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Abstract

This thesis continues the programme of providing a higher-categorical anal-

ysis of the treatment of equality in Martin-Löf dependent type theory.

In particular, we construct for various type theories a classifying weak

ω-category, with objects and 1-cells as in the standard classifying category,

and higher cells being open terms of identity types between these. Weak

ω-category structures (in the sense of Batanin/Leinster) on these are given

by operads of syntactically definable composition laws.

Committee

Steve Awodey (doctoral advisor)

James Cummings (chair)

Richard Garner

Richard Statman





Contents

Acknowledgements vii

Introduction 1

0.1. Background 1

0.2. Overview of results 5

The fundamental weak ω-category of a type (Ch. 3) 5

The classifying weak ω-category of a theory (Ch. 4) 8

Chapter 1. Type-theoretic background 11

1.1. Syntactic presentation 11

1.2. Categorical representation 20

1.3. Constructions on dependent type theories 26

1.4. Miscellaneous facts 29

Chapter 2. Higher-categorical background 31

2.1. Weak factorisation systems 31

2.2. Strict higher categories 34

2.3. Globular operads 40
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Introduction

0.1. Background

0.1.1. A fundamental construction in all flavours of type theory is the clas-

sifying category C̀ (T) of a theory T. Objects of C̀ (T) are types (or contexts)

of T; morphisms of T are open terms of one type with free variables from

another, up to syntactic equivalence of some sort.

The uses of this construction are manifold. First of all, it provides a tool

for structural analysis of theories, allowing type-theoretic constructors and

rules to be understood as presentations of categorical structure (products,

sums, exponential objects, . . . ) familiar from elsewhere in mathematics.

Next, this allows us to model the type theory in any suitably structured

category, via a right adjoint Lang to the functor C̀ , giving the internal

language of a structured category.

Putting these together, it allows us to represent type theories as equiv-

alent to appropriately structured categories, giving us an alternate presen-

tation with different strengths to the traditional syntax.

0.1.2. For some logical systems—simple type theory, for instance, and some

extensional versions of Martin-Löf type theory—this correspondence is very

well understood and leaves little to be desired. Unfortunately, the situation

with the intensional variants of Martin-Löf type theory—ITT, henceforth—

is not yet so satisfactory.

Syntactic categories for theories in ITT still work essentially as described

above: they are a powerful technical tool for providing models, and for

representing theories. The subtlety is that the structures corresponding to

logical constructors in ITT are no longer so categorically familiar as before:

1



2 INTRODUCTION

they are not quite the products, exponentials, adjoints and so on that one

might expect. The problem1 is the interaction of its two different kinds of

equality.

Firstly, there is definitional (aka intensional) equality:

Γ ` a = a′ : A

a decidable, quite fine syntactic relation—this covers essentially α-equivalence,

β-equivalence, and sometimes η-, but no more. Its strictness reflects the ex-

tremely well-controlled computational behaviour of the system. This is the

equality used in the classifying category. Crucially, however, it is a separate

judgement of the system, not represented by a type, so cannot be reasoned

about by e.g. induction within the system. One cannot prove in ITT, for

instance, that

x : N ` x+ 0 = x : N.

Secondly, since one does need some kind of equality which can be rea-

soned about internally, there is propositional (sometimes aka extensional)

equality, which is represented by a dependent type, the identity type over

each type:

x, y : A ` IdA(x, y) type

An inhabitant of this type is seen as a proof of equality between x and y.

This is a coarser equality than the definitional; it is axiomatised simply by

intro/elim rules of the usual form for an inductive type, but they turn out

to yield remarkably subtle consequences.

0.1.3. In the extensional theory, the two equalities coincide by fiat (the

reflection rule). This makes reasoning about equality within the theory

much simpler, but at the cost of desirable computational properties: for

instance, type-checking becomes undecidable, since it depends (because of

the dependency of types on terms) on definitional equality, which is now

1although, of course, “it’s not a bug, it’s a feature”!
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reduced to propositional, i.e. to inhabitation of types, which is undecidable in

any sufficiently rich system. Relatedly, the computational content of terms

is lost: terms of different computational behaviour may become identified

in this stronger definitional equality. In these and other proof-theoretic

respects, the intensional theory is significantly preferable.

As mentioned above, however, categorical analysis of constructors in

the intensional theory is much less clear. For instance, a unit type2 does

not give a terminal object of the syntactic category. It may have multiple

morphisms from other objects, at least up to definitional equality. Internally,

these terms will be equal, but only up to propositional equality—so we need

to incorporate this somehow into the structure of the syntactic category.

(Of course, propositional equality is already present in the classifying

category, but as terms of some other type; but we want a description which

makes more apparent its rôle in the categorical analysis of the constructors.)

A näıve approach might be to simply quotient by propositional equality;

but this destroys too much of the structure of the theory.

0.1.4. Instead, starting with the Hofmann-Streicher groupoid model [HS98],

higher categories and related homotopy-theoretic structures have emerged

as a natural solution to this problem: we add the propositional equality, but

as extra structure, not just as a relation to quotient by.

In the globular approach to higher categories, a higher category has ob-

jects (“0-cells”) and arrows (“1-cells”) between objects, as in a category, but

also 2-cells between 1-cells, and so on, with various composition operations

and laws depending on the kind of category in question (strict or weak, n-

or ω-, . . .).

Now we see propositional equalities between terms as 2-cells between

morphisms; and also, since propositional equalities themselves are terms of

a possibly non-trivial type, we treat further propositional equalities between

them as higher cells, and so on ad infinitum. Binary composition of these

2as usually axiomatised in ITT, i.e. as an inductive type with one nullary constructor.
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higher cells corresponds now to the transitivity of equality; higher identity

cells, to reflexivity; symmetry of equality, to having some sort of inverses for

cells.

There is a compelling analogy here with homotopy theory. Any topo-

logical space has a higher fundamental groupoid consisting of points of the

space, paths between points, homotopies between paths, . . . Homotopies are

composable, and have units, and inverses. More generally, the (1-)category

Top underlies an ω-category of spaces, continuous maps, homotopies be-

tween maps, homotopies between homotopies, and so on.

A type, therefore, can be seen as something like a space—a category

with cells of arbitrarily high dimension, in which all cells are invertible, i.e.

an ω-groupoid—and a theory as something like a category of spaces—an

ω-category in which all cells of dimension > 1 are invertible, i.e. an (ω, 1)-

category (also known as (∞, 1)).

However, in the fundamental groupoid example, it is a familiar fact that

associativity of composition, and other laws, hold only up to homotopy,

i.e. only up to a cell of higher dimension. We find the same situation in

type theory: composition is generally associative, unital etc. only up to

propositional equality. (Of course, in the presence of extra axioms, or in

certain models, it can sometimes be strict.) For the fully intensional theory

we thus have to work not with strict but with weak higher categories.

Various different definitions of weak ω-categories exist; we use the glob-

ular operadic definition of Batanin, as modified by Leinster.

0.1.5. Since [HS98], ideas along these lines have been explored by var-

ious authors in various directions. For “two-dimensional ITT” and cer-

tain weak 2-categories, the full correspondence is worked out in detail in

[Gar09c]. In the semantic direction, models of ITT in various higher cate-

gorical/homotopical settings are investigated in [AW09], [War08], [GvdB10a],

and [Voe]. Conversely, the structures formed from the syntax of theo-

ries have been previously investigated in [GG08], [Lum10], [GvdB10b],
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[AHW09]. This dissertation continues the latter line of investigation: the

main goal is to construct the classifying weak ω-category of a theory.

0.2. Overview of results

The fundamental weak ω-category of a type (Ch. 3).

0.2.1. As a warm-up for the main result, in this chapter we construct the

“fundamental weak ω-category”3 of a single type within a theory.

Specifically, we show that for any type A and context ∆ in a type theory

T with at least the Id-type rules, there is a weak ω-category in which 0-cells

are terms of type A in context ∆, 1-cells are terms of type IdA between

these, 2-cells are terms of type IdIdA
between 1-cells, and so on.

(Note that for this construction the dimensions of cells are always one

lower than in the classifying category sketched above. This comes from the

general rule that if X, A are objects of an n-category C, then C(X,A) forms

an (n− 1)-category, whose 0-cells are 1-cells of C, and so on.)

0.2.2. Before sketching the construction, we roughly recall the globular

operadic definition of weak higher categories. (The full background required

on this material is set out in Ch. 2.)

An ω-category C has a set4 Cn of “n-cells” for each n > 0. The 0- and

1-cells correspond to the objects and arrows of an ordinary category: each

arrow f has source and target objects a = s(f), b = t(f). Similarly, the

source and target of a 2-cell α are a parallel pair of 1-cells f, g : a //// b,

and generally the source and target of an (n + 1)-cell are a parallel pair of

n-cells.

Cells of each dimension can be composed along a common boundary in

any lower dimension, and in a strict ω-category, the composition satisfies

3named by analogy with the higher fundamental groupoids of a space; in our case

the fundamental weak ω-category is again groupoidal, as shown in [GvdB10b], but we

do not discuss this in the present work.

4for the present work, we consider small higher categories only.
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Figure 0.2.A. Some cells, composites, and associativities

in a strict ω-category

various associativity, unit, and interchange laws, captured by the generalised

associativity law: each labelled pasting diagram has a unique composite.

(See illustrations in Fig. 0.2.A).

0.2.3. In a weak ω-category, we do not expect strict associativity, so may

have multiple composites for a given pasting diagram, but we do demand

that these composites agree up to cells of the next dimension (“up to ho-

motopy”), and that these associativity cells satisfy certain coherence laws

of their own, again up to cells of higher dimension, and so on. This is ex-

actly the situation we find in intensional type theory. For instance, even in

constructing a term witnessing the transitivity of identity—that is, a com-

position law for the pasting diagram ( • // • // • ), or explicitly a

term c such that

x, y, z : X, p : Id(x, y), q : Id(y, z) ` c(q, p) : Id(x, z)
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—one finds that there is no single canonical candidate: most obvious are

the two equally natural terms cl, cr obtained by applying the Id-elimination

rule to p or to q respectively. These are not definitionally equal, but are

propositionally equal, i.e. equal up to a 2-cell: there is a term e with

x, y, z : X, p : Id(x, y), q : Id(y, z) ` e(q, p) : Id(cl(q, p), cr(q, p)).

Similarly, for either of these operations (or any combination), we can derive

a “propositional associative law”:

x, y, z, w : X, p : Id(x, y), q : Id(y, z), r : Id(z, w) `

a(r, q, p) : Id(c(r, c(q, p)) , c(c(r, q), p)).

0.2.4. In Leinster’s definition [Lei04], a system of composition laws of this

sort is wrapped up in the algebraic structure of a globular operad with con-

traction, and a weak ω-category is given by a globular set equipped with an

action of such an operad. We generalise this slightly, to define an internal

weak ω-category in any suitable category C.

Accordingly, we would like to find an operad-with-contraction PId of

all such type-theoretically definable composition laws, acting on terms of

any type and its identity types. Formally, we consider TId[X], the theory

axiomatised just by the structural and Id-rules plus a single generic base

type X. The operad PId of definable composition laws therein may then be

formally constructed as an endomorphism operad in its syntactic category

C̀ (TId[X]); and by some analysis of TId[X], we show that PId is contractible.

Since X is generic, composition laws defined on it can be implemented

on all other types, giving the main result of Chapter 3:

Theorem 3.4.1. Let T be any type theory extending TId, and A any type

of T. Then the system of types (A, IdA, IdIdA
, . . .) is equipped naturally with

a PId-action, and hence with the structure of an internal weak ω-category in

C̀ (T).
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From this it follows that the terms of these types in any fixed context

form an (external) PId-algebra and weak ω-category. Indeed, one can con-

struct, using the Id-rules, identity contexts IdΓ over all contexts, satisfying

rules analogous to those for identity types; so for any contexts ∆, Γ, there

is an ω-category of context morphisms from ∆ into Γ and its identity types.

The material of this chapter is essentially based on my earlier paper

[Lum09]/[Lum10]. A very similar construction (overlapping in some parts

and using different techniques in others) was discovered independently by

Benno van den Berg and Richard Garner, and appears in [GvdB10b].

The classifying weak ω-category of a theory (Ch. 4).

0.2.5. In this chapter, the heart of the dissertation, we construct the clas-

sifying ω-category C̀ ω(T) of a theory T .

As intimated above, C̀ ω(T) should in dimensions ≤ 1 be just the usual

classifying category C̀ (T) of contexts and context morphisms; its 2-cells

should be morphisms into identity contexts, and higher cells should be maps

into higher identity contexts. From another point of view, recall that as a

category has hom-sets, a 2-category has hom-categories, and generally a

(1 + n)-category has hom-n-categories between its 0-cells. Then the hom-

ω-category C̀ ω(T)(∆,Γ) is just the fundamental ω-category of Γ in context

∆, as sketched in the previous section.

In fact we first construct a weak ω-category C̀ −ω (T), as above but with

0-cells just types, not more general contexts; then, we bump this up formally

to include contexts as well.

The core technique used is analogous again to the familiar construction

of the higher fundamental group(oid)s of a space: representability. Points,

paths, homotopies, . . . in a space X are constructed as maps into X from

the point, the interval, the 1-disc, . . . ; correspondingly, the cells of C̀ −ω (T)

can be seen as interpretations in T of the theories of a free type, a free open
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term, . . . —maps into T from the type-theoretic globes, which we denote

G•. (This is why we start with C̀ −ω not C̀ ω: there is no “theory of a free

context”, since contexts can have various lengths.)

Then, as usual with representable algebraic structures5, the weak ω-

category structure on C̀ ω(T) is induced formally from a weak ω-cocategory

structure on the representing objects G•.

To give this structure, we once again consider an endomorphism operad—

in fact now the co-endomorphism operad of the globes, whose operations

now represent composition laws that can be defined generically over multi-

ple types and morphisms between them, and we show this is contractible by

techniques extending those of Ch. 3.

0.2.6. To carry this out, we require two main additional pieces of technical

machinery. Firstly, to handle the representing objects, co-endomorphism

operads, and so on, we need a well-behaved category DTT of type theories

in which to work. In fact, we consider various such categories DTTΦ, given

by fixing some set Φ of constructors and rules (Id-types, Π-types, etc.), and

considering all theories extending these purely algebraically.

This type-theoretic background is set out in Ch. 1. In order to facilitate

the categorical analysis of DTT, we recall the representation of theories

as certain categories with attributes, and the equivalence of this with more

traditional syntactic presentations.

On the other hand, for showing contractibility of the operads in these

categories, we need analogues in DTTΦ of Id-elimination in syntactic cate-

gories. To this end, we introduce a weak factorisation system in DTTΦ, of

term-extensions and term-contractible maps, and a type-theoretic principle

J , giving (in terms of these maps) the required analogue in DTTΦ of the

identity-type eliminator J.

5in fact inevitably, by the Yoneda lemma.
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0.2.7. This leads us to the main restrictions on our eventual result. As an

external form of J, and particularly as one concerning propositional identity

of open terms, it comes as no surprise that J is intimately related to the

various functional extensionality rules that can be imposed in ITT.

(Despite the names, these are not to be confused with the extra rules

of extensional type theory discussed earlier, which trivialise identity types.

These rules just force the Id-types over function types to be extensional in

the sense that two functions are propositionally equal if they provably give

propositionally equal outputs.)

In particular, we show that J (and hence our construction of a con-

tractible operad) holds in the category of theories with suitably extensional

Π-types, but does not hold in the category of theories with Π-types but

without extensionality rules.

We conjecture that in fact J holds in DTTId, and hence that a con-

tractible operad acting on C̀ ω may be constructed from Id-types alone ; but

we are unable to prove this.

Our main eventual result is thus:

Theorem 4.3.8.

(1) There is a functor C̀ ω : DTTΠ-Id-elim //wk-ω-Cat, as outlined

above, giving the “classifying weak ω-category” of any theory with

at least Id-types, Π-types, and the Π-ext, Π-ext-app rules.

(2) If J holds for Id, then we moreover have C̀ ω : DTTId
//wk-ω-Cat,

giving the classifying weak ω-category for any theory with at least

Id-types.

Additionally, we give a variant construction ΠC̀ ω, with a slightly differ-

ent underlying set (using closed terms of Π-types, rather than open terms),

which works for theories with just Id-types, Π-types, and the η rule for

Π-types, giving an alternative candidate for the classifying ω-categories of

these theories in lieu of a proof of J for DTTId.



CHAPTER 1

Type-theoretic background

1.1. Syntactic presentation

1.1.1. Several different, mostly equivalent, syntactic presentations of Martin-

Löf-style dependent type theory exist in the literature; the present one is

essentially based (up to notation) on those of [Pit00] and [Hof97].

A word about the range of theories we will consider is, however, in

order here. All theories we consider will share the common basic syntax

and structural core presented in 1.1.2 and 1.1.3. We will, however, vary the

constructors we add on top of that, in two stages. Firstly, by a type system

we will mean the extension of this structural core by some selection Φ of the

constructors and rules of 1.1.4–1.1.7, and of other standard constructors and

rules, within certain limitations—a precise definition will appear in 1.2.11.

Secondly, over a given such system Φ, we will consider arbitrary extensions

by algebraic axioms (1.1.8), organised into a category DTTΦ of theories

over Φ.

1.1.2 (Basic syntax). Since we will eventually work in a presentation-agnostic

category of type theories, the precise formalism we use for the raw syntax

will not be of importance; but for the sake of definiteness, let us suppose a

simply-typed metalanguage in which the syntax of our theory is formalised,

as described in e.g. [Pit00, 6.1], and in which we have defined notions of

free variables, capture-avoiding substitution, etc.

The most essential judgements in dependent type theory are of types,

terms, and definitional equalities between each of these:

11
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Γ ` A type Γ ` a : A

Γ ` A = A′ type Γ ` a = a′ : A

We will moreover take as basic1 contexts and context morphisms2 be-

tween them:

` Γ cxt ` f : Γ⇒ Γ′

` Γ = Γ′ cxt ` f = f ′ : Γ⇒ Γ′

(In all these judgements, we put the obvious restrictions on the free

variables of the objects involved.)

We will also use derived judgements of dependent contexts and dependent

elements of these:

Γ ` ∆ cxt Γ ` ~d : ∆

Γ ` ∆ = ∆′ cxt Γ ` ~d = ~d′ : ∆

which formally we will consider as syntactic sugar for ` Γ, ∆ cxt and for

(x1, . . . , xk, ~d) : Γ // Γ, ∆ respectively (where x1, . . . , xk are the variables

of Γ).

In all the judgements above, in slight abuse of notation, we will often ex-

plicitly display free variables for emphasis or readability, writing for instance

~x : Γ ` A(~x) type interchangeably with Γ ` A type.

Also, we will often abbreviate multiple judgements of the same form by

writing e.g. Γ ` a, a′ : A.

Finally, beyond the initial presentation of the theory, context morphisms

will usually be written not ` f : Γ⇒ Γ′ as above, but f : Γ //Γ′, reflecting

the view of them as maps of the syntactic category of a theory.

1.1.3 (Structural core). Rules for contexts:

` � cxt
cxt-empty

` � = � cxt
cxt=-empty

1in some presentations, these are considered as derived judgements

2also sometimes known as substitutions, or as closed telescopes
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` Γ cxt

Γ ` A type

` Γ, y : A cxt
cxt-cons

` Γ = Γ′ cxt

Γ ` A = A′[~x/~x′] type

` Γ, y : A = Γ′, y′ : A′ cxt
cxt=-cons

Rules for types:

Γ ` A type

` f : Γ′ ⇒ Γ

Γ′ ` A[f/~x] type
type-subst

Γ ` A = A′ type

` f = f ′ : ∆⇒ Γ

∆ ` A[f/~x] = A′[f ′/~x] type
type=-subst

Γ ` A type

Γ ` A = A type
type=-refl

Γ ` A = B type

Γ ` B = A type
type=-sym

Γ ` A = B type

Γ ` B = C type

Γ ` A = C type
type=-trans

Rules for terms:

Γ ` A type Γ, A ` ∆ cxt

Γ, x : A,∆ ` x : A
var

Γ ` a : A

Γ ` A = A′ type

Γ ` a : A′
term-coerce

Γ ` a = a′ : A

Γ ` A = A′ type

Γ ` a = a′ : A′
term=-coerce

Γ ` a : A

` f : Γ′ ⇒ Γ

Γ′ ` a[f/~x] : A[f/~x]
term-subst

Γ ` a = a′ : A

` f = f ′ : Γ′ ⇒ Γ

Γ′ ` a[f/~x] = a′[f ′/~x] : A[f/~x]
term=-subst

Γ ` a : A

Γ ` a = a : A
term=-refl

Γ ` a = b : A

Γ ` b = a : A
term=-sym
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Γ ` a = b : A Γ ` b = c : A

Γ ` a = c : A
term=-trans

Rules for context maps:

` Γ cxt

` � : Γ⇒ �
cxtmap-empty

` Γ cxt

` � = � : Γ⇒ �
cxtmap=-empty

` f : Γ′ ⇒ Γ

Γ ` A type

Γ′ ` a : A[f/~x]

` f, a : Γ′ ⇒ Γ, y : A
cxtmap-cons

` f = f ′ : Γ′ ⇒ Γ

Γ ` A type

Γ′ ` a = a′ : A[f/~x]

Γ ` (f, a) = (f ′, a′) : ∆′ ⇒ (∆, A)
cxtmap=-cons

From these we can derive other structural rules sometimes taken as basic:

exchange (exch), weakening (wkg), and so on.

1.1.4 (Type constructors). Core rules for Id-types:

Γ ` A type

Γ ` a, b : A

Γ ` IdA(a, b) type
Id-form

Γ ` A type

Γ ` a : A

Γ ` r(a) : IdA(a, a)
Id-intro

Γ, x, y : A, u : IdA(x, y), ~w : ∆(x, y, u) ` C(x, y, u, ~w) type

Γ, z : A, ~v : ∆(z, z, r(z)) ` d(z,~v) : C(z, z, r(z), ~v)

Γ ` a, b : A Γ ` p : IdA(a, b) Γ ` ~c : ∆(a, b, p)

Γ ` J(A; x,y,u.∆(x,y,u); x,y,u, ~w.C(x,y,u, ~w)) (z,~v. d(z,~v); a, b, p,~c) : C(a, b, p,~c)
Id-elim

Here all free variables are displayed, to emphasise the full formal binding

that occurs in terms involving J; we will usually abbreviate the concluding

term above to e.g. JC(d; a, b, p,~c), as for instance:

Γ, x, y : A, u : IdA(x, y), ~w : ∆(x, y, u) ` C(x, y, u, ~w) type

Γ, z : A, ~v : ∆(z, z, r(z)) ` d(z,~v) : C(z, z, r(z), ~v)

Γ ` a : A Γ ` ~c : ∆(a, a, r(a))

Γ ` JC(d; a, a, r(a),~c) = d(a,~c) : C(a, a, r(a),~c)
Id-comp
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Finally, two more rules are needed, asserting that the constructors Id

and J respect definitional equality in all their arguments. (In the interests

of economy, it is enough to specify this just for type arguments and for

those term arguments in J binds variables; stability in the unbound term

arguments follows from the =-subst rules.)

1.1.5. Core rules for Π-types:

Γ ` A type Γ, x : A ` B type

Γ ` Πx:AB type
Π-form

Γ, x : A ` b : B

Γ ` λx :A. b : Πx:AB
Π-intro

Γ ` t : Πx:AB Γ ` a : A

Γ ` t·a : B[a/x]
Π-app

Γ, x : A ` b : B Γ ` a : A

Γ ` (λx :A. b)·a = b[a/x] : B[a/x]
Π-β

As with Id-types, rules are also required specifying that all the construc-

tors respect definitional equality. Similar such rules are required for the

constructors in the following section; we omit further mention of them since

their statements are completely routine.

1.1.6 (Variant rules for Id-types). Two rules which will not be part of our

core concern but which are worth mentioning here are the stronger elimi-

nators for identity types: the reflection principle of extensional type theory

(which collapses propositional and definitional equality), and Thomas Stre-

icher’s eliminator K (introduced in [Str93]):

Γ ` e : IdA(a, b)

Γ ` a = b : A
reflection

Γ, x : A, u : IdA(x, x), ~w : ∆(x, u) ` C(x, u, ~w) type

Γ, z : A,~v : ∆(z, r(z)) ` d(z,~v) : C(z, r(z), ~v)

Γ ` a : A Γ ` p : IdA(a, a) Γ ` ~c : ∆(a, p)

Γ ` KA; x,u.∆; x,u,~w.C(z,~v. d(z,~v); a, p,~c) : C(a, p,~c)
K
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Γ, x : A, u : IdA(x, x), ~w : ∆(x, u) ` C(x, u, ~w) type

Γ, z : A,~v : ∆(z, r(z)) ` d(z,~v) : C(z, r(z), ~v)

Γ ` a : A Γ ` ~c : ∆(a, r(a))

Γ ` KC(d; a, r(a),~c) = d(a) : C(a, r(a),~c)
K-comp

Both these eliminators essentially trivialise the higher-categorical struc-

ture with which we are principally concerned, so we will mainly consider

theories without them; however, they will provide interesting comparisons

at times. In the case of the reflection rule, this trivialisation is immediate.

In the case of K, it is slightly less obvious; but it turns out that from K we

can derive the “(propositional) uniqueness of identity proofs” principle, as-

serting that all elements of any identity type are equal ([Str93], [War08]).

See 4.2.20 for a “topological” point of view on the relationship between J

and K.

Two less destructive variations on the Id-elim rule are also worth men-

tioning; we will not use these as rules per se, but in Section 4.2 will discuss

analogous variations on the principle J .

Firstly, the dependent context ∆(x, y, u) which we have included in the

premises is often omitted. (Its inclusion is, in categorical terms, a Frobenius

condition.) In the presence of Π-types, this is interderivable with our version

(∆ can simply be curried over to the right-hand side). In the absence of Π-

types, the non-Frobenius version of the rule is simply not strong enough to

be of much use at all: one cannot even derive, for instance, the transitivity

of propositional equality.
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Secondly, there is a “one-ended” form of Id-elim (in contrast to which

the version above may be seen as “two-ended”):

Γ ` a : A Γ, y : A, u : IdA(a, y), ~w : ∆(y, u) ` C(y, u, ~w) type

Γ, ~v : ∆(a, r(a)) ` d(~v) : C(a, r(a), ~v)

Γ ` b : A Γ ` p : IdA(a, b) Γ ` ~c : ∆(b, p)

Γ ` J1
C(d; b, p,~c) : C(b, p,~c)

Id-elim1

and with computation rule concluding J1
C(d; a, r(a),~c) = d(~c).

This easily implies the original form; and with a little more effort (using

the identity contexts of 1.3.1 below), they are in fact inter-derivable. This

is originally due to Christine Paulin-Mohring, as discussed in [Str93].

1.1.7 (Functional extensionality and η-rules). It turns out that with just

the core rules of 1.1.4, propositional equality on Π-types is a rather more

exclusive relation than one might desire. Various different rules have been

considered relaxing it, and in particular relating to the principle of “func-

tional extensionality”: that two functions are equal if they are equal on

values. A systematic comparison is given in [Gar09b], the terminology of

which we follow here. Several rules asserting equalities may be given in both

propositional and definitional flavours.

Γ ` f : Πx:AB

Γ ` f = (λx. f ·x) : Πx:AB
Π-η

Γ ` f : Πx:AB

Γ ` η(f) : IdΠx:AB(f, (λx. f ·x))
Π-prop-η

Γ, x : A ` b(x) : B(x)

Γ ` η(λx. b(x)) = r(λx. b(x)) : IdΠx:AB(λx. b(x), λx. b(x))
Π-prop-η-comp

Γ ` f, g : Πx:AB Γ ` k : Πx:AIdB(f ·x, g ·x)

Γ ` ext(f, g, k) : IdΠAB(f, g)
Π-ext
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Γ, x : A ` b : B

Γ ` ext(λx. b, λx. b, λx. r(b)) = r(λx. b) : Id(λx. b, λx. b)
Π-ext-comp

Γ ` f, g : Πx:AB Γ ` k : Πx:AIdB(f ·x, g ·x) Γ ` a : A

Γ ` µ(f, g, k, a) : Id(ext(f, g, k) ? a, k · a)
Π-ext-app

Γ, x : A ` b(x) : B(x) Γ ` a : A

Γ ` µ(λx.b(x), λx.b(x), λx.rb(x), a) = r(r(b(a))) : Id(r(b(a)), r(b(a)))
Π-ext-app-comp

Γ ` f, g : Πx:AB

Γ ` k : Πx:AIdB(f ·x, g ·x) Γ ` a : A

Γ ` ext(f, g, k) ? a = k · a : IdB(f ·a, g ·a)
Π-ext-app-def

When we consider theories with any of these propositional rules, the

corresponding comp rule will always be included, even if not explicitly men-

tioned.

1.1.8 (Algebraic rules). Beyond these specific constructors, we also consider

extensions by arbitrary rules of a simpler form: algebraic axioms of each of

the basic judgements.

An algebraic type-forming axiom is specified by a basic type-former T,

unique to the axiom, together with a pre-context ΓT; it then has introductory

rule
` ΓT cxt

~x : ΓT ` T(~x) type
.

An algebraic term-forming axiom is similarly given by a basic term-

former t, and pre-context Γt and pre-type At; its rule is then

~x : ΓT ` At(~x) type

~x : ΓT ` t(~x) : At(~x)
.
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And algebraic type- and term-equality axioms, similarly, are of the form:

Γ ` A, A′ type

~x : Γ ` A = A′ type

Γ ` a, a′ : A

Γ ` a = a′ : A

for some given Γ, A, A′ or Γ, A, a, a′.

1.1.9 (Logical frameworks). An alternate presentation of the syntax is via

a logical framework : rather than starting with raw syntax and then defin-

ing the judgements of well-formedness on top of that, we define well-formed

types, terms etc. directly from the start; the logistical cost of this is us-

ing a dependently-typed metalanguage, the logical framework, assumed to

have Π-types and their η-rule, plus one “universe” in which we encode our

object language. [Hof97] gives a useful overview of the two presentations,

together with a crucial comparison of their formal strengths, which we recall

in Example 4.2.10; see also [NPS90] for further discussion.

We will briefly have cause to work in the logical framework presenta-

tion, and in particular to discuss Garner’s rule Π-Id-elim (and its associated

computation rule Π-Id-comp), from [Gar09b], which involves second-order

quantification in its premises and so cannot be directly expressed in the

earlier presentation. This rule is a strong extensionality principle, asserting

that the type u, v : Πx:AB(x) ` Πx:A IdB(x)(u ·x, v ·x) is generated by

canonical elements of the form λx.r(b(x)):

Γ, u, v : Πx:AB(x), w : Πx:A IdB(x)(u · x, v · x) ` C(u, v, w) type

Γ, f : (x :A)B(x) ` d(f) : C(λf, λf, λ(r ◦ f))

Γ ` k, k′ : Πx:AB(x) Γ ` l : Πx:A IdB(x)(k ·x, k′ · x)

Γ ` L(C, d, k, k′, l) : C(k, k′, l)
Π-Id-elim

Its computation rule concludes from appropriate premises that

L(C, d, λh, λh, λ(r ◦ h)) = d(h) : C(λh, λh, λ(r ◦ h)). Π-Id-elim-comp

(Here and in the sequel, (x :A)B(x) and [x :A]b(x) respectively denote

type and term abstraction in the metalanguage.)
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[Gar09b, 5.11] shows that (over the core Π-type rules) the rule Π-Id-elim

is inter-derivable with the conjunction of the first-order rules Π-ext and

Π-ext-app.

1.2. Categorical representation

1.2.1. The syntax as given so far is an excellent tool for intuitive and

computationally tractable presentations of theories; however, for seman-

tic/categorical purposes its formal complexity can be a hindrance. To this

end, various categorical structures have been introduced which correspond,

more or less closely, to dependent type theories as presented above3.

Of these, the most categorically flexible are probably Jacobs’ compre-

hension categories, which admit many useful variations, and connect well

with other categorical structures; since in the present work we will stick

closely to the type theory, however, we will use Cartmell’s categories with

attributes as our main model, as these are very elementarily presented.

Definition 1.2.2. A category with attributes consists of:

• a category C, with a distinguished terminal object �;

• a functor Ty : Cop //Sets; that is, for each object Γ, a set Ty(Γ),

and for f : ∆ //Γ, actions f∗ : Ty(Γ) //Ty(∆), functorial in Γ;

• for each A ∈ Ty(Γ), an object Γ.A and map πΓ;A : Γ.A // Γ;

• for each A ∈ Ty(Γ) and f : ∆ // Γ, a pullback square

∆ Γ
f

//

∆.f∗A

∆

π∆;f∗A

��

Γ.A

Γ

πΓ;A

��

∆.f∗A Γ.A
q(f,A)

//

again functorial in f , in that q(1Γ, A) = 1Γ.A, q(f ◦g,A) = q(f,A)◦

q(g, f∗A).

3Most relevantly for our purposes, comprehension categories ([Jac93]), categories

with attributes ([Car78], [Mog91], [Pit00]), categories with families ([Dyb96], [Hof97]),

contextual categories ([Car86], [Str91]); see [Jac93], [Hof97] for useful overviews.
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1.2.3. We will use a few pieces of obvious terminology for working in CwA’s.

Objects and maps of C we call contexts, and context maps. Elements of Ty(Γ)

we call types over Γ.

For a type A ∈ Ty(Γ), the map πΓ;A : Γ.A // Γ is called a basic de-

pendent projection. Compositions of such maps are called a dependent pro-

jections, and are denoted in diagrams as Γ′ // // Γ. A term of type A in

context Γ is a section a : Γ // Γ.A of the dependent projection πΓ;A; we

write TmΓ(A) for the set of these.

For an object Γ ∈ C, a dependent context over Γ is a sequence A1 ∈

Ty(Γ), A2 ∈ Ty(Γ.A1), . . .Al ∈ Ty(Γ.A1. . . . .Al−1), for some l ≥ 0; we

write Cxt(Γ) for the set of these. For any ∆ ∈ Cxt(Γ), there is an evident

context extension Γ.∆, and dependent projection πΓ;∆ : Γ.∆ // // Γ.

Definition 1.2.4. A category with attributes C is contextual if the natural

map Cxt(�) // ob C is a bijection, and accessible [Pit00] when this map

is a surjection.

Equivalently, C is contextual if there is a length function l : ob C //N,

such that

• � is the unique context of length 0;

• for any context Γ and type A, l(Γ.A) = l(Γ) + 1; and

• for any context ∆ of length n > 0, there are unique Γ, A such that

∆ = Γ.A.

Our contextual CwA’s correspond precisely to the contextual categories

of Cartmell [Car86] and Streicher [Str91], and hence, crucially, to depen-

dent type theories without constructors:

Proposition 1.2.5 ([Car78],[Car86]). The category of small CwA’s is

equivalent to the category of type theories presented syntactically by (a set

of) purely algebraic axioms (i.e. dependent terms and types, and equality

axioms between them) and interpretations between such theories.
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Specifically, there is an adjoint equivalence

CwAcxlSynThy
Lang

mmSynThy CwAcxl

C̀
--'

taking a syntactically presented type theory T to its classifying category

C̀ (T), and a CwA C to its internal language Lang(C).

(Note that this really is an honest equivalence of categories, not just a

2-equivalence or anything similarly weak; CwAcxl and SynThy do carry

natural 2-category structures, but for the present we study them purely

1-categorically. This is our main reason for working specifically with con-

textual CwA’s, rather than just e.g. accessible)

1.2.6. This equivalence justifies working with a presentation-agnostic cat-

egory of type theories, which we denote DTT, defined up to equivalence

as either SynThy or CwAcxl : we will construct and work with objects of

DTT (theories) sometimes as syntactic presentations, sometimes as cate-

gories with attributes. By abuse of notation we will use C̀ when we wish to

emphasise the forgetful functor DTT //Cat.

Given any construction either on syntactically presented theories or on

contextual CwA’s, we will transfer it without comment to DTT, and so

forth. In subsequent chapters, we will work more often with syntactic pre-

sentations, but for the constructions of this section it will be convenient to

work primarily via CwAcxl , for the sake of its connections to other cate-

gories of CwA’s.

The major power of the CwAcxl presentation, however, is that it dis-

plays DTT as the category of models of a (small) essentially algebraic the-

ory [Joh02, D1.3.4(a)]; this implies many useful categorical properties, in-

cluding in particular that it is complete, cocomplete, and moreover locally

presentable—in fact, finitely presentable, since contextual CwA’s are a fini-

tary theory.
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(It is clear from our definition that CwA’s admit an essentially algebraic

presentation; to give such a presentation of contextual CwA’s, we must break

down the “objects” sort into N-many sorts, one for objects of each length l,

and split up the other sorts and operations similarly.)

The construction of the equivalence also gives us a useful universal prop-

erty for theories presented syntactically: a map out of such a theory is just

an interpretation, and hence is determined precisely by the interpretations

of the axioms.

1.2.7. Of course, we want categories not just of purely algebraic dependent

type theories, but of type theories with constructors; in particular, Id- and

Π-types. These too can be succinctly and profitably defined in terms of

CwA’s:

Definition 1.2.8. An elim-structure e on a map i : Γ // Θ is a function

assigning, to every type C ∈ Ty(Θ) and every term d : Γ // Γ.i∗C of type

i∗C (equivalently, every map d̂ : Γ // Θ.C over Θ) a term eC,d of type

C such that eC,d · i = d̂. Diagramatically, we indicate elim-structures as

i : Γ � ,2 //Θ.

Γ

Θ

w�!

i ��7777777
Θ.C

Θ
||||

Γ Θ.C
d̂ //

Θ

Θ.C
eC,d

CC

A Frobenius elim-structure on i : Γ //Θ is an elim-structure e∆ on i.∆

for each dependent context ∆ over Θ.

This axiomatises the structure provided by the elimination/computation

rules for an inductive type with just a single introduction form i. (It can be

nicely generalised to deal with multiple introduction forms, but we will not

need that.) In particular:

Definition 1.2.9. A CwA with Id-types is a CwA C, together with:
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• for each context Γ ∈ C and typeA ∈ Ty(Γ), a type IdA ∈ Ty(Γ.A.A),

and a morphism rA : Γ.A // Γ.A.A.IdA over ∆A : Γ.A // Γ.A.A

with a Frobenius elim-structure JA,

• all stable in Γ, in that for f : Γ′ // Γ and A ∈ Ty(Γ), we have

(f.A.A)∗IdA = Idf∗A ∈ Ty(Γ′.f∗A.f∗A), and so on.

(Note that Γ.A.A and so on are a slight abuse of notation: formally we

should write Γ.A.π∗Γ,AA and the like.)

Write CwAId, CwAId
cxl , etc. for the various categories of CwA’s with

Id-types.

Proposition 1.2.10 ([Hof97], [Pit00]). This structure really does corre-

spond precisely to the Id-type rules: the equivalence of Proposition 1.2.5 lifts

to an equivalence between CwAId
cxl and a category SynThyId, of theories

presented syntactically by the core Id-type rules plus algebraic axioms.

1.2.11. Similarly, we may define structure on the categorical side corre-

sponding to the core Π-type rules, or any of the other rules of 1.1.6, 1.1.7

above (with obvious dependencies: the structure for ext rules refers to the

Π- and Id-types structure, and so on).

In particular, if Φ is any appropriate collection of the above rules, then

we can obtain a category CwAΦ
cxl and an equivalence CwAΦ

cxl ' SynThyΦ

as before, and justified by this we introduce a presentation-agnostic category

DTTΦ of theories over Φ.

In the case of all the rules above, theories over Φ are again models of an

essentially algebraic theory extending the base theory of contextual CwA’s.

This motivates the level of generality we work at: when we speak informally

of a collection of rules/constructors Φ, what we mean formally is an algebraic

theory extending the theory of contextual CwA’s, with the same sorts.

(This is not a terribly natural definition. It allows type-theoretically

unnatural constructions, e.g. rules which hold only over contexts of length

17, and the like; and, worse, important constructions such as the logical
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framework embedding cannot defined in this generality. However, as a crude

demarcation, it will suffice for the scope of the present work.)

This immediately gives us comparison functors between different cate-

gories of theories. If Φ′ is any collection of rules/constructors extending Φ,

then we have a map of algebraic theories, and hence an adjunction:

DTTΦ DTTΦ′

F
--
DTTΦ′DTTΦ

U

mm ⊥

where, in syntactic terms, F adds to a theory the extra rules/constructors

of Φ, while U forgets this structure. In particular, if T is a theory over Φ

presented by some collection of axioms, then F (T) is the theory presented

by the same axioms over Φ′.

This is the main reason why we consider second-order rules such as

Π-Id-elim separately. They do not (at least a priori) correspond to extra

essentially algebraic structure over contextual CwA’s; in the present cat-

egorical setup, they can be discussed only within their logical framework

embeddings.

1.2.12 (Left and right maps in a CwA). The above presentation of Id-types

via elim-structures is based on ideas of Gambino and Garner ([GG08])

which are implicit in much of the present work: that any CwA has important

classes of left and right maps, which in the presence of Id-types is moreover

a weak factorisation system. (These notions are recalled and discussed in

Section 2.1 below).

The right maps are just retracts of (compositions of basic) dependent

projections. The left maps are maps admitting an (or algebraically: with a

chosen) elim-structure.

Note that categorically, an elim-structure on i : Γ // Θ just provides

fillers for all triangles from i to a basic dependent projection; or equivalently,

fillers for all squares from i to basic dependent projections, commuting with

the canonical pullback squares between dependent projections. In other
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words, an elim-structure is exactly a J �-structure as defined in 2.1.3, where

J � is the category of basic dependent projections and canonical pullback

squares between them.

Γ

Θ

w�!

i ��7777777
Θ.C

Θ
||||

Γ Θ.C
d //

Θ

Θ.C
eC,d

CC
Γ

Θ

_��

i

��
Θ Ξ

f

//

Ξ.C

Ξ

����

Γ Ξ.C
d //

Θ

Ξ.C

ef∗C,f∗d

<<

([GG08] moreover gives an alternative type-theoretic characterisation

of each class of maps, and uses Id-types to construct L,R factorisations, but

we will not need these.)

1.3. Constructions on dependent type theories

There are several interesting and important ways to construct new type

theories from old:

1.3.1. First, the dependent contexts monad on CwA over Cat, sending

C = (C,Ty) to CCxt := (C,Cxt) as defined in 1.2.3. So the base category is

unchanged; but types of the new theory are dependent contexts of the old,

and context extension is just by concatenation.4

Moreover, given Id-types structure on C, we can extend this to an Id-types

structure on CCxt: this is the “identity contexts” of [Str93] or [GG08]. So

we have an endofunctor (−)Cxt on CwAId. However, the monad structure

does not lift to CwAId: the unit is fine, but the multiplication turns out

not to preserve the Id-structure strictly. (One might hope that this could be

accommodated by a theory of pseudo-maps of CwAId’s.)

Similar techniques let us lift Π-types from C to CCxt, and hence to lift

(−)Cxt to an endofunctor of CwAΠ; likewise for Σ-types, the Π-η rules, and

most other standard type-constructors.

4This can also be seen as a monad for “very strong, strictly associative Σ-types”.
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Matters are slightly subtler for the functional extensionality rules. Π-

ext alone does not seem to lift from C to CCxt; however, Π-ext combined

with either Π-ext-app or Π-ext-app-def does lift.

So for various sets of rules Φ, we have an endofunctor (−)Cxt on CwAΦ.

However, this does not restrict to one on CwAcxl : its result is almost never

contextual, since adjoining two types A and B to a context in succession has

the same result as adjoining (A,B) in one step, so (as long as the original

theory had any types at all) there can be no well-defined notion of length.

1.3.2. The slice construction is one of the fundamental tools of the category–

type theory correspondence; however, in terms of CwA’s, it is not exactly

the ordinary categorical slice.

For C any CwA, and Γ any object of C, the (type-theoretic) slice C//Γ

has as objects dependent contexts over Γ, and morphisms and attributes

structure induced by pullback along the map ob(C//Γ) // ob C sending

∆ ∈ CxtC(Γ) to Γ,∆.

In syntactic terms, slicing corresponds to taking variables into the con-

text: judgements ∆ ` J in T//Γ correspond exactly to judgements Γ,∆ ` J

in T.

Slices are always contextual. In particular, by slicing any C ∈ CwA over

its “empty context” �, we obtain the contextual core of C: this gives a right

adjoint −//� : CwA //CwAcxl to the inclusion CwAcxl
// //CwA.

The slice construction also extends to all rules and constructors we have

considered.

(There is also a natural CwA structure on the categorical slice C/Γ, but

this will not be of importance to us; it is rarely contextual or even accessible,

and its contextual core is just C//Γ.)
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1.3.3. Combining the type-theoretic slice with the dependent contexts con-

struction gives us an endofunctor (−)Cxt//� of CwAcxl , the “types to con-

texts” construction:

CwAcxl
// //CwA

(−)Cxt

//CwA
−//�

//CwAcxl

This composite endofunctor is essentially just a “contextualised” version

of (−)Cxt: the base category of contexts is left unchanged, the types of the

new theory are the dependent contexts of the old, and context extension is

by concatenation.

Like (−)Cxt, this endofunctor lifts to DTTΦ for various important sets of

rules Φ; again like (−)Cxt, it is a monad in the constructor-free case (since

it is just a monad wrapped in an adjunction), but fails to be one in the

presence of Id-types.

This construction will be briefly but crucially useful to us, in 3.4.3 and

4.1.7 below.

1.3.4. With some of our constructors, we can also construct co-slice theories.

In a co-slice Θ\C, an object is a map g : Θ // Γ of C (a Θ-pointed object

of C); a map (g,Γ) // (d,∆) is a map f : Γ //∆ of C with fg = d (i.e.

preserving the “point”); and a type over (g,Γ) is a type A ∈ Ty(Γ) together

with a term a of g∗A, or equivalently a point (g, a) : Θ // Γ, A for which

πΓ;A(g, a) = g.

There is an obvious functor Θ\C // C, forgetting the points.

This construction preserves contextuality; it also extends to act on the-

ories with Id-types, Σ-types, 1, and more generally inductive types with a

single unary constructor; but it does not extend to Π-types, nor to Bool, 0, or

most other type-formers. This is familiar categorically: co-slices retain e.g.

binary products and terminal objects, but not coproducts or exponentials.
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1.4. Miscellaneous facts

1.4.1 (Normalisation results). It is a fundamental fact, going back to [ML75],

that the basic structural theory together with any subset of the standard

constructors (Id-, Σ-, Π-types, and also Nat and Bool) is strongly normalis-

ing.

Moreover, it is clear from most proofs that this result extends to theories

including algebraic type- and term-forming axioms. (It can fail, however,

under the addition of algebraic definitional equality axioms.)

Normalisation is especially informative for theories also possessing the

canonicity property, that all normal forms are “canonical”, i.e. are terms

formed from the intro-rule constructors. Unfortunately, this will fail in

many theories of interest to us—in particular, to theories with terms of

identity types adjoined. We will discuss canonicity of particular theories as

and when we require it.

It is currently somewhat unclear to what extent one can retain strong

normalisation in conjunction with the functional extensionality rules; in any

account, the forms considered here certainly break canonicity.

The Observational Type Theory of Altenkirch and collaborators ([AM06]

, [AMS07]) reconciles these, but has defined rather than axiomatic iden-

tity types (and therefore does automatically permit extension by further

type axioms), and moreover forces these to be trivial: any two terms of an

identity type are equal (the axiom of Uniqueness of Identity Proofs). How-

ever, the OTT system is an encouraging step towards the development of a

fully intensional system with both functional extensionality and normalisa-

tion/canonicity. (The difficulty lies essentially in defining the computational

behaviour of the extensionality combinator; this seems to be related to the

admissibility of the principle J of Section 4.2, and is of course intimately

connected with the investigations of [Gar09b].)
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We will also need in Chapter 3 a small proposition on limits in syntactic

categories:

Proposition 1.4.2. Suppose Γ =
∧
i∈I xi : Ai is a context in T, and F ⊆

P(I) a set of subsets of I, closed under binary intersection and with
⋃
F = I,

such that for each J ∈ F , ΓJ =
∧
i∈J xi : Ai is also a well-formed context.

(Here
∧
i∈P xi : Ai denotes the context xi1 : Ai1 , . . . xik : Aik , for any

finite linear order P = {i1 < . . . < ik}.)

Then the contexts ΓJ and the dependent projections between them give a

diagram

Γ− : (F ,⊆)op // C̀ (T),

and the dependent projections Γ // ΓJ express Γ as its limit:

Γ = lim←−J∈F ΓJ .

Moreover, for a translation F : T // T′, the functor C̀ (F ) preserves

such limits. �

A familiar special case asserts that if Γ ` A type and Γ ` B type, then

the following square of projections is a pullback:

Γ, x :A, y :B

Γ, x :A
��

Γ, x :A, y :B Γ, y :B//

Γ, x :A Γ//

Γ, y :B

Γ
��

The proof of the general proposition is essentially the same.



CHAPTER 2

Higher-categorical background

2.1. Weak factorisation systems

The study of weak factorisation systems originated in homotopy theory,

and has since become important in higher category theory, especially with

recent developments in algebraic1 weak factorisation systems. We will not

require any of the more sophisticated results of this theory; but there are

a couple of basic constructions from it which we will meet repeatedly, so

which we now recall here. See [Hov99, Ch. 1] for further background on

the classical theory, and [Gar09d] for the algebraic case.

Definition 2.1.1. For maps f, g in a category C, we say f is (weakly)2 (left)

orthogonal to g, written f � g, if every commutative square from f to g has

a filler:

D //

f

��

Y

g

��
C //

∃
>>

X

There are several synonyms: “f has the (weak) left lifting property

against g”, and corresponding right-handed versions phrasing it as a prop-

erty of of g.

If L, R are classes of maps in C, we say L�R if f � g for every f ∈ L,

g ∈ R.

Simple examples of such classes are given in Sets by L = surjections,

R = injections; or L = injections, R = surjections. (In a constructive

1often (and originally) called natural
2We will never require the strong counterparts of these properties, so will assume

weak by default.

31
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foundation, the latter system has to be restricted to (decidable injections;

split surjections).)

2.1.2. A more powerful example, in Top, takes L to be retracts of relative

cell complexes, and R to be trivial fibrations in the Quillen model structure,

sometimes called weakly contractible maps.

The definition of these is most clearly given as an example of a very

general construction: if J is any class of maps, we define J � to be the class

of maps weakly right orthogonal to all maps in J ; and dually we define �J .

It is easy to check that a class J � must contain all identities, and be

closed under composition, retracts, and pullback along arbitrary maps. Du-

ally, �J is closed under identities, composition, retracts, and pushouts. A

little more thought shows that the classes are closed under (co-)transfinite

composition (i.e. under colimits of colimit-preserving diagrams indexed by

ordinals, or under dually defined limits).

Most typically we start with a set of maps J in a category C, then form

R = J � (“J -fibrations”), L = �(J �) (“J -cofibrations”).

For the case of Serre trivial fibrations, we start with the inclusions of

spheres into discs (cells), as their boundaries:

J = {Si−1 // //Di | i ∈ N }.

Then a map p : Y //X is in J � just if whenever we are given a cell

in X and a lift of its boundary to Y , we can lift the whole cell to Y , with

the given boundary. So any loop in Y that is null-homotopic in X must

be null-homotopic in Y , and so on: p is forced in particular to be a weak

homotopy equivalence.

But now by the closure properties of �(J �), the generating boundary

inclusions are not the only maps we can lift against trivial fibrations. We

can lift any relative cell complex, i.e. any transfinite composite of pushouts

of the boundary inclusions, essentially by lifting it one cell at a time; and

indeed we can also lift retracts of these.
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This exemplifies one of the two main flavours of classes of orthogonal

maps: the left maps are cofibrations of some sort, the right maps are trivial

fibrations. The other flavour is dual: trivial cofibrations vs. fibrations.

Things work similarly from any basic set J in a co-complete category

C; J -cell complexes (transfinite compositions of pushouts of maps in J )

will always be J -cofibrations. Under good circumstances (co-completeness

and smallness conditions), all J -cofibrations will be retracts of these, and

every map of C will have a factorisation into a J-cell complex followed by a

J -fibration, giving a weak factorisation system; but this is beyond what we

will require.

2.1.3. The above theory can be improved and refined by changing the ob-

jects of study from mere properties of maps to structures on maps. This

both strengthens the resulting theory—constructions become more natu-

ral, functorial, etc.—and more naturally describes mathematical practice:

demonstrating “fibrationhood” of a map typically involves giving some kind

of structure on it. This is also a more naturally constructive approach—an

existence property should always be given by exhibiting witnesses—and, as

such, turns out to develop much better in a constructive setting than the

classical theory does.

We recall only the barest rudiments of this theory. Given a category J

with a functor U : J // Arr(C), a J �-structure on a map p is a function

choosing, for each j ∈ J and commutative square from U(j) to p, a diagonal

filler, such that these fillers commute with squares coming from the maps of

J .
•

•

Uj′

��

•

•

Uj

��

• •//

• •//

• X// X

Y

p

��
• Y//•

X55

•

X<<

If J is just a discrete set, then assuming choice, the maps admitting a J �-

structure are exactly the fibrations (in the sense of 2.1.2) with respect to

the image of U . J �-structured maps, together with commutative squares
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between them preserving the structure (in a suitable sense), form a category

themselves, again with a forgetful functor to Arr(C).

Structured versions of the closure properties above can be formulated:

any identity carries a natural J �-structure, as does any (finite or transfinite)

composite of maps with J �-structures; any pullback of a map with J �-

structure again carries a natural such structure, as does any retract of such

a map. When we speak of some category of structured maps being closed

under composition, and similar, we will mean statements of this form.

Again analogously to the classical theory, any map exhibited as (a re-

tract of) a formal J -cell complex lifts against any map with J �-structure;

these liftings are now moreover natural in the appropriate structure preserv-

ing maps. Again, under good circumstances, we have factorisations of every

map into (the realisation of) a formal J -cell complex, followed by (the un-

derlying map of) a J �-structured map, and this is now moreover functorial

[Gar09d].

The constructions of J � and J -cell complexes are the ones which will

recur in the present work: for elim-structures on context maps (1.2.8), for

contractions on maps of globular sets and operads (2.3.6), and for contrac-

tions on maps of theories (4.2.5).

2.2. Strict higher categories

2.2.1. There are various approaches to higher category theory, and in par-

ticular many definitions of weak higher categories [Lei02], [CL04]. We will

use the globular operadic approach, as set out originally by Michael Batanin

in [Bat98], and later re-presented and slightly modified by Tom Leinster

in [Lei04]. These two sources are the authoritative references for most of

this material; [Lei02] also provides an excellent, rather more streamlined,

introduction.

In the globular approach, the underlying substance of an ω-category C

consists of a set Cn of “n-cells” for each n > 0. The 0- and 1-cells correspond
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•
a
•
a

•
b
//

f
•
a

•
b

f

$$

g

::��
α •

a
•
b

f

��

g

@@
� 

α

~�
β_ *4Θ

•
a

•
b

•
cf

//
g

// •
a

•
b

f

��
f ′ //

f ′′

BB

α��

γ��

•
a

•
b

•
c

f ""

f ′
<<

g ""

g′
<<

α
��

β
��

g ◦0 f γ ◦1 α β ◦0 α

• • • •
f

//
g

// h // • •
��

//
CC

α��
γ

��

•
��

//
CC

β��

δ��

h ◦0 (g ◦0 f) =

(h ◦0 g) ◦0 f

(δ ◦0 γ) ◦1 (β ◦0 α) =

(γ ◦1 α) ◦0 (δ ◦1 β)

Figure 2.2.A. Some cells, composites, and associativities

in a strict higher category

to the objects and arrows of an ordinary category: each arrow f has source

and target objects a = s(f), b = t(f). Similarly, the source and target of a

2-cell α are a parallel pair of 1-cells f, g : a //// b, and generally the source

and target of an (n+ 1)-cell are a parallel pair of n-cells. Summing this up

we arrive at:

Definition 2.2.2. A globular set A• is a diagram of sets and functions

A0
oo
s0

oo
t0

A1
oo
s1

oo
t1

A2
oo
s2

oo
t2

A3
oooo . . .

such that si·si+1 = si·ti+1 and ti·si+1 = ti·ti+1—the globularity conditions,

asserting that the source and target of any cell are parallel.

Some notation we will use throughout the sequel: we will often drop the

subscripts on arrows as far as possible, writing just s and t; si, ti will denote

i-fold iterations of these operations, as usual; and for c ∈ An and k ≤ n, we
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take sk(c) := sn−k(c), tk(c) := tn−k(c), the k-dimensional source and target

of c. (Of course when n = k+1, this agrees with the original usage of sk, tk.)

A map of globular sets f• : A• //B• consists of a sequence of functions

fn : An // Bn, preserving the globular structure, in that si ·fi+1 = fi ·si
and ti ·fi+1 = fi ·ti, or more compactly, sf = fs, tf = ft.

2.2.3. More generally, let G be the category with objects N and arrows

generated by

0
s0 //

t0

// 1
s1 //

t1

// 2
s2 //

t2

// 3 // // . . .

subject to the equations ss = ts, st = tt. Then a globular object in a

category E is a functor A• : Gop // E , and a map of these is a natural

transformation between such functors.

Now the category of globular sets is just the category Ĝ of presheaves

on G. The Yoneda embedding y : G // Ĝ yields some specific globular

sets which will be of particular use and importance to us: the basic n-cells

or n-globes y(n), and their boundaries ∂(n) ⊆ y(n), the maximal proper

subobject of y(n), consisting of all non-identity maps into n. Note that

for n > 0, we have ∂(n) ∼= y(n − 1) +∂(n−1) y(n − 1), a parallel pair of

(n− 1)-cells.

(For the finite-dimensional versions of all the above, and all that follows,

G is replaced by the category Gn, defined just as G except with no objects

or arrows above n; an n-globular set is a presheaf A• : Gop
n

// Sets, and

so on.)

To complete the definition of strict ω-categories, we simply add the struc-

ture of composition on top of this basic data. As illustrated in Figure 2.2.A,

we want to compose cells whenever the target of one is the source of another

in any lower dimension. Specifically, for any k < n, the set of k-composable
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n-cells is the pullback

An ×k An

An

��

An ×k An An//

An Ak
sk //

An

Ak

tk
��
.

Definition 2.2.4. 3 A strict ω-category C is a globular set C• together with

composition operations for each k < n

◦k : Cn ×k Cn // Cn

and unit maps

rn : Cn−1
// Cn

(for which we use index conventions analogous to those for s, t), such that

for each j < k < l, (Cj , Ck, Cl, ◦j , rk, ◦k, rl) forms a strict 2-category. Un-

winding a bit further, this says that:

• for each k < n, (Ck, Cn, ◦k, rn) forms a category, i.e. the source and

target of composites and units are “what one would expect”, and

the associativity and unit laws

c ◦k (b ◦k a) = (c ◦k b) ◦k a

a ◦k (rnska) = a = (rntka) ◦k a

hold (for appropriately composable a, b, c ∈ Cn); and additionally,

• for each j < k < n, and suitable a, b, c, d ∈ Cn, we have sk(b◦j a) =

sk(b) ◦j sk(a), and similarly for tk; and the interchange law holds:

(d ◦j c) ◦k (b ◦j a) = (d ◦k b) ◦j (c ◦k a)

(also as illustrated in Figure 2.2.A).

3Strict ω-categories may alternatively, and completely equivalently, be defined via

iterated enrichment.
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2.2.5. This presentation exhibits strict ω-categories explicitly as models of

an essentially algebraic theory, monadic over Ĝ:

Ĝ str-ω-Cat
F

--
str-ω-CatĜ

U

ll ⊥

and it is shown in [Str00], [Lei04] that the resulting monad T = FU in Ĝ

is familially representable (that is, naturally isomorphic to a coproduct of

representable functors), and indeed cartesian—both its functor part, and its

monad structure η, µ.

(Recall that a functor is cartesian if it preserves pullbacks, and a natural

transformation is cartesian if all its naturality squares are pullbacks.)

The cells of TX may thus be seen as formal composites, or labelled pasting

diagrams, of cells of X. In particular, taking 1 to be the terminal globular

set, with a single cell of each dimension, we define:

Definition 2.2.6. A pasting diagram is a cell of T1, the free strict ω-

category on the terminal globular set. We will often write pd for T1. The

source and target operations in pd coincide; we will often denote their com-

mon value by d.

There are several useful combinatorial representations for pasting di-

agrams. [Lei04, 8.1] provides an inductive description in terms of free

monoids:

pd0 := TMon(∅) = { () }

pdn+1 := TMon(pdm) = { (π1, . . . , πl) | l ≥ 0, πi ∈ pdn }

Here, for instance, the element (((), (), ()), (), (())) ∈ pd2 represents the

2-cell (c2 ◦1 c2 ◦1 c2) ◦0 (r2c1) ◦0 (c2) of T1 (where ci is the unique i-cell of 1):

• •
&&
88�� •// •

��))
55 DD

��

��

��

This representation may be seen syntactically as a normal form theorem:

every formal expression in the operations rn, ◦k may be put into normal form
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by eliminating identities wherever possible and moving lowest-dimensional

composition outermost.

The k-dimensional source or target of a pasting diagram is given (in this

representation) by simply discarding everything nested more than k levels

deep.

2.2.7. With this representation, we can construct for each n-dimensional

pasting diagram π an n-dimensional globular set π̂ (justifying the ubiquitous

illustration of pasting diagrams):

̂(π1, . . . , πl)i :=


∑

1≤j≤l(π̂j)i−1 i > 1

{0, . . . , l} i = 0

These form a functor (
∫

Gop pd)op //Ĝ; that is, there are co-source and

co-target embeddings s, t : d̂π // // π̂, satisfying the usual equations.

We will often write ŝπ, t̂π to distinguish which of these embeddings is

implicitly assumed, as for instance in defining the boundaries

delπ of pasting diagrams: the unique 0-dimensional pasting diagram has

empty boundary, and for n > 0, π ∈ pdn,

∂π̂ := ŝπ +
∂cdπ t̂π

There is an obvious natural map ∂π̂ //widehatπ; note that it may fail

to be a monomorphism, if π is (wholly or partially) degenerate.

The realisations π̂ now provide the promised familial representation of

T , decomposing TX into the fibers of the map T ! : TX // T1:

TXn =
∑
π∈T1n

Ĝ(π̂, X).

Here and in the next few constructions, it is highly instructive to compare

this with the analogous presentation of the “free monoid” monad on Sets:

TMonX =
∑
n∈N

Sets([n], X).
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2.3. Globular operads

. . . à la Leinster. A weak higher category, as outlined in the introduc-

tion, should again consist of a globular set together with some composition

operations, similar to those in a strict higher category; but now there may

be multiple composition operations for each shape of pasting diagram. To

present appropriate algebraic theories of such structures, we introduce the

definition:

Definition 2.3.1 (“global version”). A globular operad P is a monad TP

on Ĝ, together with a cartesian monad map α : TP // T . (This moreover

implies that TP is itself cartesian.)

Thus a globular operad yields again an algebraic theory over globular

sets, via its monad part TP ; the natural transformation α : TPA• // TA•

ensures that all the operations of TP can be viewed as composition operations

for pasting diagrams, while the cartesianness of α ensures that the set of such

operations for any pasting diagram is uniform in X. Precisely,

Definition 2.3.2 (“local version”). A globular operad may equivalently be

specified by a globular set P with maps a : P // T1 (“arity”), e : 1 // P

(“units”), m : P ×T1 TP // P (“composition”), such that the diagrams

1 P
e //1

T1

η

��/
//////// P

T1

a

�����������

P ×T1 TP P
m //P ×T1 TP

TP
��???

P ×T1 TP

P
�����

TP

T1

T !
�����

P

T1

a
��??? TP

T 21

Ta
��

T 21

T1
µ ��

P

T1

a



���������������??��

commute (i.e. e and m are maps over T1), and satisfying the axioms

m · (1P × η · e) = 1P = m · (e× η) : P // P,

m · (m× µ) = m · (1P × Tm) : P ×T1 TP ×T 21 T
2P // P.
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Given an operad in the original form TP , α, we take P := TP 1, a := α1,

m := µ1, e := η1.

Conversely given P, a, e,m, we recover the full monad as TPX := TX×T1

P (forced by the cartesianness of α), and likewise recover η, µ, α as appro-

priate pullbacks of e, m, a. In particular, TP must again be familially

representable:

(TPX)n ∼=
∑
π∈T1n

P (π)× Ĝ(π̂, X),

where P (π) denotes the fiber of a over π ∈ T1n, the set of “π-ary operations”

of P . The map e then gives us a unary n-cell “identity” operation for each

n, while the map m allows us to compose these operations appropriately.

As groups have actions, rings have modules, theories have models, so

operads have algebras:

Definition 2.3.3. An algebra for an operad P is an algebra for the monad

TP ; or equivalently, a globular set A together with a map c : P×T1TA //A,

such that

c·(e× η) = 1A : A //A,

c·(m× µ) = c·(1P × Tc) : P ×T1 TP ×T 21 T
2A //A.

This structure is also called an action of P on A.

Actions may also be reformulated in terms of endomorphism operads:

Definition 2.3.4. The endomorphism operad EndbG(A) of a globular set

A has underlying globular set
∑

π:T1[TXπ, X] (interpreted in the internal

language of Ĝ, i.e. computed as the internal hom [TX,X × T1] in the slice

Ĝ/T1), and structure maps constructed using the universal property of the

internal hom, together with the monad structure of T .

Actions of an operad P on a globular set A then correspond to operad

maps P // EndbG(A). Via either definition, there is an evident category

P -Alg of P -algebras.
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Example 2.3.5. The object T1 itself carries a natural operad structure,

making it the terminal operad; its associated monad is just T , and its alge-

bras are strict ω-categories.

We would like to define weak ω-categories as algebras for some operad.

However, to give a reasonable theory of some sort of ω-categories, an operad

needs to have enough operations to implement the usual compositions and

identities; and given any two parallel operations of the same arity in P , they

should be an operation of the next dimension connecting them, witnessing

that they are “equal up to homotopy”. In Leinster’s definition, these two

conditions are imposed by a single piece of structure:4

Definition 2.3.6. A contraction on a map of globular sets f : Y //X is

a diagonal filler for every square

∂(n) Y//∂(n)

y(n)

��

��

Y

X

f

��
y(n) X//y(n)

Y<<

A map is contractible if it admits a contraction. Contractible maps are

distinguished diagrammatically as f : Y � ,2X.

So contractibility of f : Y � ,2X asserts that given any cell in X and a

lifting of its boundary to Y , we may lift the cell, with the given boundary.

Or, seen slightly differently, given any boundary in Y and a cell filling its

image in X, we may lift the filler to Y .

Recalling the results of 2.1.3, we see that maps-with-contraction are

closed under identities, (transfinite) composition, pullback along arbitrary

maps, and retraction.

Definition 2.3.7. A contraction on an operad P is a contraction on its arity

map a : P � ,2T1, or equivalently, a natural contraction on each component

of the natural transformation α : TP // T .

4This is the sole point where Batanin’s original definition differs in more than just

presentation.
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An operad-with-contraction is an operad equipped with a contraction.

An operad is contractible if it admits a contraction. The essential distinction

between these notions is in their maps: a map of operads-with-contraction

must commute with their specified contractions.

So roughly, this asserts that TP is homotopically equivalent to T (see

[Gar09a] for a precise exploration of this idea). Concretely, contractibility

provides us with composition operations of all arities in P , and also with

witnesses that these are unique up to coherent higher cells. Any contractible

operad may thus be taken as giving a reasonable theory of ω-categories.

In particular, for “maximal weakness”, let L be the initial operad-with-

contraction:

Definition 2.3.8 ([Lei04]). A weak ω-category is an L-algebra:

wk-ω-Cat := L-Alg.

The universal property of L ensures that if P is any other contractible

operad, choosing a contraction χ on P determines a map fχ : L // P

and hence a functor f∗χ : P -Alg //wk-ω-Cat. However, the subtleties of

contractible vs. -with-contraction confront us here: this functor will depend

upon the choice of contraction (though it seems reasonable to expect that

the functors induced by different contractions will differ only up to some

notion of weak equivalence).

2.3.9. A further condition imposed by some authors ([Bat98], [GvdB10b])

is that there are no non-trivial 0-operations: we say an operad P is nor-

malised if P0
∼= 1. On the one hand, this assumption rarely seems to be

required; contractibility already ensures that 0-operations are unique up to

homotopy, which according to the usual philosophy of higher-categories is all

one ought to need. On the other hand, imposing this condition is essentially

harmless: every contractible operad has a canonical normalised contractible

sub-operad, its normalised core, whose construction we recall now, as it will

be of use to us in Ch. 4.



44 2. HIGHER-CATEGORICAL BACKGROUND

For any 0 ≤ k ≤ n ≤ ω, there is a double adjunction

k-Opd oo trk

Dn //

In

// n-Opd

where DnP is the discrete n-operad on a k-operad P , with only unit cells

(that is, units of the operad structure) in dimensions greater than k; trkQ

is the k-truncation of an n-operad Q, with trk(Q)i = Qi for i ≤ k; and

InP is the indiscrete n-operad on P , with a unique operation of shape π

for each pasting diagram π together with a choice of ≤n-dimensional source

and target operations from P .

In particular, 0-Opd ' Mon; so for any n and Q ∈ n-Opd we have

a unique map 1 // tr0Q (where 1 is the trivial monoid, both initial and

terminal), and hence can construct the normalised core Q0 of Q,

Q0 Q// //Q0

In1
��

Q

Intr0Q

��

In1 Intr0Q// //

consisting of just those operations in Q whose 0-dimensional source and

target are the operad unit.

It is straightforward to see that Q0 is contractible if Q is, and so is in

this case “weakly equivalent” to Q.

. . . à la Batanin. The preceding elegant presentation of globular oper-

ads in terms of cartesian monads is due to Leinster. However, for most of

our purposes below it will be easier to construct the desired operads using

the original machinery of [Bat98].5 We thus take a brief detour to set up

the machinery of monoidal globular categories, and to investigate pasting

diagrams further, before returning to operads in this setting.

5Note howerver that we use Leinster’s notion of contraction throughout, so the results

are still equivalent to Leinster’s definition as given above, rather than Batanin’s original

one.
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Definition 2.3.10. (See [Bat98, 2.3] for the details here elided.) A monoidal

globular category E is a globular category E•

E0
oo Soo
T

E1
oo Soo
T

E2
oo Soo
T

E3
oooo . . .

equipped with composition functors

⊗k : En ×k En // En

and unit maps

Z : En // En+1

satisfying the same source and target conditions as units and composition

in a category, and also with natural transformations

α : C ⊗k (B ⊗k A) ∼= (C ⊗k B)⊗k A

ρ : A⊗k (ZnSkA) ∼= A λ : (ZnTkA)⊗k A ∼= A

χ : (D ⊗j C)⊗k (B ⊗j A) ∼= (D ⊗k B)⊗j (C ⊗k A)

satisfying various coherence axioms.

A monoidal globular functor between monoidal globular categories E ,F

is a globular functor F• : E• // F•, commuting with the composition and

units up to coherent isomorphism. Together with monoidal globular trans-

formations, these form a 2-category MonGlobCat.

So monoidal globular categories bear essentially the same relationship to

strict ω-categories as monoidal categories do to monoids: sets are replaced

by categories, and axioms hold just up to coherent isomorphism.

This is made precise by Mark Weber in [Web05]: MonGlobCat is (2-

equivalent to) the 2-category of normalised pseudo-algebras for the “internal

strict ω-category in Cat” 2-monad T on [Gop,Cat].

Example 2.3.11. For any category C with all pullbacks, the monoidal glob-

ular category Spans(C) of higher spans in C has

Spans(C)n = [(G/n)op, C]
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Figure 2.3.B. A n-span; the identity 3-span on a 1-span.

So an object of Spans(C)n, an n-span in C, is a diagram (Asi , A
t
i(i<n); An)

as in Fig. 2.3.B, satisfying the equations ss = st, ts = tt wherever appro-

priate; and a map of n-spans (fsi , f
t
i ; fn) : (Asi , A

t
i;An) // (Bs

i , B
t
i ;Bn) is a

sequence of maps between them, commuting with all the source and target

maps.

The source of (Asi , A
t
i (i<n); An) is then (Asi , A

t
i (i<n−1); Asn−1), and sim-

ilarly its target is (Asi , A
t
i (i<n−1); Atn−1).

Identity spans are defined as in Fig. 2.3.B; composition ⊗k of spans is

defined by pullback, as in Fig. 2.3.C.

A pullback-preserving functor C // C′ induces a monoidal globular

functor Spans(C) // Spans(C′).

We will often apply this in the case where C = Dop, for some familiar D;

so then we will work with co-spans in D, whose composites are computed

by pushouts, and so on.

Although of course formally equivalent, there is an important difference

in intuition between the two orientations. When working in Spans(C), the

objects of a span are typically objects containing cells, such as the sets of

n-cells of a higher category. When working in Spans(Dop), we consider
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Figure 2.3.C. A 2-composition of 4-spans B ⊗2 A

the objects of a span more often as objects representing cells, such as the

topological globes Dn or the universal globes y(n) in Ĝ, with “co-source”

and “co-target” maps s, t : As,ti // Ai+1 embedding the lower-dimensional

globes as the sources or targets of higher ones.

The crucial function of monoidal globular categories is as the setting

within which one can define globular operads and their algebras. We will

not need the former in the present work, only the latter.

Definition 2.3.12. A globular object A• of a monoidal globular category

E is a globular functor 1 // E•, where 1 is the terminal globular category.

Concretely, a globular object in E is a sequence of objects Ai ∈ Ei, with

S(Ai+1) = T (Ai+1) = Ai.

Globular objects in Spans(C) correspond precisely to globular objects

in C. (We often abuse notation here by writing An both for a span and for

the object at its apex.)

Given a globular object A• of a monoidal globular category E , we may

extend it to a monoidal globular functor pd // E (where the sets of pd
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are regarded here as discrete categories), the diagram objects of A•. This

follows immediately from the universal property of T1 together with Weber’s

description of monoidal globular categories as certain pseudo-algebras for T :

pd T 1= T 1 T E•
T A• //

1 E•
A• //

T E•

E•

N
��

.

We denote objects in the image of this extended functor by Aπ, for π ∈ pd.

Intuitively, if An is the object of n-cells of A•, then Aπ is the object of

diagrams of shape π in A•; or in the dual case, if Cn is a representing object

for n-cells, then Cπ represents diagrams of shape π.

In particular, y : G // Ĝ gives a globular object in Spans(Ĝop), whose

diagram objects are exactly the realisations π̂ constructed in 2.2.7 above.

2.3.13. Now if C is co-complete, and C• : G // C is a co-globular object,

we may form the left Kan extension ([ML98, X.3]) of C• along the Yoneda

embedding y : G // //Ĝ, analogous to the “geometric realisation” of globular

or simplicial objects in Top. LanyC• realises any globular set as a colimit

in C, using the objects Cn as templates for the cells.

Ĝ
LanyC•

// C

G
OO

y

OO

C•

88qqqqqqqqqqqqqq

Since LanyC• preserves colimits, it lifts to give a monoidal globular func-

tor Spans((LanyC•)op) : Spans(Ĝop) // Spans(Cop), and since it sends

the basic globes y to C•, we have moreover a commutative (up to natural

isomorphism) triangle:

pd

Spans(Ĝop)
y 77oooooooo

pd Spans(Cop)
C•

//

Spans(Ĝop)

Spans(Cop)
''OOOOOO
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Thus we may compute the diagram objects of C• as the image under

LanyC• of those of y:

Cπ = LanyC•(π̂) = lim−→
c∈

R bπCdim c

This formula is easiest explained by example: if π =

(
•

&&
88

�� ��
�� •

&&
88

�� ��
�� •

)
,

then

Cπ ∼= lim−→


C0

C1
s ==zzzzz

C0

C1
taaDDDDD

C0

C1
s ==zzzzz

C0

C1
taaDDDDD

C1

C2

s ��

C1

C2

s ��

C1

C2

t
OO

C1

C2

t
OO

C0

C1

s !!DDDDD
C0

C1

t}}zzzzz
C0

C1

s !!DDDDD
C0

C1

t}}zzzzz


∼= C2 +C0 C2,

or in the dual case,

Aπ ∼= lim←−



A1

A0

s

}}zzzzz
A1

A0

t

!!DDDDD
A1

A0

s

}}zzzzz
A1

A0

t

!!DDDDD

A2

A1

s
OO

A2

A1

s
OO

A2

A1

t ��

A2

A1

t ��
A1

A0

s

aaDDDDD

A1

A0

t

==zzzzz
A1

A0

s

aaDDDDD

A1

A0

t

==zzzzz


∼= A2 ×A0 A2,

giving the object of 0-composable pairs of 2-cells in A.

A slightly more careful calculation shows that diagram objects are com-

puted by this formula even when C is not co-complete.

We can now use this to define internal algebras for globular operads, in

monoidal globular categories:

Definition 2.3.14 ([Bat98, 7.2]). If A• is a globular object in a monoidal

globular category E , there is a globular operad EndE(A•), the endomorphism

operad of A•, given by EndE(A•)(π) = En(Aπ, An), for each π ∈ pdn.

A monoidal globular functor F : E //F induces a map of endomorphism

operads EndE(A•) // EndF (FA•).
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In the case E = Spans(Sets), this agrees with our earlier description of

the endomorphism operad of a globular set.

Definition 2.3.15. For a globular operad P , a P -algebra structure on a

globular object A• of E is an operad map P // EndE(A•).

We then call A• an (internal) P -algebra in E ; or when E = Spans(C), a

P -algebra in C, or when E = Spans(Dop), a co-P -algebra in D.

2.3.16. As usual with algebraic structures, homming into internal operad

algebras yields external ones. If X is any object of a category C, then there

is an obvious globular functor

Hom(X,−) : Spans(C) // Spans(Sets),

which is moreover monoidal globular; so if A• is an internal P -algebra in C,

we have operad maps

P // EndSpans(C)(A•) // EndSpans(Sets)(Hom(X,A•))

and hence a P -algebra structure on the globular set Hom(X,A•). Similarly,

homming out of a co-algebra yields an algebra.

2.4. Contracting pasting diagrams

(Unlike the rest of this chapter, the material of this section is some-

what original; the basic concepts are not especially new, but the specific

techniques used here do not seem to predate [Lum10] and [GvdB10b].)

2.4.1. Some early presentations of pasting diagrams introduced them as iso-

morphism classes of contractible globular sets. Here, we describe a methodi-

cal procedure for contracting them. Specifically, we give a partial operation

π 7→ π−, which under repeated application eventually reduces any pasting

diagram π to the trivial pasting diagram •.

Using the free monoid representation, () is the trivial pasting diagram •;

it is already contracted, so ()− is not defined. When π is the path of length
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l > 1

((), . . . , ()︸ ︷︷ ︸
l

)

we take π− to be the path of length l − 1. For any other pasting dia-

gram π = (π1, . . . , πl), with l ≥ 1 and πi not all equal to (), we take

π− := (π1, . . . , π
−
i , . . . , πk), where i is minimal such that πi is not already

contracted.

Roughly, this operation removes the leftmost cell (in algebraic order, or

rightmost in diagrammatic order) of dimension > 1 if there are any such,

or of dimension 1 if there are none higher. It is clear by induction on e.g.

dimension that under repeated application of (−)−, any pasting diagram

eventually reaches ().

• •
&&
88�� •// •

��))
55 DD

��

��

��
π

� // • •
&&
88�� •// •

��))
55

��

��

π−

2.4.2. We will need to know a little about the realisations of these; in fact,

some apparently very crude statements will be enough.

For any non-trivial pasting diagram π, there is an inclusion

π̂− // // π̂

whose image consists of all of π except for two cells, one the target of the

other. When π is just a path, this condition determines what the inclusion

must be; otherwise it is constructed by recursion on π−, using the recursive

definition of π− together with the explicit description of π̂ in 2.2.6.

It follows from this description of the image that we have a pushout

square, attaching a k-cell along a (k − 1)-cell:

y(k − 1)

y(k)

s
��

y(k) π̂//

y(k − 1) π̂−// π̂−

π̂
��
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Hence if A• (resp. C•) is a globular (co-globular) object in any (co-)

complete category, we obtain by applying the appropriate Kan extension a

pullback (pushout) square:

Ak

Ak−1

s

��

Aπ Ak//

Aπ
−

Ak−1
//

Aπ

Aπ
−

��

Ck−1

Ck

s

��
Ck Cπ//

Ck−1 Cπ
−// Cπ
−

Cπ
��

(again, a slightly more careful calculation avoids the need for (co-)completeness,

but for our purposes the (co-)complete case will suffice).

Finally, for any non-trivial π, we either have s(π−) = sπ, if the dimension

of the cell removed is the dimension of π, or s(π−) = (sπ)− otherwise; in

either case, the resulting square

ŝ(π−)

ŝ(π)
��

ŝ(π) π̂
s //

ŝ(π−) π̂−
s // π̂−

π̂
��

commutes, as does its realisation over any (co-)globular object; and similarly

with t in place of s.

2.4.3. As presented here, this construction is rather ad hoc. A more satis-

fying analysis of this sort of step-by-step contraction can be given using the

Batanin tree representation of pasting diagrams ([Bat98, 3],[Lei04, 8.1]):

schemes for contracting a pasting diagram in this manner correspond pre-

cisely to ways of sequentially pruning leaves off its Batanin tree.

However, since we do not require the Batanin tree representation for

any other purpose, for brevity we give just this formulaic procedure, which

suffices for the applications in the present work.



CHAPTER 3

The fundamental weak ω-groupoid of a type

In this chapter, we will construct the fundamental weak ω-category of a

type, as sketched in the introduction (0.2.1).

As explained there, the goal is to put a weak ω-category structure on

the sets of closed terms of type A, IdA, IdIdA
, . . . , for any type A in any

theory T. This is a categorically familiar scenario: these are sets of global

elements, so to endow them with some algebraic structure, one need only

put an internal such structure on the objects themselves. So, we proceed

accordingly, putting an internal weak ω-category structure on A, IdA, . . .

themselves in (the classifying category of) T.

To do this, of course, we need to find some contractible operad of com-

position laws which acts on these. In order to achieve this uniformly over

all types in all theories, we consider the syntactic operad of generically de-

finable composition operations, i.e. operations which can be derived over a

type without any further rules or constructors assumed. Formally, we con-

struct this as the endomorphism operad End
T̂Id[X]

(X•), where TId[X] is the

theory given just by the Id-type rules together with a single closed type X.

We then show directly that this operad is indeed contractible, using a

little specific analysis of the theory TId[X], and discuss extensions of this

result to larger operads.

3.1. Construction of PId

3.1.1. We saw above that for a type A in a theory T ∈ DTTId, the contexts

x0, y0 : A, x1, y1 : Id(x0, y0) . . . , z : Id(xn−1, yn−1),

53
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and the dependent projections src, tgt between them form a globular context

A• : Gop //T. (In denoting these contexts An, we roughly follow [War08].)

We would like to describe the endomorphism operad of this object; un-

fortunately, T does not have all finite limits in general, so we cannot imme-

diately apply the Spans construction and the machinery of 2.3.14.

However, taking presheaves embeds T into a category with the necessary

limits, so we can certainly consider EndbT(yA•). Since the Yoneda embed-

ding is full and faithful and preserves all existing limits, if we can show that

all the limits Aπ exist in T, then we know that the explicit description of

EndbT(yA•) may be computed directly in T:

EndbT(yA•)(π) ∼= Spans(T̂)n((yA•)
π,yAn) ∼= Spans(T)n(Aπ, An)

We thus use Proposition 1.4.2 to construct contexts Γπ exhibiting the

limits Aπ.

Accordingly, suppose we are given π ∈ pdn, with associated globular

set π̂. There are various ways of putting a total order on the i-cells of π̂ for

each i ≤ n; pick any such.

(Indeed, a canonical choice is given by the J ordering of [Str00], easily

seen in terms of the description of π̂ via the Batanin tree of π. This choice

has some good compatibility between the orderings on different pasting di-

agrams, which will later spare us some use of exch rules, so for simplicity

we will assume it is the ordering chosen; however, this is purely cosmetic,

and any other choice of orderings could also be used.)

Then take Γπ to be the context∧
c∈π̂0

xc :A,
∧
c∈π̂1

xc : Id(xs(c), xt(c)), . . .
∧
c∈π̂n

xc : Id(xs(c), xt(c)).

For instance, Γ(•→•→•) is the context

x, y, z : A, p : IdA(x, y), q : IdA(y, z)

which we met back in 0.2.1.
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Besides the contexts themselves, we of course also have source and target

maps src, tgt : Γπ // Γdπ, and so on.

Lemma 3.1.2. The context ~x : Γπ, together with the obvious dependent pro-

jections, computes the limit Γπ = lim←−c∈R
π
Adim c. Moreover, if F : T // S

is a translation of type theories, then C̀ (F ) : C̀ (T) // C̀ (S) preserves this

limit.

Proof. Immediate by Proposition 1.4.2 �

Thus the description of EndbT(yA•) in terms of maps of spans in T̂ may

be applied directly in T, using the contexts Γπ; with this justification, we

write it simply as EndT(A•).

3.1.3. Let us unfold what this looks like in syntactic terms. For π ∈ pdn,

an element of EndT(A•)(π) (a composition law for π) consists of a map of

spans as in Fig. 3.1.A; that is, a context map h : Γπ // An in T, and for

0 ≤ k < n, maps fk : Γdn−k(π)
//Ak and gk : Γdn−k(π)

//An, commuting

appropriately with the dependent projections.
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Γsπ
�����
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��3

33333
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//
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~fn−2
//

Γt2π An−2
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//

Γs1π A1

~f1 //

Γt1π A1

~g1 //

Γs0π A0

~f0 //

Γt0π A0

~g0 //

Figure 3.1.A. An operation in EndT(A•)(π).
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So, concretely, it is a sequence of terms ~h = ((fi, gi)0≤i<n;h), such that

~x : Γdn(π) ` f0(~x) : A

~x : Γdn(π) ` g0(~x) : A

...

~x : Γdn−k(π) ` fk(~x) : Id(fk−1(src ~x), gk−1(tgt ~x)),

~x : Γdn−k(π) ` gk(~x) : Id(fk−1(src ~x)), gk−1(tgt ~x)),

...

~x : Γπ ` h(~x) : Id(fn−1(src ~x), gn−1(tgt ~x)).

The source of this is then the composition law (f0, g0, . . . , fn−1, gn−1; fn) ∈

P (s(π)), and its target is (f0, g0, . . . , fn−1, gn−1; gn) ∈ P (t(π)).

We make no attempt here to formulate a syntactic description of the op-

erad composition; to do so is straightforward, but notationally rather heavy

going. In specific cases it is “exactly what you would expect”: essentially

just substitution, with modest assistance from the other structural rules.

3.1.4. Following the approach outlined in the introduction, we wish to iso-

late the operad of composition operations which are derivable for all types.

Consequently, we consider the theory TId[X] of a generic type, given by the

Id-type rules together with just a single extra axiom:

� ` X type

The genericity of X becomes a universal mapping property of TId[X]:

for any type theory S and closed type A of S, there is a unique translation

FA : TId[X] // S sending X to A.

Definition 3.1.5. As as special case of the construction of 3.1.1, we take

PId := EndTId[X](X•),

the operad of all definable composition laws on the generic type.
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3.1.6. For general T, A, we should not expect EndT(A•) to be contractible:

contractibility implies for instance that any two elements of EndT(A•)(•) are

connected by an element of EndT(A•)(• // •), or in other words that any

two terms x : A ` f(x), f ′(x) : A are propositionally equal, which clearly

may fail.

However, in the specific case of PId, we do wish to show contractibility,

since this is the operad which naturally acts on every type; and it seems

plausible, since obvious failures of contractibility require assuming extra

term-constructors for A or its identity types.

What precisely does contractibility mean, here? For every pasting dia-

gram π and every parallel pair of composition laws ~f,~g ∈ PId(d(π)), we need

to find some filler ~h ∈ PId(π), with s(~h) = ~f , t(~h) = ~g.

Given π, such a parallel pair amounts to terms (fi, gi)0≤i<n as in the

definition of a composition law for π, and a filler is a term h completing the

definition; that is, we seek to derive a judgment

~x : Γπ ` h(~x) : Id(fn−1(src ~x), gn−1(tgt ~x)).

Playing with small examples (the reader is strongly encouraged to try

this—to derive, for instance, the composition and associativity terms men-

tioned in 0.2.3) suggests that we should be able to do this by applying

Id-elim (possibly repeatedly, working bottom-up as usual) to the variables

of identity types in Γπ. Id-elim says that to obtain h, it’s enough to obtain

it in the case where one of the variables is of the form r(−), and its source

and target variables are equal; and by repeated application, it’s enough to

obtain h in the case where multiple higher cells have had identities plugged

in in this way.

Now, since the terms fi, gi have themselves been built up from just the

Id-rules, as we plug r(−) terms into them and identify the lower variables,

they should sooner or later compute down by Id-comp to be of the form ri(x)

themselves. Eventually, after applying Id-elim as far as possible, plugging
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in reflexivity terms for the higher variables and contracting all variables of

type X to a single x : X, the fi, gi should all reduce to reflexivity terms;

and in particular fn−1 and gn−1 should both reduce to the form rn−1(x), so

we can take the desired filler to be

x : X ` rn(x) : Id(rn−1(x), rn−1(x)).

Below, we formalise this argument. The crucial lemma is that the con-

text x : X is an initial object in C̀ (TId[X]): that is, since any context Γ in

TId[X] is built up just from X and its higher identity types, there is always

a unique way to substitute x and its reflexivity terms ri(x) for all variables

of Γ, and when we substitute these in to any context morphism f : Γ //Γ′,

the result must again reduce to terms of this form.

3.2. A proof-theoretic lemma: X is initial in TId[X]

Lemma 3.2.1. The context x : X is an initial object in C̀ (TId[X]); that is,

for any closed context Γ there is a unique context map rΓ : (x :X) // Γ.

Note that this lemma does not generally hold for more powerful type

systems; e.g. in TId,Π[X], it is easily seen to be false, since for instance there

is no term x : X ` τ : Πy:X Id(x, y).

We give here two proofs of this lemma; or rather, the same proof in

two forms. The first, much shorter, is in categorical terms, using the co-

slice construction and the universal property of TId[X]. The second is a

direct syntactic proof, as given in [Lum10]. Essentially, this unwinds into a

structural induction the construction of the CwA-with-Id-types structure on

the co-slice, and hence shows concretely how the maps rΓ are constructed.

Proof 1. By the universal property of TId[X], the object 1X : X // X of

the coslice CwA X\TId[X] induces a translation F1X : TId[X] //X\TId[X]

sending X to 1X . The composition of this with the forgetful functor from

the co-slice U : X\TId[X] //TId[X] is an endofunctor of TId[X] which fixes

X, and hence (by the universal property again) is the identity.
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Thus for any context Γ of TId, F1X (Γ) is some context map rΓ : X //Γ,

and for any context map f : ∆ // Γ, F1X (f) must be just f itself viewed

as a map of X\TId[X], so every triangle

X

ΓrΓ ))RRRRRRRRX

∆r∆ 55llllllll

∆

Γ

f

��

must commute. In particular, with ∆ = X, this tells us (since rX =

F1X (X) = 1X) that f = rΓ for any context morphism f : X // Γ, so

X is initial as desired.

(This last step is just an instance of the general categorical fact that

given an object X in a category C and natural maps !Y : X // Y to every

other object, such that !X = 1X , it follows that X is initial.) �

Proof 2. For the syntactic proof, we work by structural induction—as, es-

sentially, we must, since this is a property of the theory TId[X] which can

fail in extensions.

So, given any derivation δ of a judgement J in TId[X], we recursively

derive various terms and/or judgments, depending on the form of J , assum-

ing that we have already done so for all sub-derivations of δ. The form of

the terms and judgements we derive will depend on the form of J as follows:

J term judgement

~y : Γ ` A(~y) type rΓ`A(x) x : X ` rΓ`A(x) : A(~rΓ(x))

~y : Γ ` A(~y) = A′(~y) type − x : X ` rΓ`A(x) = rΓ`A′(x) : A(~rΓ(x)) (∗)

~y : Γ ` τ(~y) : A(~y) − x : X ` τ(rΓ(x)) = rΓ`A(x) : A(rΓ(x)) (∗∗)

~y : Γ ` τ(~y) = τ ′(~y) : A(~y) − −

Here, for a context Γ = y0 : A0, . . . , yn : An(~y<n), the context map

~rΓ : (x :X) // Γ consists of the terms

r`A0(x) : A0, rA0 `A1(x) : A1(r`A0(x)), rA0,A1 `A2(x) . . . .
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Moreover, applying (*) and (**) above to this definition shows that the

maps ~rΓ respect definitional equality in Γ, and are preserved by context

maps in that for any f : ∆ // Γ, we have f(~r∆(x)) = ~rΓ(x).

Finally, once the induction is complete, applying this last fact together

with the fact that r(x:X)(x) := x will show that for any other context map

f : (x :X) // Γ, we have f(x) = f(r(x:X)) = ~rΓ(x), and so ~rΓ is the unique

such map, as originally desired.

(This is of course the same concluding step we used in the first proof.)

As usual, the induction proceeds by cases on the last rule used in the

derivation of J . Care must be taken to ensure that the definition of rΓ`A is

appropriately stable under substitution, but this aside, all cases are essen-

tially routine; details may be found in [Lum10]. �

3.3. Contractibility of PId

We are now ready to show that PId is contractible, arguing along the

lines sketched in 3.1.6.

Theorem 3.3.1. The operad PId is contractible.

Once again, we offer both an elementary syntactic argument and a cat-

egorical gloss of the same proof.

Proof 1. As described above, this amounts to the statement: for every n ∈ N

and pasting diagram π ∈ pdn, and every sequence (fi, gi)i<n of terms such

that

~x : Γdn(π) ` f0(~x), g0(~x) : X

~x : Γdn−i(π) ` fi(~x), gi(~x) : Id(fi−1(src ~x), gi−1(tgt ~x))

(i < n) are derivable in TId[X], we can find a “filler”, i.e. a term h with

~x : Γπ ` h(~x) : Id(fn−1(src ~x), gn−1(tgt ~x))

We show this by induction on the number of cells in π, reducing cells by the

“pruning” process of 2.4.1.
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Suppose π has cells in some dimension greater 0. Then as in 2.4.1,

consider the pasting diagram π−, obtained (up to isomorphism) from that

of π by removing some cell c and identifying s(c) and t(c).

Then by our explicit description of the cells of π−, the context Γπ− is

exactly (up to renaming of variables, and possibly re-ordering if we do not

assume that we chose compatible orderings of the cells of pasting diagrams)

the context obtained from Γπ by removing the variables xkc and xk−1
t(c) , and

substituting xk−1
s(c) for any occurrences of the latter in subsequent types; and

we have a natural context map ~rπ : Γπ− // Γπ given by plugging in xk−1
s(c)

for xk−1
t(c) and r(xk−1

s(c) ) for xkc ; and these are exactly right for

~x : Γπ− ` h−(~x) : Id(fn−1(src~r(~x)), gn−1(tgt~r(~x)))

~x : Γπ ` J(h
−; xk−1

s(c) , x
k−1
t(c) , x

k
c ) : Id(fn−1(src ~x), gn−1(tgt ~x))

to be, up to reordering, the main hypothesis of an instance of Id-elim. So

to derive the desired filler h, it is enough to derive h− with

~x : Γπ− ` h−(~x) : Id(fn−1(src~r(~x)), gn−1(tgt~r(~x))).

But now note that

dn−i(π−) =

 dn−i(π) for n− i < k

(dn−i(π))− for n− i ≥ k
;

moreover, we can construct context maps

~rsi , ~r
t
i : Γdn−i(π−)

// Γdn−i(π)

(analogous to ~r if i ≥ k, and just the identity otherwise), and these commute

with the maps src and tgt. So for each i < n, we have

~x : Γdn−i(π−) ` fi(~r(~x)) : Id(fn−1(~r(src ~x)), gi−1(~r(tgt ~x))),

~x : Γdn−i(π−) ` gi(~r(~x)) : Id(fn−1(~r(src ~x)), gi−1(~r(tgt ~x))),

i.e. the sequence of terms (~r∗(fi), ~r∗(gi))i<n are a parallel pair for π−. So

by induction (since π− has fewer cells than π), these terms have a filler; but

this filler is exactly the desired term h−.



62 3. THE FUNDAMENTAL WEAK ω-GROUPOID OF A TYPE

Thus it is enough to show the existence of fillers in the case where π

consists of just a single 0-cell, i.e. π = •. But in this case, Γπ = Γdi(π) =

Γdi(π) = (x :X) for each i < n, and so by the initiality of (x :X) we must

have fi(x) = gi(x) = ri(x) for each i; so now h := rn(x) gives the filler, and

we are done. �

Unwinding this induction, we can see that it exactly formalises the pro-

cess described in 3.1.6, of repeatedly plugging in higher reflexivity terms for

all variables, knowing that the given composites will themselves eventually

compute down to higher reflexivity terms.

Proof 2. According to the categorical description of an endomorphism op-

erad, we need to show that for any pasting diagram π, given all components

(~fi, ~gi)i<n of a map of spans (as in Fig. 3.1.A of 3.1.3) apart from the apex,

we can find some map ~h to complete it.

For this it is enough to show that we can find a top edge for the square

Γπ

Γ∂π

����

Γπ Xn
// Xn

Γ∂(n)

����
Γ∂π Γ∂(n)

[~fi,~gi]
//

or, more generally, that we can complete any triangle of the form

Γπ

Xn88 Xn

Γ∂(n)

����
Γπ Γ∂(n)

//

.

This we show by induction on π. In the case that π is the trivial diagram,

then, we are done by the initiality of Γπ = (x :X).

Otherwise, consider Γπ // // Γπ− . By the descriptions of 2.4.2, this is

a dependent projection, projecting away a term of identity type and its

target, so by the one-ended form of Id-elim1, it has a retraction r with an

1A slightly more careful argument would of course show, as we saw in the syntactic

version, that in fact the two-ended form also applies.
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elim-structure. So now by induction, we can complete the triangle

Γπ− Γπ
� ,2 r //Γπ−

Xn66 Xn

Γ∂(n)

����
Γπ Γ∂(n)

//

;

and then, seeing the result as a square

Γπ−

Γπ

_��
r

��

Γπ− Xn
//

Γπ

Xn<<
Xn

Γ∂(n)

����
Γπ Γ∂(n)

//

,

the elim-structure on r gives us a filler, completing the original triangle as

desired. �

Remarks 3.3.2. In each proof, Lemma 3.2.1 was applied only at the base

case of the induction, and only to show that terms x : X ` fi(~r(x)), gi(~r(x)) :

Id(rn(x), rn(x)) must be equal to rn+1(x). Two alternative approaches could

have been taken at this point. Firstly, we could have instead applied a nor-

malisation/canonicity result for the theory to deduce that fi(x) = gi(x) =

ri(x). This approach is taken in the proof of 4.3.1. Secondly, in theories for

which normalisation/canonicity and the co-slice construction fail, or alterna-

tively working directly over an arbitrary type (rather than the generic one)

the full endomorphism operad may no longer be contractible; but we may

still find a contractible sub-operad, by restricting to just those operations

for which the required commutativity condition holds. This is the approach

taken in [GvdB10b]; we use a variation of it for 4.3.5 below.

Also, besides just pulling back Γπ to Γπ− in the categorical proof, we

could have kept track of the boundaries as well

Γπ− Γπ// //Γπ−

Γ∂π−
��

Γπ

Γ∂π
��

Γ∂π− Γ∂π//



64 3. THE FUNDAMENTAL WEAK ω-GROUPOID OF A TYPE

or even of the whole spans, as we did in the syntactic version. While we

have seen that these are not necessary here, this sort of thing can become

useful in cases where we do not have enough left maps to continue until π

is fully contracted; again, cf. the proof of 4.3.5 below.

An alternative point gloss on the categorical proof is given by the ap-

proach of [GvdB10b]: we are constructing by induction an elim-structure

on the maps (x :X) // Γπ.

3.4. Types as weak ω-categories

Putting the above results together, we obtain our main goal:

Theorem 3.4.1. Let T ∈ DTTId be any type theory with identity types, A

a closed type of T. Then the globular context A• carries the structure of an

internal PId-algebra in T, and hence of an internal weak ω-category.

Proof. By the universal property of TId[X], there is a unique translation

FA : TId[X] //T taking X to A, and hence taking X• to A•. Now by the

functoriality of End (2.3.14), this induces an action of PId on A•, and so,

since by Theorem 3.3.1 PId admits a contraction, an action of L (the initial

operad-with-contraction) on A•, as desired. �

Corollary 3.4.2. Let T, A be as above, ∆ some (closed) context of T. Then

the globular set of terms of types A, IdA, IdIdA
, . . . in context ∆ carries the

structure of a PId-algebra, and hence of a weak ω-category.

When ∆ = �, this gives the fundamental weak ω-category of A as ad-

vertised in the introduction.

Proof. This is just the globular hom-set T(∆, A•), so by 2.3.16, it inherits

a PId-action, and hence an L-action, from the actions on A•. �

Using the “types to contexts” endofunctor (−)Cxt//� of 1.3.3, we can

extend this:
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Corollary 3.4.3. Let Θ, ∆ be contexts of some theory T ∈ DTTId. Then

the globular set of terms of context maps from ∆ into Θ and its higher

identity contexts carries a natural weak ω-category structure.

Proof. By applying the previous corollary to Θ, considered as a closed type

of TCxt//�. �

Similarly, we may extend these to dependent types A or contexts Θ

over a base context Γ, by viewing them as closed types/contexts in the slice

theory T//Γ.

Remark 3.4.4 (Functoriality). The construction of the PId-algebra T(∆, A•)

is moreover covariantly functorial in T, and contravariantly in ∆. That

is, translations T // T′ and context maps ∆′ // ∆ each induce strict

maps of PId-algebras, composing appropriately.2 However, both of these re-

quire somewhat more technical machinery to prove than we have developed

here. The functoriality in T is perhaps most clearly seen by considering

the monoidal globular category FibSpans(T) introduced in [GvdB10b],

of spans in T consisting entirely of dependent projections; then the algebras

we have considered live within these monoidal categories, and a translation

of theories induces a monoidal globular functor between them. Both these

functoriality results also require a treatment of maps of operad algebras in

the endomorphism-operad presentation, and hence of some slightly more

involved globular structures than the operads we have considered so far.

More subtly, T(∆, A•) should be functorial in A, but only to weak maps:

a map of types A //A′ should induce weak maps of PId- or L-algebras—that

is, weak ω-functors. This seems an altogether trickier question, due partly

but not only to the lack, until fairly recently ([Gar08]), of a suitable defini-

tion of weak ω-functor. However, as this theory becomes better developed,

2For precise statements, one has to be slightly careful due to the dependence of typing

of ∆ over T. Concisely, the PId algebra T(∆, A•) is functorial over the total categoryR
T∈DTTId

Cxt(T) of the fibration of contexts.
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the weak functoriality of T(∆, A•) in maps f : A // A′ should become a

corollary of the results of the next chapter: within the classifying ω-category

of the theory, this is just a whiskering operation between hom-ω-categories

and as such, should presumably be a weak functor. Unfortunately, to the

author’s present knowledge, this whiskering statement (and similar results)

do not yet appear in the literature; the theory of weak maps of operadic

ω-categories is as yet at a very early stage of development.



CHAPTER 4

The classifying weak ω-category of a theory

In this chapter we will construct classifying weak ω-categories for theo-

ries with various extensionality rules, and discuss how it might be possible

to extend this to require only the Id-types; we also give a variant which

works for theories with just Id- and Π-types.

The construction of the classifying weak ω-category is closely analogous

to that of the fundamental weak ω-groupoid of a space: it is obtained by

homming out of a complex of representing objects (“globes”), and so it is

enough to show that these representing objects form a co-(weak ω-category),

just as the topological globes D0 ////D1 // //D2 //// · · · do in Top.

To this end, in Section 4.1 we introduce our representing objects, the

type-theoretic globes G•. We then develop, in Section 4.2, classes of left

and right maps on DTT (term extensions vs. term-contractible maps), and

isolate a property J (in syntactic terms, a conservativity principle), ensuring

that the maps TΦ[π̂] � ,2TΦ[π̂−] are term-contractible. (This thus fulfils a

function dual to that of the elim-structure on Γπ−
� ,2 // Γπ in the preceding

section.) Finally, in Section 4.3, we put the pieces together, with arguments

extending those of 3.3.1 and its corollaries, to show that various operads are

contractible, and deduce the desired weak ω-category structures.

4.1. Globular structures from DTT

The type-theoretic globes.

4.1.1. Once again, let Φ be some set of rules/constructors, including at least

the Id-rules. The type-theoretic globes over Φ are then a sequence of theories

GΦ
n which play a similar rôle in DTTΦ to that which the discs Dn play in

67
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Top: they are an internal weak-ω-cocategory, and as such will—almost—be

representing objects for the classifying weak ω-category functor.

The idea is that GΦ
0 should be the free theory on a singler closed type

C; then GΦ
1 , the free theory on two types S, T and a map c1 between them;

GΦ
2 , free on two types S, T, two maps s1, t1 between them, and a term c2 of

propositional identity between these; and so on. Precisely:

Definition 4.1.2. GΦ
n is the theory over Φ generated by axioms i-src, i-tgt

(for 0 ≤ i < n), and n-cell, as follows:

� ` S type
0-src

� ` T type
0-tgt

� ` C type
0-cell

x : S ` s1(x) : T
1-src

x : S ` t1(x) : T
1-tgt

x : S ` c1(x) : T
1-cell

Γ ` si(x) : Id(si−1(x), ti−1(x))
i-src

(i ≥ 2)

and i-tgt , i-cell exactly as i-src except defining term-formers ti, ci in place

of si.

•C •S •T//
c1

•S •T
$$
::��

s1

t1

c2

G0 G1 G2

(Often, when working with some fixed Φ, we write just Gn for GΦ
n .)

4.1.3. There are evident co-source and co-target interpretations between

these theories (sending for instance ci to si or ti), and moreover co-unit

interpretations (sending ci+1 to r(ci)), forming a reflexive coglobular object

G• in DTTΦ:

G0
oo //

// G1
oo //

// G2
oo //

// . . .
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Leaving aside the reflexivity for now, we can thus see the globes as a

functor

G• : G //DTTΦ.

Since DTTΦ is co-complete, this induces by general nonsense ([MLM94,

VII.2]) an adjoint pair of functors between Ĝ and DTTΦ (a “Kan situa-

tion”). Both these functors will be of central interest to us in the sequel:

Ĝ
TΦ[−] := LanyG•

11> DTTΦ

C̀ −ω := DTTΦ(G•,−)

rr

G
OO

y

OO

G•

77

The right adjoint, C̀ −ω : DTTΦ
// Ĝ, is defined by homming out of the

globes, i.e. by setting C̀ −ω (T)n = DTTΦ(Gn,T). Thus, by the definitions of

the globes, the 0-cells of C̀ −ω (T) correspond exactly to closed types in T; the

1-cells A // B to terms of A dependent on a single variable from B; the

2-cells to terms of type IdB between 1-cells; and so on.

This is very nearly, but not quite, what we wanted for the underlying

globular set of C̀ ω(T). The difference is that it has only the types of T as

0-cells, not all the contexts; however, we will proceed for now with C̀ −ω , and

remedy this deficiency later.

Meanwhile, the left adjoint TΦ[−] : Ĝ // DTTΦ is constructed as

the left Kan extension of G• along y, and may be seen as freely adjoining a

globular set to TΦ, using the globes as templates. Explicitly, for a globular

set X•, the theory T[X•] has an axiom for each cell of X•, realising the

0-cells as closed types, the 1-cells as terms between these types, and the

higher-cells as terms of appropriate identity types.1

1A related construction is considered in [AHW09] and [WH10], corresponding to a

slightly different co-globular theory: they omit our G0, giving instead just a single closed

base type, and realise 0-cells as closed terms of this type, 1-cells as terms of identity type

between these, and so forth. Their TML is then the monad induced by the Kan adjunction.
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In particular, TΦ[y(n)] = Gn, and the theories TΦ[π̂] give the diagram

objects of G•. Also useful will be the boundary of the n-globe, ∂Gn :=

TΦ[∂(n)]; up to isomorphism, this is the theory given by i-src and i-tgt, for

0 ≤ i < n, i.e. all the axioms of Gn except for n-cell itself.

4.1.4. Since DTTΦ is co-complete, we can consider (by 2.3.14) the co-

endomorphism operad of the globes, EndSpans(DTTop
Φ )(G•), or briefly just

End(G•). We know that its operations of some shape π are given by

End(G•)(π) ∼= Spans(DTTop
Φ )n(Gn,TΦ[π̂])

and hence, unwinding this formula, consist of diagrams as in Fig. 4.1.A

below.

Gn−1

Gn??���

Gn−1

GnYY333333

Gn−2

Gn−1
OO

Gn−2

Gn−1
^^<<<<<<<<<<<Gn−2

Gn−177ooooo

Gn−2

Gn−1
OO

G1

Gn−2

...

G1

Gn−2

...

G0

G1OO

G0

G1 ^^<<<<<<<<<<<<G0

G177oooooooo

G0

G1OO

TΦ[ŝπ]

TΦ[π̂]
??��

TΦ[t̂π]

TΦ[π̂]
YY333333

TΦ[ŝ2π]

TΦ[ŝπ]
OO

TΦ[t̂2π]

TΦ[ŝπ]

<<<<<<<

^^

TΦ[ŝ2π]

TΦ[t̂π]
77ooo

TΦ[t̂2π]

TΦ[t̂π]
OO

TΦ[ŝ1π]

TΦ[ŝ2π]

...

TΦ[t̂1π]

TΦ[t̂2π]

...

TΦ[ŝ0π]

TΦ[ŝ1π]
OO

TΦ[t̂0π]

TΦ[ŝ1π]

<<<<<<<<

^^

TΦ[ŝ0π]

TΦ[t̂1π]
77ooo

TΦ[t̂0π]

TΦ[t̂1π]
OO

Gn TΦ[π̂]
H //

Gn−1 TΦ[ŝπ]
Fn−1

//

Gn−1 TΦ[t̂π]
Gn−1

//

Gn−2 TΦ[ŝ2π]
Fn−2

//

Gn−2 TΦ[t̂2π]
Gn−2

//

G1 TΦ[ŝ1π]
F1 //

G1 TΦ[t̂1π]
G1 //

G0 TΦ[ŝ0π]
F0 //

G0 TΦ[t̂0π]
G0 //

Figure 4.1.A. An operation in an endomorphism operad
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4.1.5. For example, a composition law for •
&&
88

�� ��
�� •

&&
88

�� ��
�� • is given by

the map of spans

G2

G1

G1

G0

G0

??������

XX22222222222OO \\99999999999999999999

77ooooooooooooo

OO

TΦ

[
P Q R

f
��

f ′
@@α

��

g
��

g′
@@β��

]

TΦ [P Q Rf // g // ]

TΦ [P Q Rf ′ // g′ // ]

TΦ[P ]

TΦ[R]

??��
XX22222222OO

99999999999999

\\999

77ooooooooo

OO

//

S 7→ P, T 7→ R,
c1(x) 7→ g(f(x)) :R //

S 7→ P, T 7→ R,
c1(x) 7→ g′(f ′(x)) :R

//

C 7→ P //

C 7→ R //

while the apex map interprets S as P , T as R, s1(x) as f(g(x)), t1(x) as

f ′(g′(x)) (all as forced by the lower dimensions of the span), and c2(x) as

the term

Jy,y′:Q,u:IdQ(y,y′). Id(g(y),g′(y′))( y.β(y); f(x), f ′(x), α(x))

of type IdR( g(f(x)) , g′(f ′(x)) ). (The reader tempted to try actually reading

this term is encouraged to re-derive it herself instead: this will certainly be

more enlightening, and probably also easier.)

4.1.6. Since the cells involved in T[π] are generic, this operation can be im-

plemented as a composition law in any type theory with Id-types. Generally,

by 2.3.16, End(G•) acts naturally on C̀ −ω , allowing us to lift C̀ −ω to a functor

into End(G•)-Alg which by abuse of notation we again denote C̀ −ω :

DTTΦ Ĝ
C̀ −ω //DTTΦ

End(G•)-Alg

C̀ −ω
66lllllllllllllllllll

End(G•)-Alg

Ĝ

U

��,
,,,,,,

Moreover, since U reflects and the original C̀ −ω preserves all limits, so

does the lifted C̀ −ω , and it is easily seen to be finitary; so by the adjoint
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functor theorem for locally presentable categories [AR94, 1.66], C̀ −ω has a

left adjoint, realising any End(G•)-algebra as a theory. (Its cells are realised

as types and terms as under TΦ[−], and the End(G•)-action specifies various

definitional-equality axioms between them.)

4.1.7. As mentioned before, this is not quite what we want; C̀ −ω (T) has only

types as objects, where we would like contexts. To remedy the situation, we

can compose with the “types to contexts” endofunctor (−)cxt//� on DTTΦ,

and define C̀ (T) := C̀ −ω (Tcxt//�).

Now the objects of C̀ (T) are closed types of Tcxt//�, i.e. closed contexts

of T, just as we wanted; and the fullness of the functor Tcxt // � // T

ensures that higher cells also are as we intended.

This adjustment is not quite so ad hoc as it may appear: if (−)cxtslice�

were indeed a monad (as it very nearly is), then C̀ ω would itself be a repre-

sentable functor, on the Kleisli category of (−)cxtslice�.

4.1.8. In Section 4.3 below, we will investigate the question of when End(G•)

is contractible, or at least of finding a contractible suboperad. This will

require, however, the development of some more type-theoretic machinery.

For now, we may content ourselves with showing that at least in dimensions

≤ 1, End(G•) is very nice.

Specifically, recall from 2.3.9 the discrete/truncation/indiscrete adjunc-

tions

1-Opd oo tr1

D //

I

// ω-Opd

.

Now take PCat ∈ 1-Opd to be the operad for categories, i.e. the terminal

1-operad. Then there is a map ψ : PCat
// tr1End(G•) (or equivalently

D(PCat) //End(G•)), so that truncating algebras and pulling back along

this map induces a map End(G•)-Alg // Cat, which when applied to
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C̀ ω(T) recovers the classifying category C̀ (T):

DTTΦ

End(G•)-Alg

C̀ ω

77oooooooooooooooo

End(G•)-Alg tr1End(G•)-Alg
tr1

// tr1End(G•)-Alg Cat
ψ∗

//End(G•)-Alg

Ĝ
��999999999

tr1End(G•)-Alg

Ĝ1

��999999999
Cat

Ĝ1

�����������

DTTΦ Ĝ
C̀ ω // Ĝ Ĝ1

tr1

//DTTΦ

Cat

C̀

22

This points us towards an easy abstract construction of the map ψ. We

know that the 1-globular object G0
oooo G1 represents the original classifying

category functor C̀ : DTTΦ
//Cat; so by the Yoneda lemma, G0

oooo G1

must carry some co-category structure; but such a structure corresponds ex-

actly to an operad map of the form we want, since tr1End(G•) ∼= End(tr1G•).

4.1.9. However, constructing ψ concretely gives us an excuse to analyse low

dimensions of End(G•). A 0-dimensional operation in End(G•) is perforce

just a unary map G0
// G0 (there is only one 0-dimensional pasting dia-

gram); so the single 0-dimensional operation in Cat (the identity on 0-cells)

we send to the identity map 1G0 . (There is no freedom here: ψ must preserve

the operad structure, and 1G0 is the 0-dimensional operad unit of End(G•).)

A 1-dimensional pasting diagram is just a path path l = (· //· // . . . //·)

of some length l ≥ 0. An operation of shape path l in End(G•) with source

and target 1G0 is a map of cospans

G0

G1
s ??���

G0

G1

t

YY333333 G0

TΦ[p̂ath l]s ??���

G0

TΦ[p̂ath l]

t
YY333333

G1 TΦ[p̂ath l]
H //

G0 G0

G0 G0

But TΦ(path l) admits a very simple axiomatisation

� ` Ai type
(0 ≤ i ≤ l)

~x : Aj−1 ` fj(a) : Aj
(1 ≤ j ≤ l)

simply adjoining basic types and type formers

A0

f1 // A1

f2 // ...
fl // Al .
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The source and target maps of the right-hand cospan interpret the type

of G0 as A0 and Al respectively; so suitable maps H : G1
// TΦ[p̂ath l]

correspond to interpretations of the type-constructor of G1 as some term

x : A0 ` t(x) : Al

For the unique l-ary operation of PCat, we thus use the obvious composite

term fl(fl−1(. . . (f1(x)) . . .)). It is routine to check that this indeed gives an

operad map.

4.1.10. When Φ gives a particularly well-behaved type system, we can say

a little more.

In the case when Φ consists of just the Id-rules, then firstly G0 has no

other closed types besides the basic C, so 1G0 is its only endomorphism,

and the only element of End(G•) in dimension 0; and secondly, TΦ[p̂ath l]

enjoys both normalisation and canonicity2, so the “obvious term” we used

was in fact the only possible such term: there is only one l-ary operation in

End(G•) with source and target 1Gn0.

So in this case, the map PCat
// tr1End(G•) (always injective, since

PCat is terminal) is moreover surjective, and gives an isomorphism tr1End(G•) ∼=

PCat.

In richer type systems, G0 will typically have more closed types (e.g.

C → C), and hence End(G0) will have more 0-dimensional operations. But

in important cases, such as when Φ consists of just the Id- and Π-rules,

we retain normalisation and canonicity for TΦ[p̂ath l], so by the argument

above our map is at least an isomorphism from PCat to the normalised core

of End(G•).

A variant for Π-types.

4.1.11. We can also consider a variant set of globes ΠGΦ
• , for any set of

constructors Φ including Π-types. The axioms for each ΠGn are selected

2canonicity: the property that every closed normal form is an intro (aka canonical)

form; there are no stuck (aka neutral) normal forms



4.1. GLOBULAR STRUCTURES FROM DTT 75

from rules i-src-Π, i-tgt-Π, i-cell-Π, analogously to the axioms for Gn. These

axioms differ from before in dimensions≥ 1, by using closed rather than open

terms:

� ` s1 : Πx:S0 T0

1-src-Π
� ` si : IdΠx:S0

T0 Id(si−1, ti−1)
i-src-Π

etc.

As before, we get a Kan adjunction

Ĝ
TΦ[−]Π

//oo
ΠC̀ −ω

DTTΦ

and lift ΠC̀ −ω to End(ΠG•)-Alg; also as before, we “correct” the functor
ΠC̀ −ω by precomposing with (−)cxt//�, to get an alternate candidate for the

classifying weak ω-category:

ΠC̀ ω : DTTΦ
// End(ΠG•)-Alg

The objects of ΠC̀ ω(T) are the same as those of C̀ ω(T). The difference

is in the higher cells: rather than open context maps, 1-cells are now context

maps from the empty context � into “Π-contexts”, and higher cells are

context maps from � into the identity contexts over these.

Thus, while not exactly what we first thought of, this is a reasonable

alternative candidate for the “classifying weak ω-category”.

4.1.12. There is an evident map of globular objects G• //ΠG•, interpreting

the open term-constructors of G• by applications of the closed terms of Π-

type in ΠG•. This induces a natural map C̀ Π
ω (T) // C̀ ω(T).

In theories with Π-ext, there is also a map ΠG• // G• coming the

other way. In the presence of Π-ext-app-def, these maps exhibit ΠG• as a

retraction of G•, and hence ΠC̀ ω as a retract of C̀ ω.

4.1.13. We would also like to repeat the construction of 4.1.8 and construct

a map

Πψ : PCat
// tr1End(ΠG•),
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and indeed we can do so, under the further assumption that Φ also contains

the (definitional) η-rule for Π-types. In this case, we interpret the l-ary

operation using the map ΠG1
//TΦ[p̂athl] which interprets the basic term

c1 : S0 → T0 as the composite term λx : S0. (cl ·(cl−1 · . . . (c1 ·x) . . .)). This

certainly preserves the operad composition; the η-rule required to ensure

that it preserves the operad unit, i.e. that in the case l = 1, the resulting

operation (sending c1 to λx. c1 ·x) is just the identity on ΠG1.

In the case where Φ is exactly (Id,Π,Π-η), then both normalisation

and canonicity hold , but C0 is not the only closed type of ΠG0. So
Πψ : PCat

// tr1End(ΠG•) is not an isomorphism in this case, as it is not

surjective on 0-cells; but it is at least full on 1-cells.

4.2. Homotopical structures on DTT

Left and right maps in DTT.

4.2.1. In this section, we will set up various classes of left and right maps on

CwAΦ
� , with a view to applying the methods of 3.3.1 to find a contractible

operad acting on the globes.

As remarked in the introduction to this chapter, we will succeed only for

theories with Π-types and some extensionality rules. However, only one step

of the proof (showing that the reflexivity maps TΦ[π̂] //TΦ[π̂−] are right

maps) uses these extra rules; and it seems hopeful that a similar approach

could also apply for theories with only Id-types.

We therefore isolate and investigate a certain property of type systems,

J , which suffices for the proof of this step, and which seems to be of inde-

pendent interest. We discuss equivalent statements of J from several rather

different points of view: as a conservativity statement for certain theory

extensions; as a second-order form of the Id-elim rule; and as a form of ob-

servational equality for Π-types. J turns out to be derivable in theories with

the Π-ext-app rules; it seems plausible, but elusive, that it is admissible

for theories with just Id-types; and it may fail over intermediate theories.
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4.2.2 (Type and term extensions). For the remainder of this section, fix

some collection Φ of the constructors and rules of 1.1.4, and work in DTTΦ.

(The main cases of interest in the sequel are where Φ is either (Id), (Id,Π, η),

or (Id,Π,Π-ext,Π-ext-app).)

For n ≥ 0, we define theories TΦ[Γ(n)], TΦ[Γ(n) ` A], and TΦ[Γ(n) ` a :

A] to be the free theories on, respectively, a context of length n; a dependent

type, in context of length n; and a term in such a type. Axiomatically, each

may be specified by some subset of the rules below: TΦ[Γ(n)] by the rules

i-cxt, for 0 ≤ i < n; TΦ[Γ(n) ` A], by these rules together with n-type; and

TΦ[Γ(n) ` a : A] by all of the above, together with n-term:

Γ ` a0 : A0 . . . Γ ` ai−1 : Ai−1

Γ ` Ai(a0, . . . , ai−1) type
i-cxt

Γ ` a0 : A0 . . . Γ ` ai−1 : Ai−1

Γ ` A(a0, . . . , ai−1) type
i-type

Γ ` a0 : A0 . . . Γ ` ai−1 : Ai−1

Γ ` a(a0, . . . , ai−1) : Ai(a0, . . . , ai−1)
i-term

(Of course, we have T[Γ(n−1) ` A] ∼= T[Γ(n)]; we retain the distinction

just for notational clarity.)

4.2.3. The importance of these theories lies in their universal mapping prop-

erties. For any theory T, maps TΦ[Γ(l)] //T correspond precisely to con-

texts of length n in T; maps TΦ[Γ(l) ` A type] // T, to types over such a

context; and maps TΦ[Γ(l) ` a : A] // T to terms of such a type.

An analogy can profitably be drawn here between type theories and

higher categories. Globular higher categories are made up of cells, which

are represented by the free n-categories on individual cells. Similarly, type

theories are made up of judgements—contexts, types, and terms—which are

represented by the theories above.

But now, many important aspects of higher category theory—in particu-

lar, their homotopical structure—can be described in terms of the inclusions

of boundaries into those basic cells. Much of this carries over substantially
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to type theories once we observe that judgements have boundaries too —

indeed, this idea is already implicit in referring to e.g. Γ ` a : A as a term

judgement : we are thinking of a as the essential substance of the judgement,

and the function of Γ and A as just to situate a within its surroundings, as

seen in the form of the algebraic rules of 1.1.8.

The “inclusions of boundaries into cells” are defined as follows:

Definition 4.2.4. The universal type (resp. term) extensions are the inclu-

sion maps

ityn : TΦ[Γ(n)] // // TΦ[Γ(n) ` A],

itmn : TΦ[Γ(n) ` A] // // TΦ[Γ(n) ` a : A].

A basic term/type extension is a pushout of one of the universal ex-

tensions. A term/type/term-and-type extension is any composite (possibly

transfinite) of basic extensions.

We indicate such extensions in diagrams by tailed arrows: T // // S.

So in syntactic terms, a basic term extension is just any extension of a

theory T by a new term-constructor

x1 : A1, . . . , xn−1 : An−1(~x<n−1) ` a(~x) : An(~x),

where the Ai (for i = 1, . . . n) are existing types of the theory. Similarly,

a basic type extension is an extension by a single algebraic type-forming

axiom. A general term/ype/term-and-type extension is any extension of

theories formed by iteratively adding (arbitrary sets of) axioms of these

forms.

In the langage of Section 2.1, the classes of term, type, and term-and-

type extensions are just classes of J -cell complexes for evident suitable

choices of J . As such, they are immediately closed under composition,

identities, and pushouts.

Definition 4.2.5. A term-contraction (resp. type-contraction, contraction)

on a map F : T //S is a J �-structure, where J is the set of universal term
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(resp. type, term and type) extensions. Explicitly, it is a function assigning

a diagonal filler to every square

TΦ[Γ(n) ` A type]
��

itmn
��

// T

F
_��

TΦ[Γ(n) ` a : A] //

88

S

with left-hand-side a universal type (term, term or type) extension.

A map admitting such structure is called term-contractible (type-contractible,

contractible); assuming choice, this is equivalent to being weakly orthogonal

to all universal term (type, term and type) extensions.

We will write Rtm, Rty, Rtmty for the classes of contractible maps, and

indicate them in diagrams by double-headed arrows: T � ,2S.

4.2.6. By 2.1.3, a type-contractible (term-contractible, contractible) map

in fact has canonical liftings against all type (term, term-and-type) exten-

sions; and the classes Rtm, Rty, Rty are closed under identities, transfinite

composition, pullbacks, and retracts.

Also, the universal extensions were axiomatised purely algebraically over

the structural core, with no specific constructors required. In other words,

for any Φ, the universal extensions in DTTΦ are the image under the left

adjoint F : DTT //DTTΦ of the universal extensions in DTT.

It follows immediately that contractions and contractibility are preserved

and reflected by the forgetful functor U : DTTΦ
//DTT, right adjoint to

F .

4.2.7. Contractibility is familiar in syntactic terms as a form of conserva-

tivity. Term-contractibility of a translation F : T //S, for instance, states

that whenever we have a type Γ `T A type of T whose interpretation in S

is inhabited by some term F (Γ) `S a : F (A), it is already inhabited in T

by some term Γ `T a : A, which moreover is a lifting of a, in that we can

prove F (Γ) `S F (a) = a : F (A) in S. Type-contractibility asserts the same

sort of lifting property for types derivable in S over a context from T.
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This syntactic formulation of type-contractibility has been considered

previously by Hofmann as a conservativity principle: see the discussion of

logical frameworks in [Hof97, §4], and Example 4.2.10 below.

4.2.8. Note that while neither form of contractibility directly provides any

kind of lifting for definitional equality judgements, in the presence of identity

types one can obtain weak forms of such liftings just from term-contractibility.

If for instance Γ `T a, a′ : A and F (Γ) `S F (a) = F (a′) : F (A), then term-

contractibility lets us lift r(F (a)) to some term Γ `T r(F (a)) : IdA(a, a′).

Essentially, definitional equality for terms implies propositional equal-

ity, and for types, isomorphism-up-to-propositional-equality (“homotopy-

equivalence”); and since these are matters of term-judgements, they can be

lifted along a term-contractible map.

Often, term-contractibility implies type-contractibility. In particular, in

many important theories, the type-forming axioms do not mention any of

the specific term-constructors. From this it follows that if F : T // S is a

morphism between two such theories, where S has the same type-forming

rules as T, then if F is term-contractible, it is also type-contractible. How-

ever, we will not need this fact in the sequel.

Example 4.2.9. For any context morphism f : ∆ //Θ, the induced map

of slices f∗ : T//Θ // T//∆ is orthogonal to itm0 just if f admits an elim-

structure as defined in 1.2.8 above—that is, if f is a left map in the sense

of Gambino–Garner [GG08]—or syntactically, if f admits an “elimination

rule” (and associated computation rule):

~y : Θ ` C(~y) type ~z : ∆ ` d(~z) : C(f(~z))

~x : Θ ` elimf (~y.C, ~z.d; ~x) : C(~x)

TΦ[� ` A type]
��

itm0
��

C // T//Θ

f∗

_��
TΦ[� ` a : A]

d //

eC,d

88

T//∆
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It is fully term-contractible exactly if every pullback of f along a depen-

dent projection is a Gambino–Garner left map, or equivalently if it supports

the “Frobenius” form of this elimination rule, with extra dependent premises

in the context, i.e.

~y : Θ, w : Ξ(~y) ` C(~y, ~w) type . . .

This follows from f alone being a left map as long as T has Π-types (by

standard arguments), or identity types (by [GG08, 5.2.1]).

In particular, for every reflexivity map ~r : ∆.B //∆.B.B.IdB, the map

r∗ between slices is term-contractible; similarly for the one-ended variant of

Id-elim.

Analogously to the above, “large elimination” rules give type-contractibility;

but this will not concern us here.

Example 4.2.10. As remarked above, if T is any theory over some stan-

dard type system and TLF is its presentation in a logical framework, then

according to [Hof97, §4], the interpretation of T in TLF is type-contractible.

More precisely, many standard type systems Φ (including all the com-

binations of rules and constructors we have considered) admit, in a uniform

manner, a presentation by purely algebraic rules over the logical framework

system LF (consisting, roughly, of strong Π-types and a single universe),

and moreover (soundness of the presentation) each theory T has a natural

interpretation into its LF presentation TLF. In categorical terms, we have a

functor DTTΦ
//DTTLF, and natural transformation

DTTΦ DTTLF

(−)LF
//DTTΦ

DTT

U
��88888888

DTTLF

DTT

U
����������3;nnnnn

nnnnn

Then the results of [Hof97, §4] state that the components T // TLF of

this natural transformation are type-contractible. (Recall from 4.2.6 that
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contractibility of a map of theories is independent of what system it is con-

sidered over.)

In fact, although not explicitly stated there, the proof given also shows

(since the presheaf model is full) that these translations are faithful : we can

lift not only terms, but definitional equalities between them.

4.2.11. Since DTT is the category of models of an algebraic theory, and

so is locally presentable, we can use the machinery of [Gar09d] (the “alge-

braic small-object argument”) to construct an algebraic weak factorisation

system3 on DTT, using the universal extensions (term, type, or both) as

the generating left maps. The algebraic right maps in the resulting system

are then just maps equipped with (term-, type-) contractions; the algebraic

left maps are maps presented as (term, type, term-and-type) extensions.

We can think of the maps ityn , itmn here as generating cofibrations in a

putative model structure on DTT, and the contractible maps as the trivial

fibrations; this idea will be powerful in our discussion of J below.

Extensions by propositional copies: the conservativity princi-

ple J .

4.2.12. One of the fundamental lemmas for many logical systems is that

extension by definitions should be well behaved: that if we extend a theory

T by adding a new term a′, and an axiom that a′ is equal to some pre-

existing term a of T, then the resulting theory is in some sense equivalent

to T.

For dependent type theories, this is clear when the new constructor is

posited to be definitionally equal to an existing one: the resulting theory

T[a′ := a] is isomorphic to T itself.

However, one may also wish to understand a weaker situation, where

the new term is only posited to be propositionally equal to the existing one;

3aka natural weak factorisation system
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that is, where we extend T by axioms

~x : Γ ` a′(~x) : A(~x) Γ ` l(~x) : IdA(a′(~x), a(~x))

Briefly, denote the resulting theory by T[a′ :≈ a], or when more detail is

needed, by T[~x : Γ ` a′(~x) :≈l(~x) a(~x) : A(~x)] or similar.

Categorically, extensions of this form are precisely pushouts of the uni-

versal ones

TΦ[Γ(n) ` a : A] // // TΦ[Γ(n) ` a : A][a′ :≈ a].

We will call (possibly transfinite) compositions of such pushouts extensions

by propositional copies, and write them as T[a′i(~x) :≈ ai(~x)]. We are once

again dealing with a class of relative cell complexes, so it is, as ever, closed

under pushouts and (transfinite) composition.

Note also that each of the source or target inclusions Gn
// // Gn+1, for

n ≥ 1, is an extension by propositional copies.

What can we now say about the inclusion T // //T[a′(~x) :≈ a(~x)]? It is

certainly not an isomorphism in general, nor indeed contractible, since a′ will

generally not be in its image. On the other hand, it is by definition a term-

extension. It is also certainly a monomorphism, since it has a retraction

T[a′(~x) :≈ a(~x)] // // T, given by interpreting a′ as a and l as r(a).

Our principle J describes one sense in which T[a′(~x) :≈ a(~x)] may rea-

sonably be equivalent to T:

Definition 4.2.13. Say that J holds for Φ if for every extension by propo-

sitional copies, the retraction T[a′(~x) :≈ a(~x)] // // T is term-contractible.

(Actually, we will not need the full strength of the principle as stated

here: for our purposes, it would be enough to show that this holds when

T can be axiomatised over Φ without any definitional equality axioms, i.e.

when TΦ
// // T is a term-extension, or in homotopy-theoretic language,
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when T is a cofibrant theory; we will also only require the case where the

term a(x) adjoined is dependent over just a single type.)

Why is this a plausible principle? If we restrict to the case of adjoining

copies of closed terms, i.e. in the case where Γ = �, then it is just (the

one-ended form of) the Id-elim rule. Syntactically, this is the fact that

working in an extension by closed terms is equivalent to working over an

extended context, with the new variables. Categorically, the extension and

its retraction in this case are isomorphic to the maps of slices

T T//�oo ∼= //T

T[a′ :≈ a]

SS

LL
T[a′ :≈ a]

T

X��
T//�

T//(x : A, u : Id(x, a))

RR

LL
T//(x : A, u : Id(x, a))

T//�
X��

T[a′ :≈ a] T//(x : A, u : Id(x, a))oo ∼= //

induced by the retraction of contexts

� (x : A, u : Id(x, a))
� ,2
a,r(a)

// (x : A, u : Id(x, a))�
!

oooo .

Then the map (a, r(a)) : � // //x : A, i : Id(x, a) is the introduction map

for an instance of the one-ended form of Id-elim, so by Example 4.2.9, the

retraction of slices (a, r(a))∗ is term-contractible.

Thus J asserts that something which holds derivably for closed terms also

holds admissibly for open terms: in particular, that open terms of identity

types satisfy the same rules as closed ones do.

Unlike most type-theoretic principles, is important to note, however,

that J is not a property of a theory in isolation, but of a category of theo-

ries, of what I have here called a type system.

Another heuristic motivation for J is homotopy-theoretic. Above, we

suggested that term-extensions and term-contractible maps could be the

cofibrations and trivial fibrations of a model structure on DTTΦ; now, the

basic extensions by propositional copies may be taken as candidates for gen-

erating trivial cofibrations, so any composite of pushouts of these must again
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be a trivial cofibration. it is certainly always a term-extension, so to show it

trivial, it would suffice to show that its retration is a trivial fibration, which

is exactly what J asserts.

By the preceding remark, one way to prove J is to reduce the general case

to the closed case, via Π-types. This is possible, as long as we assume enough

ext rules to make sure that identity types on Π-types are well-behaved:

Proposition 4.2.14. J holds for (Id,Π,Π-ext,Π-ext-app-def) and any

set of constructors extending this.

Proof. The diagram

T[a′(~x) :≈ a(~x) : A(~x)] T[f :≈ (λ~x. a(~x)) : Π~xA(~x)]
//
T[f :≈ (λ~x. a(~x)) : Π~xA(~x)]T[a′(~x) :≈ a(~x) : A(~x)] nnT[a′(~x) :≈ a(~x) : A(~x)]

T
��

T[f :≈ (λ~x. a(~x)) : Π~xA(~x)]

T

_��
T T

exhibits its left-hand side (the map we wish to show contractible) as a re-

tract of its right-hand side. (The fact that the squares commute and are a

retraction require the computation rules for ext.) But the right-hand side is

just the closed case of J , which we’ve seen is contractible. �

However, Π-ext-app-def is a very strict rule: it holds in for instance the

groupoid model, but one would not expect it to hold in most weak higher-

categorical models. Happily, though, with a little more work the hypotheses

here can be weakened.

Another way to see J is as a close cousin of Garner’s rule Π-Id-elim.

Recall that this latter asserts that a version of Id-elimination holds over

products of identity types Πx Id(f ·x, g · x): that these types are inductively

generated by the terms λx.r(f ·x). But terms of such types are very close to

the open terms of l(~x) of identity type that appear in J—and the connection

may be made clear by working in a second-order formulation, using a logical

framework as metalanguage. In these terms, a second-order version of J

can be seen as being a strong functional extensionality principle, similar to
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Π-Id-elim, but stated without Π-types. It is then not hard to show that this

form of J is derivable from Π-Id-elim, and so:

Proposition 4.2.15. J holds for (Id,Π,Π-ext,Π-ext-app), and more gen-

erally for any set of constructors which implies Π-Id-elim and satisfies Hof-

mann’s conservativity theorem 4.2.10 for logical frameworks.

Proof. Recall the statement of the rule Π-Id-elim:

Γ, u, v : Πx:AB(x), w : Πx:A IdB(x)(u · x, v · x) ` C(u, v, w) type

Γ, f : (x :A)B(x) ` d(f) : C(λf, λf, λ(r ◦ f))

Γ ` k, k′ : Πx:AB(x) Γ ` l : Πx:A IdB(x)(k ·x, k′ · x)

Γ ` L(C, d, k, k′, l) : C(k, k′, l)
Π-Id-elim

and its associated computation rule Π-Id-comp, concluding:

L(C, d, λh, λh, λ(r ◦ h)) = d(h) : C(λh, λh, λ(r ◦ h)).

(Recall that (x :A)B(x) and [x :A]b(x) denote type- and term-abstraction

in the metalanguage, while u · x denotes application.)

There are three essentially independent differences between Π-Id-elim

and the most natural second-order form of J : firstly, the essential difference,

between open terms and terms of Π-type; secondly, the difference between

one-ended and two-ended forms; and thirdly, the difference between a term

dependent on one and on several variables. We tackle these one at a time,

via several intermediate rules.

First, we consider a two-ended form of J , with the term adjoined depen-

dent on just one variable:

Γ, k, k′ : (x :A)B(x), l : (x :A)IdB(x)(kx, k
′x) ` C(k, k′, l) type

Γ, f : (x :A)B(x) ` d(f) : C(f, f , r ◦ f)

Γ ` k, k′ : (x :A)B(x) Γ ` l : (x :A)IdB(x)(kx, k
′x)

Γ ` J
2(C, d, k, k′, l) : C(k, k′, l)

J-2o-2e
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with corresponding computation rule concluding that

J
2(C, d, k, k, r ◦ k) = d(k) : C(k, k, r · k).

We can now define the eliminator J in terms of L by:

J(C, d, k, k′, l) := L( [k, k′, l]C([x]k ·x, [x]k′ ·x, [x]l·x), d, λk, λk′, λl).

It is routine to verify that under the hypotheses of the J rule, this typechecks,

and satisfies the required computational behaviour.

Next we pass to a one-ended form:

Γ ` k : (x :A)B(x)

Γ, k′ : (x :A)B(x), l : (x :A)IdB(x)(kx, k
′x) ` C(k′, l) type

Γ ` d : C(k, r ◦ k)

Γ ` k′ : (x :A)B(x) Γ ` l : (x :A)IdB(x)(kx, k
′x)

Γ ` J
1(k,C, d, k′, l) : C(k′, l)

J-2o-1e

with computation rule concluding J
1(k,C, d, k, r ◦ k) = d(k) : C(k, r · k).

This can be derived from the previous form via a couple of auxiliary

terms: under the hypotheses of J-2o-1e, we define

J
1(k,C, d, k′, l) :=

J
2(

[k1, k2 : (x :A)B(x), m : (x :A)Id(k1x, k2x)]

( l1 : (x :A)Id(kx, k1x), l2 : (x :A)Id(kx, k2x),

n : (x :A)Id((mx)∗(l1x), l2x), w : C(k2, (x :A)(mx)∗(l2x)) )

C(k1, l1),

[f, l1, l2, n] J
1-aux(f, l1, l2, n),

k, k′, l

) (r ◦ k, l, , d)



88 4. THE CLASSIFYING WEAK ω-CATEGORY OF A THEORY

where

J
1-aux(f, l1, l2, n) :=

J
2(

[u1, u2 : (x :A)Id(kx, fx), n : (x :A)Id(u1x, u2x)] (w : C(f, u2)) C(f, l1),

[h : (x :A)Id(kx, fx)] ([w : C(f, h)] w),

l1, l2, n

)

in which and expressions of the form y∗z denote various terms which are

easy to derive once their type is inferred.

(This is just analogous to the usual derivation of the one-ended form of

Id-elim from the two-ended.)

Thirdly, to give a second-order version of the fully general form of J , we

must replace the type A in the rules above by a context ∆:

Γ ` k : (~x :∆)B(~x)

Γ, k′ : (~x :∆)B(~x), l : (~x :A)IdB(~x)(k~x, k
′~x) ` C(k′, l) type

Γ ` d : C(k, r ◦ k)

Γ ` k′ : (~x :∆)B(~x) Γ ` l : (~x :∆)IdB(~x)(k~x, k
′~x)

Γ ` J(k,C, d, k′, l) : C(k′, l)

This is again straightforward but still lengthier than the preceding deriva-

tion; for this reason, and also since as remarked above we will only apply J

when ∆ consists of a single type, we omit the details here.

From this last second-order form we are ready to deduce the original

form of J , but it is still not quite immediate. Since we have used second-

order reasoning, this form gives us contractibility not between a theory T

and an extension T[a′(~x) :≈ a(~x)], but between TLF and its extension by

terms a′ : [~x]A, l : [~x]Id(a′(~x), a(~x)) (briefly, TLF[a′, l]). But given any type
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to lift from T to T[a′(~x) :≈ a(~x)], consider the diagram

• T[a′(~x) :≈ a(~x)]// T[a′(~x) :≈ a(~x)] T[a′(~x) :≈ a(~x)]LF
� ,2 T[a′(~x) :≈ a(~x)]LF TLF[a′, l]∼= //•

•

��
itmn

��

T[a′(~x) :≈ a(~x)]

T
��

TLF[a′, l]

TLF

_��
• T// T TLF

� ,2

• T[a′(~x) :≈ a(~x)]//

The contractibility of the maps T[a′(~x) :≈ a(~x)] //T[a′(~x) :≈ a(~x)]LF and

TLF[a′, l] //TLF lets us lift to a term in T[a′(~x) :≈ a(~x)] which commutes

correctly down to TLF; but now by faithfulness of T // TLF, it must in

fact commute correctly already into T. �

(It is tempting to wonder if the can be reversed; however, this is at least

not obviously possible. The obvious candidate for defining L in terms of J,

L(C, d, k, k′, l) := J( [k, k′, l]C(λk, λk′, λl), d, [x] k ·x, [x] k′ ·x, [x] l·x),

does indeed typecheck successfully; but the desired computation rule only

holds up to propositional equality, not definitional.)

Thus in theories with reasonably strong functional extensionality prin-

ciples, J holds, and holds robustly: it is derivable, so will continue to hold

under strengthenings of the system. However, it can fail as we weaken the

system:

Proposition 4.2.16. For any set of constructors Φ including Π-types, J

implies a weak form of functional extensionality: if x : A ` k(x), k′(x) : B

and x : A ` l(x) : Id(k(x), k′(x)), then there is some term l̂ for which

` l̂ : Id(λx. k(x), λx. k′(x)).

Proof. J tells us that the map TΦ[k(x), k′(x), l(x)] // // TΦ[k(x)] is term-

contractible; applying this to the type Id(λx. k(x), λx. k′(x)) upstairs and

the term r(λx. k(x)) downstairs yields a term as desired. �

Corollary 4.2.17. J fails for (Id,Π, η) and (Id,Π).
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Proof. The well-known failures of ext in these systems are also failures of

the conclusion of Proposition 4.2.16. �

However, these failures involve essential use of Π-types.

Conjecture 4.2.18. J holds for (Id).

Proposition 4.2.17 shows that if the conjecture is true, then J is not

stable under extensions of the constructor sets, so can’t hold for (Id) as ro-

bustly as it does for (Id,Π,Π-ext-app): it may be admissible for the type

theory with just Id-types, but it cannot be derivable.

4.2.19 (Variant forms of J). In 1.1.6, we considered alternatives to the

standard Id-elim rules. Several of these correspond to analogous variants of

J .

Most straightforwardly, J as given here is most akin to the one-ended

form of Id-elim; analogously, one can also consider a two-ended form of J ,

in which a(~x) as well as a′(~x) is freely adjoined. Indeed, the applications of

J we use later are all of this form; but using the one-ended form somewhat

simplifies the presentation of the results of this section.

One could also consider a principle one might call K, along the lines of

Streicher’s K, giving contractibility between theories T[a(~x)] and T[a(~x); l(~x) :

Id(a(~x), a(~x))]. Like K, this of course collapses (at least up to propositional

equality) all the higher-dimensional structure.

Even stronger (or at least possibly so), one could consider a similar

analogue of the reflection rule, asserting that for any (pre-existing) terms

a(~x), a′(~x), l(~x) of a theory T, the map T // T[a′(~x) = a(~x), l(~x) =

r(a(~x))] is term-contractible; this simply adds, by fiat, all the propositional

consequences of refl.

4.2.20. This is perhaps the place to mention a homotopy-theoretic take on

the difference between J and K (or between J and K), and how K trivialises

the higher-categorical structure. In terms of the homotopy theory given by
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the universal extensions, J asserts roughly that the inclusion of one endpoint

into a line segment is a weak equivalence (and moreover is preserved by

certain pushouts along cofibrations). This is homotopically essential, and

powerful. K forces the inclusion of the basepoint into a loop to be a weak

equivalence. It is then clear that the structures represented by such loops

must be homotopically trivial, and more usefully, the topological intuition

which makes this clear can be pulled back through the dictionary to recover

the usual type-theoretic arguments.

4.3. Contractible operads; weak ω-categories from DTT

In this section, we investigate various conditions under which we can map

some contractible operad into End(G•), and hence give a weak ω-category

structure. In summary, we obtain a weak ω-structure:

(1) on C̀ ω, conjecturally (depending on J), for all theories with Id-

types;

(2) on C̀ ω, unconditionally, for theories with Id- and Π-types and the

extensionality rules Π-ext and Π-ext-app; and

(3) on ΠC̀ ω, for theories with Id- and Π-types and the Π-η rule.

End(G•) in theories with Id-types.

Theorem 4.3.1. If J holds for Id, then End(GId
• ) is contractible.

Proof. As seen in the second proof of Theorem 3.3.1, contractibility for this

operad demands that given any pasting diagram π ∈ T1(n), and (F0, G0, . . . Gn−1)

as in Fig. 4.3.B, we must construct H to complete the map of spans; more

concisely, we must complete the triangle

∂Gn

[Fi,Gi]
//

��

��

TId[∂π̂] // // TId[π̂]

Gn

55 .
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Gn−1

Gn??���

Gn−1

GnYY333333

Gn−2

Gn−1
OO

Gn−2

Gn−1
^^<<<<<<<<<<<Gn−2

Gn−177ooooo

Gn−2

Gn−1
OO

G1

Gn−2

...

G1

Gn−2

...

G0

G1OO

G0

G1 ^^<<<<<<<<<<<<G0

G177oooooooo

G0

G1OO

TΦ[ŝπ]

TΦ[π̂]
??��

TΦ[t̂π]

TΦ[π̂]
YY333333

TΦ[ŝ2π]

TΦ[ŝπ]
OO

TΦ[t̂2π]

TΦ[ŝπ]

<<<<<<<

^^

TΦ[ŝ2π]

TΦ[t̂π]
77ooo

TΦ[t̂2π]

TΦ[t̂π]
OO

TΦ[ŝ1π]

TΦ[ŝ2π]

...

TΦ[t̂1π]

TΦ[t̂2π]

...

TΦ[ŝ0π]

TΦ[ŝ1π]
OO

TΦ[t̂0π]

TΦ[ŝ1π]

<<<<<<<<

^^

TΦ[ŝ0π]

TΦ[t̂1π]
77ooo

TΦ[t̂0π]

TΦ[t̂1π]
OO

Gn TΦ[π̂]
H

Gn−1 TΦ[ŝπ]
Fn−1

//

Gn−1 TΦ[t̂π]
Gn−1

//

Gn−2 TΦ[ŝ2π]
Fn−2

//

Gn−2 TΦ[t̂2π]
Gn−2

//

G1 TΦ[ŝ1π]
F1 //

G1 TΦ[t̂1π]
G1 //

G0 TΦ[ŝ0π]
F0 //

G0 TΦ[t̂0π]
G0 //

Figure 4.3.B. Contractibility in an endomorphism operad

The cases n = 0, 1 are dealt with by 4.1.8 et seq. above: in dimension 0,

contractibility is satisfied just by the existence of the 0-dimensional identity

operation; while in dimension 1, it demands the existence of composition op-

erations of each arity, which are supplied by the map ψ : PCat
//tr1End(G•).

On the other hand, when n > 0, it is immediate from the axiomatisations

given that the map ∂Gn
// //Gn is a term-extension. Also, according to the

pruning procedure described in 2.4.1 above, we can obtain TId[π̂] as an

extension of TId[ŝ1π] by propositional copies: it is a composition of maps

TId[ρ−] // //TId[ρ], each of which is an extension by propositional copies by

the pushout squares of 2.4.2. So provided J holds for DTTId, the retraction

TId[π̂] // // TId[ŝ1π]

(interpreting all identity cells as reflexivity terms) is term-contractible.
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Thus to complete the triangle above, it is sufficient to complete the

square

∂Gn

[Fi,Gi]
//

��

��

TId[π̂]

_��
Gn

// TId[ŝ1π]

,

i.e. to complete a triangle of the form

∂Gn

$$IIIIIIIII��

��
Gn

// TId[ŝ1π]

.

But now s1π is just some path l, so as in 4.1.9, 4.1.10 we have an explicit

axiomatisation of TId[ŝ1π], and we know that this theory enjoys canonicity.

So in trying to extend [Fi, Gi] along ∂Gn
// //Gn, we have interpreted i-src

and i-tgt in TId[ŝ1π], for i < n, and wish to interpret n-cell; i.e. we wish to

prove a propositional equality between the interpretations of sn−1(x) and

tn−1(x). But by canonicity, and the simplicity of our set of constructors, any

two terms of the same type in TId[ŝ1π] in context x :A0 are definitionally

equal; so interpreting cn as a reflexivity term, we are done. (Specifically, s1,

t1 must both be interpreted as the obvious composite of basic constructors

described in 4.1.9, and for i > 1, si and ti must be interpreted as the

reflexivity term over si−1, ti−1.) �

End(G•) in theories with Π-ext-app.

4.3.2. By turning our attention to theories with not only Id-types but also

Π-types, Π-ext, and Π-ext-app, we ensure that J holds unconditionally.

However, this comes at the possible cost of normalisation and canonicity.

Thus, in trying to repeat the argument above to show that End(G•) is

contractible, we fall at the last hurdle: we do not know that [Fi, Gi] gives

the “correct” map ∂Gn
// TΠ-ext-app[p̂ath l].
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To remedy this, we simply restrict to the sub-operad of operations

for which this holds. This is just an elaboration of the tactic used in

[GvdB10b], of restricting to the operad of point-preserving operations, as

discussed in 3.3.2.

Definition 4.3.3. For E any category with pullbacks, define a monoidal

category Ref1Glob(E) as follows:

An

An−1

s

��

An

An−1

t
��

A2

An−1

...

A2

A1

s

��

A2

A1

t
��

A1

A0

s

��

A1

A0

t
��

A1

A2

r

JJ

A1

An−1

r

GG

A1

An

r

DD
Objects in dimension n are globular objects A• of E , to-

gether with reflexivity data from dimension 1 : for 1 ≤ i ≤ n,

a map ri : A1
// Ai, such that siri+1 = tiri+1 = ri, and

r1 = 1A1 .

A map between two of these is a map (fi, gi, h) between

their “underlying” spans, with f0 = g0, f1 = g1, and commut-

ing with the reflexivity data in that firi = giri = rif1, and

hrn = rnf1.

The monoidal globular structure of Ref1Glob(E) is lifted

from that of Spans(E). Any tensor product A• ⊗k B•
in Spans(E) of globular objects is again globular, and re-

flexivity data on the multiplicands lifts naturally to reflex-

ivity data on the product; and similarly, the units over

globular objects are globular and carry natural reflexivity

data.

We thus have a monoidal globular category and faithful forgetful functor

Ref1Glob(E) // Spans(E).

(Note that, as the definition of the maps hints, the globularity condition

on objects in dimensions > 1 is not actually required here, and it would

arguably be more natural to omit it. However, all spans occurring in the

construction of endomorphism operads remain fully globular, so it makes

no difference for present purposes, and it simplifies the specification of the
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reflexivity data.)

Instantiating this construction with E = DTTop, the globes G• lift

(using their reflexivity maps) to a globular object in Ref1Glob(DTTop).

We thus obtain a new endomorphism operad for them; since the forgetful

functor is faithful, this is just a sub-operad of the old

EndRef1Glob(DTTop)(G•) // // EndSpans(DTTop)(G•)

consisting of operations as in Figure 4.1.A, satsifying the additional condi-

tion that whenever all the higher term-formers in T[π] are interpreted as

reflexivity terms, then the interpretations of the term-formers of G•n also

compute down to reflexivity terms.

4.3.4. From here we need to restrict still a little further before we have a con-

tractible operad: we need to look at just those operations which do the cor-

rect thing in dimensions ≤ 1. Specifically, the map ψ : PCat
// tr1End(G•)

is easily seen to factor through EndRef1Glob(DTTop)(G•); so let QΠ-ext-app

be the pullback

QΠ-ext-app EndRef1Glob(DTTop)(G•)// //QΠ-ext-app

Pstr-ω-Cat = IPCat

��

EndRef1Glob(DTTop)(G•)

Itr1EndRef1Glob(DTTop)(G•)

η
��

Pstr-ω-Cat = IPCat Itr1EndRef1Glob(DTTop)(G•)//
Iψ

//

(where I : 1-Opd // ω-Opd is the “indiscrete ω-operad” functor, right

adjoint to tr1 as described in 2.3.9); then QΠ-ext-app consists precisely of

those operations of EndRef1Glob(DTTop)(G•) whose ≤ 1-dimensional parts

lie in the image of ψ. We are now set up for:

Theorem 4.3.5. The suboperad QΠ-ext-app
// // End(G•) is contractible.

Proof. Contractibility in dimensions ≤ 1 holds by fiat: in these dimensions,

QΠ-ext-app is isomorphic to the terminal operad.

For higher dimensions, note that operations in this new operad are just

as in the old, except that additionally the maps involved must commute
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with the reflexivity data. So contractibility now demands that for π ∈ pdn,

and suitable (Fi, Gi)i<n, we must produce a map H : Gn
//TΠ-ext-app[π̂]

making both squares in the following diagram commute:

∂Gn

[Fi,Gi]
//

��

��

TΠ-ext-app[∂π̂]
��

��
Gn

//

_��

TΠ-ext-app[π̂]

_��
G1

F1=G1

// TΠ-ext-app[ŝ1π]

.

But the overall rectangle commutes, so (rearranging it as a square) the

desired filler follows by J . �

End(ΠG•) in theories with Id, Π, Π-η. Turning our attention to ΠG•,

and considering theories with the rules (Id,Π,Π-η), we are now well set up to

construct a contractible sub-operad QΠ of End(ΠG•). Specifically, take QΠ

to be the normalised core of End(ΠG•)—that is, all those operations whose

0-dimensional source and target are the operad unit 1ΠG0
. Since we have

canonicity, we do not need to restrict further as we did in the construction

of QΠ-ext-app.

Theorem 4.3.6. The operad QΠ is contractible.

Proof. The proof of Theorem 4.3.1 goes through almost verbatim. The only

difference is that the type-contractibility of the maps into which we factor

TΦ[π̂]Π // // TΦ[ŝ1π]Π does not depend on J , instead following just from

Example 4.2.9. �

Classifying weak ω-categories.

4.3.7. Theorems 4.3.1, 4.3.5, and 4.3.6 give three situations in which there

is a map from some contractible operad Q into End(G•) (or End(ΠG•)). In

each case, this induces a map L //Q //End((Π)G•), and hence a functor
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(“restriction of scalars”) End((Π)G•)-Alg //L-Alg = wk-ω-Cat. We thus

have:

Theorem 4.3.8.

(1) There is a functor C̀ ω : DTTΠ-ext-app
//wk-ω-Cat, giving the

“classifying weak ω-category” of any theory with at least Id-types,

Π-types, and the Π-ext, Π-ext-app rules.

(2) If J holds for Id, then we moreover have C̀ ω : DTTId
//wk-ω-Cat,

giving the classifying weak ω-category for any theory with at least

Id-types.

(3) There is a functor ΠC̀ ω : DTTId,Π
//wk-ω-Cat giving a variant

of the classifying weak ω-category, for any theory with at least Π-

types, Id-types, and the rule Π-η.

This statement, while pleasing, has a few loose ends which deserve to be

tied up.

4.3.9. Firstly, what can be said about non-contextual CwA’s? This is an

important question for applications, since CwA’s arising semantically are

rarely contextual, and we would like to get higher categories not just from

syntactically presented theories, but also from models.

Given a general CwA C, we can take C̀ ω(C //�), the classifying weak

ω-category of its contextual core. (Since //� is a coreflection, we could

equivalently use C̀ −ω .) Thinking of general CwA’s as semantic and contextual

ones as syntactically presented, this is just taking the classifying weak ω-

category of the internal language of C.

Fortunately, we have not lost much. Most semantic CwA’s, though not

contextual, are accessible, and hence equivalent to their contextual core, so

in these cases C̀ ω(C //�) should remain at least weakly equivalent to any

other reasonable definition of the classifying weak ω-category of C.

On the other hand, the loss of inaccessible objects seems inevitable:

there is no way to define “identity objects” over an arbitrary object, if one
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cannot express it as a context of types, and without this, it is not clear how

one would expect the object to participate as a 0-cell in the classifying weak

ω-category.

4.3.10. Secondly, there is an obvious abuse of notation: if J holds for Id,

then we are overloading C̀ ω not only with different codomains, a mild and

common sin, but also with different domains, a potentially worse one. Given

a theory T with at least the Π-Id-elim rule, we could compute C̀ ω(T) as

such a theory, or we could treat it as a theory over Id-, and compute C̀ ω(T)

from there. Will these agree? In other words, does C̀ ω commute with the

forgetful functor U : DTTΠ-ext-app
//DTTId, as in the following diagram?

DTTId

DTTΠ-ext-app

F

JJ
DTTΠ-ext-app

DTTId

U
��

DTTΠ-ext-app End(GΠ-ext-app
• )-Alg//

DTTId End(GId
• )-Alg//

End(GΠ-ext-app
• )-Alg

End(GId
• )-Alg
��

End(GΠ-ext-app
• )-Alg QΠ-ext-app-Alg// QΠ-ext-app-Alg

wk-ω-Cat
""EEEEEEEE

End(GId
• )-Alg wk-ω-Cat//DTTId

Ĝ**UUUUUUUUUUUUUUUUUUUUUUUU End(GId
• )-Alg

Ĝ
��777777

wk-ω-Cat

Ĝ ttiiiiiiiiiiiiiiiiiiiiiii

(?)a

Most parts of this diagram are easily seen to commute up to natural

isomorphism. The essential point is that the globes GΠ-ext-app
• are just the

image of GId
• under the left adjoint F : DTTId

//DTTΠ-ext-app, since their

axiomatisations involve only Id-types; and hence as functors into globular

sets, or even into End(GId
• )-algebras, we have DTTΠ-ext-app(GΠ-ext-app

• ,T) ∼=

DTTId(GId
• , U(T)).

This leaves, as the dubious part, the square marked by (?). This comes

down to the question of whether the corresponding square of operad maps

commutes

L

End(GId
• )--[[[[[[[[[[[[[[[[[[[[

End(GId
• )

End(GΠ-ext-app
• )

��

L

QΠ-ext-app

��9999999999

QΠ-ext-app End(GΠ-ext-app
• )//

(?)
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and now the subtlety emerges: the maps out of L are defined in terms of

the specific contractions used on QΠ-ext-app, and these in turn depend on

how precisely we have implemented J .

What we can at least see is that (by the normalisation results used in

4.3.1) End(GId
• ) //End(GΠ-ext-app

• ) factors through QΠ-ext-app, so it comes

down to commutativity of the triangle

L

End(GId
• )

44jjjjjjj

End(GId
• )

QΠ-ext-app

��
L

QΠ-ext-app

**TTTTTT (?)

This will certainly hold if End(GId
• ) //QΠ-ext-app is a map of operads-

with-contraction, i.e. iff it preserves the contraction; and it is fairly routine

(though rather notationally fiddly) to show that if the forgetful functor

U : DTTΠ-ext-app
// DTTId “preserves the implementation of J” in an

appropriate sense, then this will be the case.

However, it seems unlikely to the present author that the implementation

of J given above for theories with Π-ext-app could be preserved by U . This

defect can (as often in problems with contractions) be finessed by some ad

hoc modification of the contractions on the operads involved; but essentially,

this is a problem that should be resolved not by strict-higher-categorical

fiddling, but by the theory of weak higher-categorical equivalence, under

which the squares marked (?) would commute up to weak equivalence. In

lieu of the development of this theory, then, we leave a resolution of this

problem aside for now.

Such tools should also allow one to address the question of when ΠC̀ ω
may be equivalent to C̀ ω.

4.3.11. Finally, there is an abuse of terminology: what, if anything, does

the classifying weak ω-category classify?

As given at present, in the form of the functors (Π)C̀ ω : DTTΦ
//wk-ω-Cat

above, it cannot classify anything: that is, it cannot have a right adjoint,
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since it does not preserve the initial object, nor a left, since it does not pre-

serve the terminal object. (The initial theory in DTTΦ is TΦ, whose C̀ ω is

certainly non-empty, containing the empty context � as a 0-cell, and so is

not initial in wk-ω-Cat. Similarly, the terminal theory in each DTTΦ has

one context of each length l ∈ N, and so its C̀ ω will have N-many 0-cells.)

However, this is not surprising: in the passage from type theories to weak

ω-categories, we have forgotten much structure (and co-structure). One of

the next important steps in the current program should be the axiomati-

sation of higher-categorical structure corresponding to the structure on the

type theories, in such a way that the classifying ω-categories of theories

carry such structure, and (hopefully) do indeed appropriately classify some

kind of models in these structured higher categories.

For the 2-truncated case, this is well-worked-out in [Gar09c]. How-

ever, in higher dimensions, the understanding of appropriate “weak logical

structure” is at a very early stage of development; so this too is a story for

another day.



Bibliography

[AHW09] Steve Awodey, Pieter Hofstra, and Michael A. Warren, Martin-Löf complexes,
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