+1)(ϕ−), and

t(β−) = t(m−n+1)(ϕ−).
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4.1.3. Horizontal composition. Suppose we are given a pair of composable
arrows ~f : ~x // ~y and ~h : ~y // ~z in

∫
A. Then we obtain

Ah
(
d1
~x,~y(f)

) Ah(f−) // d1
~y,~z(h)

h− // z−

in Az. Recall that d1
~y,~z(h) = Ah(y−) so that this makes sense. Moreover,

Ah(d1
~x,~yf) = AhAf (x−)

= d1
~x,~z(h ◦ f),

and therefore we define

(~h ∗0 ~f)− := h− ∗0 Ah(f−).

This is the familiar definition of composition in the (1-dimensional) category of
elements. Now, suppose that we are given m-cells ~ϕ and ~ψ of

∫
A, for m > 1, which

are bounded by 0- and 1-cells as indicated in the following diagram:

~x ~y

~f

""
~x ~y

~g

<< ~y ~z

~h

""
~y ~z

~k

<<~ϕ ~ψ

Then, it follows from Lemma 4.3 and functoriality of Ah that

tmAh(ϕ−) = Ah(tg−)

= Ah(y−)

= d1
~y,~z(h).

Thus, the following definition makes sense (i.e., the composite involved is indeed
well-defined):

(~ψ ∗0 ~ϕ)− := ψ− ∗0 Ah(ϕ−).

The aim of the following lemma is to show that, with the definition just given,
(~ψ ∗0 ~ϕ) is a m-cell with the correct source and target. I.e., that the source and
target conditions for horizontal composition (−∗0−) from Section A.3.2 of Appendix
A are satisfied.

Lemma 4.4. Suppose given m-cells ~ϕ and ~ψ as above, then

s(~ψ ∗0 ~ϕ)− =


(s~ψ ∗0 s~ϕ)− if m is even, and

dm
s~ψ∗0s~ϕ,t~ψ∗0t~ϕ

(ψ ∗0 ϕ) if m is odd,

and

t(~ψ ∗0 ~ϕ)− =


(t~ψ ∗0 t~ϕ)− if m is odd, and

dm
s~ψ∗0s~ϕ,t~ψ∗0t~ϕ

(ψ ∗0 ϕ) if m is even,
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when m > 1, and when m = 1,

s(~ψ ∗0 ~ϕ)− = d1
~x,~z(h ∗0 f), and

t(~ψ ∗0 ~ϕ)− = t(ψ−).

Proof. First, assume m > 1. By definition,

`(ψ− ∗0 Ah(ϕ−)) = `ψ− ∗0 Ah(`ϕ−)

for ` = s, t. Thus, when m is even the source condition is trivially satisfied, as is the
target condition when m is odd. For the other cases we will need to prove a stronger
fact about the behavior of the weighted face functors. Let the (m− 1)-boundaries
of ~ϕ and ~ψ be given as follows:

• •

~λ

##
• •

~µ

;;~ϕ
��

and • •

~η

##
• •

~ν

;;~ψ
��

We prove simultaneously by induction on m > 1 the following facts:

(1) If δ is a k-cell of Cm(λ, µ) and ε is a k-cell of Cm(η, ν), then

dm
~η∗0~λ,~ν∗0~µ

(ε ∗0 δ) = dm~η,~ν(ε) ∗0 Ah
(
dm~λ,~µ(δ)

)
.(34)

(2) The boundary conditions from the statement of the lemma hold.

Note that, in order for the first condition to even make sense at stage m we must
already have verified that the second condition holds at stage (m− 1).

In the base case m = 2, we have ~λ = ~f , ~µ = ~g, ~η = ~h and ~ν = ~k. To see that
the boundary condition (2) is satisfied consider the following diagram:

AkAg(x−) Ak(y−)
Ak(g−)

//

AhAg(x−) Ah(y−)
Ah(g−)

//AhAg(x−)

AkAg(x−)

(Ag(x−)).ψ

��

Ah(y−)

Ak(y−)

y−.ψ

��

AhAf (x−)

AhAg(x−)

Ah(x−.ϕ)

��

AhAf (x−)

Ah(y−)

Ah(f−)

��
Ah(y−)

z−

h−

��
Ak(y−) z−

k−

//

Ah(ϕ−)
��

ψ−��

Here the square commutes by naturality of Aψ : Ah +3Ak. Moreover,

d1
~x,~z(ψ ∗0 ϕ) = x−.(ψ ∗0 ϕ)

= (Aψ)Ag(x−) ∗0 Ah(x−.ϕ)
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by the definition of horizontal composition of 2-cells in ω-Cat. For (34) we note
that the following diagram commutes since Aε is a (k + 2)-cell of C:

AhAf (x−) AkAf (x−)
((

AhAf (x−) AkAf (x−)
66

Ah(y−) Ak(y−)
((

Ah(y−) Ak(y−)
66

AhAf (x−)

Ah(y−)

Ah(g−)

��

AkAf (x−)

Ak(y−)

Ak(g−)

��

(Aε)Af (x−)

(Aε)y−(35)

As such,

d2
~h,~k

(ε) ∗0 Ah
(
d2
~f,~g

(δ)
)

= k− ∗0 (Aε)y− ∗0 Ah(g−) ∗0 Ah
(
(Aδ)x−

)
= k− ∗0 Ak(g−) ∗0 (Aε)Af (x−) ∗0 Ah

(
(Aδ)x−

)
= d2

~h∗0 ~f,~k∗0~g
(ε ∗0 δ).

Here the first equation is by definition of d2(−) and functoriality of Ah, the sec-
ond equation is by (35) and the final equation is by the definition of horizontal
composition of k-cells in ω-Cat.

For the induction step when m is even we have,

dm
~η∗0~λ,~ν∗0~µ

(ε ∗0 δ) = (~ν ∗0 ~µ)− ∗(m−2) dm−1

s~η∗0s~λ,t~η∗0t~λ
(ε ∗0 δ)

=
(
ν− ∗0 Ah(µ−)

)
∗(m−2)

(
dm−1
s~η,t~η(ε) ∗0 Ah

(
dm−1

s~λ,t~λ
(δ)
))

=
(
ν− ∗(m−2) dm−1

s~η,t~η(ε)
)
∗0
(
Ah(µ−) ∗(m−2) Ah

(
dm−1

s~λ,t~λ
(δ)
))

= dm~η,~ν(ε) ∗0 Ah
(
dm~λ,~µ(δ)

)
.

Here the first equation is by definition of dm. The second equation is by the induc-
tion hypothesis and definition of (~ν ∗0 ~µ)−. The third equation is by interchange,
and the final equation is by definition of dm together with functoriality of Ah. In
this case the second condition (2) from above is an immediate consequence. The
induction step when m is odd is by a “dual” argument. Finally, the case where
m = 1 is trivial. �

The proof of Lemma 4.4 is typical of the kind of argument involved in proving
that

∫
A is an ω-category. Indeed, we will see that an analogous argument holds

for composition along n-cells for n > 0. It is to this which we now turn.
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4.1.4. Vertical composition. Assume n > 0 and suppose we are given m-
cells which are composable along an n-cell as indicated in the following diagram:

~u ~v

~f

��
~u ~v

~h

AA~u ~g~g ~v//

~ϕ

~ψ

~α
��

~β
��

~γ
��

~δ
��

(36)

where ~f,~g and ~h are n-cells in
∫
A. Here, ~α and ~β are the (n + 1)-cells bounding

~ϕ. I.e., ~β = t(m−n−1)~ϕ, et cetera. As such, when m = n + 1 we have ~β = ~α = ~ϕ

and similarly for ~ψ. We would like to define the composite (~ψ ∗n ~ϕ). Since the
first component will be the composite (ψ ∗n ϕ) taken in C, it remains only to define
the second component (~ψ ∗n ~ϕ)−. The definition will alternate between those cases
where (n+1) is even and those where it is odd. First, assume (n+1) is even. Then
we obtain the following diagram in Ay:

dn(f) v−
f− //dn(f)

dn(g)

dn(β)

��
dn(g)

dn(h)

dn(δ)

��

dn(g)

v−

g−

FF

dn(h)

v−

h−

PP

ϕ−

ψ−

where ~x and ~y are the 0-cells bounding all of the cells in question. To see that
we have correctly identified the n-cells of Ay bounding ϕ− and ψ− note that when
m = n+ 1 this is trivially the case. When m > n+ 1,

s(m−n)(ϕ−) = s(α−)
= f−

where the first equation is by Lemma 4.3 and the second is by the fact that (n+ 1)
is even. Similarly, t(m−n)ϕ− = tβ− which, since (n+1) is even, is equal to dn+1

~f,~g
(β),

as required. Similar calculations show that ψ− is as indicated in the diagram. Note
also that

dn~u,~v(δ) ∗(n−1) dn~u,~v(β) = dn(δ ∗n β),

by functoriality of dn~u,~v(−). These observations suggest that, when (n+ 1) is even,
we define (~ψ ∗n ~ϕ)− to be the composite(

ψ− ∗(n−1) dn~u,~v(β)
)
∗n ϕ−.
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Similarly, when (n+ 1) is odd, we obtain

u− dn(f)
f− // dn(f)

dn(g)

dn(α)

��
dn(g)

dn(h)

dn(γ)

��

u−

dn(g)g− 00

u−

dn(h)
h−

//

ϕ−

ψ−

in Ay and we may define (~ψ∗n ~ϕ)− to be the analogous composite. Explicitly, given
~ϕ and ~ψ as above, we define

(~ψ ∗n ~ϕ)− :=


(
ψ− ∗(n−1) dn~u,~v(β)

)
∗n ϕ− if (n+ 1) is even, and

ψ− ∗n
(
dn~u,~v(γ) ∗(n−1) ϕ−

)
if (n+ 1) is odd.

where ~β and ~γ are the bounding (n + 1)-cells as indicated in (36). The first step
will be to prove that the composites occurring in the definition of composition are
defined and that the resulting cells have the correct boundaries.

Lemma 4.5. When ~ϕ and ~ψ are as indicated in (36) above and 2 < (n+1) < m,

s(~ψ ∗n ~ϕ)− =


(s~ψ ∗n s~ϕ)− if m is even, and

dm
(s~ψ∗s~ϕ),(t~ψ∗t~ϕ)

(ψ ∗n ~ϕ) if m is odd,

and

t(~ψ ∗n ~ϕ)− =


(t~ψ ∗n t~ϕ)− if m is odd, and

dm
s~ψ∗ns~ϕ,t~ψ∗nt~ϕ

(ψ ∗n ϕ) if m is even,

when m > n+ 1, and when m = n+ 1,

s(~ψ ∗n ~ϕ)− = s(ϕ−), and

t(~ψ ∗n ~ϕ)− = t(ψ−).

Proof. As with the proof of Lemma 4.4 it is necessary to prove also some
stronger facts regarding the behavior of the weighted face functors. Namely, we
prove that, where the (m− 1)-boundaries of ~ϕ and ~ψ are as in the proof of Lemma
4.4,

dm
~η∗n~λ,~ν∗n~µ

(ε ∗n δ) =


(
dm~η,~ν(ε) ∗(n−1) dn~u,~v(β)

)
∗n dm~λ,~µ

(δ) if (n+ 1) is even, and

dm~η,~ν(ε) ∗n
(
dn~u,~v(γ) ∗(n−1) dm~λ,~µ

(δ)
)

if (n+ 1) is odd,

(37)

for k-cells δ and ε of Cm(λ, µ) and Cm(η, ν), respectively. Again, this is proved by
induction on m simultaneously with the verification of the boundary conditions.
Note that we must now consider four distinct cases. E.g., the case where (n+ 1) is
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even and m is even, the case where (n+ 1) is even and m is odd, et cetera. For the
induction steps these cases are all by similar arguments to those given in the proof
of Lemma 4.4. As such, we describe here only one of the base cases (the others are
essentially the same). In particular, we consider the base case where (n+ 1) is odd
and m is even. I.e., m = n+ 2. In this case we have

~u ~v

~f

��
~u ~v

~h

CC~u ~g~g ~v//

~λ
��

~µ
��

~η
��

~ν
��

with ~β = ~µ and ~γ = ~η. In this case, we begin by observing that,

dn+1
~f,~h

(ε ∗n δ) = dn~u,~v(ε ∗n δ) ∗(n−1) f−

= dn~u,~v(ε) ∗(n−1) dn~u,~v(δ) ∗(n−1) f−

= dn~u,~v(ε) ∗(n−1) dn+1
~f,~g

(δ),

where the second equation is by functoriality of dn~u,~v(−). Using this fact we obtain

dm
~η∗n~λ,~ν∗n~µ

(ε ∗n δ) =
(
ν− ∗n

(
dn~u,~v(ν) ∗(n−1) µ−

))
∗n dn+1

~f,~h
(ε ∗n δ)

=
(
ν− ∗n

(
dn~u,~v(ν) ∗(n−1) µ−

))
∗n
(
dn~u,~v(ε) ∗(n−1) dn+1

~f,~g
(δ)
)

= ν− ∗n
((

dn~u,~v(ν) ∗n dn~u,~v(ε)
)
∗(n−1)

(
µ− ∗n dn+1(δ)

))
= ν− n

(
dn~u,~v(ε) ∗(n−1) dn+2

~λ,~µ
(δ)
)
,

where the final equation is by the fact that t(k+1)(ε) = ν. On the other hand, a
straightforward calculation shows that

dm~η,~ν(ε) ∗n
(
dn~u,~v(γ) ∗(n−1) dm~λ,~µ(δ)

)
= ν− n

(
dn~u,~v(ε) ∗(n−1) dn+2

~λ,~µ
(δ)
)
,

as well. Using this fact, the boundary condition is immediate. �

Proposition 4.6. Given a (small) strict ω-category C and a functor A :
C //ω-Cat, the Grothendieck construction

∫
A of A is a (small) strict ω-category.

Proof. We have already seen in Lemma 4.2 that
∫
A is a reflexive globular

set and we have described the candidates for composition. As such, it remains to
verify the unit, associativity and interchange laws. These are all routine (although
somewhat lengthy) computations using the facts established in the proofs of Lem-
mata 4.4 and 4.5. To give some indication of the kind of calculation involved we
consider the case where, for a fixed p > 0, p > n and both (p+ 1) and (n+ 1) are
even. Suppose we are given m-cells, with m > p, ~α, ~β, ~γ and ~δ which are bounded
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at dimension p as indicated in the following diagram:

~a ~b

~λ

��
~a ~b

~ν

DD~a ~µ~µ ~b//

~α

~β

��
~ω
��

��
~γ
��

and ~c ~d

~θ

��
~c ~d

~νξ

DD~c ~ζ~ζ ~d//

~γ

~δ

��
~ψ
��

��
~ε
��

I.e., tm−p(~α) = ~ω and so forth. Observe that, under these hypotheses, at dimension
(p− 1) ≥ (n+ 1) ~α and ~β are parallel (and similarly for ~γ and ~δ). Assume that the
composites (~γ ∗n ~α) and (~δ ∗n ~β) are defined. By the remark just made it follows
that

tm−n~α = ~g

= tm−n~β

= sm−n~γ

= sm−n~δ.

Moreover, where ~ϕ is tm−n−1~α we have also ~ϕ = tm−n−1~β. We will prove that the
interchange law

(~δ ∗p ~γ) ∗n (~β ∗p ~α) = (~δ ∗n ~β) ∗p (~γ ∗n ~α)

holds. First, observe that
(
(~δ ∗p ~γ) ∗n (~β ∗p ~α)

)
− is equal to((

(δ− ∗(p−1) dp
~c,~d

(ψ)) ∗p γ−
)
∗(n−1) dn(ϕ)

)
∗n
(
(β− ∗(p−1) dp

~a,~b
(ω)
)
∗p α−

)
which, by two applications of interchange, is in turn equal to((

(δ− ∗(p−1) dp(ψ)) ∗(n−1) dn(ϕ)
)
∗n (β− ∗(p−1) dp(ω))

)
∗p
(
(γ− ∗(n−1) dn(ϕ)

)
∗n α−

)
On the other hand,

(
(~δ ∗n ~β) ∗p (~γ ∗n ~α)

)
− is equal to((

(δ− ∗(n−1) dn(ϕ)) ∗n β−
)
∗(p−1) dp(ψ ∗n ω)

)
∗p
(
(γ− ∗(n−1) dn(ϕ)) ∗n α−

)
.

Thus, it suffices to prove that((
(δ− ∗(p−1) dp(ψ)) ∗(n−1) dn(ϕ)

)
∗n (β− ∗(p−1) dp(ω))

)
is equal to ((

(δ− ∗(n−1) dn(ϕ)) ∗n β−
)
∗(p−1) dp(ψ ∗n ω)

)
This in turn follows, after a further routine calculation, from the fact that, by the
proof of Lemma 4.5,

dp
~c∗n~a,~d∗n~b

(ψ ∗n ω) =
(
dp
~c,~d

(ψ) ∗(n−1) dn(ϕ)
)
∗n dp

~a,~b
(ω).
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�

Remark 4.7. There are several reasons for referring to this construction as
“the” Grothendieck construction. First, it generalizes the usual 1-dimensional
Grothendieck construction. Secondly, it should be possible to show that it is a
weighted colimit of the given functor, with a suitable weight, just as in the case
of the ordinary construction. Such a characterization of this construction is not
required for our purposes and we therefore do not address this matter here.

We now turn to the definition of (strict) ω-groupoids.

Definition 4.8. A strict ω-category C is a (strict) ω-groupoid if every (n+
1)-cell f : a // b possesses a strict ∗n-inverse f−1 : b // a. I.e.,

(f−1 ∗n f) = a, and(38)

(f ∗n f−1) = b.(39)

This definition generalizes both the usual definition of (1-)groupoid as well as
the definition of (strict) 2-groupoid occurring in the work of Moerdijk and Svensson
[65]. It should be contrasted with the weaker notions of ω-groupoid, also defined
in the general setting of strict ω-categories, due to Street [77], and Kapranov and
Voevodsky [49]. The essential difference with the definition from [77] is that there
the notion of inverse is weakened so that, instead of equations, it is required that
there exist (systems of) higher-dimensional cells (f−1 ∗n f) +3 a, et cetera. In [49]
it is further required that the higher-dimensional cells witnessing invertibility of f
satisfy additional coherence conditions. Such weaker notions of ω-groupoid are also
of interest for interpreting type theory, but will not be considered here.

With Definition 4.8 at hand we obtain the following Corollary to Proposition
4.6:

Corollary 4.9. If C is a (small) strict ω-groupoid and A : C //ω-Gpd, then∫
A is a (small) strict ω-groupoid.

Proof. Given an arrow ~f : ~x //~y, the inverse (~f)−1 is the pair
(
f−1, Af−1(f−)−1

)
.

For n > 0, given a (n+ 1)-cell ~ϕ : ~α +3 ~β we define

(~ϕ)−1 :=
(
ϕ−1, ϕ−1

− ∗(n−1) dns~α,t~α(ϕ−1)
)

when (n+ 1) is even, and

(~ϕ)−1 :=
(
ϕ−1, dns~α,t~α(ϕ−1) ∗(n−1) ϕ

−1
−
)

when (n + 1) is odd. It is straightforward to verify that these are indeed inverses
with respect to composition in

∫
A. �

4.2. The dual Grothendieck construction

The purpose of this section is to describe the dual Grothendieck construction∫ ∗
A of a functor A : C // ω-Cat obtained by choosing the opposite orientation

for the weighted faces of cells from that in
∫
A. Accordingly, we also introduce

the “co-weighted face” or “dual weighted face” functors ďn associated with this
construction. Finally, we describe the “duality” functor ¬ :

∫
A //

∫ ∗
A. The

action of ¬ is, essentially, to “turn around” the triangles which constitute the cells
of
∫
A in a functorial way.
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4.2.1. The dual construction. Given a functor A : C // ω-Cat, the dual
Grothendieck construction

∫ ∗
A is the ω-category obtained by “reversing” the

weighting decision made in the definition of the Grothendieck construction
∫
A of

A. I.e.,
∫ ∗
A has the same 0-cells as

∫
A, but 1-cells ~f : ~x // ~y are pairs (f, f−)

with f : x //y an arrow in C and f− : y− //Af (x−) an arrow in Ax. As with
∫
A,

we define the dual weighted face of such an arrow f− to be Af (x−) and obtain a
dual weighted face functor:

C1(x, y)
ď1
~x,~y //Ay

by setting ď1
~x,~y(γ) to be x−.γ. Thus, in particular, ď1

~x,~y = d1
~x,~y. The construction is

given inductively as for
∫
A by the following steps:

((n+ 1) is even): A (n + 1)-cell ~α : ~f +3 ~g, with ~f,~g : ~v //// ~w, is a pair
consisting of a (n+ 1)-cell α : f //// g in C and a (n+ 1)-cell α− in Ay as
indicated in the following diagram:

v− ďn(f)
f− //v−

ďn(g)

g−

))

ďn(f)

ďn(g)

ďn(α)

��

α−
��

The dual weighted face functor

Cn+1(f, g)
ďn+1
~f,~g // (Ay)n

(
v−, ď

n(g)
)

is given by defining ďn+1
~f,~g

(γ) to be ďn(γ) ∗(n−1) f−.
((n+ 1) is odd): On the other hand, when (n + 1) is odd a (n + 1)-cell
~α : ~f +3 ~g is given by α : f +3 g as above together with a (n+ 1)-cell of
Ay as indicated in the following diagram:

ďn(f) w−
f− //

ďn(g)

w−

g−

GGďn(f)

ďn(g)

ďn(α)

��

α−
��

Here the dual weighted face functor

Cn+1(f, g)
ďn+1
~f,~g // (Ay)n

(
ďn(f), w−

)
is obtained by defining ďn+1

~f,~g
(γ) to be g− ∗(n−1) ďn(γ).

Composition in
∫ ∗
A is obtained in the obvious way and, using arguments essentially

identical (modulo the evident shift in dimension) to those from Section 4.1, we
obtain the following proposition:
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Proposition 4.10. Given a functor A : C // ω-Cat with C an ω-category,∫ ∗
A is an ω-category. Moreover, if C is an ω-groupoid and A : C // ω-Gpd, then∫ ∗
A is also an ω-groupoid.

We will ultimately show that, when C is an ω-groupoid and A : C // ω-Gpd,
there exists a functor ¬ :

∫
A //

∫ ∗
A which we will employ in the construction

of the identity types. However, before we can describe this functor we will require
some auxiliary notions.

4.2.2. Duals and functors induced by composition. When a category
C is an ordinary 1-dimensional groupoid, then there exists an isomorphism σ :
C // Cop which is the identity on objects and sends an arrow f : x // y to its
inverse f−1 : y // x. Now, when C is an ω-groupoid there is also a “dual” functor
σ : C //Cop we now consider. Recall that Cop is obtained by reversing only 1-cells.
For example, given a 2-cell α : f // g in C, σα : f−1 // g−1 is defined to be
(g−1 ∗0 α−1 ∗0 f−1). As a diagram:

y x
g−1

// x y

g

##
x y

f

;; y x
f−1

//α−1

��

Then, where ϕ : α // β is a 3-cell,

σ(ϕ) := g−1 ∗0 (β−1 ∗1 ϕ−1 ∗1 α−1) ∗0 f−1.

At higher-dimensions the construction is the same, adding a new “inner” block
obtained by composing ϕ−1 with the inverses of its boundary maps. Although we
will make some minor use of this functor for arbitrary ω-groupoids, we are more
concerned with a related construction which yields a similar kind of functor ¬ :∫
A //

∫ ∗
A. Rather than describing σ in detail, we instead focus our attention on

the construction of the map ¬ and mention that the construction of σ is essentially
the same (with obvious modifications taking into account the shift from triangles
to globes).

In an ω-category A, when f : x // y and g : u // v are fixed (n+ 1)-cells with
n ≥ 0, if x, y, u and v are all parallel, then there exists a functor

An+1(y, u)
(g ∗n − ∗n f) // An+1(x, v)

which acts in the obvious way on cells of An+1(y, u).
Now, consider the case where the ω-category A is itself of the form

∫
A for

A : C // ω-Gpd with C an ω-groupoid. Assume we are given parallel (n+ 1)-cells
~α and ~β of

∫
A, with n > 0, bounded by n-cells ~f and ~g. Then, when (n + 1) is

even, there exists a span

dn+1(α) oo
α−

f−
β− // dn+1(β)

of (n+ 1)-cells in Ay. Taking inverses yields the functor

(Ay)n+1

(
f−, d

n+1(β)
) (β−1

− ∗n − ∗n α−1
− )
// (Ay)n+1

(
dn+1(α), f−

)
.
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In the same way, if (n+ 1) is odd, we obtain the functor

(Ay)n+1

(
dn+1(α), g−

) (β−1
− ∗n − ∗n α−1

− )
// (Ay)n+1

(
g−, d

n+1(β)
)
.

When such parallel (n+ 1)-cells ~α and ~β of
∫
A are fixed, we define the functor

(Ay)n+1(sα−, tβ−)
ρ0
~α,~β // (Ay)n+1(tα−, sβ−)

to be (β−1
− ∗n − ∗n α−1

− ). When ~ϕ is a fixed (n + 2)-cell, we denote by ρ0
∂~ϕ the

functor ρ0
s~ϕ,t~ϕ.

4.2.3. The functors ρk
~α,~β

. Part of the utility of the functors ρ0
~α,~β

is that, in

a suitable sense, they can be iterated. To see this, assume n > 1 and let ~α and ~β
be given. Then, since n > 1, we have

(Ay)n(s2α−, t
2β−)

ρ0
s~α,t~α // (Ay)n(t2α−, s2β−)

and we may define the functor

(Ay)n+1(sα−, tβ−)
ρ1
~α,~β //

(
(Ay)n(t2α−, s2β−)

)+
as follows:

ρ1
~α,~β

:=
(
ρ0
∂~α

)+ ◦ j ◦ ρ0
~α,~β
,

where j is the (usually nameless) inclusion

(Ay)n+1(tα−, sβ−) //
(
(Ay)n(s2α−, t

2β−)
)+

from Section A.3.4 of Appendix A. Explicitly, given a cell γ of (Ay)n+1(sα−, tβ−),

ρ1
~α,~β

(γ) = g−1
− ∗(n−1) (β−1

− ∗n γ ∗n α−1
− ) ∗(n−1) f

−1
− ,

where ~f = s~α and ~g = t~α. In general, given parallel (n + 1)-cells ~α and ~β, if
0 < k ≤ n, then we define functors

(Ay)n+1(sα−, tβ−)
ρk
~α,~β //

(
(Ay)n+1−k(tk+1α−, s

k+1β−)
)+k

by setting

ρk
~α,~β

:=
(
ρk−1
∂~α

)+ ◦ j ◦ ρ0
~α,~β
.

This definition can be visualized as in the following diagram:

(Ay)n+1(sα−, tβ−) (Ay)n+1(tα−, sβ−)
ρ0
~α,~β // (Ay)n+1(tα−, sβ−)

(
(Ay)n(s2α−, t

2β−)
)+

j

��(
(Ay)n(s2α−, t

2β−)
)+(

(Ay)n(t2α−, s2β−)
)+ (

ρ0
∂~α

)+

oo(
(Ay)n(t2α−, s2β−)

)+

(
(Ay)n+1−k(sk+1α−, t

k+1β−)
)+k��(

(Ay)n+1−k(sk+1α−, t
k+1β−)

)+k (
(Ay)n+1−k(tk+1α−, s

k+1β−)
)+k(

ρ0
sk~α,tk~α

)k
//

(Ay)n+1(sα−, tβ−)

(
(Ay)n(t2α−, s2β−)

)+
ρ1
~α,~β

�� (
(Ay)n(s2α−, t

2β−)
)+

(
(Ay)n+1−k(tk+1α−, s

k+1β−)
)+k

(
ρk−1
∂~α

)+

��
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Henceforth, when no confusion will result we omit the map i and the superscripts
(−)+ when dealing with these maps. This convention is justified by the fact that
whenever we actually compute with these maps their action is the identity.

4.2.4. Definition of the duality functor. We now describe a functor ¬ :∫
A //

∫ ∗
A, called the duality functor, which will be required for the construc-

tion of the identity types in Section 4.3 below. Because the definition is somewhat
technical, we begin by describing it in the first two dimensions where the geometry
involved is more apparent. Throughout this section we assume that A : C //ω-Gpd
with C a small ω-groupoid.

Given an arrow ~f : ~x // ~y in
∫
A, we have in Ay the map f− : d1

~x,~y(f) // y−
and, by taking its inverse, we obtain an arrow (f, f−1

− ) : ~x // ~y in
∫ ∗
A also. I.e.,

y−
f−1
− // ď1

~x,~y(f) = d1
~x,~y(f)

in Ay. Thus, at dimension 0 we define ¬(~x) to be just ~x and at dimension 1,

¬(~f) := (f, f−1
− ).

We sometimes commit a slight abuse of notation and denote the second component
of ¬(~ϕ) by ¬ϕ−. Because the first component of ¬(~ϕ) is ϕ in all dimensions this
should lead to no confusion.

Matters become more interesting when we consider a 2-cell ~α : ~f +3 ~g in
∫
A.

In this case, we would like to obtain a 2-cell ¬α− as indicated in the following
diagram

y− ď1(f) = d1(f)
¬f− //v−

ď1(g) = d1(g)

¬g− ((

ď1(f) = d1(f)

ď1(g) = d1(g)

d1(α)

��

¬α−
��

in Ay where ~f,~g : ~x // //~y. Because Ay is an ω-groupoid we may form the composite

y− d1(f)
f−1
− // d1(f)

d1(g)
d1(α)

<<yyyyyyyy

d1(g)

y−

g−

""EEEEEEEEE

y− d1(g)
g−1
− //d1(f) y−

f−

22
α−1
−
��

which possesses the appropriate boundary to be ¬α−. Indeed, we define

¬α− := ρ0
~f,~g

(α−1
− )

= g−1
− ∗0 α−1

− ∗0 f−1
− .

This observation, that ¬α− can be defined using the functors ρk from above, does
in fact generalize to higher dimensions where we set

¬ϕ− := ρm−2
∂~ϕ (ϕ−1

− )

when ~ϕ is a m-cell of
∫
A with m ≥ 2.
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Lemma 4.11. With this definition, ¬ :
∫
A //

∫ ∗
A is a map of (reflexive)

globular sets.

Proof. We must show that ¬~ϕ satisfies the co-weighted face conditions from
Section 4.2.1. We have already seen that, when ~ϕ is a (n + 1)-cell of

∫
A, these

conditions are satisfied for n = 0, 1. In general, when ~ϕ is a (n + 1)-cell, with
n ≥ 1, with source ~f and target ~g we will prove simultaneously by induction on n
the following two facts at each stage (n+ 1):

(1) The co-weighted face conditions are satisfied.
(2) The following equations are satisfied:

ρn−1
∂~ϕ

(
dn+1
~f,~g

(γ)
)

= ďn+1

¬~f,¬~g
(γ)

whenever γ is an appropriate cell.

The co-weighted face conditions are easily seen to hold in the base cases. For
condition (2), assume n = 1 and observe that in this case

ρ0
∂~α

(
d2
~f,~g

(γ)
)

= g−1
− ∗0 g− ∗0 d1(γ) ∗0 f−1

−

= ď2
¬~f,¬~g(γ).

For the induction step of (1) when (n+ 1) is even we note that

t(¬ϕ−) = ρn−1
∂~ϕ (tϕ−1

− )

= ρn−1
∂~ϕ (sϕ−)

= ρn−2
∂~ϕ (g−1

− ∗(n−1) f− ∗(n−1) f
−1
− )

= ρn−2
∂~ϕ (g−1

− )

= ¬(t~ϕ)−.

On the other hand,

s(¬ϕ−) = ρn−2

∂ ~f

(
g−1
− ∗(n−1) dn+1

~f,~g
(ϕ) ∗(n−1) f

−1
−
)

= ρn−2

∂ ~f

(
dn(ϕ) ∗(n−1) f

−1
−
)

= ρn−2

∂ ~f

(
dn(ϕ)

)
∗(n−1) ρ

n−2

∂ ~f
(f−1
− )

= ďn(ϕ) ∗(n−1) ¬f−
= ďn+1

¬~f,¬~g
(ϕ)

where the penultimate equation is by the induction hypothesis. The induction step
of (2) is by a (similar and) straightforward calculation. The case where (n + 1) is
odd is essentially “dual”. Finally, observe that ¬ trivially preserves identities and
so constitutes a homomorphism of reflexive globular sets. �

4.2.5. Composing triangles in ω-groupoids. In order to show that ¬ is a
functor it will be convenient to have an alternative description of composition in

∫
A

and
∫ ∗
A in the case where C is an ω-groupoid and A : C //ω-Gpd. In particular,
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we observe that, whenever C is an ω-groupoid, given a diagram as follows:

a d
f //a

b

l

��
b

c

m

��

b

d

g

FF

c

d

h

PP

ϕ

ψ

with f , g, h, . . .n-cells with n > 0, then

(ψ ∗n ϕ) = (ψ ∗(n−1) g
−1 ∗(n−1) ϕ).

As a diagram:

· ·//·

·
��
·

·
��

·

·

g

EE

·

·OO
ϕ

ψ

=

·

·$$
JJJJJJ·

· zzt
ttttt

· ·
g

:: · ·g−1
// · ·

g

$$·

·$$
JJJJJJ

·

·::tttttt

ϕ ψ

Similarly,

· ·// ·

·
��
·

·
��

·

·g 11

·

·//

ϕ

ψ

=

·

·$$
JJJJJJ

·

·::tttttt· ·
g

:: · ·g−1
// · ·

g

$$·

·$$
JJJJJJ ·

· zzt
tttttϕ ψ

I.e., in this case also (ψ ∗n ϕ) is equal to (ψ ∗(n−1) g
−1 ∗(n−1) ϕ). Accordingly,

when dealing with A : C // ω-Gpd where C is itself an ω-groupoid, we obtain a
description of composition terms (~ψ ∗n ~ϕ)− which is independent of whether (n+1)
is even or odd. Namely,

(~ψ ∗n ~ϕ)− = ψ− ∗(n−1) g
−1
− ∗(n−1) ϕ−,

where ~g is the appropriate n-cell bounding ~ϕ and ~ψ. I.e., ~g = tm−n~ϕ = sm−n ~ψ. It
is this decomposition of the terms (~ψ ∗n ~ϕ)− which allows us to prove the following
result.

Proposition 4.12. The map ¬ :
∫
A //

∫ ∗
A is a functor.

Proof. By Lemma 4.11 ¬ is a homomorphism of reflexive globular sets. As
such, it remains to verify that composition is preserved. Suppose we are given m-
cells ~ϕ and ~ψ for which sm−n ~ψ = ~g and tm−n~ϕ = ~g. We must verify that ¬(~ψ∗n ~ϕ)−
is equal to

(
¬~ψ∗n¬~ϕ)−. The proof is divided into the cases where n = 0 and n > 0.

Both cases are essentially straightforward verifications and we leave the first to the
reader. For the second case, suppose ~ϕ and ~ψ are bounded by n-cells ~f,~g and ~h as
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indicated in the following diagram:

~u ~u

~f

��
~u ~v

~h

AA~u ~g~g ~v//
~ϕ

~ψ

Then, by the observation above about composition in ω-groupoids together with
the interchange law, we obtain

¬(~ψ ∗n ~ϕ)− = ρm−2

∂(~ψ∗n~ϕ)

(
ψ−1
− ∗(n−1) g

−1
− ∗(n−1) ϕ

−1
−
)

= ρn−1
~f,~h

(
ρm−n
∂ ~ψ

(ψ−1
− ) ∗(n−1) g

−1
− ∗(n−1) ρ

m−n
∂~ϕ (ϕ−1

− )
)
.

Moreover, by definition of ρn−1
~f,~h

this is equal to

ρn−2

∂ ~f

(
ρm−n+1

∂ ~ψ
(ψ−1
− ) ∗(n−1) g− ∗(n−1) ρ

m−n+1
∂~ϕ (ϕ−)

)
.

Finally, by functoriality of ρn−2

∂ ~f
and the definition of ¬, this is the same as

¬ψ− ∗(n−1) (¬g−)−1 ∗(n−1) ¬ϕ− =
(
(¬~ψ) ∗n (¬~ϕ)

)
−.

�

4.3. Identity types

When A : C //ω-Gpd has as its domain an ω-groupoid C, the identity type
(for A) is a functor IA :

∫
A ◦ π // ω-Gpd where π :

∫
A // C is the projection.

By definition,
∫
A ◦ π is has as objects tuples ~x = (x, x−, x+) where x− and x+ are

themselves objects of Ax. Similarly, n-cells ~f in
∫
Aπ are tuples (f, f−, f+) such

that both (f, f−) and (f, f+) are n-cells in
∫
A. I.e., we have the following:

Proposition 4.13. Given a functor A : C // ω-Gpd, the following diagram
is a pullback

∫
A C

π
//

∫
Aπ

∫
A
��

∫
Aπ

∫
A//

∫
A

C

π

��

where the nameless functors the evident projections.

With this in mind, it is straightforward to describe the action of IA on objects.
Namely, IA(x, x−, x+) is defined to be the ω-groupoid Ax(x−, x+). Perhaps though,
in light of the discussion of the combinatorics of the Grothendieck construction from
the previous sections, matters are more complicated in higher dimensions. It is to
this task which we now turn.

Remark 4.14. Because, when
∫
Aπ is involved, we are dealing with two in-

stances of the Grothendieck construction
∫
A it will be convenient to introduce some

notation to describe the various weighted face functors. In particular, because we
adopt the convention of notating cells ~f of

∫
Aπ by (f, f−, f+) we will also no-

tate the corresponding weighted face functors accordingly. I.e., we write dn−(f) and
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dn+(f) for the instances of these functors corresponding to the appropriate “nega-
tive” and “positive” projections

∫
Aπ //

∫
A. When subscripts are necessary we

write, e.g., dn
~α~β;ξ

with ξ = +,−. We adopt also a corresponding convention for the
“co-weighted face” functors.

4.3.1. Identity types in dimensions 1 and 2. Given an arrow ~f : ~x // ~y
in
∫
Aπ, IA(~f) is the functor

Ax(x−, x+) //Ay(x−, x+)

which sends any cell γ of Ax(x−, x+) to the following composite:

y− d1
−(f)

f−1
− // d1

−(f) d1
+(f)
##

d1
−(f) d1

+(f)
;;
d1

+(f) y+
f+ //Af (γ)

I.e., IA(~f)(γ) is defined to be (f+ ∗0 Af (γ) ∗0 f−1
− ). Already at this stage we

have tacitly made use of the dual functor ¬ since ¬f− is f−1
− .

Now, given a 2-cell ~α : ~f +3~g we must provide a natural transformation IA(~α)
as indicated in the following diagram:

Ax(x−, x+) Ay(y−, y+)

IA(~f)

%%
Ax(x−, x+) Ay(y−, y+)

IA(~g)

99
IA(~α)
��

Fixing an object h : x− // x+ of Ax(x−, x+), the component IA(~α)h of this trans-
formation at h is described by the composite of the following diagram in Ay:

y−

d1
−(f)¬f− 00

y−

d1
−(g)¬g− ..

d1
−(f)

d1
−(g)

d1
−(α)

��

¬α−
��

d1
−(f) d1

+(f)
Af (h) //

d1
−(g) d1

+(g)
Ag(h)

//

d1
+(f)

d1
+(g)

d1
+(α)

��

d1
+(f)

y+

f+

  

d1
+(g)

y+

g+

>>
α+

��
(40)

where the middle square commutes (on the nose) by naturality of Aα. Explicitly,

IA(~α)h := (f+ ∗0 Ag(h) ∗0 ¬α−) ∗1 (α+ ∗0 Af (h) ∗0 ¬f−).

With this definition in mind, we now turn to the introduction of some auxiliary
functors which will allow us to describe the identity types in higher dimensions.

4.3.2. Auxiliary functors. Holding an arrow ~f : ~x // ~y of
∫
Aπ fixed to-

gether with an object h of Ax(x−, x+) we define functors

(Ay)1

(
d1

+(f), y+

) Ψ1
~f,h // (Ay)1(y−, y+), and

(Ay)1

(
y−, d

1
−(f)

) Ψ̌1
~f,h // (Ay)1(y−, y+)
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by setting

Ψ1
~f,h

(−) := (− ∗0 Afh ∗0 ¬f−), and

Ψ̌1
~f,h

(−) := (f+ ∗0 Afh ∗0 −).

As usual, we omit either one or both of the subscripts when no confusion will result.
The first thing we observe about these functors is that

Ψ1
~f
(f+) = Ψ̌1

~f
(¬f−).(41)

The next feature which should be emphasized is that these functors interact in an
important way with the usual weighted face functors. In particular, the following
diagram (of ω-categories) commutes:

(Ay)1

(
d1

+(f), y+

)
(Ay)1(y−, y+)

Ψ1
~f,h

//

C2(f, g)

(Ay)1

(
d1

+(f), y+

)
d2
~f,~g;+

��

C2(f, g) (Ay)1

(
y−, ď

1
−(g)

)ď2
¬~f,¬~g;− // (Ay)1

(
y−, ď

1
−(g)

)

(Ay)1(y−, y+)

Ψ̌1
~g,h

��

(42)

To see this, we note that

Ψ̌1
~g

(
ď2
−(γ)

)
= g+ ∗0 Agh ∗0 d1

−(γ) ∗0 ¬f−
= g+ ∗0 d1

+(γ) ∗0 Afh ∗0 ¬f−
= Ψ1

~f

(
d2

+(γ)
)
,

where the second equation is by naturality of Aγ . We now observe that, when ~α
is as above, the component IA(~α) at h can be described using these functors as
follows:

IA(~α)h = Ψ̌1
~g,h(¬α−) ∗1 Ψ1

~f,h
(α+)

In particular, IA(~α)h is obtained by composing

Ψ1
~f
(f+)

Ψ1
~f
(α+)

//Ψ1
~f

(
d2

+(α)
)

= Ψ̌1
~g

(
ď2
−(α)

) Ψ̌1
~g(¬α−)

// Ψ̌1
~g(¬g−) = Ψ1

~g(g+).(43)

As such, we have employed both (41) and (42) in order to show that the composite
defining IA(~α)h makes sense. We emphasize this point because it provides the first
look at what will be required in higher dimensions.

At the next stage, holding a 2-cell ~α : ~f // ~g and an arrow h : x− // x+ as
above fixed, we define functors

(Ay)2

(
f+, d

2
~f,~g;+

(α)
) Ψ2

~α,h // (Ay)2

(
Ψ1
~f,h

(f+),Ψ1
~g,h(g+)

)
, and

(Ay)2

(
ď2
¬~f,¬~g;−(α),¬g−

) Ψ̌2
~α,h // (Ay)2

(
Ψ1
~f,h

(f+),Ψ1
~g,h(g+)

)
as follows

Ψ2
~α,h(−) := Ψ̌1

~g,h

(
¬α−) ∗1 Ψ1

~f,h
(−), and

Ψ̌2
~α,h(−) := Ψ̌1

~g,h(−) ∗1 Ψ1
~f,h

(α+).
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The motivation for these definitions can perhaps best be seen in consultation with
(40). It follows, using the same reasoning from (43), that these functors are well-
defined and possess the appropriate boundaries. An immediate consequence of the
definition is that

Ψ2
~α,h(α+) = Ψ̌2

~α,h(¬α−).

Moreover, (42) also generalizes to dimension 2 to give:

(Ay)2

(
f+, d

2
+(β)

)
(Ay)2

(
Ψ1
~f,h

(f+),Ψ1
~g,h(g+)

)
Ψ2
~β,h

//

C3(α, β)

(Ay)2

(
f+, d

2
+(β)

)
d3
~α,~β;+

��

C3(α, β) (Ay)2

(
ď2
−(α),¬g−

)ď3
¬~α,¬~β;− // (Ay)2

(
ď2
−(α),¬g−

)

(Ay)2

(
Ψ1
~f,h

(f+),Ψ1
~g,h(g+)

)
Ψ̌2
~α,h

��

when ~α, ~β : ~f // // ~g are fixed 2-cells. To see that the equation holds we reason as
follows:

Ψ2
~β,h

(
d3

+(γ)
)

= Ψ̌1
~g,h(¬β−) ∗1 Ψ1

~f,h

(
d3

+(γ)
)

= Ψ̌1
~g,h(¬β−) ∗1 Ψ1

~f,h

(
d2

+(γ)
)
∗1 Ψ1

~f,h
(α+)

= Ψ̌1
~g,h(¬β−) ∗1 Ψ̌1

~g,h

(
ď2
−(γ)

)
∗1 Ψ1

~f,h
(α+)

= Ψ̌1
~g,h

(
¬β− ∗1 ď2

−(γ)
)
∗1 Ψ1

~f,h
(α+)

= Ψ̌1
~g,h

(
ď3
−(γ)

)
∗1 Ψ1

~f,h
(α+)

= Ψ̌2
~α,h

(
ď3
−(γ)

)
,

where the third equation is by (42). We will now show that this construction can
be generalized to all dimensions (n + 1) with n ≥ 2. In particular we will prove
that at each stage (n+1), for every (n+1)-cell ~ϕ : ~α // ~β and arrow h : x− //x+,
there exist functors Ψn+1

~ϕ,h and Ψ̌n+1
~ϕ,h satisfying the following conditions:

(1) When (n+ 1) is odd,

(Ay)n+1

(
dn+1

~α,~β;+
(ϕ), β+

) Ψn+1
~ϕ,h // (Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
, and

(Ay)n+1

(
¬α−, ďn+1

¬~α,¬~β;−
(ϕ)
) Ψ̌n+1

~ϕ,h // (Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
.

Similarly, when (n+ 1) is even,

(Ay)n+1

(
α+, d

n+1

~α,~β;+
(ϕ)
) Ψn+1

~ϕ,h // (Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
, and

(Ay)n+1

(
ďn+1

¬~α,¬~β;−
(ϕ),¬β−

) Ψ̌n+1
~ϕ,h // (Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
(2) When ~ϕ is an (n+ 1)-cell as above,

Ψn+1
~ϕ,h (ϕ+) = Ψ̌n+1

~ϕ,h (¬ϕ−).(44)
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(3) Let parallel (n+ 1)-cells ~ϕ, ~ψ : ~α //// ~β be given. When (n+ 1) is odd, the
following diagram commutes:

(Ay)n+1

(
dn+1

+ (ϕ), β+

)
(Ay)n+1

(
Ψn+1
~ϕ,h (α+),Ψn+1

~ψ,h
(β+)

)
Ψn+1
~ϕ,h

//

Cn+2(ϕ,ψ)

(Ay)n+1

(
dn+1

+ (ϕ), β+

)
dn+2
~ϕ,~ψ;+

��

Cn+2(ϕ,ψ) (Ay)n+1

(
¬α−, ďn+1

− (ψ)
)ďn+2

¬~ϕ,¬~ψ;− // (Ay)n+1

(
¬α−, ďn+1

− (ψ)
)

(Ay)n+1

(
Ψn+1
~ϕ,h (α+),Ψn+1

~ψ,h
(β+)

)
Ψ̌n+1
~ψ,h

��

(45)

And, when (n+ 1) is even,

(Ay)n+1

(
α+, d

n+1
+ (ψ)

)
(Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
Ψn+1
~ψ,h

//

Cn+1(ϕ,ψ)

(Ay)n+1

(
α+, d

n+1
+ (ψ)

)
dn+2
~ϕ,~ψ;+

��

Cn+1(ϕ,ψ) (Ay)n+1

(
ďn+1
− (ϕ),¬β−

)ďn+2
¬~ϕ,¬~ψ;− // (Ay)n+1

(
ďn+1
− (ϕ),¬β−

)

(Ay)n+1

(
Ψn
~α,h(α+),Ψn

~β,h
(β+)

)
Ψ̌n+1
~ϕ,h

��

(46)

commutes.

Lemma 4.15. The conditions described above are satisfied when, for ~ϕ : ~α // ~β
an (n + 1)-cell of

∫
Aπ and h : x− // x+ as above, the functors Ψn+1

~ϕ,h and Ψ̌n+1
~ϕ,h

are defined as follows:

Ψn+1
~ϕ,h (−) :=


Ψ̌n
~β,h

(¬ϕ−) ∗n Ψn
~α,h(−) if (n+ 1) is even, and

Ψn
~β,h

(−) ∗n Ψ̌n
~α,h(¬ϕ−) if (n+ 1) is odd;

and

Ψ̌n+1
~ϕ,h (−) :=


Ψ̌n
~β,h

(−) ∗n Ψn
~α,h(ϕ+) if (n+ 1) is even, and

Ψn
~β,h

(ϕ+) ∗n Ψ̌n
~α,h(−) if (n+ 1) is odd.

Proof. We give the proof in the case where (n+ 1) is odd as the case where
it is even is essentially dual. First, to see that Ψn+1

~ϕ is well defined and possesses
the source and target as stated in condition (1) above, suppose we are given a m-
cell ζ of (Ay)n+1(dn+1

+ ϕ, β+). Then, ζ is a (m + 1)-cell of (Ay)n(f+, d
n
+β) where

~α, ~β : ~f // // ~g. As such, we may apply Ψn
~β

to obtain

Ψn
~β

(
dn+1

+ (ϕ)
)

Ψn
~β
(β+)

%%
Ψn
~β

(
dn+1

+ (ϕ)
)

Ψn
~β
(β+)

99
Ψn
~β
(ζ)

By definition of ¬~ϕ, we have also ¬ϕ− : ¬α− // ďn+1
− (ϕ). By the induction

hypothesis,

Ψ̌n
~α

(
ďn+1
− (ϕ)

)
= Ψn

~β

(
dn+1

+ (ϕ)
)
,
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and therefore applying Ψ̌n
~α to ¬ϕ− yields

Ψn
~α(α+) = Ψ̌n

~α(¬α−)
Ψ̌n~α(¬ϕ−) // Ψn

~β

(
dn+1

+ (ϕ)
)
.

Here the equation is by the induction hypothesis. As such, the composite

Ψn+1
~ϕ (ζ) := Ψn

~β
(ζ) ∗n Ψ̌n

~α(¬ϕ−)

is defined and possesses the correct boundary. A similar argument shows that
Ψ̌n+1
~ϕ is well-defined with the appropriate boundary. Note also that, with these

definitions, condition (2) from above is trivially satisfied.
Finally, to see that (3) is satisfied we note that, when ~ϕ and ~ψ are parallel

(n+ 1)-cells as above and γ is a cell of Cn+2(ϕ,ψ),

Ψn+1
~ϕ

(
dn+2

+ (γ)
)

= Ψn
~β

(
dn+2

+ (γ)
)
∗n Ψ̌n

~α(¬ϕ−)

= Ψn
~β

(
ψ+ ∗n dn+1

+ (γ)
)
∗n Ψ̌n

~α(¬ϕ−)

= Ψn
~β
(ψ+) ∗n Ψn

~β

(
dn+1

+ (γ)
)
∗n Ψ̌n

~α(¬ϕ−)

= Ψn
~β
(ψ+) ∗n Ψ̌n

~α

(
ďn+1
− (γ)

)
∗n Ψ̌n

~α(¬ϕ−)

= Ψn
~β
(ψ+) ∗n Ψ̌n

~α

(
ďn+2
− (γ)

)
= Ψ̌n+1

~ψ

(
ďn+2
− (γ)

)
,

where the fourth equation is by the induction hypothesis. �

4.3.3. Definition of the identity types. With the functors Ψn and Ψ̌n at
our disposal it is possible to give a very efficient description of the “identity type”
functor IA :

∫
Aπ // ω-Gpd. In particular, the official definition of IA in all

dimensions is as follows:
Objects: IA(x, x−, x+) is given by the ω-groupoid Ax(x−, x+).
1-Cells: Given ~f : ~x // ~y, the functor I(~f) : I(~x) // I(~y) is defined by

setting

IA(~f)(γ) := f+ ∗0 Af (γ) ∗0 ¬f−,
for any m-cell γ of Ax(x−, x+).

2-Cells: A 2-cell ~α : ~f +3 ~g is sent to the natural transformation IA(~α)
which is defined, for an object h : x− // x+ of Ax(x−, x+), as follows:

IA(~α)h := Ψ2
~α,h(α+)

= Ψ̌2
~α,h(¬α−).

That IA(~α)h possesses the correct domain and codomain is an immediate
consequence of the results of Section 4.3.2.

(n+ 1)-Cells: In general, given an (n + 1)-cell ~ϕ : ~α +3 ~β in
∫
Aπ and

h : x− // x+, we define

IA(~ϕ)h := Ψ(n+1)
~ϕ,h (ϕ+)

= Ψ̌(n+1)
~ϕ,h (¬ϕ−).

Again, that IA(~ϕ)h possesses the correct domain and codomain follows
directly from the definition of IA at lower dimensional cells together with
the results of Section 4.3.2.
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It remains only to verify that IA is functorial. To this end, we first prove that the
data given in the definition are of the appropriate kinds. E.g., that I(~α) is a natural
transformation, et cetera.

Lemma 4.16. As defined above, when ~α : ~f +3 ~g is a 2-cell of
∫
Aπ, IA(~α) is

an ω-natural transformation.

Proof. Explicitly, we must show that, for any m-cell γ of Ax(x−, x+) with
m > 0 such that sm(γ) = h and tm(γ) = k, the following “schematic” diagram
commutes:

IA(~f)(h) IA(~g)(h)
IA(~α)h //IA(~f)(h)

IA(~f)(k)
}}

IA(~f)(h)

IA(~f)(k)
!!

IA(~f)(k) IA(~g)(k)
IA(~α)k

//

IA(~g)(h)

IA(~g)(k)
}}

IA(~g)(h)

IA(~g)(k)
!!

IA(~f)(γ) IA(~g)(γ)

in Ay(y−, y+). I.e., we must prove that

IA(~α)k ∗1 IA(~f)(γ) = IA(~g)(γ) ∗1 IA(~α)h.(47)

By definition of Ψ2
~α,h(α+) and interchange it follows that the right-hand side of

(47) is equal to (
g+ ∗0 Ag(γ) ∗0 ¬α−

)
∗1 Ψ1

~f,h
(α+).

Because Aα is itself a transformation Af +3Ag we obtain

d1
+(α) ∗0 Af (γ) = Ag(γ) ∗0 d1

−(α).

Thus,

Ag(γ) ∗0 ¬α− =
(
Ag(k) ∗1 Ag(γ)

)
∗0
(
¬α− ∗1 ď2

−(α)
)

=
(
Ag(k) ∗0 ¬α−

)
∗1
(
Ag(γ) ∗0 ď2

−(α)
)

=
(
Ag(k) ∗0 ¬α−

)
∗1
(
d1

+(α) ∗0 Af (γ) ∗0 f−1
−
)
.

Thus, the right-hand side of (47) is equal to

Ψ̌1
~g,k(¬α−) ∗1

(
d2

+(α) ∗0 Af (γ) ∗0 f−1
−
)
∗1 Ψ1

~f,h
(α+).(48)

Moreover, the interchange and unit laws yield(
d2

+(α) ∗0 Af (γ) ∗0 f−1
−
)
∗1 Ψ1

~α,h(α+) = α+ ∗0 Af (γ) ∗0 f−1
− .

Thus, the right-hand side of (47) is equal to

Ψ̌1
~α,k(¬α−) ∗1

(
α+ ∗0 Af (γ) ∗0 f−1

−
)

= IA(~α)k ∗1 IA(~f)(γ),

as required. �

A similar argument yields the following fact:

Lemma 4.17. Given parallel n-cells ~α and ~β in
∫
Aπ bounded by 1-cells ~f,~g :

~x // // ~y together with a (n + 1)-cell ~ϕ : ~α +3 ~β, IA(~ϕ), as defined above, is a
modification IA(~α) +3 IA(~β).

Proposition 4.18. As defined, IA is a functor
∫

(A ◦ π) // ω-Gpd.
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Proof. First we consider the case of vertical composition. Let p-cells ~ϕ and
~ψ be given, for p ≥ m ≥ n + 1 > 1, which are bounded by 0-cells ~x and ~y and by
n-cells ~f , ~g and ~h as indicated in the following diagram:

~u ~v

~f

��
~u ~v

~h

AA~u ~g~g ~v//

~ϕ

~ψ

~α
��

~β
��

~γ
��

~δ
��

Then, for any object k : x− // x+ of Ax(x−, x+), we will prove by induction on m
the stronger fact that when m is odd

Ψm
sp−m(~ψ∗n~ϕ),k

(
(~ψ ∗n ~ϕ)+

)
= Ψm

s(p−m) ~ψ,k
(ψ+) ∗n Ψm

s(p−m)~ϕ,k(ϕ+), and

Ψ̌m
tp−m(~ψ∗n~ϕ),k

(
¬(~ψ ∗n ~ϕ)−

)
= Ψ̌m

t(p−m) ~ψ,k
(¬ψ−) ∗n Ψ̌m

t(p−m)~ϕ,k(¬ϕ−);

and

Ψm
tp−m(~ψ∗n~ϕ),k

(
(~ψ ∗n ~ϕ)+

)
= Ψm

t(p−m) ~ψ,k
(ψ+) ∗n Ψm

t(p−m)~ϕ,k(ϕ+), and

Ψ̌m
sp−m(~ψ∗n~ϕ),k

(
¬(~ψ ∗n ~ϕ)−

)
= Ψ̌m

s(p−m) ~ψ,k
(¬ψ−) ∗n Ψ̌m

s(p−m)~ϕ,k(¬ϕ−);

when m is even.
First, assume m = n+ 1 is even. We also assume that n+ 1 > 2 since the case

where n + 1 = 2 is a straightforward calculation (using ideas essentially the same
as those used here). Then

Ψn+1
~δ∗n~β

(
(~ψ ∗n ~ϕ)+

)
= Ψ̌n

~h

(
¬(~δ ∗n ~β)−

)
∗n Ψn

~f

(
(~ψ ∗n ~ϕ)+

)
And this is equal, by definition of composition, to

Ψ̌n
~h

(
¬δ− ∗n (ďn−(δ) ∗(n−1) ¬β−)

)
∗n Ψn

~f

(
(ψ+ ∗(n−1) dn+(β)) ∗n ϕ+

)
(49)

Now we will investigate in more detail each of the larger terms in this composite.
First:

Ψ̌n
~h

(
¬δ− ∗n (ďn−(δ) ∗(n−1) ¬β−)

)
= Ψ̌n

~h
(¬δ−) ∗n Ψ̌n

~h

(
ďn−(δ) ∗(n−1) ¬β−)

)
.

By definition of Ψ̌n and functoriality this is equal to

Ψ̌n
~h

(¬δ−) ∗n
(
Ψn−1
~v (h+) ∗(n−1) Ψ̌n−1

~u (ďn−(δ)) ∗(n−1) Ψ̌n−1
~u (¬β−)

)
,

which by (46) is equal to:

Ψ̌n
~h

(¬δ−) ∗n
(
Ψn−1
~v (h+) ∗(n−1) Ψn−1

~v (dn+(δ)) ∗(n−1) Ψ̌n−1
~u (¬β−)

)
= Ψ̌n

~h
(¬δ−) ∗n

(
Ψn−1
~v (dn+1

+ (δ)) ∗(n−1) Ψ̌n−1
~u (¬β−)

)
Similarly, the other half of (49) is equal to(

Ψn−1
~v (ψ+) ∗(n−1) Ψ̌n−1

~u (ďn+1
− (β))

)
∗n Ψn

~f
(ϕ+).

By these observations and a routine calculation it follows that (49) is equal to

Ψ̌n
~h

(¬δ−) ∗n
(
Ψn−1
~v (ψ+) ∗(n−1) Ψ̌n−1

~u (¬β−)
)
∗n Ψn

~f
(ϕ+).
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Finally, using the unit and interchange laws this is seen to be the same as Ψn+1
~δ

(ψ+)∗n
Ψn+1
~β

(ϕ+). The base cases where n+ 1 is odd are dual and the induction steps are
trivial. Thus, IA is a functor. �

4.4. Reflexivity and elimination terms

In this section we define the functors which will interpret reflexivity and elim-
ination terms. As in [35] we will interpret terms as sections of the projection map∫
A // C associated to the functor A which interprets their type. We begin by

summarizing some of the basic facts about such sections and the related structures
resulting from the Grothendieck construction.

4.4.1. Sections of projection functors. A section F of a projection π :∫
A // C as indicated in the following diagram:

C

C
1C

��?????????C
∫
A

F //
∫
A

C
π

����������

consists exactly of the following data:

Objects: To each object x of C there is assigned an object xF of Ax. I.e.,
(x, xF ) = F (x).

1-Cells: To an arrow f : x // y in C there is assigned an arrow fF :
d1
F (x),F (y)(f) // yF of Ay.

(n+ 1)-Cells: When (n + 1) is even, there is assigned to an (n + 1)-cell
α : f +3 g an (n+ 1)-cell αF : fF +3 dn+1

F (f),F (g)(α) of Ay. When (n+ 1)
is odd, αF : dn+1

F (f),F (g)(α) +3 gF .

Note that such an assignment is made into a map of globular sets by defining
F (ϕ) := (ϕ,ϕF ). These assignments are required to be functorial in the sense of
preserving identities and composition. Preservation of composition amounts to the
following. Given m-cells, for m > 0, ψ and ϕ in C such that (ψ ∗0 ϕ) is defined, it
is required in order for the assignment (−)F to constitute a section such that

(ψ ∗0 ϕ)F = ψF ∗0 Ah(ϕF ),

where h is the bounding 1-cell as above. Assume that the composite (ψ ∗n ϕ) is
defined and that tm−n−1ϕ = β and sm−n−1ψ = γ. Furthermore, let u and v be the
(n− 1)-cells bounding both ϕ and ψ. Then it is required that

(ψ ∗n ϕ)F =


(
ψF ∗(n−1) dnFu,Fv(β)

)
∗n ϕF if (n+ 1) is even, and

ψF ∗n
(
dnFu,Fv(γ) ∗(n−1) ϕF

)
if (n+ 1) is odd.
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We also note that given any functor σ : D // C, there exists a functor {σ}A :∫
(A ◦ σ) //

∫
A such that the following diagram is a pullback in ω-Cat:

D C
σ

//

∫
(A ◦ σ)

D
��

∫
(A ◦ σ)

∫
A

{σ}A //
∫
A

C
��

Namely, {σ}A sends ~x in
∫
Aσ to (σ(x), a) and similarly for cells in all dimensions.

Consequently, there corresponds to any section F of the projection
∫
A // C a

canonical section F [σ] of
∫
Aσ //D for which

F ◦ σ = {σ}A ◦ F [σ].

Finally, note that, by taking D to be
∫
A itself and σ to be π, we obtain

∫
Aπ as

the pullback of π along itself and there exists a canonical map δA :
∫
A //

∫
Aπ

induced by the identity functor 1R
A.

4.4.2. Reflexivity terms. We end this section by describing briefly the “re-
flexivity term” associated to a functor A : C //ω-Gpd. By definition, the reflexivity
term should be a section rA:∫

A

∫
A

1R
A ��???????

∫
A

∫
(IA ◦ δA)

rA //
∫

(IA ◦ δA)

∫
A
���������

(50)

where δA is as in Section 4.4.1. For objects, given an object ~x of
∫
A, we must

provide an object ~xr of IA(x, x−, x−). I.e., ~xr should be an arrow x− //x− in Ax.
We define ~xr to be the identity x−. (Note that here and throughout we omit the
identity maps and write x− instead of i(x−).) Next, given an arrow ~f : ~x // ~y, we
need to provide an arrow

(∂I)1
r(~x),r(~y)(~f)

~fr // ~yr = y−

in Ay, where (∂I)n denotes the weighted face functor for
∫
IA (and so, in this case,

also
∫
IAδA). But, by definition, (∂I)1(~f) is just y− and we therefore define ~fr

to be y−. Indeed, at every dimension n ≥ 1, when ~ϕ is a n-cell of
∫
A bounded

by objects ~x and ~y, we define ~ϕr to be y−. We claim that r is constant y− in all
dimensions n ≥ 1. This follows directly from the following useful fact:

Lemma 4.19. Assume ~ϕ : ~α // ~β is an m-cell of
∫
A bounded by n-cells ~α and

~β as indicated in the following diagram:

~u ~v

~α

%%
~u ~v

~β

99~ϕ

with 1 ≤ n < m, and by objects ~x and ~y. Then,

Ψ̌n
~β,1x−

(¬ϕ−) = Ψn
~α,1x−

(
ρm−n−2
∂~ϕ (ϕ−1

− )
)
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if (n+ 1) is even, and

Ψ̌n
~α,1x−

(¬ϕ−) = Ψn
~β,1x−

(
ρm−n−2
∂~ϕ (ϕ−1

− )
)

if (n + 1) is odd. Here we adopt the convention that ρ−1
∂~ϕ is the identity and that,

when regarding the cells in question as being in
∫
Aπ, ~α = (α, α−, α−).

Proof. The proof is by induction on n. For the base case n = 1 we observe
that

Ψ̌1
~β,1x−

(¬ϕ−) = Ψ̌1
~β,1x−

(
ρm−2
∂~ϕ (ϕ−1

− )
)

=
(
β− ∗0 β−1

− ∗0 ρm−3
∂~ϕ (ϕ−1

− ) ∗0 α−1
−
)

= Ψ1
~α,1x−

(
ρm−3
∂~ϕ (ϕ−1

− )
)
.

The induction steps are straightforward using the same trick. �

Using Lemma 4.19 it is straightforward to prove that (∂I)1
r(~x),r(~y)(~ϕ) is equal

to y− for any ~ϕ in
∫
A bounded by ~x and ~y. As such, we may define ~ϕr to be y− in

all dimensions n ≥ 1. With this definition functoriality of r is trivial and we have
proved:

Lemma 4.20. Given A : C //ω-Gpd as above, the assignment r defined above
induces a section rA as indicated in (50).

4.4.3. Setting up the construction of elimination terms. Turning now
to elimination terms, suppose we are given a functor D :

∫
IA // ω-Gpd together

with a section d :
∫
A //

∫
D{δA}IArA of the projection

∫
D{δA}IArA //

∫
A.

Here, recall that the composite D{δA}IArA is constructed by∫
A

rA //
∫
IA ◦ δA

{δA}IA //
∫
IA

D // ω-Gpd

where the notation {δA}IA for the functor induced by δA is as described in Section
4.4.1 above.

We would like to prove that this extends to a section J of the projection∫
D //

∫
IA as indicated in the following diagram:∫

IA

∫
IA

1R
IA ��???????

∫
IA

∫
D

J //
∫
D

∫
IA

���������

We begin by fixing notation.
As we are dealing with multiple cases of the Grothendieck construction it will

be convenient to introduce some notation to deal with the different weighted face
functions which occur. First, we denote by Θn(−) the weighted face functor for∫
D. As usual, we denote by dn− and dn+ the functors for the two projections of∫
IA. Finally, we denote by Θ̃n the weighted face functor for

∫
D ◦ {δA}IA ◦ rA.

Next, we observe that there is an endofunctor ↓ (−) :
∫
IA //

∫
IA defined as

the following composite:∫
IA

π0 //
∫
A

rA //
∫
IA ◦ δA //

∫
IA.
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I.e., ↓ sends an object ~x = (x, x−, x+, x→) to (x, x−, x−, x−) and similarly for
higher-dimensional cells. Here, as throughout, we omit mention of identity arrows.
I.e., writing out identities we have that ↓ ~x is (x, x−, x−, i(x−)) or (x, x−, x−, 1x−).

We will often be concerned with the situation where we consider, given ~x an
object of

∫
IA, the restriction (x, x−) of ~x to

∫
A. Rather than write π0(~x) every

time for this object we instead denote this pair by x̆. Similarly, γ̆ denotes π0(~γ) for
general n-cells ~γ of

∫
IA.

4.4.4. Naturality cells. The construction of the elimination terms is rather
technical and proceeds in several stages. First, we describe “naturality cells” which
exhibit what amounts to a kind of “ω-pseudonatural transformation” ε− from ↓ (−)
to the identity 1R

IA . The construction proceeds by induction on dimension as usual.

(Dimension 0): First, in dimension 0, given ~x in
∫
IA, we define an arrow

ε~x :↓ (~x) // ~x as follows:

ε~x := (x, x−, x→, x→).

Next, holding 0-cells ~x and ~y of
∫
IA fixed we define functors

(
∫
IA)1(~x, ~y)

∇1
~x,~y;ξ // (

∫
IA)1(↓ ~x, ~y)

for ξ = −,+ as follows:

∇1
~x,~y;ξ :=


(− ∗0 ε~x) if ξ = −, and

(
ε~y ∗0 ↓ (−)

)
if ξ = +.

As usual, we omit the subscripts ~x and ~y when these are understood.

Note that with these definitions, when ~ϕ is any m-cell, with m ≥ 1,

∇1
−(~ϕ) = (ϕ, ϕ−, ϕ+ ∗0 Af (x→), ϕ→), and(51)

∇1
+(~ϕ) = (ϕ, ϕ−, y→ ∗0 ϕ−, y→),(52)

where sm−1~ϕ = ~f and ~f : ~x // ~y is as above.

Remark 4.21. Because we will sometimes want to refer to the different el-
ements of such a pair ∇1

ξ(~ϕ) we denote by [∇1
ξ(~ϕ)]k the k-th component, for

k = 0, 1, 2, 3. E.g., [∇1
+(~ϕ)]2 is (y→ ∗0 ϕ−),.

Dimension 1: Next, we define, given an arrow ~f : ~x // ~y in
∫
IA, a 2-cell

∇1
−(~f)

ε~f //∇1
+(~f).

I.e., ε~f is as indicated in the following “naturality” diagram:

↓ (~y) ~y
ε~y
//

↓ (~x)

↓ (~y)

↓(~f)

��

↓ (~x) ~x
ε~x // ~x

~y

~f

��
ε~f ��
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In particular, ε~f is defined to be (f, f−, f→ ∗0 f−, f→). This definition
is easily seen to make sense using (51) and (52). Now, holding parallel
arrows ~f and ~g fixed, we define functors

(
∫
IA)2(~f,~g)

∇2
ξ // (

∫
IA)2

(
∇1
−(~f),∇1

+(~g)
)

by

∇2
ξ(~γ) :=


∇1

+(~γ) ∗1 ε~f if ξ = −, and

ε~g ∗1 ∇1
−(~γ) if ξ = +.

With these definitions it is straightforward to verify that

∇2
−(~ϕ) = (ϕ, ϕ−, f→ ∗0 ϕ−, f→),(53)

when ~ϕ is any cell of (
∫
IA)2(~f,~g). In order to obtain a similar analysis of ∇2

+(~ϕ)
we require a further fact about the duality functor ¬.

Lemma 4.22. Given any m-cell, for m ≥ 1, ~ϕ of
∫
A,

¬ϕ− ∗0 ϕ− = d1
~x,~y(ϕ), and

ϕ− ∗0 ¬ϕ− = y−

where ~x and ~y are the 0-cells bounding ~ϕ.

Proof. This is a direct consequence of the easily proved fact that, for 0 ≤ n ≤
m− 2

ρm−n−2
∂~ϕ (ϕ−1

− ) ∗n ϕ− = tm−n−1(~ϕ)−− ∗n
(
ϕ− ∗(n+1) ρ

m−n−3
∂~ϕ (ϕ−1

− )
)

when n is even (or 0), and

ϕ− ∗n ρm−n−2
∂~ϕ (ϕ−1

− ) =
(
ρm−n−3
∂~ϕ (ϕ−1

− ) ∗(n+1) ϕ−
)
∗n sm−n−1(~ϕ)−1

− ,

when n is odd. Iteratively applying these facts and canceling inverses yields the
required result. �

Using Lemma 4.22 it follows, by a (lengthy but) straightforward calculation,
that, where ~β

∇2
+(~ϕ) =

(
ϕ, ϕ−,

(
g→ ∗1 Ψ2

~β,x→
(ϕ+)

)
∗0 β−, ϕ→

)
(54)

for any m-cell ~ϕ of (
∫
IA)2(~f,~g) with ~β = tm−2~ϕ. Using (53) and (54) we define

ε~α, for ~α : ~f // // ~g a 2-cell of
∫
IA, as follows:

ε~α := (α, α−, α→ ∗0 α−, α→).

In higher-dimensions this procedure is carried out as follows:

Dimension (n+ 1): Given ~α and ~β of dimension n together with the ap-
propriate ∇n− we first observe that, using decompositions of ∇nξ (~ϕ) cor-
responding to (53) and (54), and proved by a standard calculation using
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Lemma 4.22, it follows that, if, ~ϕ : ~α +3 ~β is a (n+ 1)-cell, then

∇n−(~ϕ) =


(ϕ, ϕ−, α→ ∗0 ϕ−, α→) if n is even, and

(ϕ, ϕ−, (∂I)n(~ϕ) ∗0 ϕ−, ϕ→) if n is odd;

and

∇n+(~ϕ) =


(ϕ, ϕ−, (∂I)n(~ϕ) ∗0 ϕ−, α→) if n is even, and

(ϕ, ϕ−, β→ ∗0 ϕ−, β→) if n is odd.

Thus we define

∇n−(~α)
ε~ϕ //∇n+(~β)

by

(ϕ,ϕ−, ϕ→ ∗0 ϕ−, ϕ→).

Now, holding ~α and ~β fixed, we define

(
∫
IA)n+1(~α, ~β)

∇n+1
ξ // (

∫
IA)n+1

(
∇n−(~α),∇n+(~β)

)
for ξ = −,+ as

∇n+1
ξ (~γ) :=


∇n+(~γ) ∗n ε~α if ξ = −, and

ε~β ∗n ∇
n
−(~γ) if ξ = +.

4.4.5. Elimination terms in dimensions 0, 1. Assume we are given an
object ~x = (x, x−, x+, x→) of

∫
IA. We would like to provide a corresponding

object, which for the sake of notational convenience we simply denote by xJ , of
D(~x). This xJ is obtained by a kind of Yoneda style argument. Namely, we observe
that, by assumption there is a term x̆d in D(↓ (~x)). Applying the functor D(ε~x)
yields the required xJ in D(~x). I.e.,

xJ := D(ε~x)(x̆d).

Because it will greatly simplify matters in the later stages, we introduce a special
notation for D(ε~x) and its higher-dimensional generalizations D(ε~γ). Namely, we
define

〈~γ〉 := D(ε~γ).

With this notation xJ = 〈~x〉(x̆d).
In dimension 1, given an arrow ~f : ~x // ~y in

∫
IA we have by hypothesis the

arrow f̆d : Θ̃1
x̆,y̆(f̆) // y̆d in D(↓ ~y) and, applying 〈~y〉,

〈~y〉
(
Θ̃1f̆

) 〈~y〉(f̆d) // yJ

in D(~y). Now,

〈~y〉
(
Θ̃1f̆

)
= 〈~y〉

(
D(↓ ~f)x̆d

)
= D

(
∇1

+
~f)x̆d
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Also,

Θ1(~f) = D(~f)(xJ)

= D
(
∇1
−
~f
)
x̆d

and therefore we define fJ to be the composite

Θ1(~f)
〈~f〉x̆d //D

(
∇1

+
~f
)
x̆d

〈~y〉f̆d // yJ .

Again, it will be useful to introduce some additional notation to clarify the situation
in higher-dimensions. First, holding fixed objects ~x and ~y of

∫
IA, we define a

functor

(
∫
IA)1(~x, ~y)

ϑ1
~x,~y //D(~y)

by

ϑ1
~x,~y(~γ) := 〈~y〉

(
Θ̃1
~x,~y(γ̆)

)
.

The next ingredient is to define, for ~f : ~x // ~y, arrows /(~f) : Θ1(~f) // ϑ1(~f) and
.(~f) : ϑ1(~f) // yJ as follows:

/(~f) := 〈~f〉x̆d , and

.(~f) := 〈~y〉f̆d.

Thus, with this notation fJ is just .(~f) ∗0 /(~f). We will see below that, in general,
γJ will always be formed as a composite of the form .(~γ)∗k−1/(~γ) along a (k−1)-cell
ϑk(~γ).

4.4.6. Elimination terms in dimensions 2. In dimension 2, let arrows
~f,~g : ~x // // ~y in

∫
IA be given together with a 2-cell ~α : ~f +3 ~g. In order to define

αJ we will describe 2-cells filling both the square and triangle as indicated in the
following diagram:

Θ1(~f) ϑ1(~f)
/(~f) //Θ1(~f)

Θ1(~g)

Θ1(~α)

��

ϑ1(~f) yJ
.(~f) //

Θ1(~g) ϑ1(~g)
/(~g)

//

ϑ1(~f)

ϑ1(~g)

ϑ1(~α)

��
ϑ1(~g)

yJ

.(~g)

FF

�� ��

Defining the functor

(
∫
IA)2(~f,~g)

ϑ2
~f,~g //D(~y)1

(
Θ1(~f), yJ

)
by

ϑ2(−) := .(~g) ∗0 ϑ1(−) ∗0 /(~f).

we see that our goal is precisely to provide 2-cells

fJ
/(~α) // ϑ2

~f,~g
(~α)

.(~α) //Θ2
~f,~g

(~α).
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The strategy for filling the square and triangle from above is fairly simple. For the
triangle, we use ᾰd, and for the square we use the naturality cell ε~α. To begin with,
we define

/(~α) := 〈~y〉(ᾰd) ∗0 /(~f).

For the square, we observe that

Θ1(~γ) = D(~γ)(xJ), and

ϑ1(~γ) = D(∇1
+~γ)(x̆d)

where ~γ is any cell of
∫
IA(~x, ~y). Thus,

ϑ1(~γ) ∗0 /(~f) = D(∇2
−~γ)(x̆d), and

/(~g) ∗0 Θ1(~γ) = D(∇2
+~γ)(x̆d).

As such, we define

.(~α) := .(~g) ∗0 〈~α〉x̆d .

Thus, αJ is (.(~α) ∗1 /(~α)). It will often be convenient to omit parentheses when
dealing with the arrows .(~α) and /(~α). In order to avoid confusion, we adopt the
convention that . and / bind more tightly than composition. I.e., / ~γ ∗k ~ϕ should
be read as /(~γ) ∗k ~ϕ.

Before moving on to dimension 3, we first introduce some additional machinery
which is the final technical ingredient required in order to make the induction to
higher dimensions possible. Namely, for ~f,~g : ~x // // ~y parallel 1-cells, we define
functors

D(~y)1(ϑ1 ~f, yJ)
H̆1
~f,~g //D(~y)1(Θ1 ~f, yJ) oo

H1
~f,~g

D(~y)1(Θ1 ~f, ϑ1~g)

as follows:

H̆1
~f,~g

(−) := (− ∗0 /~f), and

H1
~f,~g

(−) := (.~g ∗0 −).

With these functors at our disposal, we are in the position to make several remarks
regarding their interaction with the other structures with which we are concerned.
To begin with, when ~α is a 2-cell ~f +3 ~g,

. ~α = H1
~f,~g

(
〈~α〉x̆d

)
, and(55)

/ ~α = H̆1
~f,~g

(
〈~y〉(ᾰd)

)
.(56)

Also, these functors interact with ϑ2 in the sense that

H̆1
~f,~g

(
. ~g ∗0 ϑ1(~γ)

)
= ϑ2

~f,~g
(~γ) = H1

~f,~g

(
ϑ1(~γ) ∗0 / ~f

)
.(57)

In an informal sense, the problem of providing the elimination maps ϕJ will be seen
to always amount, as above, to filling both a triangle and a square. In each case,
the tactic is essentially the same as above and the functors Hk and H̆k allow us
to express in the most perspicuous way the combinatorics of the situation for the
squares and triangles, respectively.
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4.4.7. Elimination terms in dimension 3. In dimension 3, given ~ϕ : ~α +3~β
a 3-cell of

∫
IA, we would like to describe the 3-cells indicated in the following

diagram:

ϑ2(~α) Θ2(~α). ~α //ϑ2(~α)

ϑ2(~β)

ϑ2(~ϕ)

��

fJ ϑ2(~α)/ ~α //

ϑ2(~β) Θ2(~β)
. ~β

//

Θ2(~α)

Θ2(~β)

Θ2(~ϕ)

��

fJ

ϑ2(~β)
/ ~β --

�� ��

(58)

With this picture in mind we begin by defining, for fixed parallel 2-cells ~α, ~β : ~f ////~g,
functors

D(~y)2(fJ , ϑ2~β)
H̆2
~α,~β //D(~y)2(fJ ,Θ2~β) oo

H2
~α,~β

D(~y)2(ϑ2~α,Θ2~β)

as follows:

H̆2
~α,~β

(−) := . ~β ∗1 H̆1
~f,~g

(−), and

H2
~α,~β

(−) := H1
~f,~g

(−) ∗1 / ~α.

Next,

(
∫
IA)3(~α, ~β)

ϑ3
~α,~β //D(~y)2

(
fJ ,Θ2(~β)

)
is defined by

ϑ3(−) := .(~β) ∗1 ϑ2(−) ∗1 /(~α)

Before going any further it is useful to establish several facts. First, we note that
by a straightforward calculation:

ϑ2
~f,~g

(~γ) = H̆1
~f,~g

(
〈~y〉Θ̃2γ̆

)
.(59)

We call (59) the triangle-law for dimension 2 and note that together with (56)
it follows that the triangle from (58) may be filled with the 3-cell H̆1

~f,~g
(〈~y〉ϕ̆d).

Accordingly, we define

. ~ϕ := H̆2
~α,~β

(
〈~y〉ϕ̆d

)
.

Turning to the square, observe that

Θ2
~f,~g

(~γ) ∗1 . ~α = (gJ ∗0 Θ1~γ) ∗1 (. ~g ∗0 〈~α〉x̆d)

= (. ~g ∗0 / ~g ∗0 Θ1~γ) ∗1 (. ~g ∗0 〈~α〉x̆d)

= . ~g ∗0
(
(/ ~g ∗0 Θ1~γ) ∗1 〈~α〉x̆d

)
= . ~g ∗0 D

(
∇3
−~γ
)
x̆d
.

Consequently, we obtain the source square-law for dimension 2:

Θ2
~f,~g

(~γ) ∗1 . ~α = H1
~f,~g

(
D(∇3

−~γ)x̆d
)
.(60)
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Another straightforward calculation yields the target square-law for dimension
2:

. ~β ∗1 ϑ2
~f,~g

(~γ) = H1
~f,~g

(
D(∇3

+~γ)x̆d
)
.(61)

Thus, the filler of the square in (58) is defined to be H1
~f,~g

(
〈~ϕ〉x̆d

)
. Finally, we set

/ ~ϕ := H2
~α,~β

(
〈~ϕ〉x̆d

)
, and

ϕJ := . ~ϕ ∗2 / ~ϕ.

4.4.8. The construction in higher dimensions. Now, at higher-dimensions,
the construction of the elimination terms is by induction on dimension. In partic-
ular, we proceed by induction on n ≥ 2 in such a way that at stage (n + 1) — in
addition to the existence of the required (n+1)-cells ϕJ — the following conditions
are satisfied:

(1) For all parallel n-cells ~α, ~β : ~f // // ~g, there is a functor ϑn+1

~α,~β
parallel to

Θn+1

~α,~β
. I.e., .

(2) For any (n+ 1)-cell ~ϕ : ~α // ~β, there exist corresponding (n+ 1)-cells . ~ϕ
and / ~ϕ such that

αJ
/ ~ϕ // ϑn+1

~α,~β
~ϕ

. ~ϕ //Θn+1

~α,~β
~ϕ

when (n+ 1) is even, and

Θn+1

~α,~β
~ϕ

/ ~ϕ // ϑn+1

~α,~β
~ϕ

. ~ϕ // βJ

when (n+ 1) is odd.
(3) There are, for ~α and ~β parallel n-cells, functors Hn

~α,~β
and H̆n

~α,~β
such that

D(~y)n
(
ϑn~α, gJ

) H̆n
~α,~β //D(~y)n

(
Θn~α, gJ

)
, and

D(~y)n
(
Θn~α, ϑn~β

) Hn
~α,~β //D(~y)n

(
Θn~α, gJ

)
if (n+ 1) is even; and

D(~y)n
(
fJ , ϑ

n~β
) H̆n

~α,~β //D(~y)n
(
fJ ,Θn~β

)
, and

D(~y)n
(
ϑn~α,Θn~β

) Hn
~α,~β //D(~y)n

(
fJ ,Θn~β

)
if (n+ 1) is odd.

(4) The following triangle-law is satisfied:

ϑn+1

~α,~β
~γ = H̆n

~α,~β

(
〈~y〉Θ̃n+1γ̆

)
,

when ~γ is any cell in the domain of ϑn+1.
(5) If ~ϕ, ~ψ : ~α // // ~β are parallel (n + 1)-cells, the following square-laws are

satisfied:

Hn
~α,~β

(
D(∇n+2

− ~γ)x̆d
)

=


Θn+1~γ ∗n . ~ϕ if (n+ 1) is even, and

ϑn+1~γ ∗n / ~ϕ if (n+ 1) is odd;
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and

Hn
~α,~β

(
D(∇n+2

+
~δ)x̆d

)
=


. ~ψ ∗n ϑn+1~δ if (n+ 1) is even, and

/ ~ψ ∗n Θn+1~δ if (n+ 1) is odd,

for appropriate cells ~γ and ~δ. Note that the ∇n+2
ξ here are defined with

respect to ~ϕ and ~ψ.

Assuming we have carried out the construction up to stage n, we claim that the
following definitions at stage (n+ 1) will satisfy the required conditions:

• For parallel n-cells ~α and ~β,

ϑn+1

~α,~β
(−) := . ~α ∗(n−1) ϑ

n(−) ∗(n−1) / ~β.

• If ~α and ~β are parallel n-cells ~f // // ~g, then we define

Hn
~α,~β

(−) :=


.~β ∗n Hn−1

~f,~g
(−) if (n+ 1) is even, and

Hn−1
~f,~g

(−) ∗n / ~α if (n+ 1) is odd;

and

H̆n
~α,~β

(−) :=


H̆n−1
~f,~g

(−) ∗n / ~α if (n+ 1) is even, and

. ~β ∗n H̆n−1
~f,~g

(−) if (n+ 1) is odd.

• Given ~ϕ : ~α +3 ~β a (n+ 1)-cell, we define

/ ~ϕ :=


H̆n
~α,~β

(
〈~y〉ϕ̆d

)
if (n+ 1) is even, and

Hn
~α,~β

(
〈~ϕ〉x̆d

)
if (n+ 1) is odd;

and

. ~ϕ :=


Hn
~α,~β

(
〈~ϕ〉x̆d

)
if (n+ 1) is even, and

H̆n
~α,~β

(
〈~y〉ϕ̆d

)
if (n+ 1) is odd.

• In all dimensions,

αJ := . ~α ∗n / ~α

when ~α is a (n+ 1)-cell.

The reader can readily verify that we have already satisfied the conditions of the
induction in the base case where n = 2. We now turn to the induction step.

Lemma 4.23. With the definitions given above, the conditions of the construc-
tion are satisfied in all dimensions (n+ 1).
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Proof. First, assume (n + 1) is even with n > 2 and let an (n + 1)-cell
~ϕ : ~α //// ~β in

∫
IA be given. Then, by the induction hypothesis and examination

of the following diagram

Θn(~α) ϑn(~α)/ ~α //Θn(~α)

Θn(~β)

Θn(~ϕ)

��

ϑn(~α) gJ
. ~α //

Θn(~β) ϑn(~β)
/ ~β

//

ϑn(~α)

ϑn(~β)

ϑn(~ϕ)

��
ϑn(~β)

gJ

. ~β

FF

�� ��

where ~α, ~β : ~f // //~g, it follows that conditions (1)-(3) are satisfied with the definitions
given above.

For the triangle law, we reason as follows:

H̆n
~α,~β

(
〈~y〉Θ̃n+1γ̆

)
= H̆n−1

~f,~g

(
〈~y〉β̆d ∗(n−1) 〈~y〉Θ̃nγ̆

)
∗(n−1) / ~α

= H̆n−1
~f,~g

(
〈~y〉β̆d

)
∗(n−1) H̆

n−1
~f,~g

(
〈~y〉Θ̃nγ̆

)
∗(n−1) / ~α

= . ~β ∗(n−1) ϑ
n
~f,~g

(~γ) ∗(n−1) / ~α

= ϑn+1

~α,~β
(~γ),

where the penultimate equation is by definition of . ~β and the induction hypothesis.
Next assume given (n+ 1)-cells ~ϕ, ~ψ : ~α // // ~β. For the “source” square law, we

have

Hn
~α,~β

(
D(∇n+2

− ~γ)x̆d
)

= Hn
~α,~β

(
D(∇n+1

+ ~γ)x̆d ∗n 〈~ϕ〉x̆d
)

=
(
.~β ∗(n−1) H

n−1
~f,~g

(
D(∇n+1

+ ~γ)
))
∗n . ~ϕ

=
(
.~β ∗(n−1) / ~β ∗(n−1) Θn~γ

)
∗n . ~ϕ

=
(
βJ ∗(n−1) Θn~γ

)
∗n . ~ϕ

= Θn+1

~α,~β
~γ ∗n . ~ϕ,

where the third equation is by the induction hypothesis. For the “target” square
law, we reason similarly and note that

Hn
~α,~β

(
〈~ψ〉x̆d ∗n D(∇n+1

− ~γ)x̆d
)

= . ~ψ ∗n
(
. ~β ∗(n−1) H

n−1
~f,~g

(
D(∇n+1

− ~γ)x̆d
))

= . ~ψ ∗n
(
. ~β ∗(n−1) ϑ

n~γ ∗(n−1) / ~α
)

= . ~ψ ∗n ϑn+1

~α,~β
~γ,

as required.
The induction step where (n+ 1) is odd is essentially dual. �

Using the lemma, we now have the following fundamental result.

Proposition 4.24. The cells of the form ϕJ constitute a section J :
∫
IA //

∫
D

of the projection map
∫
D //

∫
IA.
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Proof. In light of Lemma 4.23 the only thing which remains is to verify that
the assignment (−)J is functorial. This however is a consequence of the functoriality
of d and the construction of the “terms” ϕJ using the functors Hk and H̆k. �

4.5. The interpretation of type theory

With the machinery from the preceding sections at our disposal it is now pos-
sible to describe explicitly an interpretation of type theory using ω-groupoids. The
interpretation given generalizes directly the Hofmann-Streicher [35] interpretation
using regular 1-dimensional groupoids. Before going into the details several remarks
are in order.

First, whereas in ibid the entire logical framework is interpreted, we here only
interpret the theory Tω as described in Chapter 1. We note, however, that we could
just as well have interpreted the entire logical framework in this setting. Secondly,
the interpretation we give below can be organized into a (large) comprehension
category, or a category with attributes, or a category with families. In this case
we believe that the model most naturally can be described as a category with
attributes or a category with families [21]. We assume that the reader is familiar
with these forms of semantics. Because the ideas behind the basic interpretation
are not new, we do not go into full detail regarding the interpretation of the basic
syntax. Finally, we sketch the construction of dependent products and sums before
going on to the statement of the main results.

4.5.1. Contexts, types and terms. The idea of the interpretation, which
should be familiar in light of the discussions in the foregoing chapters, is to regard
closed types as ω-groupoids. Explicitly, contexts Γ are interpreted as small ω-
groupoids. To begin with, the empty context () is interpreted as the terminal
ω-groupoid:

[[()]] := 1.

Now, given a context Γ together with its interpretation [[Γ]] as an ω-groupoid,
judgements of the form Γ ` A : type are interpreted as functors

[[Γ]]
[[Γ ` A:type]] // ω-Gpd.

The extended context (Γ, x : A) is then interpreted as the ω-groupoid given by
applying the Grothendieck construction from Section 4.1 to the functor in question:

[[Γ, x : A]] :=
∫

[[Γ ` A : type]].

A judgement of the form Γ ` a : A is then interpreted as a section

[[Γ]]

[[Γ]]
1[[Γ]] ��???????

[[Γ]]
∫

[[Γ ` A : type]]//
∫

[[Γ ` A : type]]

[[Γ]]

π
���������

of the projection functor.
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4.5.2. Substitution and weakening. Suppose we are given an ω-groupoid
C interpreting a context Γ together with A : C // ω-Gpd, B :

∫
A // ω-Gpd and

C :
∫
B // ω-Gpd interpreting judgements

Γ ` A : type, Γ, x : A ` B(x) : type, and Γ, x : A, y : B(x) ` C(x, y) : type,

respectively. Moreover, let a section a interpreting the judgement Γ ` a : A be
given. Then the judgement Γ ` B[a/x] is interpreted as the composite functor

C a //
∫
A

B // ω-Gpd.

Similarly,

[[Γ, y : B(a) ` C(a, y) : type]] := C ◦ {a}B ,

in the notation of Section 4.4.1. Finally, if c is a section of
∫
C //

∫
B interpreting

the judgement Γ, x : A, y : B(x) ` c(x, y) : C(x, y) we define

[[Γ, y : B(a) ` c(a, y) : C(a, y)]] := c[a].

Finally, for weakening, we note that when functors A,B : C // ω-Gpd interpret
the judgements Γ ` A : type and Γ ` B : type, the “weakened” judgement
Γ, x : A ` B : type is interpreted by the composite∫

A
π // C B // ω-Gpd.

4.5.3. Dependent sums. Before defining dependent products and sums, we
begin by describing some basic features of the general setup. First, given a functor
A : C // ω-Gpd we note that, by the basic properties of ω-Gpd, there exists an
ω-groupoid denoted by Γ(A) of sections of the projection

∫
A //C. I.e., the objects

of Γ(A) are sections

C

C
1C

��?????????C
∫
A

a //
∫
A

C
π

����������

and arrows are 2-cells α : a +3 b for which π ◦ α = 1C and so forth at higher
dimensions. Now, given a further functor B :

∫
A //ω-Gpd and an object x of C,

we define a functor pBxq : Ax // ω-Gpd as follows:
Objects: Given an object x− of Ax, pBxq(x−) is the ω-groupoid B(x, x−).
1-Cells: Given an arrow h : x− //x+ in Ax, we define the functor pBxq(h) :
B(x, x−) //B(x, x+) as follows:

pBxq(h)(−) := B(x, h)(−).

Here we note that this is possible since (x, h) : (x, x−) // (x, x+), where
we have written (x, h) instead of (1x, h).

(n+ 1)-Cells: Given a (n + 1)-cell α : f +3 g in Ax bounded by 0-cells
x− and x+, together with an object y of B(x, x−), the transformation
pBxq(α) is defined at y by

pBxq(α)y := B(x, α)y.
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Now, we would like to describe, in this same setting, the dependent sum ΣA,B :
C // ω-Gpd. Note that, when A and B are apparent, we will often omit the
subscripts.

Objects: Given an object x of C, we define

ΣA,B(x) :=
∫
pBxq.

Given f : x // y in C we would like to define ΣA,B(f) :
∫
pBxq //

∫
pByq, which

we will write, for the sake of avoiding too many parentheses, as Σf . An object ~v
of
∫
pBxq is a pair (v−, v]) such that v− is an object of Ax and v] is an object of

B(x, v−). We adopt a similar notation in higher dimensions. We also write ∂(x)n

for the weighted face functor of
∫
pBxq and similarly for ∂(y)n, et cetera. With this

in mind we adopt the following definition (which we will discuss below):
1-Cells: Given f : x // y in C, Σf is defined on objects ~v of

∫
pBxq by

Σf (~v) :=
(
v−.f, B(f, v−.f)(v])

)
,

and on (n+ 1)-cells ~ϕ of
∫
pBxq by

Σf (~ϕ) :=
(
ϕ−.f, B(f, w−.f)(ϕ])

)
,

where ~v and ~w are the objects bounding ~ϕ at source and target position,
respectively.

Note that this is a correct definition since, by functoriality of B, it is proved (si-
multaneously with the verification of the definitions) at each stage that

B(f, w−.f)
(
∂(x)n+1

~α,~β
(ϕ−)

)
= ∂(y)n+1

Σf ~α,Σf ~β
(ϕ−.f),

where ~α and ~β are the n-cells bounding ~ϕ.
In dimension (n+ 1), ΣA,B is given as follows:

(n+ 1)-Cells: Given a (n + 1)-cell ϕ : α // β in C, Σϕ : Σα // Σβ has as
its component at the object ~v of

∫
pBxq the n-cell

(Σϕ)~v :=
(
v−.ϕ, B(ϕ, v−.ϕ)(v])

)
of
∫
pByq.

To see that this makes sense, let n-cells λ, µ : α // β be given. Then it follows, by
induction on n that,

∂(y)(n+1)
(Σλ)~v,(Σµ)~v

(v−.γ) =


B(µ, v−.γ)v] if (n+ 1) is even, and

B(λ, v−.γ)v] if (n+ 1) is odd,

where γ is any m-cell with m ≥ n + 1 bounded by λ and µ (i.e., sm−nγ = λ
and tm−nγ = µ). This is a straightforward induction using functoriality of B.
This completes the description of the interpretation ΣA,B of dependent sums in
this setting. With these definitions, the verification of functoriality is a routine
calculation.

Next, we define the dependent product ΠA,B : C // ω-Gpd to be the functor
which sends an object x to the ω-groupoid Γ(pBxq) of sections of the projection∫
pBxq //Ax. Explicitly, ΠA,B is as follows:

Objects: ΠA,B(x) is defined to be Γ(pBxq).
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1-Cells: Given an arrow f : x // y in C, ΠA,B(f) is the functor sending a
section a in Γ(pBxq) to the section Σf ◦ a ◦ Af−1 . In general, ΠA,B(f)
sends an arbitrary cell ϕ of Γ(pBxq) to the composite Σf ◦ ϕ ◦ Af−1 as
indicated in the following diagram:

Ay Ax
Af−1

// Ax
∫
pBxq
''

Ax
∫
pBxq77

∫
pBxq

∫
pByq

Σf //
∫
pByq

Ay
��

∫
pBxq

Ax
��
Ax Ay

Af //

ϕAx

Ax
1Ax ..

(n+ 1)-Cells: In general, when γ : α // β is a (n+ 1)-cell in C and a is an
object of ΠA,B(x), the dependent product is defined by setting

ΠA,B(γ)a := Σγ ◦ a ◦Aσ(γ),

where σ : C // Cop is the dual functor for C as described in Section 4.2.2.
This completes the description of the dependent sums and products. The intro-
duction and elimination terms are then obtained as direct generalizations of those
given in [35] using techniques similar to those employed here.

4.5.4. Independence results. With the interpretations given we obtain the
following result extending the original groupoids model from ibid to the setting of
ω-groupoids:

Theorem 4.25. With the interpretation just described, we obtain a model of
Tω using ω-Gpd. Moreover, this model is both split and coherent.

Proof. It is straightforward to verify that all of the required laws, including
the coherence laws, are satisfied. Moreover, because substitution is interpreted
functorially, the model is split. �

It is a trivial consequence of the interpretation that, for all n ≥ 1, the model
refutes UIPn. Indeed, these are refuted already in the empty context. Thus, the
following corollaries are immediate:

Corollary 4.26. For all n ≥ 1, the principle UIPn is not derivable in Tω.

Corollary 4.27. For n ≥ 0, neither TRn nor OUPn are derivable in Tω.

Moreover, by truncating the construction of the model in ω-Gpd to n-groupoids,
all of the theories in the hierarchy of theories are distinct.

Corollary 4.28. For all i, j ≥ 0, if i 6= j, then Ti 6= Tj. Moreover, when
i, j ≥ 1, Pi 6= Pj.





CHAPTER 5

Future work

There are several directions that we regard as being fruitful for future work in
the areas considered in this dissertation. In this final chapter we will survey, briefly,
some of these. The various topics discussed below are presented in no particular
order.

Applications to homotopy theory and computer science. Another di-
rection in which the material of this dissertation can be further developed is with
a view toward applications to homotopy theory and computer science. Specifically,
we would like to better understand the type theory which provides the internal
language of categories possessing weak factorization systems. As the discussion
of quasi-models in Chapter 2 indicates, such models have, in some sense, suitable
structure to interpret identity types. However, substitution in these models need
not behave correctly. It seems likely though that such categories are genuine mod-
els of a form of intensional type theory with explicit substitution [1]. Developing
such a calculus would be important, not only because it would open the door to
more direct applications to homotopy theory, but also because calculi of explicit
substitution inevitably arise in computer implementations of type theory. As such,
it might be hoped that a reasonable calculus of explicit substitution corresponding
to the internal language of categories with weak factorization systems might be of
use to both homotopy theory and theoretic computer science (e.g., we would expect
applications to the study and development of proof assistants [9, 17]).

Higher-dimensional intervals. It should be possible to generalize the re-
sults of Chapter 3 to the (strict) higher-dimensional setting, thereby relating the
constructions of Chapter 4 to manipulations involving the co-ω-groupoid interval Iω

in the same way that Chapter 3 serves to relate the Hofmann-Streicher model [35]
to the structure of the groupoid interval I. Such a task was one of the motivations
for considering the model constructed in Chapter 4; for, as described at the end of
Chapter 3, in order to model type theory using a (strict) higher-dimensional interval
it seems to be necessary to know not just what the interval is, but also what is the
appropriate notion of split fibration associated to that interval. Thus, it is desirable
to show that the constructions from Chapter 4 relate in the expected way to ma-
nipulations of some kind of split fibrations of ω-groupoids and their corresponding
infinite dimensional interval.

Weakening the structure. Although the model constructed using strict ω-
groupoids does refute the kind of truncation principles we have considered, it
nonetheless validates certain conditions that we do not expect to hold syntacti-
cally. In particular, because the groupoid laws themselves are strict, this model
validates the corresponding type theoretic rules on the nose (i.e., up to definitional
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equality). We expect that (at least some of) these groupoid laws are not derivable
in Tω. Rather, they should be valid only up to the existence of propositional equal-
ity. As such, it is reasonable to expect that there exist models of Tω which are not
just higher-dimensional in the sense of the model from Chapter 4, but which are
also suitably weak. In particular, it should be possible to obtain models of type
theory using also a suitable notion of weak ω-groupoids. We emphasize that not all
notions of weak ω-groupoids may work for this purpose: some may simply be too
weak. After all, it is not clear a priori what equations on composites are forced by
Tω to hold in all dimensions. For example, already at dimension 1, the composite
operation (f · g) on identity proofs is strictly unital on one side. Even aside from
this concern, it is not clear what coherence laws the higher-dimensional forms of
composition satisfy and there is no reason to think that they will be the same as
those required by X, Y , or Z definitions of weak ω-groupoid. With these caveats in
place, we do believe that weaker models of Tω are waiting to be discovered and that
some (if not all) of the techniques developed in this dissertation can be modified to
suit this weaker setting.

Truly intensional models. In his Habilitationsschrift [80], Streicher enumer-
ates a number of properties which he regards as being indicative of true intensional-
ity for models or type theories. First, the reflection rule cannot be valid in arbitrary
contexts. Second, function extensionality cannot be valid. Finally, the reflection
rule must be valid in the empty context. In [80] Streicher constructs, using a form
of modified realizability, a model of type theory which is truly intensional in this
sense. However, this model is not able to refute the principle of uniqueness of iden-
tity proofs. On the other hand, both the Hofmann-Streicher groupoid model [35]
and our generalization to ω-groupoids refute this principle; but neither are truly
intensional in the sense described above. For example, they validates function ex-
tensionality and fail to validate the reflection rule in the empty context. Ideally, it
should be possible to obtain interesting models that are both fully intensional in the
sense of [80] and also clearly exhibit the higher-dimensional structure of the iden-
tity type construction. Accordingly, one very important avenue for future research
is to pursue such models. In particular, it might be possible to construct a model
which is, in a suitable sense, a hybrid of the realizibility techniques of ibid together
with approach using higher-dimensional groupoids that we have considered in this
dissertation.



APPENDIX A

Categorical background

The purpose of this Appendix is to collect in one place some of the basic cate-
gory theoretic background of which we make use. For basic categorical background
we refer the reader to [58].

A.1. Internal groupoids

Assume E is a finitely bicomplete, cartesian closed category. Recall that an
internal groupoid G in E consists of an internal category G together with a
“symmetry” map r : G1

//G1 such that the following diagrams commute:

G0 G1
oo
t

G1 G0,s
//

G1

G0

s

��������
G1

G1

r

��

G1

G0,

t

��??????

(62)

G0 G1
i

//

G1

G0

s

��

G1 G1 ×G0 G1

〈1,r〉 // G1 ×G0 G1

G1

c

��
and

G0 G1.
i

//

G1

G0

t

��

G1 G1 ×G0 G1

〈r,1〉 // G1 ×G0 G1

G1.

c

��
(63)

Together, (62) and (63) state that r takes an (internal) arrow to its inverse. The
category Gpd(E) of internal groupoids in E has as objects internal groupoids and
as arrows internal functors between them.

A.1.1. Discrete and codiscrete groupoids. There is an evident forgetful
functor U : Gpd(E) // E which sends an internal groupoid G to its object of
objects G0 and similarly sends an internal functor to its object part. This forgetful
functor possess both left and right adjoints

Gpd(E)

E

U

��
E

Gpd(E)

∆

??

E

Gpd(E)

∇

__

a a

with ∆ sending an object A to the discrete internal groupoid generated by A. I.e.,
∆(A)i := A for i = 0, 1 and all of the additional maps s, t, r, i and comp are defined
to be the identity 1A. On the other hand, ∇ sends A to the codiscrete internal
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groupoid generated by A. I.e.,

∇(A)0 := A

∇(A)1 := A×A
s := π0

t := π1

i := ∆

r := 〈π1, π0〉
c := 〈s ◦ p0, t ◦ p1〉,

where ∆ : A // A × A is the diagonal and p0, p1 are the pullback projections
∇(A)1 ×∇(A)0 ∇(A)1

////∇(A)1. Gpd(E) is finitely complete and cartesian closed.

A.1.2. Further basic facts. It is convenient to remember some very basic
facts about internal groupoids. First, note that if f : G //H is a functor between
internal groupoids, then, because inverses in internal categories are always unique,
it the following diagram commutes:

G1 H1.
f1

//

G1

G1

r

��

G1 H1
f1 // H1

H1.

r

��

The inverse map r : G1
//G1 induces in an obvious way a map

G1 ×G0 G1
r̄ //G1 ×G0 G1

which, intuitively, sends a composable pair (φ, ψ) to the pair (ψ−1, φ−1). This
operation commutes in the obvious way with the composition map as indicated in
the following diagram:

G1 G1.r
//

G1 ×G0 G1

G1

c
��

G1 ×G0 G1 G1 ×G0 G1
r̄ // G1 ×G0 G1

G1.

c
��

A.2. Simplicial sets

In this section we review some basic facts regarding the category of simplicial
sets. The references for this section are [58] and [26].

A.2.1. Definition and examples. The simplicial category ∆ has as ob-
jects all non-empty, finite ordinals [n] := {0, . . . , n} and monotone maps between
them as arrows. In the category ∆ there is, for each 0 ≤ i ≤ n, a distinguished map
di : [n − 1] // [n] which is defined to be the injective monotone map which omits
i. Similarly, there is a distinguished map si : [n+ 1] // [n], for 0 ≤ i ≤ n, defined
to be the surjective monotone map which repeats i. The maps di are called the
coface maps and the maps si are called the codegeneracy maps. The coface
and codegeneracy maps freely generate all arrows in ∆ together with the following
relations called the cosimplicial identities:
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djdi = didj−1 if i < j ,

sjdi =

 disj−1

1
di−1sj ,

if i < j ,
if i = j , i = j + 1 ,
if i > j + 1 , and

sjsi = sisj+1 if i ≤ j .

A simplicial set X is a presheaf ∆op // Set on ∆. We write SSet for the
category of simplicial sets, ∆[n] for the image of the ordinal [n] under the Yoneda
embedding. Explicitly, a simplicial set X consists of a sequence of sets Xn for 0 ≤ n
together with maps di : Xn

//Xn−1 (the face maps) and si : Xn
//Xn+1 (the

degeneracy maps) for 0 ≤ i ≤ n subject to the following simplicial identities:

didj = dj−1di i < j ,

disj =

 sj−1di ,
1Xn ,
sjdi−1 ,

i < j ,
i = j , i = j + 1 ,
i > j + 1 ,

sisj = sj+1si i ≤ j .

The elements of X0 are called vertices of X and the elements of Xn are called
n-simplices of X.

Example A.1. The following are some of the basic examples of simplicial sets.

(1) Let an arbitrary set X0 be given. We define a simplicial set X by setting:
• The vertices of X are exactly the elements of X0.
• The elements of X1 are binary words (x ∗ y) on the alphabet X0,

where ∗ is concatenation and where neither x nor y is the empty
string. The map s0 : X0

//X1 sends a vertex x to the word (x ∗ x).
The map d0 : X1

//X0 sends (x ∗ y) to y and d1 sends it to x.
• In general, Xn consists of (n + 1)-ary words (x0 ∗ · · · ∗ xn) on the

alphabet X0, where we again disallow the empty string. In this case
the maps si : Xn−1

//Xn, for 0 ≤ i < n, are obtained by setting

si(x0 ∗ · · · ∗ xn−1) := (x0 ∗ · · · ∗ xi ∗ xi ∗ · · · ∗ xn−1),

and the maps di : Xn
//Xn−1, for 0 ≤ i ≤ n, by

di(x0 ∗ · · · ∗ xn) := (x0 ∗ · · · ∗ x̂i ∗ · · ·xn).

Here we have written (x0∗· · ·∗x̂i∗· · ·xn) for the n-ary word obtained
by omitting xi. This “hat” notation for lists or words with omitted
elements is quite convenient and we employ it frequently when dealing
with simplicial sets.

The reader should now verify that, using these definitions, the simplicial
identities are satisfied.

(2) The foregoing example can be formulated in any category C with finite
products by associating to any object C of C the simplicial object in C
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illustrated in the following diagram:

C × C C

d0

99C × C C

d1

%%
CC × C s0ooC × C × C C × C

d0

::C × C × C C × C

d2

%%
C × C × C C × Cd1 // C × CC × C × C

s1rr
C × CC × C × C

s0
kk· · · C × C × C

%%
· · · C × C × C::· · ·

where the di are projections and the si are given by inserting the diagonal
C // C × C.

(3) Recall that a simplicial complex K is given by a set K0 of vertices
together with a set K of finite non-empty subsets of K0 such that all of
the singletons {v}, for v ∈ K0, are in K and if σ ∈ K and τ is a non-empty
subset of σ, then τ ∈ K. Elements of K are called simplices.

Given a simplicial complex K we define a simplicial set K̂ as follows:
• K̂0 := K0.
• K̂1 is the set of binary words (x ∗ y) on the alphabet K0 such that

(x ∗ y) ∈ K̂1 iff {x, y} ∈ K.

As in the first example, the map s0 : K̂0
// K̂1 sends a vertex x to

(x ∗ x) and the maps di are defined similarly.
• In general, K̂n is the set of words of length n+ 1 on the alphabet K0

such that

(x0 ∗ · · · ∗ xn) ∈ K̂n iff {x0, . . . , xn} ∈ K.

The face and degeneracy maps are defined exactly as in the previous
example.

A.2.2. Geometric realization. Recall that that geometric n-simplex ∆n

is defined to be:

∆n :=
{

(x0, . . . , xn) ∈ Rn+1 |
n∑
i=0

xi = 1, xi ≥ 0
}
.

I.e., ∆n is (up to isomorphism) the convex hull in Rn+1 of the standard unit vectors
ei. The construction of geometric n-simplices is functorial:

∆
|·| //Top,

where |[n]| := ∆n and | · | acts on arrows by reparameterization. There exists, by
left-Kan extension, a canonical functor SSet //Top extending | · | as indicated in
the following diagram:

SSet

∆

__

y

???????????SSet Top// Top

∆

??

|·|
����������

We write | · | also for the extension SSet //Top and call this functor geometric
realization. As always in this situation, |·| has a right-adjoint S(−) : Top //SSet
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defined by

S(X)n := Top(∆n, X).

S(X) is called the singular complex of X. By definition of left-Kan extension,
the geometric realization of a simplicial set is obtained by gluing together polygons.

A.2.3. The Nerve. By taking instead the Kan extension of the Yoneda em-
bedding along the inclusion ∆ // Cat we obtain the fundamental category
functor τ1 : SSet //Cat and its right-adjoint N : Cat // SSet the nerve func-
tor.

Example A.2. The geometric realization of the nerve of a category C is some-
times called the classifying space of C and is written as BC (in fact, some authors
simply write BC for both the nerve of C and the geometric realization of the nerve).
This terminology and notation arise from the case where C is a group G. When G
is an abelian group BG is in fact the Eilenberg-Mac Lane space K(G, 1) of G
which has the property that

πn
(
K(G, 1)

)
=

{
G if n = 1, and
0 otherwise,

where πn(X) denotes the n-th homotopy group of X.

A.3. Globular sets and strict ω-categories

Like simplicial sets, globular sets are one of the fundamental combinatorial
structures employed in higher-dimensional category theory. Strict ω-categories arise
as algebras for a monad on the category of globular sets and it is the aim of this
section to recall the definitions of both globular sets and strict ω-categories. Our
sources for much of this background material are [77, 78, 83, 55].

A.3.1. Globular sets. We denote by Γ the free category generated by the
following graph

(0)
s //
t
// (1)

s //
t
// (2)

s //
t
// · · · (n)

s //
t
// (n+ 1)

s //
t
// · · ·

(64)

subject to the relations

s ◦ s = t ◦ s, and
t ◦ t = s ◦ t.

A globular set is a presheaf X : Γop // Set on Γ. Explicitly, a globular set is
given by a diagram

X0
oo s
oo

t
X1
oo s
oo

t
X2
oo s
oo

t
· · · Xn

oo s
oo

t
Xn+1

oo s
oo

t
· · ·

in Set such that the following globular identities are satisfied:

s ◦ s = s ◦ t, and
t ◦ t = t ◦ s.

The maps s is referred to as source maps and t as target maps. We denote by
GSet the category [Γop,Set] of globular sets. An arrow f : X // Y in GSet is
then a natural transformation. I.e., such an f consists of a morphism of graded
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sets which commutes with the source and target maps. By truncating the diagram
(64) at a fixed n we obtain the n-truncated co-globular category Γn and, by tak-
ing presheaves, the category of n-trucated globular sets n-GSet. A 2-truncated
globular set is precisely a (directed) graph. Thus, globular sets and n-globular sets
are higher-dimensional graphs. By taking the left-Kan extension along the Yoneda
embedding Γ //GSet of the map Γ //Top which sends n to the n-dimensional
globe and which acts on the arrows of Γ by projecting the (n + 1)-dimensional
globe onto its hemispheres we obtain, as in the case of simplicial sets, a geometric
realization functor | · | : GSet //Top which possesses a right-adjoint.

A.3.2. Strict ω-categories. Just as categories are graphs equipped with the
additional structure given by identities and composition, so too n-categories are
n-globular sets with additional structure and ω-categories are globular sets with
additional structure. We here describe ω-categories explicitly and remark that n-
categories are obtained by truncating the definition given below at n. Throughout
we are dealing with strict ω-categories.

Let A be a globular set and define An ×Ap An to be the pullback

An Ap
s(n−p)

//

An ×Ap An

An
��

An ×Ap An An// An

Ap

t(n−p)

��

where

tk := t ◦ t ◦ · · · ◦ t︸ ︷︷ ︸
k-times

for any k ≥ 0. A (strict) ω-category consists of a globular set A together with
maps i : An //An+1 and

An ×Ap An
∗p //An,

such that the following conditions are satisfied:
(Domain and Codomain Laws): For each n ≥ 0,

s ◦ i = 1An = t ◦ i.
And

`(g ∗p f) =


`(g) ∗p `(f) if p < (n− 1)

=

{
s(f) if ` = s

t(g) if ` = t
if p = (n− 1).

for ` = s, t.
(Associativity Laws): Each operation ∗p is associative.
(Unit Laws): Given f in An,

i(n−p)
(
t(n−p)(f)

)
∗p f = f = f ∗p i(n−p)

(
s(n−p)(f)

)
.

(Interchange Laws): Given q < p < n and f, g, h, k in An such that the
composites (y ∗q x), (k ∗q h), (h ∗p f) and (k ∗p g) are defined,

(k ∗p g) ∗q (h ∗p f) = (k ∗q h) ∗p (g ∗q f),
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and

i(g) ∗q i(f) = i(g ∗q f).

The maps i are referred to as identity maps and the ∗p are compositions.
Sometimes we refer to composition ∗0 along 0-cells as horizontal composition.
Note that if f and g are n-cells such that (g∗pf) is defined, then s(n−p)(f), s(n−p)(g),
t(n−p)(f) and t(n−p)(g) are all parallel. When no confusion will result we often omit
mention of identity maps. Thus, e.g., if f : x // y is a 1-cell and α : g +3 h is a
2-cell with s(g) = y, we denote α ∗0 i(f) by α ∗0 f .

A (strict) ω-functor F : A // B between ω-categories is then simply a
map of globular sets which preserves compositions and identities. We often refer
to ω-functors simply as functors when it is understood that we are dealing with
ω-categories. The category of small ω-categories and functors between them is
denoted by ω-Cat. Just as Cat is monadic over 1-GSet, so too ω-Cat is monadic
over GSet (cf. [55] for an explicit description of the monad). Indeed, ω-Cat is a
bicomplete cartesian closed category. Henceforth we often denote ω-categories by
A,B, . . .. Clearly every ω-category is also an n-category, for 1 ≤ n and similarly
for ω-functors.

A.3.3. Higher-dimensional transformations. Given functors F,G : A // //B
between ω-categories, a natural transformation α : F +3G consists of an assign-
ment of 1-cells αx : Fx //Gx for objects x of A such that the following (somewhat
schematic) diagram commutes:

Fx Gx
αx //

Fy Gy
αy

//

Fx

Fy
��

Fx

Fy
��

Fξ

Gx

Gy
��

Gx

Gy
��

Gξ

for every k-cell ξ bounded by 0-cells x and y. I.e., if ξ is any k-cell, for k ≥ 1, such
that skξ = x and tkξ = y, then

αy ∗0 Fξ = Gξ ∗0 αx.(65)

Passing up one dimension, suppose we are given functors F and G as above together
with natural transformations α and β from F to G. Then, a modification or 2-
transformation ϕ : α +3 β consists of an assignment of 2-cells ϕx : αx // βx
of B parameterized by objects x of A subject to the condition that, for any arrow
f : x // y of A, the following diagram commutes:

Fx Gx

αx
&&

Fx Gx

βx

88

Fy Gy

αy

&&
Fy Gy

βy

88

Fx

Fy

Ff

��

Gx

Gy

Gf

��

ϕx��

ϕy��
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I.e.,

ϕy ∗0 Ff = Gf ∗0 ϕx(66)

for f : x // y an arrow of A.
It is possible to generalize inductively to higher-dimensional transformations.

In particular, assuming we have defined n-transformations, for n ≥ 2, in such a
way that the obvious boundary conditions are satisfied a (n+ 1)-transformation
ψ from an n-transformation γ to a n-transformation δ consists of a family of n-cells
ψx : γx +3 δx in B parameterized by objects x of A such that, whenever f : x // y
is an arrow in A, the naturality condition

ψy ∗0 Ff = Gf ∗0 ψx(67)

is satisfied. With these definitions it is straightforward to verify that the following
more general naturality conditions are also satisfied:

Scholium A.3. If ξ is a k-cell of A bounded by 1-cells f, g : x // // y and ϕ is
a (n+ 1)-transformation bounded by functors F,G : A // B, then

ϕy ∗0 Fξ = Gξ ∗0 ϕx.

With ω-functors and these higher-dimensional transformations ω-Cat itself ex-
hibits the combinatorial structure of an ω-category.

Proposition A.4. The category ω-Cat is itself a large ω-category with (n+1)-
cells given by n-transformations.

A.3.4. Dimension shift and hom-ω-categories. There exists a functor
(−)+ : ω-Cat // ω-Cat called the dimension shift functor which shifts the
dimension of an ω-category. Specifically, given an ω-category A, A+ has as objects
1-cells of A and, in general, n-cells of A+ are (n+1)-cells of A. I.e., A+ is the result
of applying the obvious dimension shift functor on globular sets to the underlying
globular set of A. Trivially, A+ is an ω-category and (−)+ is functorial. Similarly,
given ω-category A and objects x and y of A, the hom set A(x, y) can be made
into an ω-category — which we sometimes denote by A1(x, y) to emphasize the
dimension — by defining 0-cells to be arrows f : x // y and (n + 1)-cells to be
n-cells in the obvious way. Similarly, given parallel (n+ 1)-cells f, g of A, there is
an ω-category An+2(f, g) which has 0-cells (n+ 2)-cells α : f +3 g and so forth.

Now, if A is an ω-category and f, g are n-cells with n ≥ 1, then there exists a
faithful inclusion functor

A(n+1)(f, g) //
(
An(sf, tg)

)+
which sends a (n+ 1)-cell α : f // g to itself, and similarly for higher-dimensional
cells.



APPENDIX B

Type theoretic background

B.1. The syntax of type theory

In this section we state the general rules of the basic form of type theory Tω
which we consider. This is, in some sense, the simplest form of Martin-Löf type
theory without natural numbers or universes. Of course, these additional features
could well be considered, but, because we are primarily interested in analysing the
higher-dimensional structure to which identity types give rise, this is the more basic
theory. We refer the reader to [60, 67, 80, 21, 32] for additional details regarding
the syntax of type theory.

In order to avoid superfluous repetition, some contexts are elided from the
rules. Evident judgements are also omitted from the statements of rules when no
confusion will result.

B.1.1. Forms of judgement. The formulation of type theory which we con-
sider has six forms of judgement. The first two forms govern contexts. Namely,

` Γ : context, and
` Γ = ∆ : context,

which indicate that Γ is context and that Γ and ∆ are definitionally equal as
contexts. The next two forms of judgement,

Γ ` A : type, and
Γ ` A = B : type,

express that A is a type in context Γ and that A and B are definitionally equal
types in context Γ. Finally,

Γ ` a : A, and
Γ ` a = b : A

state that a is a term of type A in context Γ and that a and b are definitionally
equal terms of type A in context Γ.

Although we formulate the theory with forms of judgement governing contexts,
the theory can also be formulated without these rules and the system given here is
conservative over the system without such forms of judgement.

B.1.2. Contexts. Contexts are finite lists of variable declarations (x1 : A1, . . . , xn :
An), for n ≥ 0, such that FV(Ai) ⊆ {x1, . . . , xi−1} when 1 ≤ i ≤ n. Explicitly, the
judgements governing context formation are axiomatized by certain rules which we
now describe.

137



138 B. TYPE THEORETIC BACKGROUND

To begin with, the following rule expresses that the empty context () is a
context:

() context
` () : context

The following rule allows for the extension of contexts:
Γ ` A : type

Context extension
` (Γ, x : A) : context

(68)

where x is a fresh variable. A few remarks about this rule are in order. Here we
adopt the convention of tacitly suppressing some of the hypotheses of rules when
they are apparent. Thus, the true form of the rule (68) should also include as a
hypothesis the judgement ` Γ : context. The next point to make about (68) is
that when dealing with contexts we follow the convention of omitting unnecessary
parentheses. Thus, for example, if A is a basic type, then (68) yields that ((), x : A)
is a well-formed context and the expression ((), x : A) will be identified with the
list (x : A). Similarly, the context

(
((), x1 : A1), x2 : A2

)
is identified with the list

(x1 : A1, x2 : A2), et cetera.

B.1.3. Structural rules.
Empty context

() : context

Γ ` A : type
Context extension

` (Γ, x : A) : context

where x is assumed to be a fresh variable in the context extension rule.
We now state the basic structural rules of type theory. First, we have the

weakening rule,
B : type

Weakening
∆ ` B : type

The additional structural rules are as follows:
a : A x : A,∆ ` B(x) : type

Type substitution
∆[a/x] ` B[a/x] : type

a : A x : A,∆ ` b(x) : B(x)
Term substitution

∆[a/x] ` b[a/x] : B[a/x]

A : type
Variable declaration

x : A,∆ ` x : A

B.1.4. Rules governing definitional equality. The behavior of definitional
equality of terms and types is specified by a number of rules. To begin with, the fol-
lowing rules stipulate that definitional equality constitutes an equivalence relation
on both terms and types:

A : type
Type ref.

A = A : type

A = B : type
Type sym.

B = A : type
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A = B : type B = C : type
Type trans.

A = C : type

a : A
Term ref.

a = a : A

a = b : A
Term sym.

b = a : A

a = b : A b = c : A
Term trans.

a = c : A
Additional rules ensure that definitional equality is well-behaved with respect

to substitution and inhabitation.

a = a′ : A x : A ` B(x) : type
Type congruence

B[a/x] = B[a′/x] : type

a = a′ : A x : A ` b(x) : B(x)
Term congruence

b[a/x] = b[a′/x] : B[a/x]

A = B : type a : A
Term conv.

a : B

B.1.5. Formation rules. The formation rules for dependent sums and prod-
ucts are as follows:

x : A ` B(x) : type
Σ form.

Σx:A.B(x) : type

x : A ` B(x) : type
Π form.

Πx:A.B(x) : type

The (categorical) formation rule for identity types is given by

A : type a, b : A
Id form.

` IdA(a, b) : type

B.1.6. Introduction and elimination rules for dependent products
and sums. Introduction rules are as follows:

x : A ` f(x) : B(x)
Π intro.

λx:A.f(x) : Πx:A.B(x)

x : A ` B(x) : type a : A b : B(a)
Σ intro.

pair(a, b) : Σx:A.B(x)

Elimination rules are as follows:

f : Πx:A.B(x) a : A
Π Elim.

app(f, a) : B(a).

c : Σx:A.B(x) x : A, y : B(x) ` d(x, y) : C
(
pair(x, y)

)
Σ weak elim.

RΣ
A,B,C(d, c) : C(c)
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B.1.7. Introduction and elimination rules for identity types. The in-
troduction, elimination and conversion rules are as follows:

a : A
Id intro.

rA(a) : IdA(a, a)

x : A, y : A, z : IdA(x, y) ` B(x, y, z) : type

u : A ` b(u) : B
(
u, u, rA(u)

)
p : IdA(a, a′)

Id elim.
JA,B(b, a, a′, p) : B(a, a′, p)

B.1.8. Conversion rules.
λx:A.f(x) : Πx:A.B(x) a : A

Π conversion
app

(
λx:A.f(x), a

)
= f(a) : B(a)

a : A b : B(a) x : A, y : B(x) ` d(x, y) : C
(
pair(x, y)

)
Σ conversion

RΣ
A,B,C

(
d,pair(a, b)

)
= d(a, b) : C

(
pair(a, b)

)
a : A

Id conversion
JA,B

(
b, a, a, rA(a)

)
= b(a) : B

(
a, a, rA(a)

)
B.1.9. Coherence rules for identity types. Finally, all of the data given

by the formation, introduction and elimination rules is subject at the meta-level to
cohrence (“Beck-Chevalley”) conditions. We state only the coherence rules for iden-
tity types, as the corresponding rules for dependent products and sums follow the
same pattern. We emphasize that these are meta-rules and should be understood
as taking place in the logical framework.

x : C ` A(x) : type x : C ` a(x), b(x) : A(x) ` c : C
Id coherence

`
(
IdA(x)(a(x), b(x))

)
[c/x] = IdA[c/x])(a[c/x], b[c/x])

x : C ` A(x) : type x : C ` a(x) : A(x) ` c : C
r coherence

`
(
rA(x)(a(x))

)
[c/x] = rA[c/x](a[c/x]) : IdA[c/x](a[c/x], a[c/x])

x : C, y : A(x), z : A(x), v : IdA(x)(y, z) ` B(x, y, z, v) : type

x : C, u : A(x) ` b(x, u) : B
(
x, u, u, rA(x)(u)

)
x : C ` p(x) : IdA(x)(a(x), a′(x)) ` c : C

J coherence(
JA(x),B

(
b(x), a(x), a′(x), p(x)

))
[c/x] = JA(c),B

(
b(c), a(c), a′(c), p(c)

)
B.2. Additional and derived rules

This section contains assorted additional rules which are not assumed as part
of the basic theory Tω (although they may be derivable).
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B.2.1. Rules for products and exponentials. For convenience we include
also the rules governing products and exponentials.

A : type B : type
× form.

A×B : type

A : type B : type
Exp. form.

BA : type

a : A b : B
× intro.

pair(a, b) : A×B

d : A×B
× elim. 1

π1(d) : A

d : A×B
× elim. 2

π2(d) : B

x : A ` f(x) : B
Exp. intro.

λx:A.f(x) : BA

f : BA a : A
Exp. elim.

app(f, a) : B

B.2.2. Strong elimination rules for dependent sums.

c : Σx:A.B(x)
Σ strong elim. 1

π1(c) : A

c : Σx:A.B(x)
Σ strong elim. 2

π2(c) : B[π1(c)/x]

B.2.3. Hypothetical rules for identity types.
A : type

Id form. (hypothetical)
x : A, y : A ` IdA(x, y) : type

A : type
Id intro. (hypothetical)

x : A ` rA(x) : IdA(x, x)

x : A, y : A, z : IdA(x, y) ` B(x, y, z) : type

u : A ` b(u) : B[u/x][u/y][rA(u)/z]
Id elim. (hypothetical)

x : A, y : A, z : IdA(x, y) ` JA,B(b, x, y, z) : B(x, y, z)

x : A, y : A, z : IdA(x, y) ` B(x, y, z) : type
Id conversion (hypothetical)

x : A ` JA,B(b, x, x, rA(x)) = b(x) : B
(
x, x, rA(x)

)
B.2.4. Derived rules for identity types.

x : A ` B(x) : type p : IdA(a1, a2) q : B(a1)
Id Sub.

substA,B(a1, a2, p, q) : B(a2).

p : IdA(a1, a2)
Id Sym.

sA(p) : IdA(a2, a1)

p : IdA(a1, a2) q : IdA(a2, a3)
Id Trans.

tA(p, q) : IdA(a1, a3)

Id Sub. Conv.
substA,B(a, a, rA(a), q) = q
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Id Sym. Conv.
sA
(
rA(a)

)
= rA(a)

Id Trans. Conv.
tA
(
p, rA(b)

)
= p

B.2.5. Truncation principles for identity types.

` an+1, bn+1 : An(a1, b1; · · · ; an, bn) ` p : An+1(a1, b1; · · · ; an+1, bn+1)
TRn

` an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

` an+1, bn+1 : An(a1, b1; · · · ; an, bn)
UIPn

` an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

` an+1 : An(a1, b1; · · · ; an, bn) ` p : An+1(a1, b1; · · · ; an+1, an+1)
OUPn

` p = rAn(a1,b1;··· ;an,bn)(an+1) : An+1(a1, b1; · · · ; an+1, an+1)

B.2.6. Streicher’s eliminator K.

x : A, y : IdA(x, x) ` C(x, y) : type

x : A ` d(x) : C(x, rA(x))

` p : IdA(a, a)
K elim.

` KA,D([x : A]d(x), a, p) : C(a, p)

` a : A
K conv.

` KA,D([x : A]d(x), a, rA(a)) = d(a) : C(a, rA(a))

In the presence of the reflection rule the K rules are equivalent to the usual J
rules. For more on K see (cf. [80]).

B.3. Interpreting type theory in comprehension categories

Comprehension categories are significant as a semantics for type theory because
they capture much of the “fibrational” information regarding type theory in a rea-
sonably concise manner. They also provide a uniform setting for describing several
of the coherence issues which arise in the categorical treatment of type theory. We
refer the reader to [38, 79, 69, 21, 34] for more on the semantics of type theory.

Definition B.1. A comprehension category consists of the following data:

• A finitely complete category C.
• A Grothendieck fibration P(−) : P // C.
• A fibred functor χ : P // C→ over C, where the C→ // C is the codomain

fibration.

A comprehension category is said to be split if P(−) is a split fibration.

Note that, unless it is split, a comprehension category only interprets sub-
stitution correctly up to (coherent) isomorphism (cf. [18, 33]). As such, unless
otherwise stated, we will assume the comprehension categories with which we deal
in this Appendix are split.
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B.3.1. The interpretation of contexts and type judgements. When
interpreting type theory using a fixed comprehension category, the category C is to
be thought of as the category of contexts and an elements of the fibre P(Γ) over
a “context” Γ as the types in context Γ. We mention that some of the notation
employed below is explained in Remark 2.15 of Chapter 2.

The interpretation of contexts and type judgements in such a comprehension
category is summarized as follows:

• The empty context () is interpreted as the terminal object of C:
[[()]] := 1.

• If Γ is an arbitrary context which has already received an interpretation
[[Γ]], then a judgement of the form Γ ` A : type is interpreted as an
object of the fibre P([[Γ]]):

[[Γ ` A : type]] := an object of P([[Γ]]).

• Given the foregoing situation, the extended context (Γ, x : A) is inter-
preted as the domain of the map obtained by applying χ : P // C→ to
[[Γ ` A : type]]. I.e.,

[[Γ, x : A]] := [[Γ]][[Γ ` A:type]].

Type identity judgements Γ ` A = B : type are then interpreted as actual
equalities in P([[Γ]]).

B.3.2. The interpretation of terms. Given interpretations of a context Γ
and a judgement Γ ` A : type as an object [[Γ]] of C and an element

α = [[Γ ` A : type]] ∈ P([[Γ]]),

respectively, a judgement of the form Γ ` a : A is interpreted as a section
[[Γ ` a : A]] of πα as follows:

[[Γ]]

[[Γ]],
1Γ ��??????

[[Γ]] [[Γ]]α
[[Γ ` a:A]] // [[Γ]]α

[[Γ]],
πα��������

in C. Finally, definitional equality of terms Γ ` a = b : A is interpreted as actual
equality of arrows in C.

B.3.3. The interpretation of substitution into a type. Assume given
interpretations of the judgements Γ, x : A ` B(x) : type and Γ ` a : A as
described above. Thus, there are objects α of P([[Γ]]) and β of P([[Γ]]α) interpreting

Γ ` A : type and Γ, x : A ` B(x) : type,

respectively, together with a section [[Γ ` a : A]] of πα. We henceforth will simply
abbreviate this section by a and similarly for other sections. Thus, because β is in
the fibre of P(−) over [[Γ]]α, there is cartesian lift aβ : (β · a) // β in P over the
map

[[Γ]] a // [[Γ]]α.

We then define

[[Γ ` B[a/x] : type]] := (β · a).
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Note that substitution is not functorial unless P(−) is a split fibration.

B.3.4. The interpretation of substitution into a term. Given judge-
ments Γ ` a : A and Γ, x : A ` B(x) : type, the judgement Γ ` B(a) : type is
interpreted as

[[Γ ` B(a) : type ]] :=
(
β · [[Γ ` a : A]]

)
.(69)

where

α = [[Γ ` A : type]] ∈ P([[Γ]]), and

β = [[Γ, x : A ` B(x) : type]] ∈ P([[Γ]]α).

Similarly, given Γ, x : A ` b(x) : B(x), the judgement Γ ` b(a) : B(a) is
interpreted as b[a] where we write a as an abbreviation for [[Γ ` a : A]] and b as
an abbreviation for [[Γ, x : A ` b(x) : B(x)]].

B.3.5. The interpretation of weakening. Suppose given judgements Γ `
A : type and Γ ` B : type together with their interpretations α, β ∈ P([[Γ]]). In
this situation, the judgement Γ, x : A ` B : type is interpreted as

[[Γ, x : A ` B : type]] := β · πα.

where πα : [[Γ]]α // [[Γ]]. Similarly, given a context Γ and a judgement in the empty
context ` A : type the we interpret

[[Γ ` A : type]] := α·! ∈ P([[Γ]]),

where α ∈ P(1) is the interpretation of ` A : type and ! is the canonical map
[[Γ]] // 1.

Given Γ ` A : type, the judgement Γ, x : A ` A : type is interpreted, as
above, as α · πα ∈ P([[Γ]]α). The corresponding context (Γ, x : A, y : A), for y a
fresh variable, is then

[[Γ, x : A, y : A]] := [[Γ]]+α .

It is convenient to introduce some additional notation associated with the oper-
ation of weakening. Given objects ∆ and Γ of C together with an element α ∈ P(Γ)
and a map σ : ∆ // Γ, the induced map

(
∆α·σ

)
(α·πα)·σα

(
σα

)
α·πα // Γ+

α

is abbreviated by σ† as indicated in the following (two pullback) diagram:

∆ Γ.
σ

//

∆α·σ

∆

πα·σ

��

∆α·σ Γα
σα // Γα

Γ.

πα

��

∆α·σ Γα//

(
∆α·σ

)
(α·πα)·σα

∆α·σ

π(α·πα)·σα
��

(
∆α·σ

)
(α·πα)·σα

Γ+
α

σ† // Γ+
α

Γα

π+
α

��



B.4. THE INITIAL MODEL OF Tω 145

B.4. The initial model of Tω
We now recall the details of the initial model of Tω obtained using the cat-

egory of contexts. We also prove a basic fact relating this model with the weak
factorization system from [23]. We assume that the reader is familiar with the
basic definitions and properties of context morphisms. We denote by C(Tω) the
category of contexts of Tω which has as objects contexts and as arrows context
morphisms.

Definition B.2. A context morphism Γ //∆ is a dependent projection if
it is either an identity or of the form

(x1 : A1, . . . , xn+1 : An+1)
(x1,...,xn) // (x1 : A1, . . . , xn : An)

for 0 ≤ n.

The set of dependent projections is denoted by D. The intial comprehension
category modelling Tω is obtained as the Grothendieck fibration C(Tω)D

// C(Tω)
which is obtained as the restriction of the codomain fibration to the full subcategory
of the arrow category having as objects dependent projections. That this is the
initial model is well-known. (The proof of this for extensional type theory can
be found in [38] and is easily modified to give a proof for Tω. Alternatively, an
equivalent result, stated in terms of categories with families, can be found in [32]).

Definition B.3. Let a context Γ = (x0 : A0, . . . , xn : An) be given. A context
morphism Γ //∆ in C(Tω) is said to be generalized dependent projection if
there exists a natural number 0 ≤ m ≤ n together with an inclusion [m] // [n] of
an initial segment such that

∆ = (xα(0) : Aα(0), . . . , xα(m) : Aα(m)), and

f = (xα(0), . . . , xα(m)).

The collection of generalized dependent projections is denoted by P.

It is straightforward to verify that P is the closure of the set D of (ordinary)
dependent projections under composition. Note that we have the following result:

Scholium B.4. In a category C, if A is a collection of arrows of C and A′ is
the closure of A under composition, then

tA =t (A′).

Proof. Since A is contained in A′ it follows that t(A′) is contained in tA.
The converse follows a basic lifting argument using the fact that, as the closure of
A under composition, maps in A′ can be decomposed into composites of maps in
A. �





APPENDIX C

A schematic picture of the definition of strict
intervals

We will now give a brief presentation of the “intended picture” of cocategory
objects which should help the reader understand the intuition a little better (this
picture is in some sense just a way of illustrating the cocategory object in Gpd
discussed below). To begin with, we will regard C0 as a single point:

•,

and C1 will be regarded as the “unit interval”:

� �

The maps ⊥ and > then are simply points of the interval:

•
⊥

��

•
>

��� �

where ⊥ is identified with the “bottom” end of the interval and > is identified with
the “top” end.

C2 is then, by definition, the result of gluing the interval to itself by identifying
the top and bottom:

� � � �

and the maps ↓, ↑: C1
// // C2 have the actions illustrated as follows:

� � � �

� �

yy yy

C1

C2

��

↓

and:

� � � �

� �

%% %%

C1

C2

��

↑

The point ↓ ◦> =↑ ◦⊥ may (in some sense) be identified with the midpoint of C2.
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The cocomposition ∗ : C1
// C2 is then the “magnification” operation:

� � � �

� �

yy %%

C1

C2

��

∗

The maps i0, i1 : C2
//// C1 mentioned in the fourth axiom for cocategory objects

have the action, in this case, of collapsing the initial segment to ⊥ and collapsing
the final segment to >, respectively. This is illustrated as follows:

� � � �

� ��� �� ��

C2

C1

��
i0

and
� � � �

� ��� �� ��

C2

C1

��
i1

The construction of C3 may be visualized as:� � � �� �

� �� �� ��� ��
or

� �� �

� �� �� �

� �

�� ��

The maps t0, t1 : C2
//// C3 are then given schematically by:

� � � �

� � � � � �zz $$zz

C2

C3

��

t0

and:
� � � �

� � � � � �zz $$$$

C2

C3

��

t1
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82. Bertrand Toën, Simplicial presheaves and derived algebraic geometry, in Advanced Course on

Simplicial Methods in Higher Categories [46], Notes of the Course, pp. 95–146.

83. Dominic Verity, Complicial sets characterising the simplicial nerves of strict ω-categories,
vol. 193, Memoirs of the American Mathematical Society, no. 905, American Mathematical

Society, Providence, RI, 2008.



152 BIBLIOGRAPHY

84. Vladimir Voevodsky, A very short note on the homotopy λ-calculus, Unpublished note, 2006.


	Abstract
	Acknowledgements
	Introduction
	Chapter 1. Forms of Type Theory
	Chapter 2. Homotopical Semantics of Type Theory
	2.1. Homotopical semantics
	2.2. Simplicial model categories
	2.3. Coherence of elimination terms
	2.4. Split models via the Bénabou construction

	Chapter 3. Cocategories and Intervals
	3.1. Cocategory objects
	3.2. Join, Meet and Hurewicz Fibrations
	3.3. Representability
	3.4. Split fibrations
	3.5. Internal groupoids

	Chapter 4. -Groupoids
	4.1. The Grothendieck construction
	4.2. The dual Grothendieck construction
	4.3. Identity types
	4.4. Reflexivity and elimination terms
	4.5. The interpretation of type theory

	Chapter 5. Future work
	Appendix A. Categorical background
	A.1. Internal groupoids
	A.2. Simplicial sets
	A.3. Globular sets and strict -categories

	Appendix B. Type theoretic background
	B.1. The syntax of type theory
	B.2. Additional and derived rules
	B.3. Interpreting type theory in comprehension categories
	B.4. The initial model of T

	Appendix C. A schematic picture of the definition of strict intervals
	Bibliography

