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Introduction

The study of homotopy theoretic phenomena in the language of type theory [33] is
sometimes loosely called ‘synthetic homotopy theory’ [8]. Homotopy theory in type
theory [4] is only one of the many aspects of homotopy type theory, which also includes
the study of the set theoretic semantics (models of homotopy type theory and univalence
in a meta-theory of sets or categories [3, 5, 7, 19, 32, 35]), type theoretic semantics
(internal models of homotopy type theory), and computational semantics [2], as well as
the study of various questions in the internal language of homotopy type theory which are
not necessarily motivated by homotopy theory, or questions related to the development of
formalized libraries of mathematics based on homotopy type theory. This thesis concerns
the development of synthetic homotopy theory.

Homotopy type theory is based on Martin-Löf’s theory of dependent types [25], which
was developed during the 1970’s and 1980’s. The novel additions of homotopy type
theory are Voevodsky’s univalence axiom [36, 37], and higher inductive types [21, 31, 33].
The univalence axiom characterizes the identity type on the universe, and establishes
the universe as an object classifier [29]. Higher inductive types are a generalization of
inductive types, in which both point constructors (generators) and path constructors
(relations) may be specified. A simple class of higher inductive types, which includes
most known higher inductive types, are the homotopy pushouts. When the universe
is assumed to be closed under homotopy pushouts, it is also closed under homotopy
coequalizers [33], sequential colimits [33], and propositional truncation [15]. For instance,
one way of obtaining the n-spheres [22] using homotopy pushouts is by setting S

−1 :≡ 0
and by inductively defining the (n + 1)-sphere S

n+1 to be the pushout of the span
1← S

n → 1. Then we can attach (n+ 1)-cells to a type X. Let f : (
∑

(a:A)B(a))→ X
be a family of attaching maps for some S

n-bundle B : A → BAut(Sn), where BAut(Sn)
is the type

∑

(X:U) ‖S
n ≃ X‖ of types merely equivalent to the n-sphere. We attach the

(n+ 1)-disks indexed by A to X by taking the homotopy pushout

∑

(a:A)B(a) X

A P.

f

π1 inr

inl

p

In this thesis we study dependent type theory with univalent universes that are closed
under homotopy pushouts, further developing the program set out in [33] on synthetic
homotopy theory. We will assume in this dissertation that every type family is classified
by a univalent universe, and that all universes are closed under homotopy pushouts, as
well as under the usual type constructors including identity types, Π- and Σ-types, and a

iii



iv INTRODUCTION

natural numbers object. The model in cubical sets by Coquand et al. [7] is a constructive
model for this setup, although the fact that it is closed under homotopy pushouts is
currently unpublished. Furthermore, we will exclusively work with objects that can be
described either as (dependent) types, or as their terms. In other words, the objects
of our study are all ‘formalizable’ in the sense that they can be encoded in computer
implementations of our setup of dependent type theory. Existing implementations of
dependent type theory, supporting univalent universes and homotopy pushouts, with
libraries developing synthetic homotopy theory, include the proof assistants Agda [26],
Coq [13, 6], and Lean [16], and parts of the material in this theses are formalized in each
of them.

Overview per chapter

In Chapter 1 we will first establish notation, although we will mostly follow the notation
from [33]1. Furthermore, we recall some of the most basic facts of homotopy type theory,
and then we will show that the univalence axiom establishes any universe as an object
classifier.

In Chapter 2 we will first recall the most basic properties of homotopy pushouts, and
then we will proceed to prove the descent property for pushouts, using the univalence
axiom. Note that the coherence problem of type theory plays a role in this chapter:
we would much rather have shown that the descent property holds for any homotopy
colimit, but this task requires the definition of an internal ∞-category. Some solace will
be offered in Chapter 6, where we will prove a descent property for any modality.

In Chapter 3 we will study reflexive graphs and, most importantly, reflexive coequal-
izers in type theory. We take interest in reflexive graphs, because the topos of reflexive
graphs (over sets) is cohesive over the topos of sets. The left-most adjunction is the
reflexive coequalizer which is left adjoint to the discrete functor. We will construct the
reflexive coequalizer as a pushout, so it exists under our assumptions, and we know in
some cases how to compute them into previously known operations. Here we run again
into the limitation of homotopy type theory, because we cannot establish the type of
reflexive graphs as the type of objects of an ∞-category, and neither can we establish
the reflexive coequalizer as an ∞-functor. However, to state and prove that the reflexive
coequalizer satisfies the universal property of the left adjoint of the discrete functor, we
only need composition of reflexive graph morphisms, and the action on morphisms of
the operation equipping a type with the structure of a discrete graph. The universal
property is indeed sufficient for many purposes. We then introduce the notion of fibra-
tions for reflexive graphs, and show that the fibrations are right orthogonal to the same
maps as the discrete reflexive graphs: morphisms between representables. It follows that
a morphism is a fibration if and only if it is cartesian. Then we proceed to prove the
descent property of reflexive coequalizers. We also note that diagrams over reflexive
graphs are just left fibrations of reflexive graphs, so we also obtain a descent theorem for

1A difference of practice between [33] and this thesis is that [33] doesn’t use the label ‘Proposition’
for any results at all, whereas we use propositions for statements that might be of independent interest,
but are not our main theorem. In this thesis, the label ‘Theorem’ is reserved for the main results that
were originally established in my thesis research, and is therefore used much more sparingly.
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diagrams over graphs. Of particular interest in the present work is the descent property
for sequential colimits. The contents of this chapter are joint work with Bas Spitters.

In Chapter 4 we will show that any function factors as a surjective function followed
by an embedding, even though we only assume that the universe is closed under pushouts
and the basic type constructors. Of course, it is of essential importance here that the
universe contains a natural numbers object. Our construction of the image of a map
proceeds by iteratively taking the fiberwise join of a map with itself, so we call it the
join construction. It follows from our construction that the image of a map from an
essentially small type into a locally small type (notions that are explained in Chapter 1),
is again essentially small. The join construction can be used to construct the quotient of a
type by a Prop-valued equivalence relation (i.e. an equivalence relation in the usual sense),
and it can be used to construct the Rezk completion of a pre-category. The construction
of set-quotients includes the construction of the set truncation, and the construction of
the Rezk completion includes the construction of the 1-truncation, and of Eilenberg-Mac
Lane spaces of the form K(G, 1) [23]. Following [23], the Eilenberg Mac-Lane spaces
K(G,n) for G abelian and n ≥ 2 can be constructed once we have constructed the
k-truncation for any k ≥ −2. We note that Eilenberg-Mac Lane spaces are important
classifying spaces in higher group theory, and so are the connected components of the
universe (which we show to be essentially small).

In Chapter 5 we consider general reflective subuniverses. Examples that we have at
our disposal at this point are the (−2)-, (−1)-, 0-, and 1-truncations. Most examples of
reflective subuniverses are obtained by localization at a family of maps. However, since
the only assumed homotopy colimits are pushouts, we will construct localizations only
in Chapter 7, and only of families between compact types, because we need more theory
in order to establish the necessary basic results. Thus, in Chapter 5 we focus on general
reflective subuniverses. We show that for any reflective subuniverse L, the subuniverse
L′ of L-separated types (i.e. types whose identity types are L-types) is again reflective.
It follows at once that the subuniverse of k-truncated types is reflective, for any k ≥ −2.
Furthermore, we will study several classes of maps related to a reflective subuniverse.
First of all, we study the L-equivalences, i.e. the maps that become an equivalence by
the functorial action of L, and second of all we study the L-connected maps, i.e. the
maps with fibers that become trivial after applying L. Clearly, any L-connected map
is also an L-equivalence, but the converse is one of the many characterizations of L
being lex given in [28]. Furthermore, we study modalities. One of the characterizations
of modalities is as reflective subuniverses that are Σ-closed, but we provide three more
equivalent definitions of modalities. One particularly important alternative definition
is that of a stable orthogonal factorization system, i.e. a pair (L,R) of two classes of
maps such that every map factors as an L-map followed by a R-map; the class L is left
orthogonal to the class R; and the pullback of an L-map is again a L-map. For any
modality #, the stable orthogonal factorization system associated to it consists of the
#-connected maps as the L-maps, and the #-modal maps as the R-maps. A final topic
for this chapter is the notion of accessibility for reflective subuniverses and accessible
modalities.

The contents from this chapter are selected from [28] and [12]. I began to study
reflective subuniverses with Mike Shulman and Bas Spitters, and continued to study
them with my MRC teammates Morgan Opie and Luis Scoccola, under the lead of Dan
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Christensen.

In Chapter 6 we recall from [38] the notion of #-étale map for an arbitrary modality
#. We prove a modal version of the descent theorem, which asserts that a maps into
#X from a #-modal type are equivalently described as étale maps into X. The #-
étale maps form the right class of a second orthogonal factorization system associated
to any modality: the reflective factorization system. The left class of this factorization
system is the class of #-equivalences. Using this factorization system we obtain that
the universal cover of a type X at a point x0 is the left-right-factorization of the map
1 → X. We then proceed to study the étale maps for the modality of discrete reflexive
graphs. Note that the type of all reflexive graphs isn’t exactly a universe, so it is not
possible to directly apply our previous observations about #-étale maps. Nevertheless,
most arguments are practically the same. Thus, we treat our section on #-étale maps
as a blue-print for our section of ∆-étale maps, and do most arguments a second time.
Such is the current state of homotopy type theory. What we get out is a generalized
flattening lemma, which states that for any morphism f : B → A factors uniquely as an
∆-equivalence followed by a fibration of graphs. We use this to show that the loop space
of the suspension of a pointed type X is the free H-space G with a base-point preserving
map X →∗ G. The generalized flattening lemma also applies to diagrams over reflexive
graphs, and in particular to sequential colimits. Moreover, the equifibrant replacement
can be constructed by a telescope construction. We show in this chapter that sequential
colimits commute with Σ- and identity types, and therefore also with pullbacks. In
particular, the sequential colimit operation sends sequences of fiber sequences to fiber
sequences. Moreover, we show that sequential colimits commute with k-truncation for
all k ≥ −2, from which it follows that sequential colimits commute with πk for any k ≥ 0.
We expect to be able to use these results also in showing that the spectrification of a
pre-spectrum is indeed a spectrum, but we haven’t done that yet.

The idea of a modal version of the descent theorem first arose in unpublished work on
reflexive graphs with Bas Spitters, in the spring of 2016. However, I only learned about
#-étale maps much later from Felix Wellen, and many of the results presented in §6.1
came out of a discussion I had with Felix Wellen and Mike Shulman, who also brought
my attention to the reflective factorization system of a modality, of which the classical
case is due to [11]. The material in §6.2.3 on the equifibrant replacement operation
on reflexive graphs is joint work with Bas Spitters. The material in §6.4 on sequential
colimits is joint work with Floris van Doorn and Kristina Sojakova [14], and all the
results concerning sequential colimits are formalized in the proof assistant Lean.

In Chapter 7 we introduce the notion of (sequentially) compact types, in order to
provide an application for the results in Chapter 6. The most important basic result
about compact types is that they are closed under pushouts, and in proving this fact we
use that sequential colimits commute with pullbacks. Our main purpose here, and the
final main result of this dissertation, is to show that for any family f of maps between
compact types, the subuniverse of f -local types is reflective, thus providing a fairly large
class of reflective subuniverses including types localized away from a prime [12]. It should
be noted that all subuniverses of f -local types are reflective if enough higher inductive
types are assumed. Furthermore, our result about ω-compact types should in principle
hold for κ-compact types for cardinals larger than ω. However, we restrict to the case of
ω-compact types since we do not have a good theory of such larger cardinals available in
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Chapter 1

The object classifier

In this chapter we establish notation, and we highlight the basic results concerning
fiberwise transformations and fiberwise equivalences, which we will use for the descent
theorems Theorems 2.2.9 and 3.4.11. Of particular importance are the following theo-
rems:

(i) The Fundamental Theorem of Identity Types (Theorem 1.2.5), which establishes
that a type family B over A with b : B(a) for a given a : A is fiberwise equivalent
to the identity type a = x if and only if its total space is contractible. This result
appears in [33] as Theorem 5.8.2, which contains other equivalent conditions as
well.

(ii) Proposition 1.4.11, in which we establish that for any fiberwise map

g :
∏

(x:A)P (x)→ Q(f(x)),

the commuting square

∑

(x:A) P (x)
∑

(y:B) Q(y)

A B,

totf (g)

pr1 pr1

f

where totf (g) is defined as λ(x, p). (f(x), g(x, y)), is a pullback square if and only if
g is a fiberwise equivalence. As a consequence, we obtain that a commuting square

A B

X Y

f g

h

is a pullback square if and only if the induced fiberwise transformation

∏

(x:X)fibf (x)→ fibg(h(x))

is a fiberwise equivalence. Our main reference [33] does not present many results of
homotopy pullbacks, although the material we present about homotopy pullbacks

1



2 CHAPTER 1. THE OBJECT CLASSIFIER

is surely well-known. The connection between pullbacks and fiberwise equivalences
has an important role in the descent theorem in Chapter 2, which is why we devote
a section to this result.

(iii) Theorem 1.6.5, in which we establish that the universe is an object classifier. This
result appears in [29] as Theorem 2.31, and in [33] as Theorem 4.8.4

1.1 Notation and preliminary results

We work in Martin-Löf dependent type theory with Π-types, Σ-types and cartesian
products, coproducts A + B equipped with inl : A → A + B and inr : B → A + B for
any two types A and B, an empty type 0, a unit type 1 equipped with ⋆ : 1, a type 2 of
booleans equipped with 12, 02 : 2, a type N of natural numbers equipped with 0 : N and
succ : N→ N, and identity types.

Remark 1.1.1. As usual, we write idA : A → A for the identity function λx. x on A,
and we write g ◦ f : A→ C for the composite function λx. g(f(x)) of f : A→ B and
g : B → C. For any two types A and B, and any b : B, we write

constb : A→ B

for the constant function λx. b. Sometimes we also write λ . b for the constant func-
tion.

In the case of Σ-types, the empty type 0, and the unit type, we use the following
notation to define functions by pattern-matching:

λ(x, y). f(x, y) :
∏

(t:
∑

(x:A) B(x))P (t)

λ ⋆ . y :
∏

(t:1)P (t).

For instance, the first and second projection maps

pr1 : (
∑

(x:A)B(x))→ A

pr2 :
∏

(p:
∑

(x:A) B(x))B(pr1)

are defined as pr1 :≡ λ(x, y). x and pr2 :≡ λ(x, y). y. We use similar notation for
definitions by iterated pattern-matching. For instance, given a dependent function
f :

∏

(x:A)

∏

(y:B(x))

∏

(z:C(x,y)) P ((x, y), z) we obtain the function

λ((x, y), z). f(x, y, z) :
∏

(t:
∑

(s:
∑

(x:A) B(x)) C(s))P (t).

Given a type A in context Γ, the identity type of A at a : A is the inductive type
family

Γ, x : A ⊢ a =A x type

with constructor
Γ ⊢ refla : a =A a.

The induction principle for the identity type of A at a asserts that for any type family

Γ, x : A,α : a =A x ⊢ P (x, α) type
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there is a term

inda= : P (a, refla)→
∏

(x:A)

∏

(α:a=Ax)P (x, α)

in context Γ, satisfying the computation rule

inda=(p, a, refla) ≡ p.

A term of type a =A x is also called an identification of a with x, or a path from
a to x. The induction principle for identity types is sometimes called identification
elimination or path induction. Occasionally, we also write IdA for the identity type
on A.

Moreover, we assume that there is a universe U with a universal family El over U ,
that is closed under the type forming operations. For example, there is a map

Ǐd :
∏

(A:U)El(A)→ El(A)→ U

satisfying

El(Ǐd(A, x, y)) ≡ (x =El(A) y),

establishing that the universe is closed under identity types.

Given a type A the concatenation operation

concat :
∏

(x,y,z:A)(x= y)→ (y = z)→ (x= z)

is defined by concat(reflx, q) :≡ q. We will usually write p � q for concat(p, q). The
concatenation operation satisfies the unit laws

left unit(p) : reflx � p = p

right unit(p) : p � refly = p.

The inverse operation

inv :
∏

(x,y:A)(x = y)→ (y = x)

is defined by inv(reflx) :≡ reflx. We will usually write p−1 for inv(p). The inverse operation
satisfies the inverse laws

left inv(p) : p−1 � p = refly

right inv(p) : p � p−1 = reflx.

The associativity operation, which assigns to each p : x = y, q : y = z, and
r : z = w the associator

assoc(p, q, r) : (p � q) � r = p � (q � r)

is defined by assoc(reflx, q, r) :≡ reflq � r.

Given a map f : A→ B, the action on paths of f is an operation

apf :
∏

(x,y:A)(x= y)→ (f(x) = f(y))
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defined by apf (reflx) :≡ reflf(x). Moreover, there are operations

ap idA :
∏

(x,y:A)

∏

(p:x=y)p= apidA (p)

ap comp(f, g) :
∏

(x,y:A)

∏

(p:x=y)apg
(

apf (p)
)

= apg◦f (p)

defined by ap idA(reflx) :≡ reflreflx and ap comp(f, g, reflx) ≡ reflreflg(f(x)) , respectively. It
can be shown easily that the action on paths of a map preserves the groupoid operations,
and that the groupoid laws are also preserved.

Definition 1.1.2. Let A be a type, and let B be a type family over A. The transport
operation

trB :
∏

(x,y:A)(x= y)→ (B(x)→ B(y))

is defined by trB(reflx) :≡ idB(x).

Definition 1.1.3. Given a dependent function f :
∏

(a:A)B(a) and a path p : x= y in
A, the dependent action on paths

apdf :
∏

(x,y:A)

∏

(p:x=y)trB(p, f(x)) = f(y)

is defined by apdf (reflx) :≡ reflf(x).

Definition 1.1.4. Let f, g :
∏

(x:A) P (x) be two dependent functions. The type f ∼ g
of homotopies from f to g is defined as

f ∼ g :≡
∏

(x:A)f(x) = g(x).

Commutativity of diagrams is stated using homotopies. For instance, a triangle

A B

X
f

h

g

is said to commute if it comes equipped with a homotopy H : f ∼ g ◦ h, and a square

A X

B Y

i

g

f

h

is said to commute if it comes equipped with a homotopy H : h ◦ i ∼ f ◦ g.

The reflexivity, inverse, and concatenation operations on homotopies are defined
pointwise. We will write H−1 for λx.H(x)−1, and H � K for λx.H(x) � K(x). These
operations satisfy the groupoid laws (phrased appropriately as homotopies). Apart from
the groupoid operations and their laws, we will occasionally need whiskering operations
and the naturality of homotopies.

Definition 1.1.5. We define the following whiskering operations on homotopies:



1.1. NOTATION AND PRELIMINARY RESULTS 5

(i) Suppose H : f ∼ g for two functions f, g : A→ B, and let h : B → C. We define

h ·H :≡ λx. aph (H(x)) : h ◦ f ∼ h ◦ g.

(ii) Suppose f : A→ B and H : g ∼ h for two functions g, h : B → C. We define

H · f :≡ λx.H(f(x)) : h ◦ f ∼ g ◦ f.

We will frequently make use of commuting cubes. The commutativity of a cube is
stated using the whiskering operations on homotopies.

Definition 1.1.6. A commuting cube

A111

A110 A101 A011

A100 A010 A001

A000,

consists of

(i) types
A111, A110, A101, A011, A100, A010, A001, A000,

(ii) maps

f111̌ : A111 → A110 f1̌01 : A101 → A001

f11̌1 : A111 → A101 f011̌ : A011 → A010

f1̌11 : A111 → A011 f01̌1 : A011 → A001

f11̌0 : A110 → A100 f1̌00 : A100 → A000

f1̌10 : A110 → A010 f01̌0 : A010 → A000

f101̌ : A101 → A100 f001̌ : A001 → A000,

(iii) homotopies

H11̌1̌ : f11̌0 ◦ f111̌ ∼ f101̌ ◦ f11̌1 H01̌1̌ : f01̌0 ◦ f011̌ ∼ f001̌ ◦ f01̌1

H1̌11̌ : f1̌10 ◦ f111̌ ∼ f011̌ ◦ f1̌11 H1̌01̌ : f1̌00 ◦ f101̌ ∼ f001̌ ◦ f1̌01
H1̌1̌1 : f1̌01 ◦ f11̌1 ∼ f01̌1 ◦ f1̌11 H1̌1̌0 : f1̌00 ◦ f11̌0 ∼ f01̌0 ◦ f1̌10,

(iv) and a homotopy

C : (f1̌00 ·H11̌1̌) � ((H1̌01̌ · f11̌1) � (f001̌ ·H1̌1̌1))

∼ (H1̌1̌0 · f111̌) � ((f01̌0 ·H1̌11̌) � (H01̌1̌ · f1̌11))

filling the cube.
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Definition 1.1.7. Let f : A → B be a function. We say that f has a section if there
is a term of type

sec(f) :≡
∑

(g:B→A)f ◦ g ∼ idB .

Dually, we say that f has a retraction if there is a term of type

retr(f) :≡
∑

(h:B→A)h ◦ f ∼ idA.

If f has a retraction, we also say that A is a retract of B.

Definition 1.1.8. We say that a function f : A → B is an equivalence if it has both
a section and a retraction, i.e. if it comes equipped with a term of type

is equiv(f) :≡ sec(f)× retr(f).

We will write A ≃ B for the type
∑

(f :A→B) is equiv(f).

Clearly, if f is invertible in the sense that it comes equipped with a function g :
B → A such that f ◦ g ∼ idB and g ◦ f ∼ idA, then f is an equivalence. We write

has inverse(f) :≡
∑

(g:B→A)(f ◦ g ∼ idB)× (g ◦ f ∼ idA).

The section of an equivalence is also a retraction (and vice versa), so we define the
inverse of an equivalence to be its section. It follows immediately that the inverse of
any equivalence is again an equivalence. The identity function idA on a type A is an
equivalence since it is its own section and its own retraction.

It is straightforward to show that for any two functions f, g : A→ B, we have

(f ∼ g)→ (is equiv(f)↔ is equiv(g)).

Given a commuting triangle

A B

X.

h

f g

with H : f ∼ g ◦ h, we have:

(i) If the map h has a section, then f has a section if and only if g has a section.

(ii) If the map g has a retraction, then f has a retraction if and only if h has a
retraction.

(iii) (The 3-for-2 property for equivalences.) If any two of the functions

f, g, h

are equivalences, then so is the third.

In the following theorem we characterize the identity type of a Σ-type as a Σ-type of
identity types.
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Proposition 1.1.9 (Theorem 2.7.2 of [33]). Let B be a type family over A, let s :
∑

(x:A)B(x), and consider the dependent function

pair eqs :
∏

(t:
∑

(x:A) B(x))(s = t)→
∑

(α:pr1(s)=pr1(t))
trB(α, pr2(s)) = pr2(t)

defined by pair eqs(refls) :≡ (reflpr1(s), reflpr2(s)). Then pair eqs,t is an equivalence for
every t :

∑

(x:A)B(x).

We include the proof mainly to introduce some more notation.

Proof. The maps in the converse direction

eq pairs,t :
(

∑

(p:pr1(s)=pr1(t))
trB(p, pr2(s)) = pr2(t)

)

→ (s = t)

is defined by

eq pair(x,y),(x′,y′)(reflx, refly) :≡ refl(x,y).

The proofs that the function eq pairs,t is indeed an inverse of pair eqs,t are also by induc-
tion.

Definition 1.1.10. We say that a type A is contractible if there is a term of type

is contr(A) :≡
∑

(c:A)

∏

(x:A)c = x.

Given a term (c, C) : is contr(A), we call c : A the center of contraction of A, and we
call C :

∏

(x:A) a = x the contraction of A.

Suppose A is a contractible type with center of contraction c and contraction C.
Then the type of C is (judgmentally) equal to the type

constc ∼ idA.

In other words, the contraction C is a homotopy from the constant function to the
identity function.

Definition 1.1.11. Consider a type A with a base point a : A. We say that A satisfies
singleton induction if for every type family B over A, the map

ev pt :
(

∏

(x:A)B(x)
)

→ B(a)

given by f 7→ f(a) has a section.

Proposition 1.1.12. A type A is contractible if and only if it satisfies singleton induc-
tion.

Example 1.1.13. By definition the unit type 1 satisfies singleton induction, so it is con-
tractible.
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Remark 1.1.14. For any family P :
(

∑

(x:A)B(x)
)

→ U there is a map

ev pair :
(

∏

(t:
∑

(x:A) B(x))P (t)
)

→
∏

(x:A)

∏

(y:B(x))P (x, y)

that evaluates f :
∏

(t:
∑

(x:A) B(x)) P (t) at pairs (x, y). In other words, ev pair is defined

by λf. λx. λy. f(x, y). By the induction principle for Σ-types, this map has a section. It
is easy to show that ev pair is in fact an equivalence.

Similarly, there is a map

ev refl :
(

∏

(x:A)

∏

(p:a=x)B(x, p)
)

→ B(a, refla)

given by λf. f(a, refla), for any type family B :
∏

(x:A)(a = x) → U . By path induction,
this map has a section, and again it is easy to show that this map is in fact an equivalence.

Proposition 1.1.15 (Lemma 3.11.8 in [33]). For any x : A, the type

∑

(y:A)x = y

is contractible.

Proof. We have the term (x, reflx) :
∑

(y:A) x = y, and both maps in the composite

∏

(t:
∑

(y:A) x=y)B(t)
∏

(y:A)

∏

(p:x=y)B((y, p)) B((x, reflx))
ev pair ev refl

have sections, so the composite has a section. The composite is ev pt, so we see that the
asserted type satisfies singleton induction.

Definition 1.1.16. Let f : A → B be a function, and let b : B. The fiber of f at b is
defined to be the type

fibf (b) :≡
∑

(a:A)f(a) = b.

Example 1.1.17 (Lemma 4.8.1 of [33]). Consider a type family B over A. Then the map

B(a)→ fibpr1(a)

given by b 7→ ((a, b), refla) is an equivalence. In other words, the fibers of the projection
function pr1 :

(
∑

(x:A)B(x)
)

→ A are just the fibers of the family B.

Definition 1.1.18. We say that a function f : A→ B is contractible if there is a term
of type

is contr(f) :≡
∏

(b:B)is contr(fibf (b)).

We cite Chapter 4 of [33] for the following result, although it is well-known that it
can be proven directly and without the use of function extensionality.

Proposition 1.1.19 (Chapter 4 in [33]). A function is an equivalence if and only if it
is contractible.
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1.2 The Fundamental Theorem of Identity Types

Consider a family
f :

∏

(x:A)B(x)→ C(x)

of maps. Such f is also called a fiberwise map or fiberwise transformation.

Definition 1.2.1 (Definition 4.7.5 of [33]). We define the map

tot(f) :
∑

(x:A)B(x)→
∑

(x:A)C(x).

by λ(x, y). (x, f(x, y)).

Lemma 1.2.2 (Theorem 4.7.6 of [33]). For any fiberwise transformation f :
∏

(x:A)B(x)→
C(x), and any a : A and c : C(a), there is an equivalence

fibf(a)(c) ≃ fibtot(f)((a, c)).

Example 1.2.3. There are equivalences

fib(apf )x,y(q) ≃ fibδf ((x, y, q))

for any q : f(x) = f(y), because the triangle

A
∑

(x,y:A) x = y

∑

(x,y:A) f(x) = f(y)

λx. (x,x,reflx)

δf tot(tot(apf ))

commutes, and the top map is an equivalence.

Proposition 1.2.4 (Theorem 4.7.7 of [33]). Let f :
∏

(x:A)B(x) → C(x) be a fiberwise
transformation. The following are logically equivalent:

(i) For each x : A, the map fx : B(x) → C(x) is an equivalence. In this case we say
that f is a fiberwise equivalence.

(ii) The map tot(f) :
∑

(x:A)B(x)→
∑

(x:A)C(x) is an equivalence.

The following theorem is the key to many results about identity types, which we will
use instead of the encode-decode method of [24]. We refer to it as the Fundamental
Theorem of Identity Types.

Theorem 1.2.5 (Theorem 5.8.2 of [33]). Let A be a type with a : A, and let B be a type
family over A with b : B(a). Then the following are logically equivalent:

(i) The canonical family of maps

inda=(b) :
∏

(x:A)(a = x)→ B(x)

is a fiberwise equivalence.
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(ii) The total space
∑

(x:A)B(x)

is contractible.

Proof. By Proposition 1.2.4 it follows that the fiberwise transformation inda=(b) is a
fiberwise equivalence if and only if it induces an equivalence

(

∑

(x:A)a = x
)

≃
(

∑

(x:A)B(x)
)

on total spaces. We have that
∑

(x:A) a = x is contractible. Now it follows by the 3-for-2
property of equivalences, applied in the case

∑

(x:A) a = x
∑

(x:A)B(x)

1

tot(inda=(b))

≃

that tot(inda=(b)) is an equivalence if and only if
∑

(x:A)B(x) is contractible.

Observe that in the proof of Theorem 1.2.5 we haven’t used the actual definition of
the fiberwise transformation. Indeed, for any fiberwise transformation

f :
∏

(x:A)(a = x)→ B(x)

we have that f is a fiberwise equivalence if and only if the total space of B is contractible.
Since retracts of contractible types are again contractible, it follows that the only

retract of the identity type is the identity type itself:

Corollary 1.2.6. Let a : A, and let B be a type family over A. If each B(x) is a retract
of a= x, then B(x) is equivalent to a= x for every x : A.

As a first application of the fundamental theorem we give a quick new proof that
equivalences are embeddings. The proof of the corresponding theorem in [33] is more
involved.

Definition 1.2.7. An embedding is a map f : A→ B satisfying the property that

apf : (x= y)→ (f(x) = f(y))

is an equivalence for every x, y : A. We write is emb(f) for the type of witnesses that f
is an embedding.

Proposition 1.2.8 (Theorem 2.11.1 in [33]). Any equivalence is an embedding.

Proof. Let e : A ≃ B be an equivalence, and let x : A. By Theorem 1.2.5 it follows that

ape : (x= y)→ (e(x) = e(y))

is an equivalence for every y : A if and only if the total space
∑

(y:A)e(x) = e(y)

is contractible for every y : A. Now observe that
∑

(y:A) e(x) = e(y) is equivalent to the
fiber fibe(e(x)), which is contractible by Proposition 1.1.19.
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Definition 1.2.9. A type A is said to be a proposition if there is a term of type

is prop(A) :≡
∏

(x,y:A)is contr(x = y).

Furthermore, we write Prop :≡
∑

(X:U) is prop(X) for the type of all small propositions.

We will often use either of the following characterizations of propositions.

Lemma 1.2.10 (Lemma 3.11.10 and Exercise 3.5 of [33]). For any type A the following
are equivalent:

(i) A is a proposition.

(ii) A is proof irrelevant in the sense that
∏

(x,y:A) x = y.

(iii) A→ is contr(A).

Example 1.2.11. Any contractible type is a proposition. The empty type is a proposition
by a direct application of the induction principle of the empty type. Furthermore, any
retract of a proposition is again a proposition. In particular, propositions are closed
under equivalences.

Lemma 1.2.12. Consider a function f : A→ B, and let (a, p), (a′, p′) : fibf (b) for some
b : B. Then the canonical map

((a, p) = (a′, p′))→ fibapf (p
� p′−1)

is an equivalence.

Proof. By Proposition 1.2.4 it suffices to show that the type
∑

(y:A)

∑

(q:f(y)=b)

∑

(p:pr1(s)=y)apf (p) = pr2(s) � q
−1

is contractible, which is immediate by two applications of Proposition 1.1.15.

Proposition 1.2.13 (Lemma 7.6.2 of [33]). A map is an embedding if and only if its
fibers are propositions.

Proof. If f is an embedding, then the fibers of apf are contractible by Proposition 1.1.19.
Thus it follows by Lemma 1.2.12 that the fibers of f are propositions.

Conversely, if the fibers of f are propositions, then we have by Lemma 1.2.12 an
equivalence

((x, p) = (y, reflf(y))) ≃ fibapf (p)

for any p : f(x) = f(y), which shows that the fibers of apf are contractible. Thus f is
an embedding by Proposition 1.1.19.

Definition 1.2.14. A type family B over A is said to be a subtype of A if for each
x : A the type B(x) is a proposition.

Corollary 1.2.15. A type family B over A is a subtype if and only if the projection map

pr1 :
(

∑

(x:A)B(x)
)

→ A

is an embedding.

Proof. Immediate by Example 1.1.17 and Proposition 1.2.13.
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1.3 Function extensionality

Proposition 1.3.1 (Theorem 4.9.5 of [33]). The following are equivalent:

(i) The function extensionality principle: For every type family B over A, and
any two dependent functions f, g :

∏

(x:A)B(x), the canonical map

htpy eq(f, g) : (f = g)→ (f ∼ g)

by path induction (sending reflf to λx. reflf(x)) is an equivalence. We will write
eq htpy for its inverse.

(ii) The weak function extensionality principle holds: For every type family B
over A one has

(

∏

(x:A)is contr(B(x))
)

→ is contr
(

∏

(x:A)B(x)
)

.

From now on we will assume that function extensionality holds.

Corollary 1.3.2 (Theorem 7.1.9 of [33]). For any type family B over A one has
(

∏

(x:A)is prop(B(x))
)

→ is prop
(

∏

(x:A)B(x)
)

.

In particular, if B is a proposition, then A→ B is a proposition for any type A.

We show in this section that a map f : A → B is an equivalence if and only if for
any type family P over B, the precomposition map

– ◦ f :
(

∏

(y:B)P (y)
)

→
(

∏

(x:A)P (f(x))
)

is an equivalence. In the proof we use the notion of path-split maps, which was introduced
in [28].

Definition 1.3.3. We say that a map f : A→ B is path-split if f has a section, and
for each x, y : A the map

apf (x, y) : (x = y)→ (f(x) = f(y))

also has a section. We write path split(f) for the type

sec(f)×
∏

(x,y:A)sec(apf (x, y)).

We will also use the notion of half-adjoint equivalences, which were introduced in
[33].

Definition 1.3.4 (Definition 4.2.1 of [33]). We say that a map f : A → B is a half-
adjoint equivalence, in the sense that there are

g : B → A

G : f ◦ g ∼ idB

H : g ◦ f ∼ idA

K : G · f ∼ f ·H.

We write half adj(f) for the type of such quadruples (g,G,H,K).
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Furthermore, we will need ‘type theoretic choice’.

Proposition 1.3.5 (Theorem 2.15.7 of [33]). Let C(x, y) be a type in context Γ, x : A, y :
B(x). Then the map

ϕ :
(

∏

(x:A)

∑

(y:B(x))C(x, y)
)

→
(

∑

(f :
∏

(x:A) B(x))

∏

(x:A)C(x, f(x))
)

given by λh. (λx. pr1(h(x)), λx. pr2(h(x))) is an equivalence.

Corollary 1.3.6. For type A and any type family C over B, the map
(

∑

(f :A→B)

∏

(x:A)C(f(x))
)

→
(

A→
∑

(y:B)C(x)
)

given by λ(f, g). λx. (f(x), g(x)) is an equivalence.

Proposition 1.3.7. For any map f : A→ B, the following are equivalent:

(i) f is an equivalence.

(ii) f is path-split.

(iii) f is a half-adjoint equivalence.

(iv) For any type family P over B the map
(

∏

(y:B)P (y)
)

→
(

∏

(x:A)P (f(x))
)

given by s 7→ s ◦ f is an equivalence.

(v) For any type X the map
(B → X)→ (A→ X)

given by g 7→ g ◦ f is an equivalence.

Proof. To see that (i) implies (ii) we note that any equivalence has a section, and its
action on paths is an equivalence by Proposition 1.2.8 so again it has a section.

To show that (ii) implies (iii), assume that f is path-split. Thus we have (g,G) :
sec(f), and the assumption that apf : (x = y) → (f(x) = f(y)) has a section for every
x, y : A gives us a term of type

∏

(x:A)fibapf (G(f(x))).

By Proposition 1.3.5 this type is equivalent to

∑

(H:
∏

(x:A) g(f(x))=x)

∏

(x:A)G(f(x)) = apf (H(x)) ,

so we obtain H : g ◦ f ∼ idA and K : G · f ∼ f · H, showing that f is a half-adjoint
equivalence.

To show that (iii) implies (iv), suppose that f comes equipped with (g,G,H,K)
witnessing that f is a half-adjoint equivalence. Then we define the inverse of – ◦ f to be
the map

ϕ :
(

∏

(x:A)P (f(x))
)

→
(

∏

(y:B)P (y)
)
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given by s 7→ λy. trP (G(y), sg(y)).
To see that ϕ is a section of – ◦ f , let s :

∏

(x:A) P (f(x)). By function extensionality
it suffices to construct a homotopy ϕ(s) ◦ f ∼ s. In other words, we have to show that

trP (G(f(x)), s(g(f(x))) = s(x)

for any x : A. Now we use the additional homotopy K from our assumption that f is a
half-adjoint equivalence. Since we have K(x) : G(f(x)) = apf (H(x)) it suffices to show
that

trP (apf (H(x)) , sgf(x)) = s(x).

A simple path-induction argument yields that

trP (apf (p)) ∼ trP◦f (p)

for any path p : x = y in A, so it suffices to construct an identification

trP◦f (H(x), sgf(x)) = s(x).

We have such an identification by apdH(x)(s).
To see that ϕ is a retraction of – ◦ f , let s :

∏

(y:B) P (y). By function extensionality
it suffices to construct a homotopy ϕ(s ◦ f) ∼ s. In other words, we have to show that

trP (G(y), sfg(y)) = s(y)

for any y : B. We have such an identification by apdG(y)(s). This completes the proof
that (iii) implies (iv).

Note that (v) is an immediate consequence of (iv), since we can just choose P to be
the constant family X.

It remains to show that (v) implies (i). Suppose that

– ◦ f : (B → X)→ (A→ X)

is an equivalence for every type X. Then its fibers are contractible by Proposition 1.1.19.
In particular, choosing X ≡ A we see that the fiber

fib–◦f (idA) ≡
∑

(h:B→A)h ◦ f = idA

is contractible. Thus we obtain a function h : B → A and a homotopy H : h ◦ f ∼ idA
showing that h is a retraction of f . We will show that h is also a section of f . To see
this, we use that the fiber

fib–◦f (f) ≡
∑

(i:B→B)i ◦ f = f

is contractible (choosing X ≡ B). Of course we have (idB, reflf ) in this fiber. However
we claim that there also is an identification p : (f ◦ h) ◦ f = f , showing that (f ◦ h, p) is
in this fiber, because

(f ◦ h) ◦ f ≡ f ◦ (h ◦ f)

= f ◦ idA

≡ f

Now we conclude by the contractibility of the fiber that there is an identification (idB , reflf ) =
(f ◦ h, p). In particular we obtain that idB = f ◦ h, showing that h is a section of f .
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1.4 Homotopy pullbacks

1.4.1 Cartesian squares

Recall that a square

C B

A X

q

p g

g

is said to commute if there is a homotopy H : f ◦ p ∼ g ◦ q.

Definition 1.4.1. A cospan consists of three types A, X, and B, and maps f : A→ X

and g : B → X. Given a type C, a cone on the cospan A
f
→ X

g
← B with vertex C

consists of maps p : C → A, q : C → B and a homotopy H : f ◦ p ∼ g ◦ q witnessing that
the square

C B

A X

q

p g

f

commutes. We write

cone(C) :≡
∑

(p:C→A)

∑

(q:C→B)f ◦ p ∼ g ◦ q

for the type of cones with vertex C.

Given a cone with vertex C on a span A
f
→ X

g
← B and a map h : C ′ → C, we

construct a new cone with vertex C ′ in the following definition.

Definition 1.4.2. For any cone (p, q,H) with vertex C and any type C ′, we define a
map

cone map(p, q,H) : (C ′ → C)→ cone(C ′)

by h 7→ (p ◦ h, q ◦ h,H · h).

Definition 1.4.3. We say that a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q is a pullback square, or that it is cartesian, if it satisfies the
universal property of pullbacks, which asserts that the map

cone map(p, q,H) : (C ′ → C)→ cone(C ′)

is an equivalence for every type C ′.
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We often indicate the universal property with a diagram as follows:

C ′

C B

A X

q′

h

p′

q

p g

f

since the universal property states that for every cone (p′, q′,H ′) with vertex C ′, the
type of pairs (h, α) consisting of h : C ′ → C equipped with α : cone map((p, q,H), h) =
(p′, q′,H ′) is contractible by Proposition 1.1.19.

Proposition 1.4.4. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q Then the following are equivalent:

(i) The square is a pullback square.

(ii) For every type C ′ and every cone (p′, q′,H ′) with vertex C ′, the type of quadruples
(h,K,L,M) consisting of

h : C ′ → C

K : p ◦ h ∼ p′

L : q ◦ h ∼ q′

M : (H · h) � (g · L) ∼ (f ·K) � H ′

is contractible.

Remark 1.4.5. The homotopy M in Proposition 1.4.4 witnesses that the square

f ◦ p ◦ h f ◦ p′

g ◦ q ◦ h g ◦ q′

f ·K

H·h H′

g·L

of homotopies commutes.

1.4.2 The unique existence of pullbacks

Definition 1.4.6. Let f : A→ X and B → X be maps. Then we define

A×X B :≡
∑

(x:A)

∑

(y:B)f(x) = g(y)
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π1 :≡ pr1 : A×X B → A

π2 :≡ pr1 ◦ pr2 : A×X B → B

π3 :≡ pr2 ◦ pr2 : f ◦ π1 ∼ g ◦ π2.

The type A×X B is called the canonical pullback of f and g.

Note that A ×X B depends on f and g, although this dependency is not visible in
the notation.

Proposition 1.4.7 (Exercise 2.11 of [33]). Given maps f : A→ X and g : B → X, the
commuting square

A×X B B

A X,

π2

π1 g

f

is a pullback square.

In the following lemma we establish the uniqueness of pullbacks up to equivalence
via a 3-for-2 property for pullbacks.

Lemma 1.4.8. Consider the squares

C B C ′ B

A X A X

q

p g

q′

p′ g

f f

with homotopies H : f ◦ p ∼ g ◦ q and H ′ : f ◦ p′ ∼ g ◦ q′. Furthermore, suppose we have
a map h : C ′ → C equipped with

K : p ◦ h ∼ p′

L : q ◦ h ∼ q′

M : (H · h) � (g · L) ∼ (f ·K) � H ′.

If any two of the following three properties hold, so does the third:

(i) C is a pullback.

(ii) C ′ is a pullback.

(iii) h is an equivalence.

Proof. The type of triples (K,L,M) is equivalent to the type of identifications

cone map((p, q,H), h) = (p′, q′,H ′).

Let D be a type, and let k : D → C ′ be a map. We observe that

cone map((p, q,H), (h ◦ k)) ≡ (p ◦ (h ◦ k), q ◦ (h ◦ k),H ◦ (h ◦ k))
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≡ ((p ◦ h) ◦ k, (q ◦ h) ◦ k, (H ◦ h) ◦ k)

≡ cone map(cone map((p, q,H), h), k)

= cone map((p′, q′,H ′), k).

Thus we see that the triangle

(D → C ′) (D → C)

cone(D)

h◦–

cone map(p′,q′,H′) cone map(p,q,H)

commutes. Therefore it follows from the 3-for-2 property of equivalences that if any two
of the following properties hold, then so does the third:

(i) The map cone map(p, q,H) : (D → C)→ cone(D) is an equivalence,

(ii) The map cone map(p′, q′,H ′) : (D → C ′)→ cone(D) is an equivalence,

(iii) The map h ◦ – : (D → C ′)→ (D → C) is an equivalence.

Thus the 3-for-2 property for pullbacks follows from the fact that h is an equivalence if
and only if h ◦ – : (D → C ′)→ (D → C) is an equivalence for any type D.

Definition 1.4.9. Given a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q, we define the gap map

gap(p, q,H) : C → A×X B

by λz. (p(z), q(z),H(z)). Furthermore, we will write

is pullback(f, g,H) :≡ is equiv(gap(p, q,H)).

Proposition 1.4.10. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. The following are equivalent:

(i) The square is a pullback square

(ii) There is a term of type

is pullback(p, q,H) :≡ is equiv(gap(p, q,H)).
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Proof. Note that there are homotopies

K : π1 ◦ gap(p, q,H) ∼ p

L : π2 ◦ gap(p, q,H) ∼ q

M : (π3 · gap(p, q,H)) � (g · L) ∼ (f ·K) � H.

given by

K :≡ λz. reflp(z)

L :≡ λz. reflq(z)

M :≡ λz. right unit(H(z)) � left unit(H(z))−1.

Therefore the claim follows by Lemma 1.4.8.

1.4.3 Fiberwise equivalences

Proposition 1.4.11. Let f : A → B, and let g :
∏

(a:A) P (a) → Q(f(a)) be a fiberwise
transformation. The following are equivalent:

(i) The commuting square

∑

(a:A) P (a)
∑

(b:B) Q(b)

A B

totf (g)

pr1 pr1

f

is a pullback square.

(ii) g is a fiberwise equivalence.

Proof. The gap map factors as follows

∑

(x:A) P (x) A×B

(

∑

(y:B) Q(y)
)

∑

(x:A)Q(f(x))

tot(g)

gap

gap′ :≡λ(x,q). (x,(f(x),q),reflf(x))

Since gap′ is an equivalence, it follows by Proposition 1.2.4 that the gap map is an
equivalence if and only if g is a fiberwise equivalence.

Lemma 1.4.12. Consider a commuting square

C B

A X

q

p g

f
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with H : f ◦ p ∼ g ◦ q, and consider the fiberwise transformation

fib(f,q,H) :
∏

(a:A)fibp(a)→ fibg(f(a))

given by λa. λ(c, u). (q(c),H(c)−1 � apf (u)). Then there is an equivalence

fibgap(p,q,H)((a, b, α)) ≃ fibfib(f,q,H)(a)((b, α
−1))

Proof. To obtain an equivalence of the desired type we simply concatenate known equiv-
alences:

fibh((a, b, α)) ≡
∑

(z:C)(p(z), q(z),H(z)) = (a, b, α)

≃
∑

(z:C)

∑

(u:p(z)=a)

∑

(v:q(z)=b)H(z) � apg (v) = apf (u) � α

≃
∑

((z,u):fibp(a))

∑

(v:q(z)=b)H(z)−1 � apf (u) = apg (v) � α
−1

≃ fibϕ(a)((b, α
−1))

Corollary 1.4.13. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. The following are equivalent:

(i) The square is a pullback square.

(ii) The induced map on fibers

fib(p,q,H) :
∏

(x:A)fibp(x)→ fibg(f(x))

is a fiberwise equivalence.

Corollary 1.4.14. Consider a commuting square

C B

A X.

q

p g

f

and suppose that g is an equivalence. Then the following are equivalent:

(i) The square is a pullback square.

(ii) The map p : C → A is an equivalence.

Proof. If the square is a pullback square, then by Proposition 1.4.11 the fibers of p are
equivalent to the fibers of g, which are contractible by Proposition 1.1.19. Thus it follows
that p is a contractible map, and hence that p is an equivalence.

If p is an equivalence, then by Proposition 1.1.19 both fibp(x) and fibg(f(x)) are
contractible for any x : X. It follows that the induced map fibp(x) → fibg(f(x)) is an
equivalence. Thus we apply Corollary 1.4.13 to conclude that the square is a pullback.
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1.5 The univalence axiom

The univalence axiom characterizes the identity type of the universe. It is considered
to be an extensionality principle for types. In the following theorem we introduce the
univalence axiom and give two more equivalent ways of stating this.

Proposition 1.5.1. The following are equivalent:

(i) The univalence axiom: for any A : U the map

equiv eq :≡ indA=(idA) :
∏

(B:U)(A= B)→ (A ≃ B).

is a fiberwise equivalence. If this is the case, we write eq equiv for the inverse of
equiv eq.

(ii) The type
∑

(B:U)A ≃ B

is contractible for each A : U .

(iii) The principle of equivalence induction: for every A : U and for every type family

P :
∏

(B:U)(A ≃ B)→ Type,

the map
(

∏

(B:U)

∏

(e:A≃B)P (B, e)
)

→ P (A, idA)

given by f 7→ f(A, idA) has a section.

It is a trivial observation, but nevertheless of fundamental importance, that by the
univalence axiom the identity types of U are equivalent to types in U , because it provides
an equivalence (A = B) ≃ (A ≃ B), and the type A ≃ B is in U for any A,B : U . Since
the identity types of U are equivalent to types in U , we also say that the universe is
locally small.

Definition 1.5.2. (i) A type A is said to be essentially small if there is a type
X : U and an equivalence A ≃ X. We write

ess small(A) :≡
∑

(X:U)A ≃ X.

(ii) A map f : A→ B is said to be essentially small if for each b : B the fiber fibf (b)
is essentially small. We write

ess small(f) :≡
∏

(b:B)ess small(fibf (b)).

(iii) A type A is said to be locally small if for every x, y : A the identity type x = y
is essentially small. We write

loc small(A) :≡
∏

(x,y:A)ess small(x = y).



22 CHAPTER 1. THE OBJECT CLASSIFIER

(iv) Similarly, a map f : A → X is said to be locally small if δf : A → A ×X A is
essentially small.

Lemma 1.5.3. The type ess small(X) is a proposition for any type X.

Proof. Let X be a type. Our goal is to show that the type

∑

(Y :U)X ≃ Y

is a proposition. Suppose there is a type X ′ : U and an equivalence e : X ≃ X ′, then the
map

(X ≃ Y )→ (X ′ ≃ Y )

given by precomposing with e−1 is an equivalence. This induces an equivalence on total
spaces

(

∑

(Y :U)X ≃ Y
)

≃
(

∑

(Y :U)X
′ ≃ Y

)

However, the codomain of this equivalence is contractible by Proposition 1.5.1. Thus it
follows that the asserted type is a proposition.

Corollary 1.5.4. For each function f : A → B, the type ess small(f) is a proposition,
and for each type X the type loc small(X) is a proposition.

Proof. This follows from the fact that propositions are closed under dependent products,
established in Corollary 1.3.2.

Remark 1.5.5. The property of essentially smallness is preserved by Π, Σ, and Id. Of
course, any contractible type is essentially small, and so is any small type. The property
of essentially smallness is preserved by Σ and Id, and the exponent XA of a locally
small type X by an essentially small type A is again locally small. Furthermore, any
proposition is locally small, and any universe is locally small with respect to itself.

Definition 1.5.6. Consider two functions f : A → X and g : B → X. We define the
type

homX(f, g) :≡
∑

(h:A→B)f ∼ g ◦ h.

In other words, the type homX(f, g) is the type of functions h : A → B equipped
with a homotopy witnessing that the triangle

A B

X
f

h

g

Lemma 1.5.7. Let P and Q be two type families over X, and write prP1 and pr
Q
1 for

their first projections, respectively. Then the map

tot triangle :
(

∏

(x:X)P (x)→ Q(x)
)

→ homX(prP1 , pr
Q
1 )

given by tot triangle(f) :≡ (tot(f), λ(x, y). reflx), is an equivalence.
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Corollary 1.5.8. For any two maps f : A→ X and g : B → X, the map

fib triangle : homX(f, g)→
∏

(x:X)fibf (x)→ fibg(x)

given by λ(h,H). λx. λ(a, p). (h(a),H(a)−1 � p) is an equivalence.

Theorem 1.5.9. For any small type A : U there is an equivalence

(A→ U) ≃
(

∑

(X:U)X → A
)

.

Proof. Note that we have the function

ϕ : λB.
(

∑

(x:A)B(x), pr1

)

: (A→ U)→
(

∑

(X:U)X → A
)

.

The fiber of this map at (X, f) is by univalence and function extensionality equivalent
to the type

∑

(B:A→U)

∑

(e:(
∑

(x:A) B(x))≃X)pr1 ∼ f ◦ e.

By Corollary 1.5.8 this type is equivalent to the type

∑

(B:A→U)

∏

(a:A)B(a) ≃ fibf (a),

and by ‘type theoretic choice’, which was established in Proposition 1.3.5, this type is
equivalent to

∏

(a:A)

∑

(X:U)X ≃ fibf (a).

We conclude that the fiber of ϕ at (X, f) is equivalent to the type ess small(f). However,
since f : X → A is a map between small types it is essentially small. Moreover, since
being essentially small is a proposition by Lemma 1.5.3, it follows that fibϕ((X, f)) is
contractible for every f : X → A. In other words, ϕ is a contractible map, and therefore
it is an equivalence.

Remark 1.5.10. The inverse of the map

ϕ : (A→ U)→
(

∑

(X:U)X → A
)

.

constructed in Theorem 1.5.9 is the map (X, f) 7→ fibf .

1.6 The object classifier

Definition 1.6.1. Let p : E → B and p′ : E′ → B′ be maps. A morphism from p′ to
p is a triple (f, g,H) consisting of maps f : B′ → B and g : E′ → E and a homotophy
H : f ◦ p′ ∼ p ◦ g witnessing that the square

E′ E

B′ B

g

p′ p

f

(1.1)
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commutes. We write hom(p′, p) for the type of such triples (f, g,H), and sometimes
we write homf (p

′, p) for the type of pairs (g,H). A morphism (f, g,H) is said to be
cartesian if the square in Eq. (1.1) is cartesian. We write cart(p′, p) for the type of
cartesian morphisms from p′ to p, and we write cartf (p

′, p) for the type of triples (g,H, t)
for the type of triples, where t : is pullback(p′, g,H).

Definition 1.6.2. A morphism p : E → B is said to be an object classifier if the type
cart(p′, p) is a proposition for each p′ : E′ → B′. If p : E → B is an object classifier, we
also write

is classified(p′) :≡ hom(p′, p).

Our goal in this section is to show that a univalent universe is an object classifier.

Proposition 1.6.3. Let α : I → J be a map, and let A : I → U and B : J → U be type
families. Then the map

(

∏

(i:I)Ai → Bα(i)

)

→ homα(pr
A
1 , pr

B
1 )

given by λf. (totα(f), λ(x, y). reflx) is an equivalence. Furthermore, the map

(

∏

(i:I)Ai ≃ Bα(i)

)

→ cartα(pr
A
1 , pr

B
1 )

given by λe. (totα(e), λ(x, y). reflx, t) where t is the term constructed in Proposition 1.4.11,
is an equivalence.

Proof. We have the equivalences

∏

(i:I)Ai → Bα(i) ≃
∏

(i:I)

∏

(a:Ai)

∑

(j:J)

∑

(γ:α(i)=j)Bj

≃
∏

(i:I)

∏

(a:Ai)

∑

(j:J)

∑

(b:Bj)
α(i) = j

≃
∏

((i,a):
∑

(i:I) Ai)

∑

((j,b):
∑

(j:J) Bj)
α(i) = j

≃
∑

(f :
(∑

(i:I) Ai

)

→
(∑

(j:J) Bj

)

)
α ◦ prA1 ∼ prB1 ◦ f

≡ homα(pr
A
1 , pr

B
1 ).

It is easy to check that this composite is the asserted map. The second claim follows
from Proposition 1.4.11.

Corollary 1.6.4. Consider a diagram of the form

A B

I J.

f g

α

Then the map

homα(f, g)→
(

∏

(i:I)fibf (i)→ fibg(α(i))
)

given by λ(h,H). λi. λ(a, p). (h(a),H(a)−1 � apα (p)) is an equivalence.
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Theorem 1.6.5. Let f : A → B be a map, and let U be a univalent universe with
universal family El over U . Then there is an equivalence

ess small(f) ≃ cart(f, prEl1 ).

In particular, the type cart(f, prEl1 ) is a proposition for each map f , so the universe is an
object classifier in the sense of Definition 1.6.2.

Proof. From Corollary 1.6.4 we obtain that the type of pairs (F̃ ,H) is equivalent to the
type of fiberwise transformations

∏

(b:B)fibf (b)→ F (b).

By Corollary 1.4.13 the square is a pullback square if and only if the induced map

∏

(b:B)fibf (b)→ F (b)

is a fiberwise equivalence. Thus the data (F, F̃ ,H, pb) is equivalent to the type of pairs
(F, e) where e is a fiberwise equivalence from fibf to F . By Proposition 1.3.5 the type of
pairs (F, e) is equivalent to the type ess small(f).

Remark 1.6.6. For any type A (not necessarily small), and any B : A→ U , the square

∑

(x:A)B(x)
∑

(X:U)X

A U

pr1

λ(x,y). (B(x),y)

pr1

B

is a pullback square. Therefore it follows that for any family B : A→ U of small types,
the projection map pr1 :

∑

(x:A)B(x) → A is an essentially small map. To see that the
claim is a direct consequence of Proposition 1.4.11 we write the asserted square in its
rudimentary form:

∑

(x:A) El(B(x))
∑

(X:U) El(X)

A U .

pr1

λ(x,y). (B(x),y)

pr1

B

In the following theorem we show that a type is locally small if and only if its diagonal
is classified by U .

Theorem 1.6.7. Let A be a type. The following are equivalent:

(i) A is locally small.

(ii) The diagonal δA : A→ A×A is classified by U .

Proof. The identity type x = y is the fiber of δA at (x, y) : A × A. Therefore it follows
that A is locally small if and only if the diagonal δA is essentially small. Now the result
follows from Theorem 1.6.5.





Chapter 2

Type theoretic descent

In this chapter we study homotopy pushouts, which were established as higher inductive
types in homotopy type theory in section 6.8 of [33]. From this chapter on, we will assume
that universes are closed under homotopy pushouts. This is the last assumption that we
will be making in the present work. In particular, we will not assume the existence of
higher inductive types with some self-reference in the constructors (e.g. the propositional
truncation).

Our first main result is the descent theorem for homotopy pushouts (Theorem 2.2.9
and Corollary 2.2.10), in which we establish that a cartesian transformation of spans

A′ S′ B′

A S B

x y

extends uniquely to a cartesian transformation of the pushout squares, i.e. a commuting
cube

S′

A′ S B′

A A′ ⊔S
′

B′ B

A ⊔S B

of which the vertical sides are pullback squares.

The second main theorem of this chapter, Theorem 2.2.12, is an adaption to homotopy
type theory of a theorem due to [1]. It is closely related to the descent theorem but can

27
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be stated without a universe: for any commuting cube

S′

A′ S B′

A X ′ B

X

of which the two vertical back squares are pullback squares, the two vertical front squares
are pullback squares if and only if the square

A′ ⊔S
′

B′ X ′

A ⊔S B X.

is a pullback square. Even though this statement does not involve a universe, we use the
univalence axiom in our proof that this square being pullback implies that the front two
vertical squares of the cube are pullback squares. Function extensionality suffices for the
converse direction.

2.1 Homotopy pushouts

2.1.1 Pushouts as higher inductive types

Definition 2.1.1. A span S from A to B is a triple (S, f, g) consisting of a type S and
maps f : S → A and g : S → B. We write span(A,B) for the type of small spans from
A to B.

Definition 2.1.2. Consider a span S ≡ (S, f, g) from A to B, and let X be a type. A
cocone with vertex X on S is a triple (i, j,H) consisting of maps i : A→ X, j : B → X,
and a homotopy H : i ◦ f ∼ j ◦ g witnessing that the square

S B

A X

f

g

j

i

commutes. We write coconeS(X) for the type of cocones with vertex X on S.

Definition 2.1.3. Consider a commuting square

S B

A X,

f

g

j

i
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with H : i ◦ f ∼ j ◦ g, and let Y be a type. We define the operation

cocone map((i, j,H), Y ) :≡ (X → Y )→ coconeS(Y ).

by h 7→ (h ◦ i, h ◦ j, h ·H).

Definition 2.1.4. A commuting square

S B

A X

g

f j

i

with H : i◦f ∼ j ◦g is said to be a (homotopy) pushout square if the cocone (i, j,H)
with vertex X on the span S ≡ (S, f, g) satisfies the universal property of pushouts,
which asserts that the map

cocone map(i, j,H) : (X → Y )→ cocone(Y )

is an equivalence for any type Y . Sometimes pushout squares are also called cocartesian
squares.

Definition 2.1.5. Consider a pushout square

S B

A X

g

f j

i

with H : i ◦ f ∼ j ◦ g, and consider a cocone (i′, j′,H ′) with vertex Y on the same span
S ≡ (S, f, g). Then the unique map h : X → Y such that

cocone map((i, j,H), Y, h) = (i′, j′,H ′)

is called the cogap map of (i′, j′,H ′). We also write cogap(i′, j′,H ′) for the cogap map,
and we write

left comp(i′, j′,H ′) : i′ ∼ cogap(i′, j′,H ′) ◦ inl

right comp(i′, j′,H ′) : j′ ∼ cogap(i′, j′,H ′) ◦ inr

coh comp(i′, j′,H ′) : (left comp(i′, j′,H ′) · g) � H ′ ∼ (cogap(i′, j′,H ′) · glue) � (right comp(i′, j′,H ′) · f).

for the homotopies determining the uniqueness of cogap(i′, j′,H ′).

Proposition 2.1.6. Consider a commuting square

S B

A X,

g

f j

i

with H : i ◦ f ∼ j ◦ g. The following are equivalent:
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(i) The square is a pushout square.

(ii) The square

Y X Y B

Y A Y S ,

–◦j

–◦i –◦g

–◦f

which commutes by the homotopy

λh. eq htpy(h ·H),

is a pullback square, for every type Y .

(iii) For every type family P over X, the square

∏

(x:X) P (x)
∏

(b:B) P (j(b))

∏

(a:A) P (i(a))
∏

(x:S) P (j(g(x))),

–◦j

–◦i –◦g

λh. λx. trP (H(x),h(f(x)))

which commutes by the homotopy

λh. eq htpy(λx. apdh(H(x)))

is a pullback square. This property is also called the dependent universal prop-

erty of pushouts.

(iv) The gap map of the square

∏

(x:X) P (x)
∏

(b:B) P (j(b))

∏

(a:A) P (i(a))
∏

(x:S) P (j(g(x)))

has a section, for any type family P over X. This property is also called the
induction principle of pushouts.

Definition 2.1.7. From now on we will assume that any span has a pushout, and
moreover that universes are closed under pushouts. We will write A⊔SB for the pushout
of the span S ≡ (S, f, g) from A to B. The type A⊔SB comes equipped with a colimiting
cocone (inl, inr, glue), as displayed in the pushout square

S B

A A ⊔S B.

f

g

inr

inl
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Remark 2.1.8. We note that if S ≡ (S, f, g) is a span of pointed types and pointed maps
between them, then the pushout A ⊔S B of S is again a pointed type. The cocone
(inl, inr, glue) consists of two pointed maps and a pointed homotopy filling the square of
pointed maps. Moreover, the pushout A⊔S B satisfies a pointed version of the universal
property: for any pointed type Y the square

(A ⊔S B →∗ Y ) (B →∗ Y )

(A→∗ Y ) (S →∗ Y )

is a pullback square.

2.1.2 Examples of pushouts

Definition 2.1.9. Let X be a type. We define the suspension ΣX of X to be the
pushout of the span

X 1

1 ΣX

inr

inl

We will write N :≡ inl(⋆) and S :≡ inr(⋆).

Remark 2.1.10. By the universal property it follows that the map

(ΣX → Y )→
∑

(y,y′:Y )X → (y = y′)

given by h 7→ (h(N), h(S), h · glue) is an equivalence.

Moreover, if X is a pointed type, then the suspension is considered to be a pointed
type with base point N. By the universal property of ΣX it follows that the square

(ΣX →∗ Y ) (1→∗ Y )

(1→∗ Y ) (X →∗ Y )

is a pullback square. Since 1→∗ Y is contractible, it follows that

(ΣX →∗ Y ) ≃ Ω(X →∗ Y ) ≃ X →∗ Ω(Y )

Definition 2.1.11. Given a map f : A → B, we define the cofiber coff of f as the
pushout

A B

1 coff .

f

inr

inl

The cofiber of a map is sometimes also called the mapping cone.
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Definition 2.1.12. We define the join X ∗ Y of X and Y to be the pushout

X × Y Y

X X ∗ Y.

pr2

pr1 inr

inl

Definition 2.1.13. We define the n-sphere S
n for any n ≥ −1 by induction on n, by

taking

S
−1 :≡ 0

S
0 :≡ 2

S
n+1 :≡ 2 ∗ Sn.

Definition 2.1.14. Suppose A and B are pointed types, with base points a0 and b0,
respectively. The (binary) wedge A ∨B of A and B is defined as the pushout

2 A+B

1 A ∨B.

Definition 2.1.15. Given a type I, and a family of pointed types A over i, with base
points a0(i). We define the (indexed) wedge

∨

(i:I)Ai as the pushout

I
∑

(i:I)Ai

1
∨

(i:I)Ai.

λi. (i,a0(i))

Definition 2.1.16. Suppose A and B are pointed types. We define the wedge inclu-
sion wedge in : A∨B → A×B to be the unique map obtained via the universal property
of pushouts as indicated in the diagram

1 B

A A ∨B

A×B.

λb. (a0,b)

λa. (a,b0)

wedge in

We define the smash product A ∧B of A and B as the cofiber of the wedge inclusion,
i.e. as a pushout

A ∨B A×B

1 A ∧B.

wedge in
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2.1.3 Properties of iterated pushouts

The following corollary is also called the pasting property of pullbacks. edit

Corollary 2.1.17. Consider a commuting diagram of the form

A B C

X Y Z

k

f

l

g h

i j

with homotopies H : i ◦ f ∼ g ◦ k and K : j ◦ g ∼ h ◦ l, and the homotopy

(j ·H) � (K · k) : j ◦ i ◦ f ∼ h ◦ l ◦ k

witnessing that the outer rectangle commutes. Furthermore, suppose that the square on
the right is a pullback square. Then the following are equivalent:

(i) The square on the left is a pullback square.

(ii) The outer rectangle is a pullback square.

Proof. The commutativity of the two squares induces fiberwise transformations
∏

(x:X)fibf (x)→ fibg(i(x))
∏

(y:Y )fibg(y)→ fibh(j(y)).

By the assumption that the square on the right is a pullback square, it follows from
Corollary 1.4.13 that the fiberwise transformation

∏

(y:Y )fibg(y)→ fibh(j(y))

is a fiberwise equivalence. Therefore it follows from 3-for-2 property of equivalences that
the fiberwise transformation

∏

(x:X)fibf (x)→ fibg(i(x))

is a fiberwise equivalence if and only if the fiberwise transformation
∏

(x:X)fibf (x)→ fibh(j(i(x)))

is a fiberwise equivalence. Now the claim follows from one more application of Corol-
lary 1.4.13.

Corollary 2.1.18. Consider a commuting cube

S′

A′ S B′

A X ′ B

X,
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of which the two front squares are pullback squares. Then the back left square is a pullback
square if and only if the back right square is a pullback square.

Proposition 2.1.19. Consider the following configuration of commuting squares:

A B C

X Y Z

i

f

k

g h

j l

with homotopies H : j ◦ f ∼ g ◦ i and K : l ◦ g ∼ h ◦ k, and suppose that the square on
the left is a pushout square. Then the square on the right is a pushout square if and only
if the outer rectangle is a pushout square.

Proof. Let T be a type. Taking the exponent T (–) of the entire diagram of the statement
of the theorem, we obtain the following commuting diagram

TZ T Y TX

TC TB TA.

–◦l

–◦h –◦g

–◦j

–◦f

–◦k –◦i

By the assumption that Y is the pushout of B ← A→ X, it follows that the square on
the right is a pullback square. It follows by Corollary 2.1.17 that the rectangle on the
left is a pullback if and only if the outer rectangle is a pullback. Thus the statement
follows by the second characterization in Proposition 2.1.6.

Lemma 2.1.20. Consider a map f : A→ B. Then the cofiber of the map inr : B → coff
is equivalent to the suspension ΣA of A.

Proposition 2.1.21. Consider a commuting square

A B

X Y

i

f g

j

and write cogap : X ⊔A B → Y for the cogap map. Then the square

coff cofg

1 cofcogap

is a pushout square.
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2.2 Descent for pushouts

2.2.1 Type families over pushouts

Definition 2.2.1. Consider a commuting square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, where all types involved are in U . The type Desc(S) of descent
data for X, is defined to be the type of triples (PA, PB , PS) consisting of

PA : A→ U

PB : B → U

PS :
∏

(x:S)PA(f(x)) ≃ PB(g(x)).

Furthermore, we define the map

desc famS(i, j,H) : (X → U)→ Desc(S)

by P 7→ (P ◦ i, P ◦ j, λx. trP (H(x))).

Proposition 2.2.2. Consider a commuting square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g. If the square is a pushout square, then the function

desc famS(i, j,H) : (X → U)→ Desc(S)

is an equivalence.

Proof. By the 3-for-2 property of equivalences it suffices to construct an equivalence
ϕ : coconeS(U)→ Desc(S) such that the triangle

UX

coconeS(U) Desc(S)

cocone map
S
(i,j,H) desc fam

S
(i,j,H)

≃
ϕ

commutes.

Since we have equivalences

equiv eq :
(

PA(f(x)) = PB(g(x))
)

≃
(

PA(f(x)) ≃ PB(g(x))
)
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for all x : S, we obtain an equivalence on the dependent products

(

∏

(x:S)PA(f(x)) = PB(g(x))
)

≃
(

∏

(x:S)PA(f(x)) ≃ PB(g(x))
)

.

by post-composing with the equivalences equiv eq. We define ϕ to be the induced map
on total spaces. Explicitly, we have

ϕ :≡ λ(PA, PB ,K). (PA, PB , λx. equiv eq(K(x))).

Then ϕ is an equivalence by Proposition 1.2.4, and the triangle commutes because there
is a homotopy

equiv eq(apP (H(x))) ∼ trP (H(x)).

Corollary 2.2.3. Consider descent data (PA, PB , PS) for a pushout square as in Propo-
sition 2.2.2. Then the type of quadruples (P, eA, eB , eS) consisting of a family P : X → U
equipped with fiberwise equivalences

eA :
∏

(a:A)PA(a) ≃ P (i(a))

eB :
∏

(b:B)PB(a) ≃ P (j(b))

and a homotopy eS witnessing that the square

PA(f(x)) P (i(f(x)))

PB(g(x)) P (j(g(x)))

eA(f(x))

PS(x) trP (H(x))

eB(g(x))

commutes, is contractible.

Proof. The fiber of desc famS(i, j,H) map at (PA, PB , PS) is equivalent to the type of
quadruples (P, eA, eB , eS) as described in the theorem, which are contractible by Propo-
sition 1.1.19.

For the remainder of this subsection we consider a pushout square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, descent data

PA : A→ U

PB : B → U

PS :
∏

(x:S)PA(f(x)) ≃ PB(g(x)),

and a family P : X → U equipped with

eA :
∏

(a:A)PA(a) ≃ P (i(a))
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eB :
∏

(b:B)PB(a) ≃ P (j(b))

and a homotopy eS witnessing that the square

PA(f(x)) P (i(f(x)))

PB(g(x)) P (j(g(x)))

eA(f(x))

PS(x) trP (H(x))

eB(g(x))

commutes.

Definition 2.2.4. We define the commuting square

∑

(x:S) PA(f(x))
∑

(b:B) PB(b)

∑

(a:A) PA(a)
∑

(x:X) P (x)

f ′ :≡ totf (λx. idPA(f(x)))

g′ :≡ totg(eS)

j′ :≡ totj(eB)

i′ :≡ toti(eA)

with the homotopy H ′ : i′ ◦ f ′ ∼ j′ ◦ g′ defined as

λ(x, y). eq pair(H(x), eS(x, y)
−1).

Furthermore, we will write S ′ for the span

∑

(a:A) PA(a)
∑

(x:S) PA(f(x))
∑

(b:B) PB(b).
f ′ g′

We now state the flattening lemma for pushouts, which should be compared to the
flattening lemma for coequalizers, stated in Lemma 6.12.2 of [33]. We note that, using
the dependent universal property of pushouts, our proof is substantially shorter.

Lemma 2.2.5 (The flattening lemma). The commuting square

∑

(x:S) PA(f(x))
∑

(b:B) PB(b)

∑

(a:A) PA(a)
∑

(x:X) P (x)

f ′

g′

j′

i′

is a pushout square.
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Proof. Note that we have a commuting cube

Y
∑

(x:X) P (x)

Y
∑

(a:A) PA(a) ∏

(x:X) Y
P (x) Y

∑
(b:B) PB(b)

∏

(a:A) Y
PA(a) Y

∑
(x:S) PA(f(x)) ∏

(b:B) Y
PB(b)

∏

(x:S) Y
PA(f(x))

ev pair

ev pair ev pair

ev pair

for any type Y . In this cube, the bottom square is a pullback square by property (iii) of
Proposition 2.1.6. The vertical maps (of the form ev pair) are equivalences, so it follows
that the top square is a pullback square. We conclude that

∑

(x:X) P (x) is a pushout.

2.2.2 The descent property for pushouts

Definition 2.2.6. Consider a span S from A to B, and a span S ′ from A′ to B′. A
cartesian transformation of spans from S ′ to S is a tuple

(hA, hS , hB , F,G, pf , pg)

consisting of maps hA : A′ → A, hS : S′ → S, and hB : B′ → B, as indicated in the
diagram

A′ S′ B′

A S B,

hA

f ′ g′

hS hB

f g

with homotopies F : f ◦ hS ∼ hA ◦ f
′ and G : g ◦ hS ∼ hB ◦ g

′, satisfying the conditions

pf : is pullback(hS , f
′, F )

pg : is pullback(hS , g
′, G)

that both squares are pullback squares. We write cart(S ′,S) for the type of cartesian
transformations from S ′ to S, and we write

Cart(S) :≡
∑

(A′,B′:U)

∑

(S′:span(A′,B′))cart(S
′,S).

Given descent data (PA, PB , PS) on a span S from A to B, we obtain a cartesian
transformation

∑

(a:A) PA(a)
∑

(x:S) PA(f(x))
∑

(b:B) PB(b)

A S B

pr1 pr1

totf (id) totg(PS)

pr1

f g
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with the canonical homotopies witnessing that the squares commute. Note that both
the left and right commuting squares are pullback squares by Proposition 1.4.11. Thus
we obtain an operation

cart descS : Desc(S)→ Cart(S).

Lemma 2.2.7. For any span S, the operation

cart descS : Desc(S)→ Cart(S)

is an equivalence.

Proof. Note that by Proposition 1.6.3 it follows that the types of triples (f ′, F, pf ) and
(g′, G, pg) are equivalent to the types of fiberwise equivalences

∏

(x:S)fibhS
(x) ≃ fibhA

(f(x))
∏

(x:S)fibhS
(x) ≃ fibhB

(g(x))

respectively. Furthermore, by Theorem 1.5.9 the types of pairs (S′, hS), (A
′, hA), and

(B′, hB) are equivalent to the types S → U , A→ U , and B → U , respectively. Therefore
it follows that the type Cart(S) is equivalent to the type of tuples (Q,PA, ϕ, PB , PS)
consisting of

Q : S → U

PA : A→ U

PB : B → U

ϕ :
∏

(x:S)Q(x) ≃ PA(f(x))

PS :
∏

(x:S)Q(x) ≃ PB(g(x)).

However, the type of ϕ is equivalent to the type PA ◦ f = Q. Thus we see that the type
of pairs (Q,ϕ) is contractible, so our claim follows.

Definition 2.2.8. Consider a commuting square

S B

A X

g

f j

i

with H : i ◦ f ∼ j ◦ g. We define an operation

cart mapS :
(

∑

(X′:U)X
′ → X

)

→ Cart(S).

Construction. Let X ′ : U and hX : X ′ → X. Then we define A′, B′, and S′ as the
pullbacks

A′ :≡ A×X X ′

B′ :≡ B ×X X ′

S′ :≡ S ×A A′,
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resulting in a diagram of the form

S′

A′ S B′

A X ′ B

X

By the universal property of B′ it follows that there is a unique map g′ : S′ → B′ making
the cube commute. Moreover, since the two front squares and the back left squares are
pullback squares by construction, it follows by Corollary 2.1.17 that also the back right
square is a pullback square. Thus we obtain a cartesian transformation of spans.

The following theorem is analogous to Proposition 2.2.2.

Theorem 2.2.9 (The descent theorem for pushouts). Consider a commuting square

S B

A X

g

f j

i

with H : i ◦ f ∼ j ◦ g. If this square is a pushout square, then the operation cart mapS is
an equivalence

(

∑

(X′:U)X
′ → X

)

≃ Cart(S)

Proof. It suffices to show that the square

UX Desc(S)

∑

(X′:U)X
X′

Cart(S)

desc fam
S
(i,j,H)

map famX cart desc
S

cart map
S

commutes. To see that this suffices, note that the operation map famX is an equivalence
by Theorem 1.5.9, the operation desc famS(i, j,H) is an equivalence by Proposition 2.2.2,
and the operation cart descS is an equivalence by Lemma 2.2.7.

To see that the square commutes, note that the composite

cart mapS ◦map famX

takes a family P : X → U to the cartesian transformation of spans

A×X P̃ S ×A

(

A×X P̃
)

B ×X P̃

A S B,

π1 π1
π1
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where P̃ :≡
∑

(x:X) P (x).

The composite

cart descS ◦ desc famX

takes a family P : X → U to the cartesian transformation of spans

∑

(a:A) P (i(a))
∑

(s:S) P (i(f(s)))
∑

(b:B) P (j(b))

A S B

These cartesian natural transformations are equal by Proposition 1.4.11.

Since cart mapS is an equivalence it follows that its fibers are contractible.

Corollary 2.2.10. Consider a diagram of the form

S′

A′ S B′

A B

X

hS

f ′ g′

hA
f g

hB

i j

with homotopies

F : f ◦ hS ∼ hA ◦ f
′

G : g ◦ hS ∼ hB ◦ g
′

H : i ◦ f ∼ j ◦ g,

and suppose that the bottom square is a pushout square, and the top squares are pullback
squares. Then the type of tuples ((X ′, hX), (i′, I, p), (j′, J, q), (H ′, C)) consisting of

(i) A type X ′ : U together with a morphism

hX : X ′ → X,

(ii) A map i′ : A′ → X ′, a homotopy I : i ◦ hA ∼ hX ◦ i
′, and a term p witnessing that

the square

A′ X ′

A X

hA

i′

hX

i

is a pullback square.
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(iii) A map j′ : B′ → X ′, a homotopy J : j ◦hB ∼ hX ◦ j
′, and a term q witnessing that

the square

B′ X ′

B X

hB

j′

hX

j

is a pullback square,

(iv) A homotopy H ′ : i′ ◦ f ′ ∼ j′ ◦ g′, and a homotopy

C : (i · F ) � ((I · f ′) � (hX ·H
′)) ∼ (H · hS) � ((j ·G) � (J · g′))

witnessing that the cube

S′

A′ S B′

A X ′ B

X,

commutes,

is contractible.

The following theorem should be compared to the flattening lemma, Lemma 2.2.5.

Theorem 2.2.11. Consider a commuting cube

S′

A′ S B′

A X ′ B

X

f ′ g′
hS

hA

f g

j′
hB

i

hX

i′

j

in which the bottom square is a pushout, and the two vertical squares in the back are
pullbacks. Then the following are equivalent:

(i) The two vertical squares in the front are pullback squares.

(ii) The top square is a pushout square.
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Proof. By Corollary 1.4.13 we have fiberwise equivalences

F :
∏

(x:S)fibhS
(x) ≃ fibhA

(f(x))

G :
∏

(x:S)fibhS
(x) ≃ fibhB

(g(x))

I :
∏

(a:A)fibhA
(a) ≃ fibhX

(i(a))

J :
∏

(b:B)fibhB
(b) ≃ fibhX

(j(b)).

Moreover, since the cube commutes we obtain a fiberwise homotopy

K :
∏

(x:S)I(f(x)) ◦ F (x) ∼ J(g(x)) ◦G(x).

We define the descent data (PA, PB , PS) consisting of PA : A → U , PB : B → U , and
PS :

∏

(x:S) PA(f(x)) ≃ PB(g(x)) by

PA(a) :≡ fibhA
(a)

PB(b) :≡ fibhB
(b)

PS(x) :≡ G(x) ◦ F (x)−1.

We have

P :≡ fibhX

eA :≡ I

eB :≡ J

eS :≡ K.

Now consider the diagram

∑

(s:S) fibhS
(s)

∑

(s:S) fibhA
(f(s))

∑

(b:B) fibhB
(b)

∑

(a:A) fibhA
(a)

∑

(a:A) fibhA
(a)

∑

(x:X) fibhX
(x)

Since the top and bottom map in the left square are equivalences, we obtain that the
left square is a pushout square. Moreover, the right square is a pushout by Lemma 2.2.5.
Therefore it follows by Proposition 2.1.19 that the outer rectangle is a pushout square.

Now consider the commuting cube

∑

(s:S) fibhS
(s)

∑

(a:A) fibhA
(a) S′

∑

(b:B) fibhB
(b)

A′
∑

(x:X) fibhX
(x) B′

X ′.
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We have seen that the top square is a pushout. The vertical maps are all equivalences, so
the vertical squares are all pushout squares. Thus it follows from one more application
of Proposition 2.1.19 that the bottom square is a pushout.

Theorem 2.2.12. Consider a commuting cube of types

S′

A′ S B′

A X ′ B

X,

and suppose the two vertical squares in the back are pullback squares. Then the following
are equivalent:

(i) The two vertical squares in the front are pullback squares.

(ii) The commuting square

A′ ⊔S
′

B′ X ′

A ⊔S B X

is a pullback square.

Proof. To see that (i) implies (ii), it suffices to show that the pullback

(A ⊔S B)×X X ′

has the universal property of the pushout. This follows by the descent theorem, since
the vertical squares in the cube

S′

A′ S B′

A (A ⊔S B)×X X ′ B

A ⊔S B

are pullback squares by Corollary 2.1.17.
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To prove that (ii) implies (i), we note that in the cube

S′

A′ S B′

A A′ ⊔S
′

B′ B

A ⊔S B,

the two back squares are pullback squares, and the top and bottom squares are pushout
squares. Therefore it follows from Theorem 2.2.11 that the two front squares are pullback
squares. Now we obtain (i) from the pasting lemma for pushouts.

2.3 Applications of the descent theorem for pushouts

2.3.1 Fiber sequences

Definition 2.3.1. A pointed type is a pair (X,x) consisting of a type X equipped
with a base point x : X. We will write U∗ for the type

∑

(X:U)X of all pointed types.

In the following lemma we characterize the identity type of U∗.

Lemma 2.3.2. For any (A, a), (B, b) : U∗ we have an equivalence

(

(A, a) = (B, b)
)

≃
(

∑

(e:A≃B)e(a) = b
)

.

Construction. By Proposition 1.1.9 the type on the left hand side is equivalent to the
type

∑

(p:A=B) trEl(p, a) = b. By the univalence axiom, the map

equiv eqA,B : (A = B)→ (A ≃ B)

is an equivalence for each B : U . Therefore, we have an equivalence of type

(

∑

(p:A=B)trEl(p, a) = b
)

≃
(

∑

(e:A≃B)trEl(eq equiv(e), a) = b
)

Moreover, by equivalence induction (the analogue of path induction for equivalences),
we can compute the transport:

trEl(eq equiv(e), a) = e(a).

It follows that (trEl(eq equiv(e), a) = b) ≃ (e(a) = b).

Definition 2.3.3. (i) Let (X, ∗X ) be a pointed type. A pointed family over (X, ∗X )
consists of a type family P : X → U equipped with a base point ∗P : P (∗X).
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(ii) Let (P, ∗P ) be a pointed family over (X, ∗X ). A pointed section of (P, ∗P ) consists
of a dependent function f :

∏

(x:X) P (x) and an identification p : f(∗X) = ∗P . We
define the pointed Π-type to be the type of pointed sections:

Π∗
(x:X)P (x) :≡

∑

(f :
∏

(x:X) P (x))f(∗X) = ∗P

In the case of two pointed types X and Y , we may also view Y as a pointed family
over X. In this case we write X →∗ Y for the type of pointed functions.

(iii) Given any two pointed sections f and g of a pointed family P over X, we define
the type of pointed homotopies

f ∼∗ g :≡ Π∗
(x:X)f(x) = g(x),

where the family x 7→ f(x) = g(x) is equipped with the base point p � q−1.

Definition 2.3.4. (i) For any pointed type X, we define the pointed identity func-
tion id∗X :≡ (idX , refl∗).

(ii) For any two pointed maps f : X →∗ Y and g : Y →∗ Z, we define the pointed
composite

g ◦∗ f :≡ (g ◦ f, apg (pf ) � pg).

Definition 2.3.5. Let X be a pointed type with base point x. We define the loop
space Ω(X,x) of X at x to be the pointed type x = x with base point reflx.

Definition 2.3.6. The loop space operation Ω is functorial in the sense that

(i) For every pointed map f : X →∗ Y there is a pointed map

Ω(f) : Ω(X)→∗ Ω(Y ),

defined by Ω(f)(ω) :≡ pf �apf (ω)�p
−1
f , which is base point preserving by right inv(pf ).

(ii) For every pointed type X there is a pointed homotopy

Ω(id∗X) ∼∗ id
∗
Ω(X).

(iii) For any two pointed maps f : X →∗ Y and g : Y →∗ X, there is a pointed
homotopy witnessing that the triangle

Ω(Y )

Ω(X) Ω(Z)

Ω(g)

Ω(g◦∗f)

Ω(f)

of pointed types commutes.

Lemma 2.3.7. For any (e, p), (f, q) :
∑

(e:A≃B) e(a) = b, we have an equivalence of type

(

(e, p) = (f, q)
)

≃
(

∑

(h:e∼f)p = h(a) � q
)

.
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Construction. The type (e, p) = (f, q) is equivalent to the type
∑

(h:e=f) tr(h, p) = q.
Note that by the principle of function extensionality, the map htpy eq : (e = f)→ (e ∼ f)
is an equivalence. Furthermore, it follows by homotopy induction that for any h : e ∼ f
we have an equivalence of type

(tr(eq htpy(h), p) = q) ≃ (p = h(a) � q).

Definition 2.3.8. A fiber sequence F →֒ E ։ B consists of:

(i) Pointed types F , E, and B, with base points x0, y0, and b0 respectively,

(ii) Base point preserving maps i : F →∗ E and p : E →∗ B, with α : i(x0) = y0 and
β : p(y0) = b0,

(iii) A pointed homotopy H : constb0 ∼∗ p ◦∗ i witnessing that the square

F E

1 B,

i

p

constb0

commutes and is a pullback square.

We will write Fib Seq for the type of all fiber sequences in U .

Proposition 2.3.9. The type of all fiber sequences is equivalent to the type

∑

((B,b):U∗)

∑

(P :B→U)P (b).

2.3.2 Fiber sequences obtained by the descent property

Definition 2.3.10. Let f : A → B be a map. The codiagonal ∇f of f is the map
obtained from the universal property of the pushout, as indicated in the diagram

A B

B B ⊔A B

B

f

f

p
inr

idB
inl

idB

∇f

Proposition 2.3.11. For any map f : A → B and any y : B, there is an equivalence
fib∇f

(y) ≃ Σ(fibf (y)).
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Proof. For any b : B we have the commuting cube

fibf (b)

1 A 1

B 1 B

B

b

of which the vertical sides are pullback squares. Hence we obtain the pullback square

Σfibf (b) 1

B ⊔A B B

b

from Theorem 2.2.12, from which the claim follows.

Definition 2.3.12. Consider two maps f : A → B and g : C → D. The pushout-
product

f�g : (A×D) ⊔A×C (B × C)→ B ×D

of f and g is defined by the universal property of the pushout as the unique map rendering
the diagram

A× C B × C

A×D (A×D) ⊔A×C (B × C)

B ×D

f×idC

idA×g inr
idB×g

inl

f×idD

f�g

commutative.

Proposition 2.3.13. For any two maps f : A → B and g : C → D, and any (b, d) :
B ×D, there is an equivalence

fibf�g(b, d) ≃ fibf (b) ∗ fibg(d).
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Proof. Let b : B and d : D. Then we have the commuting cube

fibf (b)× fibg(d)

fibf (b) A× C fibg(d)

A×D 1 B × C

B ×D

of which the vertical sides are pullback squares. Hence the claim follows from Theo-
rem 2.2.12.

Definition 2.3.14. Let f : A → X and g : B → X be maps into X. We define the
fiberwise join A ∗X B and the join1 f ∗ g : A ∗X B → X of f and g, as indicated in
the following diagram:

A×X B B

A A ∗X B

X.

π2

π1

p

inr
g

inl

f

f∗g

Theorem 2.3.15. Let f : A→ X and g : B → X be maps into X, and let x : X. Then
there is an equivalence

fibf∗g(x) ≃ fibf (x) ∗ fibg(x).

Proof. We have the following commuting cube

fibf (x)× fibg(x)

fibf (x) A×X B fibg(x)

A 1 B

X

in which the vertical squares are pullback squares. Therefore it follows by Theorem 2.2.12
that the square

fibf (x) ∗ fibg(x) 1

A ∗X B X
1Warning : By f ∗ g we do not mean the functorial action of the join, applied to (f, g).
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is a pullback square.

Remark 2.3.16. The join operation on maps with a common codomain is associative up
to homotopy (this was formalized by Brunerie, see Proposition 1.8.6 of [9]), and it is
a commutative operation on the generalized elements of a type X. Furthermore, the
unique map of type 0→ X is a unit for the join operation.

Definition 2.3.17. Let A and B be pointed types with base points a0 : A and b0 : B.
The wedge inclusion is defined as follows by the universal property of the wedge:

1 B

A A ∨B

A×B

inr λb. (a0,b)

inl

λa. (a,b0)

wedge inA,B

Proposition 2.3.18. There is a fiber sequence

Ω(A) ∗ Ω(B) →֒ A ∨B ։ A×B.

Proof. We have the commuting cube

Ω(B)× Ω(A)

Ω(B) 1 Ω(A)

A 1 B

A×B

consta constb

of which the vertical sides are pullback squares. Hence the claim follows from Theo-
rem 2.2.12.

Definition 2.3.19. Consider a pointed type X. We define the map fold : X ∨X → X
by the universal property of the wedge as indicated in the diagram

1 X

X X ∨X

X.

x0

x0

p
inr

idX
inl

idX

fold

Proposition 2.3.20. There is a fiber sequence

ΣΩ(X) →֒ X ∨X ։ X.
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Proof. We have the commuting cube

Ω(X)

1 1 1

X 1 X

X

of which the vertical sides are pullback squares. Hence the claim follows from Theo-
rem 2.2.12.

Remark 2.3.21. As a corollary, there are fiber sequences

S
1 →֒ RP∞ ∨ RP∞

։ RP∞

S
2 →֒ CP∞ ∨ CP∞

։ CP∞.

Here we take RP∞ :≡ K(Z/2, 1) and CP∞ :≡ K(Z, 2), where the Eilenberg-Mac Lane
space K(G,n) is defined in [23].

Corollary 2.3.22. There is a fiber sequence

(ΣΩ(X))∨n →֒ X∨(n+1)
։ X.

Definition 2.3.23. A coherent H-space consists of a type X equipped with a unit
1 : X, a multiplication operation µ : X → (X → X) such that the function µ(x, –) and
µ(– , y) are equivalences for each x : X and y : X, respectively, and coherent unit laws

right unit :
∏

(x:X)µ(x, 1) = x

left unit :
∏

(y:X)µ(1, y) = y

coh unit : left unit(1) = right unit(1).

The following theorem is also known as the Hopf-construction.

Theorem 2.3.24. For any coherent H-space X there is a fiber sequence

X →֒ X ∗ X ։ ΣX.

The map ηX : X ∗ X → ΣX is called the Hopf fibration for X.

Proof. We have the commuting cube

X ×X

X X X

1 X ∗ X 1

ΣX,

π1 µ π2
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where the front map is obtained by the universal property of the pushout.
In this cube, the two vertical squares in the back are pullback squares by Propo-

sition 1.4.11, since µ(– , y) and µ(x, –) are equivalences for every x : X and y : X,
respectively. Since the bottom and top squares are pushout squares it follows by Theo-
rem 2.2.12 that the front two squares are pullback squares.

Remark 2.3.25. The classical Hopf fibration

S
1

S
3

S
2

is now obtained from the fact that S
1 ∗ S1 ≃ S

3, which was established in [9]. Indeed,
the circle is a coherent H-space.



Chapter 3

Reflexive coequalizers

The material of this chapter is joint work with Bas Spitters, which we started in the
academic year 2012-2013 while I was a research assistant at the Radboud University of
Nijmegen.

We begin this chapter with a proof of the type theoretic Yoneda lemma, Lemma 3.1.1.
The Yoneda lemma is used to show in Proposition 3.2.5 that the discrete functor ∆ :
U → rGph from small types into the type of small reflexive graphs, is an embedding. In
Theorem 3.2.6 we show that a reflexive graph A is discrete if and only if it satisfies any
one (and hence all) of the unique extension properties

I A 1 A 1 A,

1 I I

0 1

where I is the walking edge.
The (homotopy) reflexive coequalizer satisfies the universal property of the left ad-

joint of ∆ : U → rGph. We show in Proposition 3.3.7 that the reflexive coequalizer of a
reflexive graph A is just a pushout

∑

(x,y:A0)
A1(x, y) A0

A0 rcoeq(A).

π2

π1

In particular it follows that if a universe is closed under pushouts (which is our running
assumption), then it is also closed under reflexive coequalizers. More practically, this
characterization of reflexive coequalizers as pushouts allows us to compute in Exam-
ple 3.3.8 many reflexive coequalizers in terms of previously defined operations.

Our next purpose is to study the morphisms f : B → A of reflexive graphs that are
fibrations in the sense that they satisfy the right orthogonality conditions

I B 1 B 1 B

1 A I A I A.

f 0 f 1 f

53
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We show in Proposition 3.4.6 that the class of fibrations is precisely the class of
cartesian morphisms of reflexive graphs, i.e. the morphisms f : B → A for which the
naturality squares

B0
∑

(i,j:B0)
B1(i, j) B0 B0

∑

(i,j:B0)
B1(i, j)

A0
∑

(i,j:A0)
A1(i, j) A0 A0

∑

(i,j:A0)
A1(i, j)

are pullback squares. It follows that f : B → A is a fibration whenever it appears as a
pullback

B ∆Y

A ∆X

f

of some map between discrete reflexive graphs. Pulling back along h : A → ∆X for a
fixed type X therefore provides an operation

h∗ :
(

∑

(Y :U)(Y → X)
)

→
(

∑

(B:rGph)fib(B,A)
)

.

One way of stating the descent property for reflexive coequalizers, is that this map is
an equivalence whenever f : A → ∆X is a reflexive coequalizer. As a consequence of
the descent property we obtain in Theorem 3.4.11 that for any fibration f : B → A of
reflexive graphs, a commuting square of the form

B ∆Y

A ∆X

f

is a pullback square of reflexive graphs if and only if the square

rcoeq(B) Y

rcoeq(A) X

rcoeq(f)

is a pullback square. A minor note about the forward direction is that the hypothesis
that f is a fibration is implied by the assumption that the square is a pullback square,
so this assumption is unrestrictively superfluous. However, this assumption is necessary
for the converse direction.

The situation here is that we have an adjunction F ⊣ G (in the present case rcoeq ⊣ ∆)
satisfying the ‘descent condition’ that if f is a fibration, i.e. the naturality square of the
unit η : id ⇒ GF at f is a pullback square, then any square of the form

A GX

B GY

f Gg
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is a pullback square if and only if the square

FA X

FB Y

Ff g

is a pullback square. We will investigate this situation further in §6.1, where we study
the descent condition for general modalities.

In the final section of this chapter we apply the previous results to colimits of dia-
grams indexed by a (reflexive) graph. Most useful to us are the results on sequential
colimits, which we will rely on in later chapters. Here we apply our results on diagrams
over (reflexive) graphs to obtain results on sequential colimits. In [14] these results are
obtained directly, and moreover they are formalized.

3.1 The Yoneda lemma

The universal property of identity types is sometimes called the type theoretic Yoneda
lemma: families of maps out of the identity type are uniquely determined by their action
on the reflexivity identification.

Lemma 3.1.1. Let B be a type family over A, and let a : A. Then the map

ev refl :
(

∏

(x:A)(a = x)→ B(x)
)

→ B(a)

given by λf. f(a, refla) is an equivalence.

Proof. The inverse of ev refl is inda= : B(a) →
∏

(x:A)(a = x) → B(x). We have the
homotopy λb. reflb : ev refl ◦ inda= ∼ idB(a) by the computation rule for identity types, so
it is indeed the case that inda= is a section of ev refl.

To see that inda= ◦ ev refl ∼ id, let f :
∏

(x:A)(a = x) → B(x). To show that
inda=(f(a, refla)) = f we use function extensionality (twice), so it suffices to show that

∏

(x:A)

∏

(p:a=x)ϕ(f(a, refla), x, p) = f(x, p).

This follows by path induction on p, since inda=(f(a, refla), a, refla) ≡ f(a, refla).

Corollary 3.1.2. Let B be a type family over A, and let a : A. Then there is an
equivalence

(

IdA(a) = B
)

≃
(

B(a)× is contr
(

∑

(x:A)B(x)
))

.

Furthermore, for b : B(a) there is an equivalence

(

(IdA(a), refla) = (B, b)
)

≃ is contr
(

∑

(x:A)B(x)
)

.

Proof. First we show that there is an equivalence

(

∏

(x:A)(a = x) ≃ B(x)
)

≃ B(a)× is contr
(

∑

(x:A)B(x)
)

.
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To see this, note that the type of fiberwise equivalences
∏

(x:A)(a = x) ≃ B(x) is equiva-
lent to the type

∑

(f :
∏

(x:A)(a=x)→B(x))

∏

(x:A)is equiv(f)

By Theorem 1.2.5, the type
∏

(x:A) is equiv(f) is equivalent to the contractibility of the
total space of B. Now the claim follows from Lemma 3.1.1. The claims in the statement
are now easy consequences.

Definition 3.1.3. A (small) reflexive relation R on A is a pair (R, ρ) consisting of a
binary type-valued relation R : A→ (A→ U) equipped with a proof of reflexivity

ρ :
∏

(x:A)R(x, x).

We will write rRel(A) for the type of all small reflexive relations on A, i.e.

rRel(A) :≡
∑

(R:A→(A→U))

∏

(x:A)R(x, x).

Corollary 3.1.4. Let R ≡ (R, ρ) be a reflexive relation on A. Then there is an equiva-
lence

(

(Id,refl) = (R, ρ)
)

≃
∏

(a:A)is contr
(

∑

(x:A)R(a, x)
)

.

The following theorem, which was proven independently by Escardó [17] around the
same time, shows that the canonical map

(x = y)→ (IdA(x) = IdA(y))

is an equivalence, for any x, y : A. This will be particularly relevant to us once we study
∞-equivalence relations.

Proposition 3.1.5. For any type A : U , the map

IdA : A→ (A→ U)

is an embedding.

Proof. Let a : A. Then we calculate the fiber of IdA at a type family B : A → U as
follows:

fibIdA(B) ≡
∑

(a:A)IdA(a) = B

≃
∑

(a:A)

(

B(a)× is contr
(

∑

(x:A)B(x)
))

(by Corollary 3.1.2)

≃
(

∑

(a:A)B(a)
)

× is contr
(

∑

(x:A)B(x)
)

≃ is contr
(

∑

(x:A)B(x)
)

.

The last equivalence follows since X × is contr(X) ≃ is contr(X) for every type X. We
conclude that the fibers of IdA are propositions, so IdA is an embedding by Proposi-
tion 1.2.13.
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3.2 Discrete reflexive graphs

Definition 3.2.1. A non-reflexive graph A in U is a pair (A0, A1) consisting of

A0 : U

A1 : A0 → A0 → U .

We write Gph for the type of all graphs in U . When A is a graph, we say that A0 is its
type of vertices, and that A1 is its family of edges.

A reflexive graph A in U consists of a graph (A0, A1) equipped with a reflexivity
term

rfxA :
∏

(i:A0)
A1(i, i).

We write
rGph :≡

∑

(V :U)

∑

(E:V→(V→U))

∏

(v:V )E(v, v)

for the type of reflexive graphs in U .

Example 3.2.2. (i) A reflexive pair consists of types V and E, and maps s, t, and r
between V and E as indicated in the diagram

E V,
s

t

r

equipped with homotopies Hsr : s ◦ r ∼ idV and Htr : t ◦ r ∼ idV . Given a reflexive
pair as above, we obtain a reflexive graph A by taking

A0 :≡ V

A1(v,w) :≡
∑

(e:E)(s(e) = v)× (t(e) = w)

rfxA(v) :≡ (r(v),Hsr(v),Htr(v)).

By a routine construction it can be shown that the type of small reflexive pairs is
equivalent to the type of small reflexive graphs.

(ii) Given a type X, the discrete graph ∆(X) on X is the reflexive graph consisting
of

∆(X)0 :≡ X

∆(X)1 :≡ IdX

rfx∆(X) :≡ refl.

(iii) Given a map f : A → X, the pre-kernel k(f) of f is the reflexive relation on A
given by x, y 7→ f(x) = f(y).

(iv) The indiscrete graph ∇(X) on X is the reflexive graph consisting of

∇(X)0 :≡ X

∇(X)1 :≡ λx. λy.1



58 CHAPTER 3. REFLEXIVE COEQUALIZERS

rfx∇(X) :≡ ⋆.

The reflexive pair corresponding to ∇(X) is (equivalent to) the reflexive pair

X ×X X.
π1

π2δ

In particular, we have the unit graph 1 :≡ ∇(1), which happens to also be ∆(1).

(v) The walking edge I is an example of a reflexive graph. One way of defining it is
by taking

I0 :≡ 2

I1(x, y) :≡ τ(x)→ τ(y)

rfxI(x) :≡ idτ(x)

where τ : 2 → U is the tautological family on the type 2 of booleans, given by
τ(02) :≡ 0 and τ(12) :≡ 1. We write a for the (unique) edge from 02 to 12. It
may be helpful to think of the walking edge I as an interval, hence the choice of
notation.

Definition 3.2.3. A morphism of graphs f from A to B is a pair

f0 : A0 → B0

f1 :
∏

(i,j:A0)
A1(i, j) → B1(f0(i), f0(j)).

We write Gph(A,B) for the type of graph morphisms from A to B.
A morphism of reflexive graphs f from A to B is a morphism of graphs equipped

with a term

rfxf :
∏

(i:A0)
f1(rfxA(i)) = rfxB(f0(i))

witnessing that reflexivity is preserved. We write rGph(A,B) for the type of reflexive
graph morphisms from A to B.

For any reflexive graph there is an identity morphism, and for any composable pair
of morphisms there is a composite. Furthermore, these operations are associative, and
satisfy the unit laws, both up to homotopy. It should be noted, however, that composition
of reflexive graph morphisms is not expected to be associative on the nose, since the
reflexivity is only preserved up to higher identification.

Example 3.2.4. (i) Given a function f : X → Y we obtain a morphism∆f : rGph(∆X,∆Y )
given by

∆f0 :≡ f

∆f1 :≡ apf

rfx∆f :≡ reflreflf(x)

The action of ∆ on morphisms preserves identity morphisms and compositions,
and moreover it preserves the unit laws and associativity.
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(ii) The graph ∇(1) is the terminal reflexive graph in the sense that for any graph A,
the type rGph(A,1) is contractible.

(iii) For any reflexive graph A, the map

ev pt : rGph(1,A)→ A0

given by f 7→ f0(⋆), is an equivalence. The analogous statement is false for non-
reflexive graphs.

(iv) The universal property of the walking edge I is that every edge e in a graph A,
the type of reflexive graph morphisms that map the edge a of I to e is contractible.
In other words, the map

ev edge : rGph(I,A)→
∑

(i,j:A0)
A1(i, j)

given by f 7→ (f0(0), f0(1), f1(a)) is an equivalence.

(v) For the walking edge I there are reflexive graph morphisms

I 1
1

0

This is a cograph object of reflexive graphs, since the morphism I → 1 is a common
retraction of the end-point inclusions 0, 1 : 1 → I, whereas in a reflexive pair (a
graph object) the morphism r is a common section of the source and target maps.

(vi) Since we do not have the technology available to establish that graphs and reflexive
graphs form ∞-categories, a comparison between the two structures is limited to
what we can say directly using the basic categorical operations such as composition.
However, this is just enough to establish the universal property of an adjunction.

Given a non-reflexive graph A ≡ (A0, A1), we can obtain a reflexive graph FA by
freely adjoining reflexivity:

FA0 :≡ A0

FA1(i, j) :≡ A1(i, j) + (i = j)

rfxFA(i) :≡ inr(refli).

On the other hand, there is the projection U : rGph → Gph which forgets the
reflexivity structure, and for each graphA there is a graph morphism η : A → UFA.
Both F and U are functorial in the sense that they act on morphisms, and preserve
units and composition in the obvious way, and η is natural in A.

The universal property of the construction F of freely adjoining reflexivity, is that
the map

U(–) ◦ η : rGph(FA,B)→ Gph(A, UB)

is an equivalence. Indeed, this is the universal property that establishes F as a left
adjoint to U , even though we cannot manifest F and U as functors.

The construction F of freely adjoining reflexivity is not surjective on morphisms.
For example, there are no morphisms from 1 to the graph A with a contractible
type of vertices but no edges. However FA is the terminal reflexive graph.
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Proposition 3.2.5. The operation ∆ : U → rGph is an embedding in the following sense:

(i) As a function, ∆ : U → rGph is an embedding.

(ii) For every two types X and Y , the action on morphisms

∆ : (X → Y )→ rGph(∆X,∆Y )

is an equivalence.

Proof. Let A be a reflexive graph. Then the fiber of ∆ : U → rGph is calculated as
follows:

fib∆(A) :≡
∑

(X:U)∆X = A

≃ (IdA0 , refl) = (A1, rfxA)

≃
∏

(x:A0)
is contr

(

∑

(y:A0)
A1(x, y)

)

, (by Corollary 3.1.4)

which is a proposition.
The map (X → Y )→ rGph(∆X,∆Y ) is an equivalence, since the type

∑

(ϕ:
∏

(x,y:X)(x=y)→(f(x)=f(y)))ϕ(reflx) = reflf(x)

is equivalent to the fiber of the map

ev refl :
(

∏

(x,y:X)(x = y)→ (f(x) = f(y))
)

→
(

f(x) = f(x)
)

,

which is contractible by Lemma 3.1.1.

Theorem 3.2.6. Let A be a reflexive graph. The following are equivalent:

(i) The canonical map
∏

(i,j:A0)
(i = j)→ A1(i, j)

given by refli 7→ rfxA(i) is a fiberwise equivalence. In particular, A is in the image
of ∆ : U → rGph.

(ii) The graph A is I-null in the sense that the map

rGph(1,A)→ rGph(I,A)

given by pre-composition by the unique morphism rGph(I,1), is an equivalence.

(iii) The map
rGph(I,A)→ rGph(1,A)

given by pre-composing with the end-point inclusion 0 : rGph(1,I), is an equiva-
lence.

(iv) The map
rGph(I,A)→ rGph(1,A)

given by pre-composing with the end-point inclusion 1 : rGph(1,I), is an equiva-
lence.
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If any of these conditions hold, we say that A is discrete.

Proof. The outline of our argument is as follows:

(iii)

(i) (ii) (i).

(iv)

Suppose (i) holds. We have a commuting square

rGph(1,A) rGph(I,A)

A0
∑

(i,j:A0)
A1(i, j)

ev pt ev edge

where both vertical maps are equivalences, and the bottom map is an equivalence by
assumption. Therefore the top map is an equivalence. This proves that (i) implies (ii).

Since the reflexive graph morphism rGph(I,1) is a common retraction of both end-
point inclusions, it follows that the pre-composition map

rGph(1,A)→ rGph(I,A)

is a common section of both pre-composition maps

0∗, 1∗ : rGph(I,A)→ rGph(1,A)

However, assuming (ii) it follows that both 0∗ and 1∗ are equivalences, so (ii) implies
both (iii) and (iv).

Now suppose that (iii) holds; we will show that (i) follows. We have the commuting
square

rGph(I,A) rGph(1,A)

∑

(i,j:A0)
A1(i, j) A0

ev edge

0∗

ev pt

π1

in which both vertical maps are equivalences. Therefore the fibers of π1 are equivalent
to the fibers of 0∗. Note that the fibers of π1 are of the form

∑

(j:A0)
A1(i, j),

so it follows from (iii) that these are contractible. Then (i) follows by the fundamental
theorem of identity types, Theorem 1.2.5.

The argument that (i) follows from (iv) is similar, using π2 and 1∗ instead of π1 and
0∗ in the square.
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3.3 Reflexive coequalizers

Definition 3.3.1. Consider a reflexive graph A and a type X equipped with a morphism
f : rGph(A,∆(X)). We say that f is a reflexive coequalizer of A if the map

∆(–) ◦ f : (X → Y )→ rGph(A,∆(Y ))

is an equivalence.

Our goal in this section is to show that reflexive coequalizers can be constructed as
pushouts. We will use the following lemma, which was discovered jointly with Simon
Boulier.

Lemma 3.3.2. Consider a type A with a type family B, and a : A. Furthermore, suppose
that

α :
∏

(x:A)B(x)→ (a = x).

Then the coherence reduction map

coh red :
(

∑

(y:B(a))α(y) = refla

)

→
(

∑

(x:A)B(x)
)

given by (y, q) 7→ (a, y) is an equivalence.

Remark 3.3.3. A quick way to see that there is an equivalence
∑

(x:A)B(x) ≃
∑

(b:B(a))αa(b) = refla.

is to use the contractibility of the total space of identity types twice:
∑

(x:A)B(x) ≃
∑

(x:A)

∑

(y:B(x))

∑

(p:a=x)α(y) = p

≃
∑

(y:B(a))α(y) = refla.

However, it is not clear at once that the underlying map of this composite of equivalences
is indeed the map coh red defined in Lemma 3.3.2.

Proof of Lemma 3.3.2. We show that the fibers are contractible:

fibcoh red((x, y)) ≃
∑

(y′:B(a))

∑

(q:α(y′)=refla)
(a, y′) = (x, y)

≃
∑

(y′:B(a))

∑

(q:α(y′)=refla)

∑

(p:a=x)trB(p, y
′) = y

≃
∑

(y′:B(a))

∑

(q:α(y′)=refla)

∑

(p:a=x)y
′ = trB(p

−1, y)

≃
∑

(p:a=x)α(trB(p
−1, y)) = refla

≃
∑

(p:a=x)p = α(y).

Corollary 3.3.4. Consider a type A with a relation R : A→ A→ U such that

α :
∏

(x,y:A)R(x, y)→ (x = y).

Then the map

coh red :
(

∑

(x:A)

∑

(r:R(x,x))α(r) = reflx

)

→
(

∑

(x,y:A)R(x, y)
)

.

given by (x, r, c) 7→ (x, x, r) is an equivalence.
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Definition 3.3.5. For any reflexive graph A we define the span Ã of A to consist of

Ã0 Ã1 Ã0
π1 π2

where Ã0 :≡ A0 and Ã1 :≡
∑

(x,y:A0)
A1(x, y).

Lemma 3.3.6. For any reflexive graph A, and any type X, the map

f 7→ (f0, f0, λ(x, y, e). f1(e)) : rGph(A,∆X)→ coconeÃ(X),

is an equivalence, where Ã is the span (Ã1, π1, π2) from A0 to A0.

Proof. First observe that rGph(A,∆X) is equivalent to the type

∑

(f0:A0→X)

∑

(f1:
∏

(x,y:A0)
A1(x,y)→f(x)=f(y))eq htpy(λx. f1(rfxA(x))) = reflf0 .

We write rGph′(A,∆X) for the latter type. Furthermore, we observe that the type
coconeÃ(X) is equivalent to the type

cocone′
Ã
(X) :≡

∑

(f,g:A0→X)

∏

(x,y:A0)
A1(x, y)→ f(x) = f(y).

Now we note that we have a commuting square

rGph(A,∆X) coconeÃ(X)

rGph′(A,∆X) cocone′
Ã
(X).

ϕ

coh red

where the map ϕ is the map in the statement, and the coherence reduction map uses the
homotopy

(f, g,H) 7→ eq htpy(λx.H(rfxA(x))).

Both vertical maps and the coherence reduction map are equivalences, so it follows that
the asserted map is an equivalence.

Proposition 3.3.7. Let A be a reflexive graph, and let X be a type equipped with f :
rGph(A,∆X). Then the following are equivalent:

(i) X is a reflexive coequalizer of A.

(ii) The square
∑

(x,y:A0)
A1(x, y) A0

A0 X

π2

π1 f0

f0

which commutes by λ(i, j, e). f1(e), is a pushout square.

In particular, there is a reflexive coequalizer for every reflexive graph A, for which we
write

constr : rGph(A,∆(rcoeq(A))).
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Proof. The triangle

Y X

rGph(A,∆Y ) cocone(Y )

∆(–)◦f cocone map

≃

commutes, for any type Y . In this triangle, the bottom map is the map defined in
Lemma 3.3.6, which is an equivalence, so the claim follows by the 3-for-2 property of
equivalences.

Example 3.3.8.

(i) The reflexive graph quotient of the discrete graph ∆(X) of a type X is just X itself.
It also follows that constr : rGph(A,∆(rcoeq(A))) is an equivalence of reflexive
graphs if and only if A is a discrete graph.

(ii) The reflexive graph quotient of the indiscrete graph ∇(X) on a type X is the join
square X ∗ X.

(iii) Let A be a non-reflexive graph, and let F (A) be the reflexive graph obtained by
freely adding a proof of reflexivity, as in Item (vi) of Example 3.2.4. Then the
non-reflexive graph quotient of A is the reflexive graph quotient of F (A).

(iv) Let f : A → B be a map. Then the reflexive coequalizer of the reflexive graph
(A, k(f)) is the fiberwise join A ∗X A, which was introduced in Definition 2.3.14.

(v) Let X be a type with base point x0 : X. Define the reflexive graph SX by

SX0 :≡ 1

SX1 :≡ λ . λ .X

rfxSX :≡ λ . x0.

The reflexive graph quotient of SX is the suspension of X.

(vi) The reflexive coequalizer of the walking edge I is the interval, which is contractible.

3.4 Descent for reflexive coequalizers

Recall from [1] that morphism f : X → Y is right orthogonal to a map i : A→ B if and
only if the square

XB XA

Y B Y A

–◦i

f◦– f◦–

–◦i

is a pullback square. We use this way of stating the orthogonality condition in our
definition of fibrations of reflexive graphs: a morphism f : rGph(X ,Y) of reflexive graphs
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is said to be right orthogonal to a morphism i : rGph(A,B) if the square

rGph(X ,B) rGph(X ,A)

rGph(Y,B) rGph(Y,A)

–◦i

f◦– f◦–

–◦i

is a pullback square.1

Definition 3.4.1. A morphism f : rGph(A,B) is said to be a left fibration of reflexive
graphs if it is right orthogonal to the morphism 0 : rGph(1,I). Similarly, we say that
f is a right fibration of reflexive graphs if it is right orthogonal to the morphism
1 : rGph(1,I), and we say that f is a fibration if it is both a left and a right fibration.

Lemma 3.4.2. Suppose f : rGph(B,A) is a left or a right fibration. Then f is right
orthogonal to the terminal projection t : rGph(I,1).

Proof. We prove the assertion assuming that f is a left fibration, the case of a right
fibration being similar. Consider the diagram

rGph(1,A) rGph(I,A) rGph(1,A)

rGph(1,B) rGph(I,B) rGph(1,B)

The square on the right is a pullback. Since the composite 1 → I → 1 is the identity
morphism of reflexive graphs, the outer rectangle is also a pullback. Therefore the square
on the left is a pullback.

Definition 3.4.3. A morphism f : rGph(A,B) of reflexive graphs is said to be left
cartesian if the naturality square

∑

(i,j:A0)
A1(i, j) A0

∑

(i,j:B0)
B1(i, j) B0

π1

π1

is a pullback square. Similarly we say that f is right cartesian if the naturality square

∑

(i,j:A0)
A1(i, j) A0

∑

(i,j:B0)
B1(i, j) B0

π2

π2

is a pullback square, and we say that f is cartesian if it is both left and right cartesian.

1One may note that the category of reflexive graphs is also locally cartesian closed (has Π-types),
so that we could also state the orthogonality condition internally. Although this is straightforward, it is
extra work and we will not need it in this thesis.
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Example 3.4.4. A common way to obtain a cartesian morphism of reflexive graphs is via
equifibered families. An equifibered family E over A consists of

E0 : A0 → U

E1 :
∏

(i,j:A0)
A1(i, j) → (E0(i) ≃ E0(j))

rfxE :
∏

(i:A0)
E1(rfxA(i)) ∼ idE0(i)

Given an equifibered family E , we form the reflexive graph Σ(A, E) by

Σ(A, E)0 :≡
∑

(x:A0)
E0(x)

Σ(A, E)1((x, u), (y, v)) :≡
∑

(e:A1(x,y))
E1(e, u) = v

rfxΣ(A,E)(x, u) :≡ (rfxA(x), rfxE(x, u)).

There is an obvious projection morphism pr1 : rGph(Σ(A, E),A), which is cartesian,
because the squares in the diagram

Σ(A, E)0
∑

(s,t:Σ(A,E))Σ(A, E)1 Σ(A, E)0

A0
∑

(x,y:A0)
A1(x, y) A0

pr1 pr1

are pullback squares by Proposition 1.4.11.

Lemma 3.4.5. Consider f : rGph(B,A) and g : rGph(C,B), and suppose that f is
(left/right) cartesian. Then g is (left/right) cartesian if and only if f ◦ g is (left/right)
cartesian, respectively.

Proof. Immediate by Corollary 2.1.17.

Proposition 3.4.6. Let f : rGph(B,A) be a morphism of reflexive graphs. The following
are equivalent:

(i) f is a (left/right) fibration.

(ii) f is (left/right) cartesian.

Proof. We only show that f is a left fibration if and only if f is left cartesian, the right
case being similar.

For any morphism f : rGph(B,A) we have the commuting cube

rGph(I,B)

rGph(1,B)
∑

(i,j:B0)
B1(i, j) rGph(I,A)

B0 rGph(1,A)
∑

(i,j:A0)
A1(i, j)

A0
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in which all vertical maps are equivalences. Therefore the top square is a pullback if and
only if the bottom square is a pullback, which proves that (ii) holds if and only if (iii)
holds.

Corollary 3.4.7. Suppose that f : rGph(B,A) is left or right cartesian. Then the square

B0
∑

(i,j:B0)
B1(i, j)

A0
∑

(i,j:A0)
A1(i, j)

is a pullback square.

Proposition 3.4.8. Consider a commuting square

C B

A X

of reflexive graphs. The following are equivalent:

(i) The square is a pullback square.

(ii) The squares

C̃0 B̃0 C̃1 B̃1

Ã0 X̃0 Ã1 X̃1

are pullback squares.

Proof. Straightforward.

The following proposition is true more generally:

Proposition 3.4.9. Consider a pullback square

B′ B

A′ A

f ′ f

of reflexive graphs, and let h : rGph(Y,X ) be a morphism of reflexive graphs. If f is right
orthogonal to h, then so is f ′. In particular, if f is a (left/right) fibration, then so is f ′.
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Proof. Consider the commuting cube

rGph(Y,B′)

rGph(Y,A′) rGph(X ,B′) rGph(Y,B)

rGph(X ,A′) rGph(Y,A) rGph(X ,B)

rGph(X ,A).

Note rGph(X , –) preserves pullbacks for any reflexive graph X . Therefore it follows that
the top and bottom squares are pullback squares. Moreover, the square on the front
right is a pullback square by the assumption that f is right orthogonal to h : rGph(Y,X ).
Now it follows by the pasting property of pullbacks that the square on the back left is a
pullback square. In other words, f ′ is right orthogonal to h.

Proposition 3.4.10. For any map f : X → Y , the morphism ∆f : ∆X → ∆Y is a
fibration.

Proof. The commuting square

rGph(I,∆X) rGph(1,∆X)

rGph(I,∆Y ) rGph(1,∆Y )

0∗/1∗

0∗/1∗

is a pullback square, since both horizontal maps are equivalences.

Theorem 3.4.11. Consider a commuting square

B ∆Y

A ∆X

f (3.1)

of reflexive graphs, where f : B → A is a fibration of reflexive graphs. Then the following
are equivalent:

(i) The square is a pullback square of reflexive graphs.

(ii) The square

rcoeq(B) Y

rcoeq(A) X

rcoeq(f)

of types is a pullback square.
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Proof. The commuting square Eq. (3.1) induces a commuting cube

B̃1

B̃0 Ã1 B̃0

Ã0 Y Ã0

X

in which the two vertical squares in the back are pullback squares. Moreover, the square
in Eq. (3.1) is a pullback square if and only if the front two squares in the cube are
pullback squares. The front two squares are pullback squares if and only if the square

B̃0 ⊔
B̃1 B̃0 Y

Ã0 ⊔
Ã1 Ã0 Y

is a pullback square. Since the pushouts on the left are reflexive coequalizers, the claim
follows.

3.5 Colimits of diagrams over graphs

Definition 3.5.1. LetA be a reflexive graph. A diagram D overA is a triple (D0,D1, rfxD)
consisting of

D0 : A0 → U

D1 :
∏

(i,j:A0)
A1(i, j)→ (D0(i)→ D0(j))

rfxD :
∏

(i:A0)
D1(rfxA(i)) ∼ idD0(i).

Definition 3.5.2. Let D be a diagram over A. We form the total graph Σ(A,D) of
D by

Σ(A,D)0 :≡
∑

(i:A0)
D0(i)

Σ(A,D)1((i, x), (j, y)) :≡
∑

(e:A1(i,j))
D1(e, x) = y

rfxΣ(A,D)((i, x)) :≡ (rfxA(i), rfxD(i, x)).

There is an obvious projection pr1 : rGph(Σ(A,D),A).

Lemma 3.5.3. For any diagram D over A, the projection pr1 : rGph(Σ(A,D),A) is a
left fibration.
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Proof. It suffices to show that

∑

((i,x),(j,y):Σ(A,D)0)
Σ(A,D)1((i, x), (j, y)) Σ(A,D)

∑

(i,j:A0)
A1(i, j) A0

π1

π1

is a pullback square. Note that this square is equivalent to the square

∑

(i,j:A0)

∑

(e:A1(i,j))
D0(i)

∑

(i:A0)
D0(i)

∑

(i,j:A0)
A1(i, j) A0,

λ(i,j,e,x). (i,x)

π1

which is clearly a pullback square.

Remark 3.5.4. It can be shown that the total graph operation is an equivalence from
diagrams over A to left fibrations over A.

Definition 3.5.5. Let D be a diagram over A, and let X be a type. A D-cocone on
X is a morphism f : rGph(Σ(A,D),∆X) of reflexive graphs. A D-cocone f on X is
colimiting if the map

∆(–) ◦ f : (X → Y )→ rGph(Σ(A,D),∆Y )

is an equivalence for every type Y .

Remark 3.5.6. By Proposition 3.3.7 it follows that every diagram D over any reflexive
graph A has a colimit.

Definition 3.5.7. Let D and D′ be diagrams over A. A natural transformation
τ : D′ → D of diagrams consists of

τ0 :
∏

(i:A0)
D′

0(i)→ D0(i)

τ1 :
∏

(i,j:A0)

∏

(e:A1(i,j))

∏

(x:D0(i))
τ0(D

′
1(e, x)) = D1(e, τ0(x))

rfxτ :
∏

(i:A0)

∏

(x:D0(i))
τ1(rfxA(i), x) = reflτ0(x)

A natural transformation τ : D′ → D of diagrams over A is said to be cartesian if the
commutative squares

D′
0(i) D′

0(j)

D0(i) D0(i)

D′
1(e)

τ0(i) τ0(j)

D1(e)

are all pullback squares.

We will use the following general fact about pullbacks.
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Proposition 3.5.8. Let I be a type, and consider for each i : I a commuting square

Ci Bi

Ai Xi.

qi

pi gi

fi

with Hi : fi ◦ pi ∼ gi ◦ qi. Then the following are equivalent:

(i) For each i : I, the square is a pullback square.

(ii) The induced square on total spaces

∑

(i:I)Ci
∑

(i:I)Bi

∑

(i:I)Ai
∑

(i:I)Xi.

tot(q)

tot(p) tot(g)

tot(f)

which commutes via the homotopy tot(H) : tot(f) ◦ tot(p) ∼ tot(g) ◦ tot(q), is a
pullback square.

Proof. The gap map of the square in assertion (ii) factors as follows:

∑

(i:I)Ci

∑

(i:I)Ai ×Xi
Bi

(

∑

(i:I)Ai

)

×(∑
(i:I) Xi

)

(

∑

(i:I)Bi

)

tot(gap(pi,qi,Hi)) gap(tot(p),tot(q),tot(H))

λ(i,a,b,p). ((i,a),(i,b),(refli,p))

and the bottom map is an equivalence. Therefore it follows by the 3-for-2 property and
an application of Proposition 1.2.4 that gap(pi, qi,Hi) is an equivalence for each i : I, if
and only if gap(tot(p), tot(q), tot(H)) is an equivalence.

Proposition 3.5.9. Let τ : nat(E ,D) be a natural transformation of diagrams over A.
Then τ is cartesian if and only if the induced morphism of reflexive graphs

tot(τ) : rGph(Σ(A, E),Σ(A,D))

is cartesian.

Proof. Straightforward consequence of Proposition 3.5.8.

Corollary 3.5.10. Let τ : cart(E ,D) be a cartesian morphisms of diagrams over A, and
consider a commuting square of reflexive graphs of the following form

Σ(A, E) ∆Y

Σ(A,D) ∆X.

tot(τ)

Then the following are equivalent:
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(i) The square is a pullback square.

(ii) The square

colim(E) Y

colim(D) X

colim(τ)

is a pullback square.

3.6 Sequential colimits

Type sequences are diagrams of the following form.

A0 A1 A2 · · · .
f0 f1 f2

Their formal specification is as follows.

Definition 3.6.1. An (increasing) type sequence A consists of

A : N→ U

f :
∏

(n:N)An → An+1.

Sequential colimits are characterized by their universal property.

Definition 3.6.2. (i) A (sequential) cocone on a type sequence A with vertex X
consists of

h :
∏

(n:N)An → X

H :
∏

(n:N)fn ∼ fn+1 ◦Hn.

We write cocone(X) for the type of cones with vertex X.

(ii) Given a cone (h,H) with vertex X on a type sequence A we define the map

cocone map(h,H) : (X → Y )→ cocone(X)

given by f 7→ (f ◦ h, λn. λx. apf (Hn(x))).

(iii) We say that a cone (h,H) with vertex X is colimiting if the map cocone map(h,H)
is an equivalence for any type Y .

In order to study sequential colimits, we first note that type sequences appear as
diagrams over the graph (N,≺) with type of vertices N, and with

(n ≺ m) :≡ (n+ 1 = m).

Note that this is a non-reflexive graph. A reflexive graph is obtained by the adjunction
explained in Item (vi) of Example 3.2.4, which transforms the relation ≺ into the reflexive
relation � given by

(n � m) :≡ (n+ 1 = m) + (n = m).
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A diagram A on (N,≺) consists of

A0 :
∏

(n:N)AnA1 :
∏

(n,m:N)

∏

(e:n+1=m)An → Am.

Note that the type of A1 is equivalent to the type
∏

(n:N)An → An+1, so we see indeed
that type sequences are equivalently described as diagrams over (N,≺). Similarly, a
sequential cocone on A with vertex X is equivalently described as a cocone on the
diagram A with vertex X. Thus, we also have the following:

Lemma 3.6.3. Consider a cocone (h,H) with vertex B for a type sequence A. The
following are equivalent:

(i) The cocone (h,H) is colimiting.

(ii) The cocone (h,H) is inductive in the sense that for every type family P : B → U ,
the map

(

∏

(b:B)P (b)
)

→
∑

(h:
∏

(n:N)

∏
(x:An) P (hn(x)))

∏

(n:N)

∏

(x:An)
trP (Hn(x), hn(x)) = hn+1(fn(x))

given by

s 7→ (λn. s ◦ hn, λn. λx. apds(Hn(x)))

has a section.

(iii) The map in (ii) is an equivalence.

Definition 3.6.4. The type of descent data on a type sequence A ≡ (A, f) is defined
to be

Desc(A) :≡
∑

(B:
∏

(n:N) An→U)

∏

(n:N)

∏

(x:An)
Bn(x) ≃ Bn+1(fn(x)).

Equivalently, if A is seen as a diagram over (N,≺),

Definition 3.6.5. We define a map

desc fam : (A∞ → U)→ Desc(A)

by B 7→ (λn. λx.B(seq in(n, x)), λn. λx. trB(seq glue(n, x))).

Theorem 3.6.6. The map

desc fam : (A∞ → U)→ Desc(A)

is an equivalence.

Definition 3.6.7. A cartesian transformation of type sequences from A to B is a
pair (h,H) consisting of

h :
∏

(n:N)An → Bn

H :
∏

(n:N)gn ◦ hn ∼ hn+1 ◦ fn,
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such that each of the squares in the diagram

A0 A1 A2 · · ·

B0 B1 B2 · · ·

h0

f0

h1

f1

h2

f2

g0 g1 g2

is a pullback square. We define

cart(A,B) :≡
∑

(h:
∏

(n:N) An→Bn)
∑

(H:
∏

(n:N) gn◦hn∼hn+1◦fn)

∏

(n:N)is pullback(hn, fn,Hn),

and we write

Cart(B) :≡
∑

(A:Seq)cart(A,B).

Definition 3.6.8. We define a map

cart map(B) :
(

∑

(X′:U)X
′ → X

)

→ Cart(B).

which associates to any morphism h : X ′ → X a cartesian transformation of type
sequences into B.

Theorem 3.6.9. The operation cart map(B) is an equivalence.

The flattening lemma for sequential colimits essentially states that sequential colimits
commute with Σ.

Lemma 3.6.10. Consider

B :
∏

(n:N)An → U

g :
∏

(n:N)

∏

(x:An)
Bn(x) ≃ Bn+1(fn(x)).

and suppose P : A∞ → U is the unique family equipped with

e :
∏

(n:N)Bn(x) ≃ P (seq in(n, x))

and homotopies Hn(x) witnessing that the square

Bn(x) Bn+1(fn(x))

P (seq in(n, x)) P (seq in(n+ 1, fn(x)))

gn(x)

en(x) en+1(fn(x))

trP (seq glue(n,x))

commutes. Then
∑

(t:A∞) P (t) satisfies the universal property of the sequential colimit
of the type sequence

∑

(x:A0)
B0(x)

∑

(x:A1)
B1(x)

∑

(x:A2)
B2(x) · · · .

totf0 (g0) totf1 (g1) totf2 (g2)
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In the following theorem we rephrase the flattening lemma in using cartesian trans-
formations of type sequences.

Theorem 3.6.11. Consider a commuting diagram of the form

A0 A1 A2 · · ·

X

B0 B1 B2 · · ·

Y

If each of the vertical squares is a pullback square, and Y is the sequential colimit of the
type sequence Bn, then X is the sequential colimit of the type sequence An.

Corollary 3.6.12. Consider a commuting diagram of the form

A0 A1 A2 · · ·

X

B0 B1 B2 · · ·

Y

If each of the vertical squares is a pullback square, then the square

A∞ X

B∞ Y

is a pullback square.





Chapter 4

Homotopy images

We have observed in Example 3.3.8 that the reflexive coequalizer of the pre-kernel of a
map f : A→ X is the fiberwise join A ∗X A, i.e. we have a reflexive coequalizer diagram

A×X A A A ∗X A.

It can also be shown that the colimit of the 2-pre-kernel of a map f : A→ X is the triple
fiberwise join A ∗X A ∗X A, i.e. we have a colimiting

A×X A×X A A×X A A A ∗X A ∗X A,

although one has to take care to use the right amount of coherence data. These results
suggest that geometric realization of the Cech nerve of a map f : A → X, i.e. the
homotopy image of f , is the sequential colimit of the type sequence

A A ∗X A A ∗X (A ∗X A) · · ·

and its sequential colimit. We do not have a way of presenting the Cech nerve of a map in
type theory, due to the infinite coherence problem of presenting simplicial types in type
theory. Nevertheless, we can analyze this type sequence and its colimit in homotopy
type theory, since it is constructed entirely in terms of known operations. We will
show in Theorem 4.2.13 that for any map f : A → X, the infinite fiberwise join-power
· · · ∗X A ∗X A ∗X A is the image of f . We conclude that the image of a map always exists
in univalent type theory with homotopy pushouts. We note that an earlier construction
of the propositional truncation in a similar setting is due to van Doorn [15], and another
one is due to Kraus [20]. The present construction of the image of f is called the join
construction implies, as we show in Theorem 4.2.17, that the image of an essentially small
type mapping into a locally small type is again essentially small. In particular, the image
of a map from a small type into the universe is essentially small. This corollary should be
viewed as a type theoretic replacement axiom. This fact has the important consequence
that any connected component of the universe is essentially small. We also note that the
join construction leads to new constructions of set quotients and of Rezk completions,
see [27], where also a construction of the n-truncations is given as an application of the
join construction.
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4.1 The universal property of the image

Definition 4.1.1. Consider a commuting triangle

A U

X

i

f m

with I : f ∼ m ◦ i, and where m is an embedding. We say that m has the universal
property of the image of f if the map

(i, I)∗ : homX(m,m′)→ homX(f,m′)

defined by (i, I)∗(h,H) :≡ (h ◦ i, I � (i · H)), is an equivalence for every embedding
m′ : U ′ → X.

Lemma 4.1.2. For any f : A→ X and any embedding m : U → X, the type homX(f,m)
is a proposition.

Proof. From Corollary 1.5.8 we obtain that the type homX(f,m) is equivalent to the
type

∏

(x:X)fibf (x)→ fibm(x),

so it suffices to show that this is a proposition. Recall from Proposition 1.2.13 that a
map is an embedding if and only if its fibers are propositions. Thus we see that the
type

∏

(x:X) fibf (x) → fibm(x) is a product of propositions, so it is a proposition by
Corollary 1.3.2.

Corollary 4.1.3. Consider a commuting triangle

A U

X

i

f m

with I : f ∼ m◦ i, and where m is an embedding. Then m satisfies the universal property
of the image of f if and only if the implication

homX(f,m′)→ homX(m,m′)

holds for every embedding m′ : U ′ → X.

Recall that embeddings into the unit type are just propositions. Therefore, the
universal property of the image of the map A → 1 is a proposition P satisfying the
universal property of the propositional truncation:

Definition 4.1.4. Let A be a type, and let P be a proposition that comes equipped
with a map f : A → P . We say that f : A → P satisfies the universal property of
propositional truncation if for every proposition Q, the precomposition map

– ◦ f : (P → Q)→ (A→ Q)

is an equivalence.
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4.2 The join construction

4.2.1 Step one: constructing the propositional truncation

Lemma 4.2.1. Suppose f : A→ P , where A is any type, and P is a proposition. Then
the map

(A ∗ B → P )→ (B → P )

given by h 7→ h ◦ inr is an equivalence, for any type B.

Proof. Since both types are propositions by Corollary 1.3.2 it suffices to construct a map

(B → P )→ (A ∗ B → P ).

Let g : B → P . Then the square

A×B B

A P

pr2

pr1 g

f

commutes since P is a proposition. Therefore we obtain a map A ∗ B → P by the
universal property of the join.

The idea of the construction of the propositional truncation is that if we are given a
map f : A→ P , where P is a proposition, then it extends uniquely along inr : A→ A∗A
to a map A∗A→ P . This extension again extends uniquely along inr : A∗A→ A∗(A ∗ A)
to a map A ∗ (A ∗ A)→ P and so on, resulting in a diagram of the form

A A ∗ A A ∗ (A ∗ A) · · ·

P

inr inr inr

Definition 4.2.2. The join powers A∗n of a type X are defined by

A∗0 :≡ 0

A∗1 :≡ A

A∗(n+1) :≡ A ∗ A∗n.

Furthermore, we define A∗∞ to be the sequential colimit of the type sequence

A∗0 A∗1 A∗2 · · · .inr inr

Our goal is now to show that A∗∞ is a proposition and satisfies the universal property
of the propositional truncation.
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Lemma 4.2.3. Consider a type sequence

A0 A1 A2 · · ·
f0 f1 f2

with sequential colimit A∞, and let P be a proposition. Then the map

seq in∗ : (A∞ → P )→
(

∏

(n:N)An → P
)

given by h 7→ λn. (h ◦ seq inn) is an equivalence.

Proof. By the universal property of sequential colimits established in Lemma 3.6.3 we
obtain that cocone map is an equivalence. Note that we have a commuting triangle

PA∞

cocone(P )
(

∏

(n:N)An → P
)

cocone map seq in∗

pr1

Note that for any g :
∏

(n:N)An → P the type

∏

(n:N)gn ∼ gn+1 ◦ fn

is a product of contractible types, since P is a proposition. Therefore it is contractible
by Proposition 1.3.1, and it follows that the projection is an equivalence. We conclude
by the 3-for-2 property of equivalences that seq in∗ is an equivalence.

Lemma 4.2.4. Let A be a type, and let P be a proposition. Then the function

– ◦ seq in0 : (A
∗∞ → P )→ (A→ P )

is an equivalence.

Proof. We have the commuting triangle

PA∗∞

(

∏

(n:N)A
∗n → P

)

PA.

seq in∗ –◦seq in0

λh. h0

Therefore it suffices to show that the bottom map is an equivalence. Since this is a
map between propositions, it suffices to construct a map in the converse direction. Let
f : A→ P . We will construct a term of type

∏

(n:N)A
∗n → P

by induction on n : N. The base case is trivial. Given a map g : A∗n → P , we obtain a
map g : A∗(n+1) → P by Lemma 4.2.1.
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Lemma 4.2.5. Consider a type sequence

A0 A1 A2 · · ·
f0 f1 f2

and suppose that each An is equipped with a base point an : An, and each fn is equipped
with a homotopy Hn : constan+1 ∼ fn. Then the sequential colimit A∞ is contractible.

Lemma 4.2.6. The type A∗∞ is a proposition for any type A.

Proof. By Lemma 1.2.10 it suffices to show that A∗∞ → is contr(A∗∞), and by Lemma 4.2.4
it suffices to show that

A→ is contr(A∗∞),

because is contr(A∗∞) is a proposition.
Let x : A. To see that A∗∞ is contractible it suffices by Lemma 4.2.5 to show that

inr : A∗n → A∗(n+1) is homotopic to the constant function constinl(x). However, we get a
homotopy constinl(x) ∼ inr immediately from the path constructor glue.

Theorem 4.2.7. For any type A : U there is a proposition ‖A‖ : U that comes equipped
with a map η : A→ ‖A‖, and satisfies the universal property of propositional truncation.

Proof. Let A be a type. Then we define ‖A‖ :≡ A∗∞, and we define η :≡ seq in0 : A→
A∗∞. Then ‖A‖ is a proposition by Lemma 4.2.6, and η : A→ ‖A‖ satisfies the universal
property of propositional truncation by Lemma 4.2.4.

4.2.2 Step two: constructing the image of a map

Following Definition 7.6.3 of [33], we recall that the image of a map f : A → X can be
defined using the propositional truncation:

Definition 4.2.8. For any map f : A→ X we define the image of f to be the type

im(f) :≡
∑

(x:X)‖fibf (x)‖

and we define the image inclusion to be the projection pr1 : im(f)→ X.

However, the construction of the fiberwise join in Definition 2.3.14 suggests that we
can also define the image of f as the infinite join power f∗∞, where we repeatedly take
the fiberwise join of f with itself. Our reason for defining the image in this way is
twofold:

• We use this construction to show that the image of a map f : A → B from an
essentially small type A into a locally small type B is again essentially small.

• Some interesting types, such as the real and complex projective spaces, appear in
specific instances of this construction.

Lemma 4.2.9. Consider a map f : A → X, an embedding m : U → X, and h :
homX(f,m). Then the map

homX(f ∗ g,m)→ homX(g,m)

is an equivalence for any g : B → X.
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Proof. Note that both types are propositions, so any equivalence can be used to prove
the claim. Thus, we simply calculate

homX(f ∗ g,m) ≃
∏

(x:X)fibf∗g(x)→ fibm(x)

≃
∏

(x:X)fibf (x) ∗ fibg(x)→ fibm(x)

≃
∏

(x:X)fibg(x)→ fibm(x)

≃ homX(g,m).

The first equivalence holds by Corollary 1.5.8; the second equivalence holds by Theo-
rem 2.3.15; the third equivalence holds by Lemma 4.2.1; the last equivalence again holds
by Corollary 1.5.8.

For the construction of the image of f : A → X we observe that if we are given an
embedding m : U → X and a map (i, I) : homX(f,m), then (i, I) extends uniquely along
inr : A→ A∗X A to a map homX(f ∗ f,m). This extension again extends uniquely along
inr : A ∗X A → A ∗X (A ∗X A) to a map homX(f ∗ (f ∗ f),m) and so on, resulting in a
diagram of the form

A A ∗X A A ∗X (A ∗X A) · · ·

U

inr inr inr

Definition 4.2.10. Suppose f : A → X is a map. Then we define the fiberwise join
powers

f∗n :≡ A∗n
X → X.

Construction. Note that the operation (B, g) 7→ (A∗XB, f ∗g) defines an endomorphism
on the type

∑

(B:U)B → X.

We also have (0, ind0) and (A, f) of this type. For n ≥ 1 we define

A
∗(n+1)
X :≡ A ∗X A∗n

X

f∗(n+1) :≡ f ∗ f∗n.

Definition 4.2.11. We define A∗∞
X to be the sequential colimit of the type sequence

A∗0
X A∗1

X A∗2
X · · · .inr inr

Since we have a cocone

A∗0
X A∗1

X A∗2
X · · ·

X

f∗0

inr

f∗1

inr

f∗2

we also obtain a map f∗∞ : A∗∞
X → X by the universal property of A∗∞

X .
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Lemma 4.2.12. Let f : A→ X be a map, and let m : U → X be an embedding. Then
the function

– ◦ seq in0 : homX(f∗∞,m)→ homX(f,m)

is an equivalence.

Theorem 4.2.13. For any map f : A→ X, the map f∗∞ : A∗∞
X → X is an embedding

that satisfies the universal property of the image inclusion of f .

4.2.3 Step three: establishing the smallness of the image

Recall from Definition 1.5.2 that a type is said to be locally small if its identity types
are equivalent to small types.

Lemma 4.2.14. Consider a commuting square

A B

C D.

(i) If the square is cartesian, B and C are essentially small, and D is locally small,
then A is essentially small.

(ii) If the square is cocartesian, and A, B, and C are essentially small, then D is
essentially small.

Corollary 4.2.15. Suppose f : A→ X and g : B → X are maps from essentially small
types A and B, respectively, to a locally small type X. Then A×X B is again essentially
small.

Lemma 4.2.16. Consider a type sequence

A0 A1 A2 · · ·
f0 f1 f2

where each An is essentially small. Then its sequential colimit is again essentially small.

Theorem 4.2.17. For any map f : A → X from a small type A into a locally small
type X, the image im(f) is an essentially small type.

Recall that in set theory, the replacement axiom asserts that for any family of sets
{Xi}i∈I indexed by a set I, there is a set X[I] consisting of precisely those sets x for
which there exists an i ∈ I such that x ∈ Xi. In other words: the image of a set-indexed
family of sets is again a set. Without the replacement axiom, X[I] would be a class. In
the following corollary we establish a type-theoretic analogue of the replacement axiom:
the image of a family of small types indexed by a small type is again (essentially) small.

Corollary 4.2.18. For any small type family B : A → U , where A is small, the image
im(B) is essentially small. We call im(B) the univalent completion of B.





Chapter 5

Reflective subuniverses

In this chapter we study reflective subuniverses. Reflective subuniverses were first intro-
duced in section 7.7 of [33], and were studied in much more detail in [28].

In §5.1 we establish the basic closure properties of reflective subuniverses. In par-
ticular, we show in Proposition 5.1.19 that pullbacks of L-local types are again L-local.
It follows that cartesian products of L-local types and identity types of L-local types
are again L-local. In Proposition 5.1.22 we show that any dependent product of L-local
types is also L-local, regardless of whether the indexing type is L-local or not. We use
this fact in Proposition 5.1.25 to show that the map η × η : X × Y → LX × LY is an
L-localization, and that the L-localization of a proposition is again a proposition.

In §5.7 we study accessible reflective subuniverses.

In §5.2 we introduce the notion of L-separated type, for any reflective subuniverse
L, and we show that the subuniverse of L-separated types is again a reflective subuni-
verse. The contents of §5.2 are joint work with Dan Christensen, Morgan Opie, and
Luis Scoccola. As a corollary we obtain in Theorem 5.2.17 that the k-truncation can be
constructed, for any k ≥ −2. A more elementary way of obtaining this result appears in
[27].

5.1 Localizations

A subuniverse is simply a subtype of the universe. Note that we do not require that
subuniverses are closed under any type constructors1 For any subuniverse P : U → Prop,
we write UP :≡

∑

(X:U) P (X), and we say that X : U is a P -type if X is in UP , i.e. if
P (X) holds.

Definition 5.1.1. Let P : U → Prop be a subuniverse, and let X be a type. A P -
localization of X is a triple (Y, l, p) consisting of a P -type Y : UP , a map l : X → Y ,
and a term p witnessing that the map

l∗ : (Y → Z)→ (X → Z)

is an equivalence, for every Z : UP . This property is also called the universal property
of the P -localization of X.

1In particular, we will see that reflective subuniverses aren’t necessarily closed under Σ.
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In other words, a P -localization of X is a map l : X → Y into a P -type Y , such
that every map f : X → Z into a P -type Z extends uniquely along l, as indicated in the
diagram

X Z.

Y

f

l

Proposition 5.1.2. For any subuniverse P : U → Prop and any type X, the type of
P -localizations of X is a proposition.

Proof. Consider (Y, f, p) and (Y ′, f ′, p′) of the described type. Since p and p′ are terms
of a proposition, it suffices to show that (Y, f) = (Y ′, f ′). In other words, we have to
find an equivalence g : Y → Y ′ such that g ◦ f ′ = f .

By p(Y ′), the type of pairs (g, h) consisting of a function g : Y → Y ′ such that
h : g ◦ f = f ′ is contractible. By p′(Y ), the type of pairs (g′, h′) consisting of a function
g′ : Y ′ → Y such that h′ : g′ ◦ f ′ = f is contractible.

Now g′ ◦ g is a function such that g′ ◦ g ◦ f = g′ ◦ f ′ = f , as is idY . By contractibility,
it follows that g′ ◦ g = idY . Similarly, g ◦ g′ = idY ′ .

Proposition 5.1.3. Consider a subuniverse P : U → Prop and a P -localization l : X →
Y . The following are equivalent:

(i) X is a P -type (i.e. X is in UP ).

(ii) The P -localization l : X → Y is an equivalence.

(iii) The map l∗ : (Y → X)→ (X → X) is an equivalence.

(iv) The P -localization l : X → Y has a retraction.

Proof. Certainly if l is an equivalence, then X is in P since it is equivalent to the type
Y : UP . Conversely, if X is in P then idX has the same universal property of l; so by
Proposition 5.1.2 they are equivalent and hence l is an equivalence. This shows that (i)
holds if and only if (ii) holds.

It is clear that (ii) implies (iii). Furthermore, (iii) implies (iv) because the fiber of
l∗ at idX is contractible. In particular, there is a function g : Y → X equipped with
a homotopy g ◦ l ∼ id. In other words,l has a retraction. To see that (iv) implies (ii),
suppose g is a retraction of l, i.e. g ◦ l = idX . Then l ◦ g ◦ l = l, so l ◦ g is a factorization
of l through itself. By uniqueness of such factorizations, l ◦ g = idY . Thus g is also a
section of l, hence l is an equivalence.

Corollary 5.1.4. For any subuniverse P , the unit type 1 has a P -localization if and
only if 1 is already a P -type.

Proof. Immediate from the fact that 1 is a retract of any pointed type.

The universal property of P -localization is by itself not sufficient to imply a dependent
universal property. However, we have the following ‘constrained’ dependent universal
property.
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Proposition 5.1.5. Let P be a subuniverse, and let l : X → Y be a P -localization.
Furthermore, consider a type family Z : Y → U such that the total space

∑

(y:Y ) Z(y) is
a P -type. Then the precomposition map

l∗ :
(

∏

(y:Y )Z(y)
)

−→
(

∏

(x:X)Z(l(x))
)

is an equivalence.

Proof. Since Y is a P -type and
∑

(y:Y ) Z(y) is a P -type, the precomposition maps l∗ in
the commuting square

(Y →
∑

(y:Y )Z(y)) (X →
∑

(y:Y ) Z(y))

(Y → Y ) (X → Y )

l∗

pr1◦– pr1◦–

l∗

are equivalences. It follows that they induce an equivalence from the fiber of the left-
hand map pr1 ◦ – at idY to the fiber of the right-hand map pr1 ◦ – at l. In other words,
we have an equivalence

l∗ :
(

∏

(y:Y )Z(y)
)

−→
(

∏

(x:X)Z(l(y))
)

.

Proposition 5.1.6. Let P : U → Prop be a subuniverse, and write ŨP :≡
∑

(X:UP )X.

The projection pr1 : ŨP → UP classifies the small maps whose fibers satisfy P .

Proof. Let f : Y → X be any map into X. Then fibf : X → U factors through UP if
and only if all the fibers of f satisfy P . Let us write P (f) for

∏

(x:X) P (fibf (x)). Then
we see that the equivalence χ of Theorem 4.8.3 of [34] restricts to an equivalence

χP : (
∑

(Y :U)

∑

(f :Y→X)P (f))→ (X → UP ).

Now observe that the outer square and the square on the right in the diagram

Y ŨP Ũ

X UP U

f

λy. (fibf (f(y)),– ,(y,reflf(y)))

fibf

are pullback squares. Hence the square on the left is a pullback square.

Definition 5.1.7. A reflective subuniverse L is a subuniverse UL → U equipped with
an L-localization

ηX : X → LX

for every type X : U . The L-localization ηX : X → LX is sometimes also called the unit
of the localization. A type in UL is also said to be local.

Theorem 5.1.8. The data of any two reflective subuniverses with the same local types
are the same.
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Proof. Immediate from the fact that the type of localizations is a proposition.

Lemma 5.1.9. Any reflective subuniverse is a functor up to homotopy: given f : A→ B
we have an induced map Lf : LA → LB, preserving identities and composition up to
homotopy. Moreover, η is a natural transformation up to homotopy, i.e. for any f we
have Lf ◦ ηA = ηB ◦ f .

Proof. Define Lf to be the unique function such that Lf ◦ηA = ηB◦f , using the universal
property of ηA. The rest is easy to check using further universal properties.

Corollary 5.1.10. The subuniverse of L-local types is closed under retracts.

Proof. Consider an L-local type Y , and suppose that i : X → Y has a retraction
r : Y → X. By the functoriality of L it follows that LX is also a retract of LY ,
since we have Lr ◦ Li ∼ id. Therefore we see that the L-localization η : X → LX is a
retract of the L-localization η : Y → LY , as indicated in the diagram

X Y X

LX LY LX.

i

η η

r

η

Li Lr

Since η : Y → LY is an equivalence, and equivalences are closed under retracts, it follows
that η : X → LX is an equivalence, hence X is L-local.

Definition 5.1.11. A map f : A→ B is said to be an L-equivalence if Lf : LA→ LB
is an equivalence.

Proposition 5.1.12. For a map f : A→ B the following are equivalent:

(i) f is an L-equivalence.

(ii) For any L-local type X, the precomposition map

f∗ : (B → X)→ (A→ X)

is an equivalence.

Proof. Suppose first that f is an L-equivalence, and let X be L-local. Then the square

XLB XLA

XB XA

Lf∗

η∗ η∗

f∗

commutes. In this square the two vertical maps are equivalences by the universal property
of localization, and the top map is an equivalence since Lf is an equivalence. Therefore
the map f∗ : XB → XA is an equivalence, as desired.

Conversely, assume that f∗ : XB → XA is an equivalence for every L-local type
X. By the square above it follows that Lf∗ : XLB → XLA is an equivalence for every
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L-local type X. The fiber of LALB → LALA at id : LA → LA is contractible, so we
obtain a retraction g of Lf . To see that g is also a section observe that the fiber of
LBLB → LBLA at Lf is contractible. This fiber contains (idLB, reflLf ). However, we
also have an identification p : Lf∗(Lf ◦ g) = Lf , since

Lf∗(Lf ◦ g) ≡ (Lf ◦ g) ◦ Lf ≡ Lf ◦ (g ◦ Lf) = Lf.

Therefore (Lf ◦g, p) is in the fiber of Lf∗ : LBLB → LBLA at Lf . By the contractibility
of the fibers it follows that (Lf ◦ g, p) = (idLB , reflLf ), so it follows that Lf ◦ g = idLB.
In other words, g is both a retraction and a section of Lf , so Lf is an equivalence.

Corollary 5.1.13. Let f : X → Y be a map into an L-local type Y . Then the following
are equivalent:

(i) f is an L-localization.

(ii) f is an L-equivalence.

In particular, the map ηX : X → LX is an L-equivalence.

Corollary 5.1.14. Any retract of an L-localization is again an L-localization.

Proof. Suppose that f : A → B is a retract of an L-localization l : X → Y . Then B is
L-local by the previous claim. Moreover, Lf is a retract of Ll, which is an equivalence,
so f is an L-equivalence. Therefore f is an L-localization by Corollary 5.1.13.

Proposition 5.1.15. Given a reflective subuniverse L, a type X is L-local if and only
if (– ◦ f) : (B → X)→ (A→ X) is an equivalence, for any L-equivalence f : A→ B.

Proof. If Lf is an equivalence and X is L-local, then by the universal property of η, we
have a commutative square

XLB XLA

XB XA

–◦Lf

–◦f

–◦ηB –◦ηA

in which all but the top map are equivalences; thus so is the top map.
Conversely, since LηX is an equivalence, the hypothesis implies that (– ◦ηX) : (LX →

X) → (X → X) is an equivalence. In particular, its fiber over idX is inhabited, i.e. ηX
has a retraction; hence X is L-local.

Proposition 5.1.16. For any family

f :
∏

(x:X)P (x)→ Q(x)

of L-equivalences, the induced map on total spaces

tot(f) :
(

∑

(x:X)P (x)
)

→
(

∑

(x:X)Q(x)
)

is an L-equivalence.
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Proof. Note that we have a commuting square

Y
∑

(x:X)Q(x) Y
∑

(x:X) P (x)

∏

(x:X) Y
Q(x)

∏

(x:X) Y
P (x)

ev pair

tot(f)∗

ev pair

λg. λx. g(x)◦f(x)

in which all but the top map are known to be equivalences. Therefore the top map is an
equivalence, so the claim follows by Proposition 5.1.12.

Corollary 5.1.17 (Theorem 1.24 of [28]). For any family P : X → U , the map

λ(x, y). η(x, η(y)) :
(

∑

(x:X)P (x)
)

→ L
(

∑

(x:X)LP (x)
)

is a localization.

Lemma 5.1.18. For any two maps f, g : LX → Y into an L-local type Y , the map

(f ∼ g)→ (f ◦ η ∼ g ◦ η)

given by H 7→ H · η, is an equivalence.

Proof. The square

(f = g) (f ◦ η = g ◦ η)

(f ∼ g) (f ◦ η ∼ g ◦ η)

apη∗

htpy eq htpy eq

λH.H·η

commutes, and all but one of the maps are known equivalences. Therefore it follows that
the bottom map is an equivalence, as claimed.

Proposition 5.1.19. Consider a pullback square

C B

A X

p

q

g

f

with H : f ◦ p ∼ g ◦ q. If A, B, and X are L-local types, then so is C.

Proof. We have the commuting square

(LC → C) (C → C)

cone(LC) cone(C)

cone map

η∗

cone map

where the bottom map is the equivalence given by (p̃, q̃, H̃) 7→ (p̃ ◦ η, q̃ ◦ η, H̃ · η). This
is an equivalence by the assumption that A, B, and X are local, and an application of
Lemma 5.1.18. The two vertical maps are equivalences by the assumption that C is a pull-
back. Therefore it follows that the top map is an equivalence. By Proposition 5.1.3(iii)
this suffices to show that C is L-local.
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Corollary 5.1.20. Cartesian products of L-local types are L-local.

Proof. Suppose that X and Y are L-local. Then their cartesian product is a pullback

X × Y Y

X 1,

pr1

pr2

Since the unit type is L-local for any reflective subuniverse by Corollary 5.1.4, the claim
follows.

Corollary 5.1.21. If X is L-local, then so is the identity type x = y for any x, y : X.

Proof. This follows at once from the pullback square

(x = y) 1

1 X,

consty

constx

noting that the unit type is L-local for any reflective subuniverse by Corollary 5.1.4, and
X is L-local by assumption.

Proposition 5.1.22. Given a reflective subuniverse, if P (x) is L-local for every x : X,
then so is

∏

(x:X) P (x). In particular, the type Y X is L-local whenever Y is L-local.

Proof. Consider the commuting square

(

L
(

∏

(y:X) P (y)
)

→
∏

(x:X) P (x)
) ((

∏

(y:X) P (y)
)

→
∏

(x:X) P (x)
)

(

∏

(x:X) L
(

∏

(y:X) P (y)
)

→ P (x)
) (

∏

(x:X)

(

∏

(y:X) P (y)
)

→ P (x)
)

η∗

swap swap

≃

The vertical maps swap the order of the arguments, and are therefore equivalences.
The bottom map is an equivalence by the assumption that each P (x) is L-local. By
Proposition 5.1.3(iii) this suffices to show that

∏

(x:X) P (x) is L-local.

Corollary 5.1.23. For any two L-local types X and Y , the type of equivalences X ≃ Y
is again L-local.

Proof. The type X ≃ Y is equivalent to the pullback

(X ≃ Y ) 1

Y X ×XY ×XY XX × Y Y .

const(idX,idY )

(f,g,h)7→(hf,fg)

of L-local types, so it is L-local.
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Remark 5.1.24. Similarly it follows that is trunck(X) is L-local for any L-local type X,
and is trunck(f) is L-local for any map f : X → Y between L-local types.

Proposition 5.1.25. For any two types X and Y , the map

η × η : X × Y → LX × LY

is an L-localization. Thus L-localization preserves finite products, for any reflective sub-
universe L.

Proof. First we note that the product LX × LY is indeed L-local by Corollary 5.1.20.
To see that η × η is an L-localization, consider an L-local type Z. Then we have the
commuting square

(LX × LY → Z) (X × Y → Z)

(LX → (LY → Z)) (X → (Y → Z)).

(η×η)∗

ev pair ev pair

λf. λx. λy. f(η(x),η(y))

The bottom map is an equivalence by the fact that Z and LY → Z are both L-local types,
and the vertical maps are equivalences too. Therefore η × η is an L-localization.

Corollary 5.1.26. Given any reflective subuniverse, the modal operator preserves propo-
sitions.

Proof. A type P is a proposition if and only if the diagonal P → P ×P is an equivalence.
The result then follows from Proposition 5.1.25.

By contrast, localizations, and even modalities, do not generally preserve n-types for
any n ≥ 0. For instance, the “shape” modality of [30] takes the topological circle, which
is a 0-type, to the homotopical circle, which is a 1-type, and the topological 2-sphere,
which is also a 0-type, to the homotopical 2-sphere, which is (conjecturally) not an n-type
for any finite n.

5.2 The reflective subuniverse of separated types

Definition 5.2.1. Consider a subuniverse P : U → Prop. We say that a type X is
P -separated if the identity types of X are P -types. We write P ′ for the subuniverse of
P -separated types.

Example 5.2.2. We define is trunc : Z≥−2 → U → U by induction on k : Z≥−2, taking

is trunc−2(A) :≡ is contr(A)

is trunck+1(A) :≡
∏

(x,y:A)is trunck(x= y).

For any type A, we say that A is k-truncated, or a k-type, if there is a term of type
is trunck(A). We say that a map f : A→ B is k-truncated if its fibers are k-truncated.

In other words, the subuniverse of (n + 1)-truncated types is precisely the subuni-
verse of n-separated types, i.e. the subuniverse of types whose identity types are
n-truncated.
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Definition 5.2.3. Let L be a reflective subuniverse and let X : U be a type. An L′-
localization of a type X is a localization with respect to the subuniverse of L-separated
types.

In other words, a type X is L-separated if its diagonal ∆ : X → X ×X is classified
by UL.

Example 5.2.4. Given n ≥ −2, the subuniverse of (n + 1)-truncated types is precisely
the subuniverse of separated types for the reflective subuniverse of n-truncated types.

Lemma 5.2.5. Any L-local type is L-separated.

Proof. Immediate by Corollary 5.1.21.

Lemma 5.2.6. Any small subtype of an L-separated type is again L-separated. In par-
ticular, any small proposition is L-separated.

The following lemma can be proven directly. However, it also follows once we have
shown that the subuniverse of L-separated types is a reflective subuniverse, so we will
omit the proof.

Lemma 5.2.7. The subuniverse of L-separated types is closed under pullbacks, retracts,
and dependent products of families of L-separated types.

Remark 5.2.8 (Move to modalities). If L is closed under dependent sums, then L′ is
also closed under dependent sums, by the characterization of identity types of dependent
sums [33, Theorem 2.7.2]. So, given that separated types form a reflective subuniverse,
it will follow that if L is a modality, then so is L′.

Proposition 5.2.9. If X is an L-separated type and P : X → UL is a family of L-local
types, then the type

∑

(x:X) P (x) is L-separated.

Proof. For any (x, p) and (y, q) in
∑

(x:X) P (x), the type (x, p) = (y, q) is equivalent to
the pullback

(x, p) = (y, q) 1

(x = y) P (y)

q

transportP (−,p)

of L-local types, so it is L-local.

Corollary 5.2.10. Suppose l′ : X → Y ′ is an L′-localization, and let P : L′X → UL be
a family of L-local types. Then the precomposition map

l′
∗
:
∏

(y′:Y ′)P (y′) ≃
∏

(x:X)P (l′(x)).

is an equivalence.

Proof. This follows immediately from Proposition 5.1.5.

Proposition 5.2.11. Any small subtype of the subuniverse UL is L-separated.
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Proof. Note that for any two L-local types A and B we have (A = B) ≃ (A ≃ B) by
univalence and the fact that being L-local is a mere proposition. Therefore the claim
follows from Corollary 5.1.23.

The only thing that prevents UL from actually being L-separated is the fact that UL
is not small. In other words, we could say that UL is essentially L-separated. Using
the fact that the image of a small type into UL is essentially small, the condition of being
essentially L-separated suffices to eliminate from L′X into UL.

Lemma 5.2.12. Consider an L′-localization l′ : X → Y ′. Then any type family P :
X → UL of L-local types has a unique extension along l′

X UL.

Y ′

l′

P

Proof. We prove the first form of the statement. By Proposition 5.2.11, the identity
types of UL are equivalent to small types, i.e., UL is a locally small type. By the join
construction [27], the image of P can be taken to be a small type I in U , so there is a
factorization of P into a surjection P̂ : X → I followed by an embedding i : I → UL:

X UL

L′X I

η′

P

P̂
i

Since the identity types of I are equivalent to identity types of UL, and I is small,
it follows that the identity types of I are actually L-local. This means that I is an
L-separated type, so we can extend P̂ to L′X giving us the desired extension of P by
composing with i.

Since X → L′X is surjective (Theorem 5.2.14), any such extension must factor
through the image I. So uniqueness follows from the universal property of L′-localization.

Before we show that L′-localizations exist for any type X, we characterize them. To
establish our characterization of L′-localizations, we need the following simple lemma,
that allows us to construct unique extensions.

Lemma 5.2.13. Let g : A → B and f : A → C be maps for which we have a unique
extension

fibg(b) C

1

f◦pr1

for every b : B. Then f extends uniquely along g.
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Proof. By assumption we have

∏

(b:B)is contr
(

∑

(c:C)

∏

(a:A)

∏

(p:g(a)=b)f(a) = c
)

.

The center of contraction gives us an extension

A C

B

f

g
f̃

and its uniqueness follows from the contraction.

Theorem 5.2.14. Consider a map l′ : X → Y ′, where Y ′ is assumed to be L-separated.
Then the following are equivalent:

(i) The map l′ : X → Y ′ is an L′-localization.

(ii) The map l′ : X → Y ′ is surjective, and for each x, y : X, the map

apl′ : (x = y)→ (l′(x) = l′(y))

is an L-localization.

Proof. First, suppose that l′ : X → Y ′ is an L′-localization. To see that l′ is surjective,
we note that im(l′) is L-separated since it is a subtype of Y ′, so the surjective map
q : X → im(l′) extends uniquely along l′.

X im(l′)

Y ′

q

l′

h

By the universal property of L′-localization it follows that h is a section of the image
inclusion im(l′) → Y ′. In particular, the image inclusion is both surjective and an
embedding, so it must be an equivalence. It follows that l′ is surjective.

Next, we need to show that for each x, y : X, the map

apl′ : (x = y)→ (l′(x) = l′(y))

is an L-localization. Fix x : X. Since l′ is an L′-localization, there is a unique extension

X UL.

Y ′

y 7→L(x=y)

l′
P

The family P comes equipped with a point p0 : P (l′(x)) that is induced by η(reflx) :
L(x = x). Moreover, by the fact that P extends y 7→ L(x = y) we have a pullback
square

∑

(y:X) L(x = y)
∑

(y′:Y ′) P (y′)

X Y ′
l′
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Thus we see that our claim follows by Theorem 1.2.5, once we show that the total space
of P is contractible.

For the center of contraction of
∑

(y:L′X) P (y) we take (l′(x), η(reflx)). It remains to
construct a contraction

∏

(y′:Y ′)

∏

(p:P (y′))(l
′(x), η(reflx)) = (y′, p).

Since the fibers of P are L-local, it follows by Proposition 5.2.9 that the total space of
P is L-separated. Therefore we obtain by Proposition 5.1.22 that the type

∏

(p:P (y′))(l
′(x), η(reflx)) = (y′, p)

is L-local for every y′ : Y ′. Thus Corollary 5.2.10 reduces the problem to constructing a
term of type

∏

(y:X)

∏

(p:L(x=y))(l
′(x), η(reflx)) = (l′(y), p).

Furthermore, for y : X we have equivalences
(

∑

(p:L(x=y))(l
′(x), η(reflx)) = (l′(y), p)

)

≃
(

∑

(p:L(x=y))

∑

(α:l′(x)=l′(y))α∗(η(reflx)) = p
)

≃
∑

(α:l′(x)=l′(y))1

≃ l′(x) = l′(y),

where the last type is clearly L-local. So we can apply Proposition 5.1.5 to reduce the
problem to the problem of constructing a term of type

∏

(y:X)

∏

(p:x=y)(l
′(x), η(reflx)) = (l′(y), η(p)).

This can be done by a simple application of path induction. This completes the proof
that (i) implies (ii).

To show that (ii) implies (i), assume that l′ is surjective, and that for every x, y : X
the map

apl′ : (x = y)→ (l′(x) = l′(y))

is an L-localization. Our goal to show that l′ satisfies the universal property of L′-
localization, so assume f : X → Z is a map into an L-separated type Z.

By Lemma 5.2.13, it is enough to show that f restricts to a unique constant map on
the fibers of l′. This means that we must show that

∑

(z:Z)

∏

(x:X)(l
′(x) = y′) −→ (f(x) = z)

is contractible for every y′ : Y ′. Since this is a mere proposition, and l′ is surjective, we
can assume that y′ = l′(y). In other words, it suffices to show that

∑

(z:Z)

∏

(x:X)(l
′(x) = l′(y)) −→ (f(x) = z)

is contractible for every y : X.
Since Z is assumed to be L-separated and apl′ is assumed to be an L-localization,

this type is equivalent to
∑

(z:Z)

∏

(x:X)(x = y) −→ (f(x) = z)

and it is easy to see that this is a contractible type by applying the contractibility of the
total space of the path fibration twice.
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Our final goal for this section is to show that L′ is a reflective subuniverse, i.e. that
there is an L′-localization for every type X : U . We will use a ‘local version’ of the type
theoretic Yoneda Lemma.

Lemma 5.2.15. For each y : X and each P : X → UL, the map

ev locrefl :
(

∏

(z:X)L(y = z)→ P (z)
)

−→ P (y)

given by f 7→ f(y, η(refly)) is an equivalence.

Proof. By the universal property of L(y = z) and identity elimination, the map in the
statement can be factored as follows:

(

∏

(z:X)L(y = z)→ P (z)
)

≃
(

∏

(z:X)(y = z)→ P (z)
)

≃ P (y).

Theorem 5.2.16. For any reflective subuniverse L, the subuniverse of L-separated types
is again reflective. We will write

η′ : X → L′X

for the L′-localization of a type X.

Proof. Fix a type X : U . Let YL : X → (X → U) be given by

YL(x, y) :≡ L(x = y).

We would like to define L′X to be im(YL), but this is a subtype of X → U , so it is not
small (i.e., it does not live in U). However, since U is locally small, so is X → U . Thus
the join construction [27] implies that the image is equivalent to a small type which we
denote L′X. This comes equipped with a surjective map

η′ : X −→ L′X,

which we take to be the unit of the reflective subuniverse.
To show that η′ is a localization, we apply Theorem 5.2.14. First we show that L′X is

L-separated. Since η′ is surjective and being L-local is a proposition, it is enough to show
that η′(x) = η′(y) is L-local for x and y in X. Since L′X embeds in X → U , we have
an equivalence between η′(x) = η′(y) and (λz.L(x = z)) = (λz.L(y = z)). The latter is
equivalent to

∏

(z:X) L(x = z) = L(y = z), which is L-local by Proposition 5.2.11.

It remains to show that the canonical map L(x = y) → (η′(x) = η′(y)) is an equiv-
alence. By the above argument, combined with univalence, the problem reduces to
showing that the canonical map

L(x = y) −→
(

∏

(z:X)L(x = z) ≃ L(y = z)
)

is an equivalence. Using symmetry of equivalences, it suffices to show that the map

L(x = y) −→
(

∏

(z:X)L(y = z) ≃ L(x = z)
)
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is an equivalence. Moreover, since the forgetful map from equivalences to maps is an
embedding, it is enough to show that the composite map

αx,y : L(x = y) −→
(

∏

(z:X)L(y = z)→ L(x = z)
)

is an equivalence. Indeed, if i is an embedding and i ◦ g is an equivalence, then i is
surjective. Therefore i is an equivalence and hence so is g.

By the local Yoneda Lemma 5.2.15, with P (z) :≡ L(x = z), there is an equivalence

βx,y : L(x = y) −→
(

∏

(z:X)L(y = z)→ L(x = z)
)

which sends p : L(x = y) to the unique function f such that f(x, η(reflx)) = p. So it
suffices to show that αx,y = βx,y. By the universal property of L(x = y), it is enough
to show that αx,y ◦ η = βx,y ◦ η as maps (x = y) →

(
∏

(z:X) L(y = z) → L(x = z)
)

.
Letting x and y vary and using path induction, we reduce the problem to showing that
αx,x(η(reflx)) = βx,x(η(reflx)).

Since αx,y is defined by path induction, it is easy to see that αx,x(η(reflx)) is equal
to λz. idL(x=z). On the other hand, βx,x(η(reflx)) is the unique function f such that
f(x, η(reflx)) = η(reflx). Therefore, this f must also equal λz. idL(x=z), showing that
αx,x(η(reflx)) = βx,x(η(reflx)).

Theorem 5.2.17. For each k ≥ −2, the subuniverse of k-truncated types is reflective.

Proof. The subuniverse of contractible types is obviously reflective, it’s localization is just
the constant function λX.1 mapping every type to the unit type. Since the subuniverse
of (k + 1)-truncated types is precisely the subuniverse of k-separated types, the claim
follows inductively by Theorem 5.2.16.

5.3 L-local maps

Definition 5.3.1. A map f : A→ B is said to be L-local if its fibers are L-local.

Theorem 5.3.2. Let B be a type family over A. Then the following are equivalent:

(i) For each x : A the type B(x) is L-local.

(ii) The projection map

pr1 :
(

∑

(x:A)B(x)
)

→ A

is an L-local map.

Proof. Immediate from the equivalences B(x) ≃ fibpr1(x).

Theorem 5.3.3. Let f : A→ B be a map. The following are equivalent:

(i) The map f is L′-local.

(ii) For each x, y : A, the map

apf : (x = y)→ (f(x) = f(y))

is L-local.
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(iii) The diagonal δf : A→ A×B A of f is L-local.

Proof. First we show that for any s, t : fibf (b) there is an equivalence

(s = t) ≃ fibapf (pr2(s)
� pr2(t)

−1)

We do this by Σ-induction on s and t, and then we calculate using basic manipulations
of identifications that

((x, p) = (y, q)) ≃
∑

(r:x=y)trf(– )=b(r, p) = q

≃
∑

(r:x=y)apf (r)
−1 � p = q

≃
∑

(r:x=y)apf (r) = p � q−1

≡ fibapf (p
� q−1).

By these equivalences, it follows that if apf is L-local, then for each s, t : fibf (b) the
identity type s = t is an L-local type.

For the converse, note that we have equivalences

fibapf (p) ≃ ((x, p) = (y, reflf(y))).

Therefore it follows that if f is L′-local, then the identity type (x, p) = (y, reflf(y)) in
fibf (f(y)) is L-local for any p : f(x) = f(y), and therefore fibapf (p) is L-local.

Theorem 5.3.4. Let f :
∏

(x:A)B(x) → C(x) be a fiberwise transformation. Then the
following are equivalent:

(i) For each x : A the map f(x) is L-local.

(ii) The induced map

tot(f) :
(

∑

(x:A)B(x)
)

→
(

∑

(x:A)C(x)
)

is L-local.

Proof. This follows directly from Lemma 1.2.2.

5.4 Quasi-left-exactness of L′-localization

We now explain how L and L′ together behave similarly to a lex modality, i.e., a modal-
ity that preserves pullbacks. Theorem 3.1 of [28] gives 13 equivalent characterizations
of a lex modality, and it turns out that these hold for any reflective subuniverse if the
modal operator is replaced by L and L′ in the appropriate way. The propositions in this
section show this for parts (ix), (x), (xii) and (xi) of Theorem 3.1, respectively. The
proofs use the dependent elimination of L′ in a crucial way, but do not use the specific
construction of L′-localization, just the existence.

Before proving the next result, we need a lemma, which follows directly from the
dependent elimination of L′.
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Lemma 5.4.1. Let P : L′X → U be a type family over L′X. Then the map

f :
(

∑

(x:X)P (η′(x))
)

→
(

∑

(y:L′X)P (y)
)

given by (x, p) 7→ (η′(x), p) is an L-equivalence.

Proof. For any L-local type Z we have the commuting square

((

∑

(y:L′X) P (y)
)

→ Z
) (

∑

(x:X) P (η′x)
)

→ Z

∏

(y:L′X)(P (y)→ Z)
∏

(x:X)(P (η′x)→ Z)

λf. λ(x,p). f(η′(x),p)

ev pair ev pair

λf. λx. λy. f(η′(x),y)

The bottom map is an equivalence by Corollary 5.2.10, using that Z and P (y)→ Z are
L-local. The two vertical maps are also equivalences, so it follows that the top map is
an equivalence. The claim now follows from Proposition 5.1.12.

Proposition 5.4.2. Consider a commuting cube of the form

A×X B

A L′A×L′X L′B B

L′A X L′B

L′X.

η′ η′

η′

Then the map A×X B → L′A×L′X L′B is an L-equivalence.

Proof. Consider the following commuting square

∑

(x:A)

∑

(y:B) f(x) = g(y)
∑

(x′:L′A)

∑

(y′:L′B) L
′f(x′) = L′g(y′)

∑

(x:A)

∑

(y:B) η
′(f(x)) = η′(g(y))

∑

(x:A)

∑

(y:B) L
′f(η′(x)) = L′g(η′(y))

In this square, the downwards morphism on the left is the induced map on total spaces of
the map apη′ : (f(x) = g(y))→ (η′(f(x)) = η′(g(y))), which is an L-equivalence by Theo-
rem 5.2.14 and Proposition 5.1.16. The bottom map is an equivalence, obtained from the
naturality squares η′◦f ∼ L′f ◦η′ and η′◦g ∼ L′g◦η′. In particular, it is an L-equivalence.
The upwards map on the right is an L-equivalence by Lemma 5.4.1. Therefore, the as-
serted map is a composite of L-equivalences, so it is also an L-equivalence.

As a consequence we get a result about the preservation of certain fiber sequences.
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Corollary 5.4.3. Given a fiber sequence F →֒ E ։ B, there is a map of fiber sequences

F E B

F ′ L′E L′B

p

η′ η′

L′p

in which the left vertical map is an L-equivalence.

5.5 Connected maps

Definition 5.5.1. A map f : A → B is said to be L-connected if L(fibf (b)) is con-
tractible for every b : B. In particular, a type A is L-connected if and only if LA is
contractible.

In the following proposition we characterize L′-connected types. We will establish a
similar claim for maps in Corollary 5.5.12

Proposition 5.5.2. A type A is L′-connected if and only if A is merely inhabited
(i.e. ‖A‖ holds), and the identity types of A are L-connected.

Proof. A is L′-connected if and only if A → 1 is an L′-localization. By Theorem 5.2.14
this holds if and only if A → 1 is surjective, and the maps (x = y) → Ω(1) are L-
localizations — in other words: if and only if A is merely inhabited and the identity
types of A are L-connected.

In the following proposition we provide two equivalent conditions to a map being
L-connected.

Proposition 5.5.3. Consider a map f : A→ B. The following are equivalent:

(i) f is L-connected.

(ii) For every family P : B → UL of L-local types, the map

λs. s ◦ f :
(

∏

(b:B)P (b)
)

→
(

∏

(a:A)P (f(a))
)

.

is an equivalence.

(iii) For every family P : B → UL of L-local types, the map

λs. s ◦ f :
(

∏

(b:B)P (b)
)

→
(

∏

(a:A)P (f(a))
)

.

has a section.

Proof. First suppose f is L-connected and let P : B → UL. Then the map

λp. constp : P (b)→ (fibf (b)→ P (b))
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is an equivalence for every b : B, since L(fibf (b)) is assumed to be contractible. Therefore
we obtain a commuting square

∏

(b:B) P (b)
∏

(a:A) P (f(a))

∏

(b:B)

(

fibf (b)→ P (b)
)

∏

(b:B)

∏

(a:A)(f(a) = b)→ P (b)
evpair

ev refl

in which three out of four maps are known equivalences. The remaining map must
therefore also be an equivalence.

Thus, (i)⇒(ii), and clearly (ii)⇒(iii). To show (iii)⇒(i), let P (b) :≡ L(fibf (b)).
Then (iii) yields a map c :

∏

(b:B) L(fibf (b)) with c(f(a)) = η(a, reflf(a)). To show that
each L(fibf (b)) is contractible, we will show that c(b) = w for any b : B and w : L(fibf (b)).
In other words, we must show that the identity function L(fibf (b))→ L(fibf (b)) is equal
to the constant function at c(b). By the universal property of L(fibf (b)), it suffices to
show that they become equal when precomposed with ηfibf (b), i.e. we may assume that
w = η(a, p) for some a : A and p : f(a) = b. But now path induction on p reduces our
goal to the given c(f(a)) = η(a, reflf(a)).

Corollary 5.5.4. A type A is L-connected if and only if the “constant functions” map
B → (A→ B) is an equivalence for every modal type B.

Dually, we will prove in Corollary 5.6.29 that when L is a modality, if this holds for
all L-connected A then B is L-local.

Corollary 5.5.5. If f : A → B is an L-connected map into an L-local type B, then f
is an L-localization. (The converse only holds when L is a modality.)

Proposition 5.5.6. Consider a map f : A→ B.

(i) If f is an L′-equivalence, then f is L-connected.

(ii) If f is L-connected, then f is an L-equivalence.

Proof. The first statement is a direct consequence of Corollary 5.4.3, since we get for
each b : B a map of fiber sequences

fibf (b) A B

fibL′f (η
′b) L′A L′B

f

η′ η′

L′f

in which the induced map fibf (b) → fibL′f (η
′b) is an L-equivalence. Since L′f is an

equivalence, it follows that fibL′f (η
′b) is contractible, so we conclude that fibf (b) is L-

connected. It follows that f is L-connected.
For the second statement, we observe that if f is L-connected, then by Proposi-

tion 5.5.3 it induces an equivalence

f∗ : (B → X)→ (A→ X)
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for every L-local type X. Therefore we conclude by Proposition 5.1.12 that f is an
L-equivalence.

Proposition 5.5.7. Consider a commuting triangle

A B

X

h

f g

(i) If h is L-connected, then the following are equivalent:

a) f is L-connected.

b) g is L-connected.

(ii) If f is L′-connected, then the following are equivalent:

a) g is L′-connected.

b) h is L-connected.

In particular, g is (n+1)-connected if and only if h is n-connected, assuming that
f is (n+ 1)-connected.

Proof. For the first statement suppose that h is L-connected. For any z : C we have

L(fibg◦h(z)) ≃ L(
∑

(p:fibg(z))
fibh(pr1(p)))

≃ L(
∑

(p:fibg(z))
L(fibh(pr1(p))))

≃ L(
∑

(p:fibg(z))
1)

≃ L(fibg(z)).

using the fact that h is L-connected. Thus, one is contractible if and only if the other is.
We conclude that f is L-connected if and only if g is.

For the second statement, suppose that f is L′-connected. If g is L′-connected, then
both g ◦ h and g are L′-equivalences, and thus h is an L′-equivalence. Then Proposi-
tion 5.5.6 implies that h is L-connected.

For the converse, notice that taking fibers over each x : X reduces the problem to
showing that given an L-connected map h : A → B such that A is L′-connected, it
follows that B is L′-connected.

Since L′A is contractible, it follows that L′B is contractible if and only if L′h :
L′A → L′B is an equivalence. Therefore it suffices to show that the fibers of L′h are
contractible. Moreover, since η′ : B → L′B is a surjective map by Theorem 5.2.14, it
is enough to show that fibL′h(η

′(b)) is contractible for every b : B. First we observe
that, fibL′h(η

′(b)) ≃ Ω(L′B, η′(b)) since L′A is contractible. Now we observe using
Corollary 5.4.3 that we have for every b : B a morphism of fiber sequences

fibh(b) A B

Ω(L′B, η′(b)) L′A L′B

η′

h

η′

L′h
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in which the map on the left is an L-equivalence. However, the type Ω(L′B, η′(b)) is
L-local, so it follows that the map

fibh(b)→ Ω(L′B, η(b))

is an L-localization. Now it follows by our assumption that h is L-connected that
Ω(L′B, η(b)) is contractible. We conclude that fibL′h(η

′(b)) is contractible, and there-
fore that L′B is contractible.

Remark 5.5.8. In general it is not true that if g and g ◦h are #-connected then h is; this
is one of the equivalent characterizations of lex modalities (Theorem 3.1 of [28]).

The above proposition almost gives us a 3-for-2 property that combines L and L′.
However the map 0 → 1 is (−2)-connected, and 1 is (−1)-connected, whereas 0 is not
(−1)-connected. So the remaining implication of the 3-for-2 property does not hold. One
can show the weaker result that the composite of an L-connected map followed by an
L′-connected map is L-connected.

Remark 5.5.9. Theorem 5.2.14 allows us to give a concrete description of the extension
defined in Lemma 5.2.12. Using an argument similar to the one used in the proof of
Proposition 5.4.2, one can show that given an L′-localization η′ : X → L′X and a map
f : Y → X with L-local fibers, f is the pullback of the fiberwise L-localization of η′ ◦ f .

Definition 5.5.10. A commuting square

A B

X Y

f

h

g

i

is said to be L-cartesian if its gap map is L-connected.

Proposition 5.5.11. Consider a commuting square

A B

X Y.

f

h

g

i

(i) Suppose that g is surjective, and that the square is L-cartesian. Then the following
are equivalent:

a) The map h : A→ B is L-connected.

b) The map i : X → Y is L-connected.

(ii) Suppose that i : X → Y is L′-connected. Then the following are equivalent:

a) The map h : A→ B is L′-connected.

b) The square is L-cartesian.
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Proof. For the first statement we observe that by Proposition 5.5.7 h is an L-connected
if and only if g∗i is an L-connected. Since g is assumed to be surjective, it follows that
g∗i is L-connected if and only if i is L-connected.

For the second statement we observe that, since i : X → Y is assumed to be L′-
connected, the map g∗i : X×Y B → B. Now it follows by Proposition 5.5.7 that the gap
map is L-connected if and only if h is L′-connected.

Corollary 5.5.12. A map f : A → B is a L′-connected if and only if f is surjective
and δf : A→ A×B A is a L-connected.

Proof. Since every proposition is L′-local, it follows that ‖X‖ = ‖L′X‖ for any type
X. In particular, if X is L′-connected, then ‖X‖ = 1. From this observation it follows
that if f is L′-connected, then f is surjective. Furthermore, since the identity function
idA : A→ A is obviously L′-connected, it follows that the square

A A

A B

f

f

is L-cartesian. In other words: δf : A→ A×B A is L-connected.
Now suppose that f is surjective and that δf is L-connected. Then the fibers of δf

are L-connected. Since we have equivalences

((x, p) = (y, q)) ≃ fibδf (x, y, p
� q−1)

for any (x, p), (y, q) : fibf (b) it follows by Proposition 5.5.2 that fibf (b) is L′-connected
for every b : B. In other words: f is L′-connected.

A commuting square is said to be a quasi-pullback if its gap map is surjective. In
other words, quasi-pullback squares are the same as (−1)-cartesian squares.

Corollary 5.5.13. A map f : A → B is n-connected if and only if the gap map of the
commuting square

A B

ASk BSk

f

fS
k

is a quasi-pullback square, for each −1 ≤ k ≤ n. A map is therefore ∞-connected if this
square is a quasi-pullback for all k

Corollary 5.5.14. A pointed connected type A is L′-connected if and only if the map
1→ A is L-connected.

Proof. If A is L′-connected, then its loop space is L-connected. It follows that the square

1 1

1 A
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is L-cartesian. Since the map 1 → 1 is obviously L-connected and the map 1 → A
is surjective by the assumption that A is connected, it follows that the map 1 → A is
L-connected.

For the converse, suppose that the map 1 → A is L-connected. Then the identity
types of A are L-connected, since all identity types of A are merely equal to Ω(A).
Therefore it follows by Proposition 5.5.2 that A is L′-connected.

Corollary 5.5.15. Let P : A→ U and Q : B → U be type families, and let

g :
∏

(x:A)P (x)→ Q(f(x))

be a fiberwise transformation over f : A→ B.

(i) Suppose that each gx : P (x) → Q(f(x)) is L-connected. Then we have the follow-
ing:

a) If f is L-connected, then totf (g) is L-connected.

b) If each Q(x) is merely inhabited and totf (g) is L-connected, then f is L-
connected.

(ii) Suppose that f is L′-connected. Then the following are equivalent:

a) Each gx : P (x)→ Q(f(x)) is L-connected.

b) The map totf (g) is L′-connected.

Proposition 5.5.16. Let P,Q : A → Type be type families and f :
∏

(a:A)

(

P (a) →

Q(a)
)

. Then the following are equivalent

(i) Each f(a) : P (a)→ Q(a) is L-connected.

(ii) The map tot(f) :
∑

(a:A) P (a)→
∑

(a:A)Q(a) is an L-connected.

Proof. By Lemma 1.2.2 we have fibtot(f)((x, v)) ≃ fibf(x)(v) for each x : A and v : Q(x).
Hence L(fibtot(f)((x, v))) is contractible if and only if L(fibf(x)(v)) is contractible.

Of course, the “if” direction of Proposition 5.5.16 is a special case of Corollary 5.5.15.
This suggests a similar generalization of the “only if” direction of Proposition 5.5.16,
which would be a version of Corollary 5.5.15 asserting that if f and ϕ are L-connected
then so is each ga.



5.6. MODALITIES 107

5.6 Modalities

In this section we will introduce the following four notions of modality and prove that
they are all equivalent:

(i) Higher modalities

(ii) Uniquely eliminating modalities

(iii) Σ-closed reflective subuniverses

(iv) Stable orthogonal factorization systems

After their equivalence has been established, we will call all of them simply modalities.
The first three definitions have the following data in common: by a modal operator

we mean a function # : U → U , and by a modal unit we mean a family of functions
η# :

∏

(A:U)A→ #A. Given these data, we say a type X is modal if ηX : X → #X is
an equivalence, and we write U# :≡

∑

(X:U) is modal(X) for the subuniverse of modal
types.

Definition 5.6.1. A higher modality consists of a modal operator and modal unit
together with

(i) for every A : U and every dependent type P : #A→ U , a function

ind#A :
(
∏

(a:A)#(P (η(a)))
)

→
∏

(z:#A)#(P (z)).

(ii) An identification
comp#A(f, x) : ind#A(f)(η(x)) = f(x)

for each f :
∏

(x:A) #(P (η(x))).

(iii) For any x, y : #A the modal unit η(x=y) : x= y → #(x= y) is an equivalence.

Definition 5.6.2. A uniquely eliminating modality consists of a modal operator
and modal unit such that the function

λf. f ◦ ηA : (
∏

(x:#A)#(P (x)))→ (
∏

(a:A)#(P (ηA(a))))

is an equivalence for any A and any P : #A→ U .

Definition 5.6.3. A reflective subuniverse L is said to be Σ-closed if
∑

(x:X) P (x) is
L-local for every family P : X → UL of L-local types over an L-local type X.

Note that unlike Definitions 5.6.1 and 5.6.2, in Definition 5.6.3 the notion of “modal
type” is part of the data. However, we will show in Proposition 5.1.3 that is modal(A) if
and only if ηA is an equivalence.

Definition 5.6.4. An orthogonal factorization system consists of predicates L,R :
∏

(A,B:U)(A→ B)→ Prop such that

(i) L and R are closed under composition and contain all identities (i.e. they are
subcategories of the category of types that contain all the objects), and
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(ii) the type factL,R(f) of factorizations

A B

imL,R(f)

f

fL fR

of f , with fL in L and fR in R, is contractible.

More precisely, the type factL,R(f) is defined to be the type of tuples

(imL,R(f), (fL, p), (fR, q), h)

consisting of a type imL,R(f), a function fL : A → imL,R(f) with p : L(fL), a function
fR : imL,R(f) → B with q : R(fR), and an identification h : f = fR ◦ fL. The type
imL,R(f) is called the (L,R)-image of f .

A type X is said to be (L,R)-modal if the map ! : X → 1 is in R (and hence !L is
an equivalence).

An orthogonal factorization system is said to be stable if the class L is stable under
pullbacks (By Lemma 5.6.26, R is always stable under pullbacks).

Remark 5.6.5. By univalence, the fact that L and R contain all identities implies that
they each contain all equivalences. Conversely, if f ∈ L ∩ R, then (id, f) and (f, id) are
both (L,R)-factorizations of f , and hence equal; which implies that f is an equivalence.
Thus, L ∩R consists exactly of the equivalences.

We now consider a few examples. Since we will eventually prove all the definitions
to be equivalent, we can use any one of them to describe any particular example.

Example 5.6.6. The prime example is the n-truncation modality ‖–‖n as studied
in [33, Chapter 7]. This can be given as a higher modality, using its induction principle
and the fact that ‖A‖n is an n-type and the identity types of an n-type are again n-
types (indeed, (n− 1)-types). The corresponding stable orthogonal factorization system,
consisting of n-connected and n-truncated maps, is also constructed in [33, Chapter 7];
our construction in Theorem 5.6.20 will be a generalization of this.

Example 5.6.7. Let Q be a mere proposition. The open modality determined by Q
is defined by OpQA = (Q → A), with unit ηA(x) = λ . x : A → (Q → A). To show
that this is a higher modality, suppose we have P : (Q → A) → U and f :

∏

(a:A)Q →
P (λ . a). Then for any z : Q→ A and q : Q we have f(z(q), q) : P (λ . z(q)). And since
Q is a mere proposition, we have z(q) = z(q′) for any q′ : Q, hence e(z, q) : (λ . z(q)) = z
by function extensionality. This gives

λz. λq. e(z, q)∗((f(z(q), q))) :
∏

(z:Q→A)Q→ P (z)

For the computation rule, we have

(λz. λq. e(z, q)∗((f(z(q), q))))(λ . a) = λq. e(λ . a, q)∗((f(a, q)))

= λq. f(a, q) = f(a)
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by function extensionality, since e(λ . a, q) = refl. Finally, if x, y : Q → A, then (x =
y) ≃

∏

(q:Q) x(q) = y(q), and the map

(

∏

(q:Q)x(q) = y(q)
)

→
(

Q→
∏

(q:Q)x(q) = y(q)
)

is (by currying) essentially precomposition with a product projection Q ×Q → Q, and
that is an equivalence since Q is a mere proposition.

Example 5.6.8. Again, let Q be a mere proposition. The closed modality determined
by Q is defined by ClQA = Q ∗ A, the join of Q and A (the pushout of Q and A under
Q × A). We show that this is a Σ-closed reflective subuniverse. Define a type B to be
modal if Q→ is contr(B), and note that it is indeed the case that Q→ is contr(Q ∗ A),
for any type A. By the universal property of pushouts, a map Q ∗ A → B consists of
a map f : A → B and a map g : Q → B and for any a : A and q : Q an identification
p : f(a) = g(q). But if Q → is contr(B), then g and p are uniquely determined, so this
is just a map A → B. Thus (ClQA → B) → (A → B) is an equivalence, so we have a
reflective subuniverse. It is Σ-closed since the dependent sum of a contractible family of
types over a contractible base is contractible.

Example 5.6.9. The double negation modality is defined by A 7→ ¬¬A, i.e. (A →
0) → 0, with η(a) = λg. g(a). We show that this is a uniquely eliminating modality.
Since the map λf. f ◦ ηA that must be an equivalence has mere propositions as domain
and codomain, it suffices to give a map in the other direction. Thus, let P : ¬¬A→ U and
f :

∏

(a:A) ¬¬P (λg. g(a)); given z : ¬¬A we must derive a contradiction from g : ¬P (z).
Since we are proving a contradiction, we can strip the double negation from z and assume
given an a : A. And since ¬¬A is a mere proposition, we have z = λg. g(a), so that we
can transport f(a) to get an element of ¬¬P (z), contradicting g.

Example 5.6.10. The trivial modality is the identity function on U . It coincides with
Op⊤ and with Cl⊥.

Dually, the zero modality sends all types to 1. It is equivalently the (−2)-truncation,
and coincides with Op⊥ and with Cl⊤.

Summary. In each of Definitions 5.6.1 to 5.6.4 we have defined what it means for a
type to be modal. In each case, being modal is a family of mere propositions indexed by
the universe, i.e. a subuniverse. We will show in Theorems 5.1.8, 5.6.12, 5.6.15 and 5.6.31
that each kind of structure is completely determined by this subuniverse. (Theorem 5.1.8
is more general, not requiring Σ-closedness.)

It follows that the type of all modalities of each kind is a subset of the set U → Prop

of all subuniverses, and in particular is a set. This makes it easier to establish the
equivalences of the different kinds of modalities. It suffices to show that any modality of
one kind determines a modality of the next kind with the same modal types, which we
will do as follows:
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higher modality

stable
factorization

system

uniquely
eliminating
modality

Σ-closed
reflective

subuniverse

Theorem 5.6.13Theorem 5.6.32

Theorem 5.6.16Theorem 5.6.20

Before Theorem 5.6.20 we take the opportunity to develop a bit more theory of reflec-
tive subuniverses, including closure under identity types (Corollary 5.1.21) and depen-
dent products (Proposition 5.1.22), along with several equivalent characterizations of
Σ-closedness (Theorem 5.6.19).

Of these equivalences, the most surprising is that a stable factorization system is
uniquely determined by its underlying reflective subuniverse of types. This is false for
stable factorization systems on arbitrary categories; the reason it holds here is that we
are talking in type theory about factorization systems on the category of types. An
analogous fact is true in classical set-based mathematics for stable factorization systems
on the category of sets (although in that case there are much fewer interesting examples).
We [28] we also observe that when type theory is interpreted in a higher category, the
data of a reflective subuniverse or modality has to be interpreted “fiberwise”, giving a
richer structure than a single reflective subcategory.

5.6.1 Higher modalities

We start by showing that a higher modality is determined by its modal types, and gives
rise to a uniquely eliminating modality.

Lemma 5.6.11. If # is a higher modality, then any type of the form #X is modal.

Proof. We want to show that the modal unit η#X : #X → ##X is an equivalence.
By the induction principle and the computation rule for higher modalities, we find a
function f : ##X → #X with the property that f ◦ η#X ∼ id#X . We wish to show that
we also have η#X ◦ f ∼ id. Since identity types of types of the form #Y are declared to
be modal, it is equivalent to find a term of type

∏

(x:##X)#(η#X(f(x)) = x).

Now we are in the position to use the induction principle of higher modalities again, so
it suffices to show that η(f(η(x))) = η(x) for any x : #X. This follows from the fact
that f ◦ η = id.

Theorem 5.6.12. The data of two higher modalities # and #
′ are identical if and only

if they have the same modal types.
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Proof. Another way of stating this, is that the function from the type of all modalities on
U to the type U → Prop of predicates on U , given by mapping a modality to the predicate
is modal, is an embedding. Thus, we need to show that for any predicateM : U → Prop,
we can find at most one modality for whichM is the class of modal types. This follows,
once we demonstrate that,

for anyM : U → Prop closed under identity types, and for any type X, the
type of tuples (Y, p, π, I, C) — consisting of a type Y with p witnessing that
Y satisfiesM, a function π : X → Y , a function

IP : (
∏

(x:X)P (π(x)))→ (
∏

(y:Y )P (y))

for every P : Y → UM, which is a right inverse of precomposing with π, as
is witnessed by the term C — is a mere proposition.

We prove this statement in two parts. First, we show that the type of pairs (I, C),
with I and C of the indicated types, is a mere proposition for any (Y, p, π). After that,
we show that the type of triples (Y, p, π) is also a mere proposition. These two facts
combined prove the statement.

Consider a type Y satisfyingM, and a function π : X → Y , and let (I, C) and (I ′, C ′)
be two terms witnessing that Y satisfies an induction principle with a computation
rule. We want to show that (I, C) = (I ′, C ′), and of course it suffices to show that
(I(s), C(s)) = (I ′(s), C(s)) for any P : Y → UM and s :

∏

(x:X) P (π(x)).

To show that I(s, y) = I ′(s, y) for any y : Y , we use the induction principle (I, C).
So it suffices to show that I(s, π(x)) = I ′(s, π(x)). Both of these terms are equal to
s(x). Thus, we obtain a proof J(s, y) that I(s, y) = I ′(s, y), with the property that
J(s, π(x)) = C(s, x) � C ′(s, x)−1. Now we need to show that J(s)∗(C(s)) = C ′(s), which
is equivalent to the property we just stated. This finishes the proof that the type of the
induction principle and computation rule is a mere proposition.

It remains to show that (Y, π) = (Y ′, π′), provided that Y and Y ′ are both in M,
and that both sides satisfy the induction principle and computation rule. It suffices to
find an equivalence f : Y → Y ′ such that f ◦ π = π′.

From the induction principles of Y resp. Y ′, we obtain a function f : Y → Y ′

with the property that f ◦ π = π′, and a function f ′ : Y ′ → Y with the property that
f ′ ◦ π′ = π. To show that f ′ ◦ f = id we use the induction principle of Y . Since the type
f ′(f(y)) = y is in M, it suffices to show that f ′(f(π(y))) = π(y). This readily follows
from the defining properties of f and f ′. Similarly, we have f ◦ f ′ = id.

Theorem 5.6.13. A higher modality is a uniquely eliminating modality, with the same
modal types.

Proof. Let # be a modality with modal units ηA. Our goal is to show that the pre-
composition map

λs. s ◦ ηA : (
∏

(x:#A)#(P (x)))→ (
∏

(a:A)#(P (ηA(a))))

is an equivalence for each A : U and P : #A→ U . By the given induction principle and
computation rule, we obtain a right inverse ind#A of – ◦ ηA.
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To show that it is a left inverse, consider s :
∏

(x:#A) #(P (x)). We need to find a
homotopy

∏

(x:#A)s(x) = ind#A(s ◦ ηA)(x).

By assumption we have that P (x) is modal for each z : #A and hence it follows that
s(x) = ind#A(s ◦ ηA)(x) is modal for each x. Hence it suffices to find a function of type

∏

(a:A)s(ηA(a)) = ind#A(s ◦ ηA)(ηA(a)).

This follows straight from the computation rule of higher modalities.

5.6.2 Uniquely eliminating modalities

Next, we show that a uniquely eliminating modality is determined by its modal types,
and gives rise to a Σ-closed reflective subuniverse.

Lemma 5.6.14. Given a uniquely eliminating modality, #X is modal for any type X.

Proof. Using the elimination principle of ##X, we find a function f : ##X → #X and
an identification f ◦ η#X = id#X . By the uniqueness property, the type

∑

(g:##X→##X)g ◦ η#X = η#X

is contractible. Since both id##X and η#X ◦ f are in this type (with suitable identifi-
cations), we find that f is also the right inverse of η#X . This shows that η#X is an
equivalence, so #X is modal.

Theorem 5.6.15. The data of two uniquely eliminating modalities # and #
′ are equiv-

alent if and only if both have the same modal types.

Proof. We need to show that the type of uniquely eliminating modalities with a given
class M : U → Prop of modal types is a mere proposition. Since the types of the form
#X are modal, it suffices to show for any classM : U → Prop and any type X, that

the type of tuples (Y, p, π,H) — consisting of a type Y with p witnessing
that Y is inM, a function π : X → Y , and for each P : Y → U a term HP

witnessing that the function

λs. s ◦ π : (
∏

(y:Y )#(P (y)))→ (
∏

(x:X)#(P (π(x))))

is an equivalence — is a mere proposition.

Let (Y, p, π,H) and (Y ′, p′, π′,H ′) be such tuples. To show that they are equal, it suffices
to show that (Y, π) = (Y ′, π′) because the other things in the list are terms of mere
propositions. Furthermore, showing that (Y, π) = (Y ′, π′) is equivalent to finding an
equivalence f : Y ≃ Y ′ with the property that f ◦π = π′. By H, there is such a function,
and by H ′ there is a function f ′ : Y ′ → Y such that f ′ ◦ π′ = π. Now the uniqueness
gives that f ′ ◦ f is the only function from Y to Y such that f ′ ◦ f ◦ π = π and of course
idY is another such function. Therefore it follows that f ′ ◦f = id, and similarly it follows
that f ◦ f ′ = id.
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Theorem 5.6.16. Any uniquely eliminating modality determines a Σ-closed reflective
subuniverse with the same modal types.

Proof. It is immediate from the definition of uniquely eliminating modalities that every
map f : A→ B into a modal type B has a homotopy unique extension to #A along the
modal unit:

A

#A B

fηA

f̃

Since the types of the form #X are modal, we obtain a reflective subuniverse. It remains
to verify that the type

∑

(x:#X) #(P (x)) is modal for any type X and P : X → U . We
have the function

ϕ :≡ λm. (f(m), g(m)) : #(
∑

(x:#X)#(P (x)))→
∑

(x:#X)#(P (x)),

where

f :≡ ind#(λx. λu. x) : #(
∑

(x:#X)#(P (x)))→ #X

g :≡ ind#(λx. λu. u) :
∏

(w:#(
∑

(x:#X) #(P (x))))#(P (f(w)))

Our goal is to show that ϕ is an inverse to the modal unit.
Note that

ϕ(η(x, y)) ≡ (f(η(x, y)), g(η(x, y))) ≡ (x, y),

so we see immediately that ϕ is a left inverse of η.
To show that ϕ is a right inverse of η, note that the type of functions h fitting in a

commuting square of the form

#(
∑

(x:#X) #(P (x))) #(
∑

(x:#X) #(P (x)))

∑

(x:#X) #(P (x))

h

η η

is contractible, and it contains the identity function. Therefore, it suffices to show that
(η ◦ϕ)◦η = η, but this follows from the fact that ϕ is a left inverse of the modal unit.

5.6.3 Σ-closed reflective subuniverses

Now we study reflective subuniverses in a bit more detail, and end by showing that Σ-
closed ones give rise to stable factorization systems. Σ-closure is used in Theorem 5.6.20
to show that left maps and right maps are closed under composition.

5.6.3.1 Σ-closed reflective subuniverses

Definition 5.6.17. LetM : U → Prop be a reflective subuniverse with modal operator
#. We say that a type X is #-connected if #X is contractible, and we say that a
function f : X → Y is #-connected if each of its fibers is. Similarly, we say that f is
modal if each of its fibers is.
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Note that a type X is modal or #-connected just when the map X → 1 is.

Example 5.6.18. Recall from Example 5.6.7 that the open modality associated to a propo-
sition Q is defined by OpQ(A) :≡ (Q → A). We claim that A is OpQ-connected if and
only if Q → is contr(A). In other words, (Q → is contr(A)) ≃ is contr(Q → A). For
on the one hand, if Q → is contr(A), then Q → A; while any two f, g : Q → A can be
shown equal by function extensionality, since if Q then A is contractible. But on the
other hand, if is contr(Q→ A) and Q, then (Q→ A) ≃ A, hence is contr(A).

Note that Q→ is contr(A) is also the defining condition for the ClQ-modal types from
Example 5.6.8. That is, the OpQ-connected types coincide with the ClQ-modal types.

The following theorem combines Lemma 7.5.7 and Theorem 7.7.4 of [33].

Theorem 5.6.19. Given a reflective universe with modal operator #, the following are
equivalent:

(i) It is Σ-closed.

(ii) It is uniquely eliminating.

(iii) The modal units are #-connected.

Proof. Suppose first that # is Σ-closed, let X be a type and let P : #X → U#, i.e. P (x)
is modal for each x : #X. To show that # is uniquely eliminating, we want

λs. s ◦ ηX : (
∏

(x:#X)P (x))→ (
∏

(x:X)P (η(x)))

to be an equivalence. Since the type
∏

(a:A)B(a) is equivalent to the type of functions
f : A →

∑

(a:A)B(a) such that pr1 ◦ f = idA, we get the desired equivalence if the
pre-composition map λj. j ◦ η gives an equivalence from diagonal fillers of the square

X
∑

(x:#X) P (x)

#X #X

η pr1
j

to the type of maps X →
∑

(x:#X) P (x) such that the indicated square commutes. But
this is true by the universal property of η, since

∑

(x:#X) P (x) is modal by Σ-closedness.
Now suppose that # is uniquely eliminating. To show that the modal units are

connected, we want a term of type

∏

(x:#X)is contr(#(fibη(x))).

Using the dependent eliminators, it is easy to find a term s :
∏

(x:#X) #(fibη(x)) with
the property that s ◦ η(x) = η(x, reflη(x)). Now we need to show that

∏

(x:#X)

∏

(w:#(fibη (x)))
w = s(x).

Since the type w = s(x) is modal, this is equivalent to

∏

(x:#X)

∏

(x′:X)

∏

(p:η(x′)=x)η(x
′, p) = s(x).
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Moreover, the type
∑

(x:#X) η(x
′) = x is contractible, so this is equivalent to

∏

(x′:X)η(x
′, reflη(x′)) = s(η(x′)),

of which we have a term by the defining property of s.

Finally, suppose that all the modal units are #-connected, let X be modal and let
P : X → U#. To show that

∑

(x:X) P (x) is modal, we show that η : (
∑

(x:X) P (x)) →
#(

∑

(x:X) P (x)) is an equivalence. Since X is modal, we can extend pr1 along η as
indicated in the diagram

∑

(x:X) P (x)

#(
∑

(x:X) P (x)) X

η pr1

p

The type of maps

f : #(
∑

(x:X)P (x))→
∑

(x:X)P (x)

such that pr1 ◦ f = p is equivalent to the type
∏

(z:#(
∑

(x:X) P (x))) P (p(z)). Using the

assumption that η is connected, we calculate

∏

(z:#(
∑

(x:X) P (x)))P (p(z)) ≃
∏

(z:#(
∑

(x:X) P (x)))#(fibη(z))→ P (p(z))

≃
∏

(z:#(
∑

(x:X) P (x)))fibη(z)→ P (p(z))

≃
∏

((x,y):
∑

(x:X) P (x))P (x)

We have the second projection pr2 of the latter type. We obtain a term

q :
∏

(z:#(
∑

(x:X) P (x)))P (p(z))

such that q(η(x, y)) = y. Therefore, we get the map (p, q) : #(
∑

(x:X) P (x))→
∑

(x:X) P (x)
for which the diagram

∑

(x:X) P (x)
∑

(x:X) P (x)

#(
∑

(x:X) P (x))

X

η

pr1

id

pr1
p

(p,q)

commutes. In particular, (p, q) is a left inverse of the modal unit. To see that it is also a
right inverse, note that η ◦(p, q)◦η = η = id ◦η; thus η ◦(p, q) = id follows by uniqueness.
Hence

∑

(x:X) P (x) is modal.

Theorem 5.6.20. A Σ-closed reflective subuniverse determines a stable orthogonal fac-
torization system with the same modal types.
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Proof. Define L to be the class of #-connected maps and R to be the class of modal
maps. We first show that both L and R are closed under composition. Recall that
for f : X → Y and g : Y → Z, one has fibg◦f (z) =

∑

(p:fibg(z))
fibf (pr1(p)). Thus, by Σ-

closedness, if f and g are both inR then so is g◦f , soR is closed under composition; while
Proposition 5.5.7 implies that L is closed under composition. And since the fibers of an
identity map are contractible, and contractible types are both modal and #-connected,
both L and R contain all identities.

To obtain a factorization system, it remains to show that the type of (L,R)-factorizations
of any function f is contractible. Since (X, f) = (

∑

(y:Y ) fibf (y), pr1), it is sufficient to
show that factL,R(pr1) is contractible for any pr1 :

∑

(y:Y ) P (y)→ Y . But pr1 factors as

∑

(y:Y ) P (y)
∑

(y:Y ) #(P (y)) Y
pL pR

where pL :≡ tot(ηP (– )) and pR :≡ pr1. The fibers of pR are #(P (–)), so it follows
immediately that pR is in R. Moreover, since fibtot(η)((y, u)) ≃ fibηP (y)

(u) and each η is
#-connected, it follows that pL is in L.

Now consider any other factorization (g, h,H) of pr1 into an L-map g : (
∑

(y:Y ) P (y))→
I followed by an R-map h : I → Y . Since I =

∑

(y:Y ) fibh(y), we have a commuting
square

∑

(y:Y ) P (y) I

∑

(y:Y ) fibh(y) Y

g

tot(γ) h

pr1

in which γ(y, u) :≡ (g(y, u),H(y, u)). It follows that (g, h,H) = (tot(γ), pr1, ). Thus
suffices to show that there is a commuting triangle

P (y)

#(P (y)) fibh(y)

η γy

We will do this using Proposition 5.1.2, by showing that γy has the same universal
property as ηP (y). This follows from the following calculation:

(fibh(y)→ Z) ≃ ((
∑

(w:fibh(y))
#(fibg(pr1(w))))→ Z)

≃ ((
∑

(w:fibh(y))
fibg(pr1(w)))→ Z)

≃ (fibh◦g(y)→ Z)

≃ (P (y)→ Z).

which we can verify is given by precomposition with γy.
It remains to show that our orthogonal factorization system is stable. Consider a

pullback diagram

A′ A

B′ B

k

f

l

g
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in which l is in L. By the pasting lemma for pullbacks, it follows that fibk(b) = fibl(g(b))
for each b : B′. Thus, it follows that k is in L.

5.6.4 Stable orthogonal factorization systems

To complete §5.6, we will show that stable orthogonal factorization systems are also
determined by their modal types, and give rise to higher modalities.

5.6.4.1 Orthogonal factorization systems

In classical category theory, orthogonal factorization systems are equivalently character-
ized by a unique lifting property. We begin with the analogue of this in our context.

Definition 5.6.21. Let (L,R) be an orthogonal factorization system, and consider a
commutative square

A X

B Y

f

l S r

g

(i.e. paths S : r ◦ f = g ◦ l) for which l is in L and r is in R. We define fillL,R(S) to be
the type of diagonal fillers of the above diagram, i.e. the type of tuples (j,Hf ,Hg,K)
consisting of j : B → X, Hf : j ◦ l = f and Hg : r ◦ j = g and an equality K : r ◦Hf =
S � (Hg ◦ l).

Lemma 5.6.22. Let (L,R) be an orthogonal factorization system, and consider a com-
mutative square

A X

B Y

f

l S r

g

for which l is in L and r is in R. Then the type fillL,R(S) of diagonal fillers is contractible.

Proof. By the fact that every morphism factors uniquely as a left map followed by a
right map, we may factorize f and g in (L,R) as Hf : f = fR ◦ fL and Hg : g = gR ◦ gL,
obtaining the diagram

A im(f) X

B im(g) Y

fL

l

fR

r

gL gR

Now both (r◦fR)◦fL and gR◦(gL◦l) are factorizations of the same function r◦f : A→ Y .
Since factL,R(r ◦ f) is contractible, so is its identity type

(im(f), fL, r ◦ fR, r ◦Hf ) = (im(g), gL ◦ l, gR, S � (Hg ◦ l)).

This identity type is equivalent to
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∑

(e:im(f)≃im(g))

∑

(HL:gL◦l=e◦fL)

∑

(HR:r◦fR=gR◦e)

((r ◦Hf ) � (HR ◦ fL) = S � (Hg ◦ l) � (gR ◦HL))

Now since factL,R(f) and factL,R(g) are also contractible, we can sum over them to get
that the following type is contractible:

∑

(im(f):U)

∑

(fL:A→im(f))

∑

(fR:im(f)→X)

∑

(Hf :f=fR◦fL)
∑

(im(g):U)

∑

(gL:B→im(g))

∑

(gR:im(g)→Y )

∑

(Hg:g=gR◦gL)
∑

(e:im(f)≃im(g))

∑

(HL:gL◦l=e◦fL)

∑

(HR:r◦fR=gR◦e)

((r ◦Hf ) � (HR ◦ fL) = S � (Hg ◦ l) � (gR ◦HL))

(omitting the hypotheses that fL, gL ∈ L and fR, gR ∈ R). Reassociating and removing
the contractible type

∑

(im(g):U)(im(f) ≃ im(g)), and renaming im(f) as simply I, this
is equivalent to

∑

(I:U)

∑

(fL:A→I)

∑

(fR:I→X)

∑

(Hf :f=fR◦fL)
∑

(gL:B→I)

∑

(gR:I→Y )

∑

(Hg :g=gR◦gL)

∑

(HL:gL◦l=fL)

∑

(HR:r◦fR=gR)

((r ◦Hf ) � (HR ◦ fL) = S � (Hg ◦ l) � (gR ◦HL))

Removing the contractible
∑

(fL:A→I)(gL ◦ l = fL) and
∑

(gR:I→Y )(r ◦ fR = gR), this
becomes

∑

(I:U)

∑

(fR:I→X)

∑

(gL:B→I)

∑

(Hf :f=fR◦gL◦l)

∑

(Hg :g=r◦fR◦gL)

(r ◦Hf = S � (Hg ◦ l))

Inserting a contractible
∑

(j:B→X)(fR ◦ gL = j), and reassociating more, we get

∑

(j:B→X)

∑

(I:U)

∑

(fR:I→X)

∑

(gL:B→I)

∑

(Hj :fR◦gL=j)
∑

(Hf :f=fR◦gL◦l)

∑

(Hg :g=r◦fR◦gL)
(r ◦Hf = S � (Hg ◦ l))

But now
∑

(I:U)

∑

(fR:I→X)

∑

(gL:B→I)

∑

(Hj :fR◦gL=j) is just factL,R(j), hence contractible.
Removing it, we get

∑

(j:B→X)

∑

(Hf :f=j◦l)

∑

(Hg :g=r◦j)(r ◦Hf = S � (Hg ◦ l))

which is just fillL,R(S). Therefore, this is also contractible.

Definition 5.6.23. For any class C :
∏

(A,B:U)(A→ B)→ Prop of maps, we define

(i) ⊥C to be the class of maps with (unique) left lifting property with respect
to all maps in C: the mere proposition ⊥C(l) asserts that for every commutative
square

A X

B Y

f

l S r

g

with r in C, the type fillL,R(S) of diagonal fillers is contractible.
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(ii) C⊥ to be the class of maps with the dual (unique) right lifting property with
respect to all maps in C.

Lemma 5.6.24. In an orthogonal factorization system (L,R), one has L = ⊥R and
L⊥ = R.

Proof. We first show that L = ⊥R, i.e. we show that L(f) ↔ ⊥R(f) for any map f .
Note that the implication L(f)→ ⊥R(f) follows from Lemma 5.6.22.

Let f : A → B be a map in ⊥R. We wish to show that L(f). Consider the
factorization (fL, fR) of f . Then the square

A imL,R(f)

B B

fL

f fR

id

commutes. Since f has the left lifting property, the type of diagonal fillers of this square
is contractible. Thus we have a section j of fR. The map j ◦ fR is then a diagonal filler
of the square

A imL,R(f)

imL,R(f) B

fL

fL fR

fR

Of course, the identity map idimL,R(f) is also a diagonal filler for this square, so the fact
that the type of such diagonal fillers is contractible implies that j ◦fR = id. Thus, j and
fR are inverse equivalences, and so the pair (B, f) is equal to the pair (imL,R(f), fL).
Hence f , like fL, is in L.

Similarly, Lemma 5.6.22 also implies that R(f) → L⊥(f) for any map f , while we
can prove L⊥(f)→R(f) analogously to ⊥R(f)→ L(f).

Corollary 5.6.25. The data of two orthogonal factorization systems (L,R) and (L′,R′)
are identical if and only if R = R′.

Proof. “Only if” is obvious. Conversely, if R = R′, then by Lemma 5.6.24 we have L =
L′, and the remaining data of an orthogonal factorization system is a mere proposition.

Lemma 5.6.26. Let (L,R) be an orthogonal factorization system. Then the class R is
stable under pullbacks.

Proof. Consider a pullback diagram

A X

B Y

k

g

h

f
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where h : X → Y is assumed to be in R, and let k = kR ◦ kL be a factorization of h.
Then the outer rectangle in the diagram

A A X

imL,R(k) B Y

kL k

g

h

kR f

commutes, so by the universal property of pullbacks we obtain a unique map j : imL,R(k)→
A such that j ◦kL = id and k ◦ j = kR. It suffices to show that kL is an equivalence, and
since we already have that j ◦ kL = id we only need to show that kL ◦ j = id.

We do this using the contractibility of the type of diagonal fillers. Consider the
square

A imL,R(k)

imL,R(k) B,

kL

kL kR

kR

for which id : imL,R(k) → imL,R(k) (with the trivial homotopies) is a diagonal filler.
However, we also have the homotopies kL ◦ j ◦kL ∼ kL and kR ◦kL ◦ j ∼ k ◦ j ∼ kR. This
shows that we have a second diagonal filler, of which the underlying map is kL ◦ j. Since
the type of diagonal fillers is contractible, it follows that kL ◦ j = id, as desired.

5.6.4.2 Stable orthogonal factorization systems

Lemma 5.6.27. Given l, r, f, g and a homotopy S : r ◦f = g ◦ l, consider as b : B varies
all the diagrams of the form

fibl(b) A X

1 B Y

ib

! l

f

S r

b g

and write Sb : r ◦ (f ◦ ib) = (g ◦ b) ◦ ! for the induced commutative square. (Note that the
square on the left commutes judgmentally.) Then the map

fillL,R(S)→
∏

(b:B)fillL,R(Sb),

defined by precomposition with b, is an equivalence.

Proof. It suffices to show that the map on total spaces

(

∑

(S:r◦f=g◦l)fillL,R(S)
)

→
(

∑

(S:r◦f=g◦l)

∏

(b:B)fillL,R(Sb)
)

(5.1)

is an equivalence. The domain of (5.1) can be computed as

∑

(S:r◦f=g◦l)

∑

(j:B→X)

∑

(Hf :j◦l=f)

∑

(Hg :r◦j=g)(r ◦Hf ) � (Hg ◦ l)
−1 = S

≃
∑

(j:B→X)(j ◦ l = f)× (r ◦ j = g)
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by contracting a based path space. On the other hand, note that

(r ◦ f = g ◦ l) ≃
∏

(a:A)r(f(a)) = g(l(a))

≃
∏

(a:A)

∏

(b:B)

∏

(l(a)=b)r(f(a)) = g(l(a))

≃
∏

(b:B)

∏

(u:fibl(b))
r(f(ib(a))) = g(l(ib(a)))

≃
∏

(b:B)

∏

(u:fibl(b))
r(f(ib(a))) = g(b)

≃
∏

(b:B)(r ◦ (f ◦ ib) = (g ◦ b) ◦ !)

That is, to give S is the same as to give each Sb. Thus the codomain of (5.1) can be
computed as

∑

(S:r◦f=g◦l)

∏

(b:B)fillL,R(Sb)

≃
∑

(S:
∏

(b:B)(r◦(f◦ib)=(g◦b)◦!))

∏

(b:B)fillL,R(Sb)

≃
∏

(b:B)

∑

(Sb:r◦(f◦ib)=(g◦b)◦!)fillL,R(Sb)

≃
∏

(b:B)

∑

(jb:1→X)(jb = f ◦ ib)× (r ◦ jb = g(b))

using the same argument as above for S. Now we can compute

∏

(b:B)

∑

(jb:1→X)(jb = f ◦ ib)× (r ◦ jb = g ◦ b)

≃
∏

(b:B)

∑

(jb:X)(λx. jb = f ◦ ib)× (r(jb) = g(b))

≃
∑

(j:B→X)

∏

(b:B)(λ . j(b) = f ◦ ib)× (r(j(b)) = g(b))

≃
∑

(j:B→X)(
∏

(b:B)λ . j(b) = f ◦ ib)× (
∏

(b:B)r(j(b)) = g(b))

≃
∑

(j:B→X)(
∏

(b:B)λ . j(b) = f ◦ ib)× (r ◦ j = g)

≃
∑

(j:B→X)(
∏

(b:B)

∏

(a:A)

∏

(p:l(a)=b)j(b) = f(a))× (r ◦ j = g)

≃
∑

(j:B→X)(
∏

(a:A)j(l(a)) = f(a))× (r ◦ j = g)

≃
∑

(j:B→X)(j ◦ l = f)× (r ◦ j = g)

which is what we computed as the domain of (5.1) above.

Corollary 5.6.28. In any orthogonal factorization system (L,R), if l : A→ B is a map
such that fibl(b)→ 1 is in L for each b : B, then also l itself is in L.

Proof. By Lemma 5.6.24, l is in L iff fillL,R(S) is contractible for each r ∈ R and S as in
Lemma 5.6.27, while similarly fibl(b) → 1 is in L iff fillL,R(Sb) is contractible. But the
product of contractible types is contractible.

Corollary 5.6.29. In any stable orthogonal factorization system, if l ⊥ r for all maps
l ∈ L of the form l : A → 1, then r ∈ R. In particular, for any modality #, if
X → (A→ X) is an equivalence for all #-connected types A, then X is modal.

Proof. By Lemma 5.6.27, for any l ∈ L and commutative square S from l to r, we have
fillL,R(S) ≃

∏

(b:B) fillL,R(Sb). Since (L,R) is stable, each map !b : fibl(b) → 1 is also in
L, so that !b ⊥ r by assumption. Thus fillL,R(Sb) is contractible for all b, hence so is
fillL,R(S).
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For the second statement, the type f : A→ X is equivalent to the type of commuta-
tive squares

A X

1 1

f

and the type of fillers for such a square is equivalent to the type of x : X such that
f(a) = x for all a : A, i.e. the fiber of X → (A → X) over f . Thus, the assumption
ensures that all such types of fillers are contractible, i.e. l ⊥ r for all #-connected maps
of the form l : A→ 1, so the first statement applies.

Lemma 5.6.30. Let (L,R) be a stable orthogonal factorization system. Then a map
r : X → Y is in R if and only if fibr(y) is (L,R)-modal for each y : Y .

Proof. The class of right maps is stable under pullbacks by Lemma 5.6.26, so it suffices
to show that any map with modal fibers is in R.

Let r : X → Y be a map with modal fibers. Our goal is to show that r is in R. By
Lemma 5.6.24 it suffices to show that r has the right lifting property with respect to the
left maps. Consider a diagram of the form

A X

B Y

l

f

r

g

in which l is a map in L. We wish to show that the type of diagonal fillers is contractible.
By Lemma 5.6.27, the type of diagonal fillers of the above diagram is equivalent to the
dependent product of the types of fillers of

fibl(b) X

1 Y

f◦ib

r

g(b)

indexed by b : B. Thus, it suffices that the type of diagonal fillers for this square
is contractible for each b : B. Since any filler factors uniquely through the pullback
1×Y X, which is fibr(g(b)), the type of diagonal fillers of the above square is equivalent
to the type of diagonal fillers of the square

fibl(b) fibr(g(b))

1 1

where the dotted map, is the unique map into the pullback fibr(g(b)). In this square, the
left map is in L because L is assumed to be stable under pullbacks, and the right map
is in R by assumption, so the type of diagonal fillers is contractible.
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Theorem 5.6.31. Any two stable orthogonal factorization systems with the same modal
types are equal.

Proof. By Corollary 5.6.25 it follows that any orthogonal factorization system is com-
pletely determined by the class of right maps. By Lemma 5.6.30 it follows that in a
stable orthogonal factorization system, the class of right maps is completely determined
by the modal types.

Theorem 5.6.32. Any stable orthogonal factorization system determines a higher modal-
ity with the same modal types.

Proof. For every type X we have the (L,R)-factorization X → #X → 1 of the unique
map X → 1. This determines the modal unit η : X → #X which is in L, and the unique
map #X → 1 is in R, i.e. #X is (L,R)-modal.

To show the induction principle, let P : #X → U and f :
∏

(x:X) #(P (η(x))). Then
we have a (judgmentally) commutative square

X
∑

(x:#X) #(P (x))

#X #X.

f

η pr1

Note that by Lemma 5.6.30, the projection pr1 : (
∑

(x:#X) #(P (x))) → #X is in R
because its fibers are modal. Also, the modal unit η : X → #X is in L. Thus, by
Definition 5.6.23, the type of fillers of this square is contractible. Such a filler consists of
a function s and homotopies filling the two triangles

X
∑

(x:#X) #(P (x))

#X #X

f

η pr1

whose composite is reflexivity, i.e. the type

∑

(s:#X→
∑

(x:#X) #(P (x)))

∑

(H:
∏

(x:#X) pr1(s(x))=x)

∑

(K:
∏

(x:X) s(η(x))=f(x))
∏

(x:X)pr1(K(x)) = H(η(x)).

If we decompose s, f , and K by their components, we get

∑

(s1:#X→#X)

∑

(s2:
∏

(x:#X) #(P (s1(x))))

∑

(H:
∏

(x:#X) s1(x)=x)
∑

(K1:
∏

(x:X) s1(η(x))=f1(x))

∑

(K2:
∏

(x:X) s2(η(x))=K1(x)
f2(x))

∏

(x:X)K1(x) = H(η(x)).

Now we can contract s1 and H, and also K1 with the final unnamed homotopy, to get
∑

(s2:
∏

(x:#X) #(P (x)))

∏

(x:X)s2(η(x)) =K1(x) f2(x).

But this is just the type of extensions of f along η, i.e. the fiber of precomposition by
η. Thus, precomposition by η is an equivalence, so in fact that we have a uniquely
eliminating modality. By Corollary 5.1.21, the identity types of #X are modal, so we
have a higher modality as well.



124 CHAPTER 5. REFLECTIVE SUBUNIVERSES

5.7 Accessible reflective subuniverses

Definition 5.7.1. Given a family f :
∏

(i:I)Ai → Bi of maps, a type X is said to be
f -local if the precomposition map

fi
∗ : (Bi → X)→ (Ai → X)

is an equivalence, for each i : I. The family f is said to be a presentation of a reflective
subuniverse L if the subuniverses of f -local types and L-local types coincide. A reflective
subuniverse is said to be accessible if there exists a presentation for it.

In [28] it is shown that the subuniverse of f -local types is always a reflective subuni-
verse, provided that sufficiently many higher inductive types are available. However, it
is not clear whether their construction is possible in our current setting, where the only
higher inductive types that are assumed to exist are homotopy pushouts. In this section
we will establish general properties of accessible reflective subuniverses. We will show
in Chapter 7 that for any family f of maps between compact types, the subuniverse of
f -local types is indeed reflective.

Remark 5.7.2. Note that being accessible is structure; different families can present the
same reflective subuniverse or modality. As a trivial example, note that localizing at the
empty type, and localizing at the type family on 2 defined by 02 7→ 0 and 12 7→ 1 both
map all types to contractible types.

However, we are usually only interested in properties of presentations insofar as
they determine properties of subuniverses. For instance, by Lemma 5.7.8, a reflective
subuniverse is a modality exactly when it has a presentation in which each C(a) = 1.

Example 5.7.3. The trivial modality ‖–‖(−2) is presented by 0, while the propositional
truncation modality ‖–‖(−1) is presented by 2. More generally, the n-truncation modality
‖–‖n is presented by the (n+ 1)-sphere S

n+1.

Example 5.7.4. For every mere proposition P , the open modality OpP (X) :≡ (P → X)
from Example 5.6.7 is presented by the singleton type family P . To see this, note that
ηX : X → (P → X) is the same as the map in the definition of locality, so that X
is modal for the open modality on P if and only if it is P -local. (If P is not a mere
proposition, however, then X 7→ (P → X) is not a modality, and in particular does not
coincide with localization at P .)

Example 5.7.5. The closed modality ClP from Example 5.6.8 associated to a mere propo-
sition P is presented by the type family λx.0 : P → U . For by definition, A is null for
this family if and only if for any p : P the map A → (0 → A) is an equivalence. But
0 → P is contractible, so this says that P → is contr(A), which was the definition of
ClP -modal types from Example 5.6.8.

Lemma 5.7.6. Let f :
∏

(i:I)Ai → Bi be a family of maps. Denote the family consisting
of the suspensions of the functions by Σf :

∏

(i:I)ΣAi → ΣBi. A type X is Σf -local if

and only if for every x, y : X, the type x =X y is f -local. In other words, LΣf = (Lf )
′.
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Proof. By the induction principle for suspension and naturality, we obtain for each i : I
a commutative square

(ΣBi → X)
(

∑

(x,y:X)(Bi → x = y)
)

(ΣAi → X)
(

∑

(x,y:X)(Ai → x = y)
)

≃

≃

in which the horizontal maps are equivalences. So X is Σf -local if and only if the right
vertical map is an equivalence for every i : I, if and only if for each x, y : X, the type
x = y is fi-local for every i : I.

A general localization is only a reflective subuniverse, but there is a convenient suffi-
cient condition for it to be a modality: if each C(a) = 1. A localization modality of this
sort is called nullification.

Theorem 5.7.7. If F :
∏

(a:A)B(a)→ C(a) is such that each C(a) = 1, then localization
at F is a modality, called nullification at B.

Proof. It suffices to show that for any B : A→ U , the B-null types are Σ-closed. Thus,
let X : U and Y : X → U be such that X and each Y (x) are B-null. Then

(B →
∑

(x:X)Y (x)) ≃
∑

(g:B→X)

∏

(b:B)Y (g(b))

≃
∑

(x:X)B → Y (x)

≃
∑

(x:X)Y (x)

with the inverse equivalence being given by constant maps. Thus,
∑

(x:X) Y (x) is B-
null.

Of course, it might happen that LF is a modality even if F doesn’t satisfy the
condition of Theorem 5.7.7. For instance, if B : A → U has a section s :

∏

(a:A)B(a),

then localizing at the family s′ :
∏

(a:A) 1 → B(a) is equivalent to nullifying at B, since
in a section-retraction pair the section is an equivalence if and only if the retraction is.
However, we can say the following.

Lemma 5.7.8. If F :
∏

(a:A)B(a) → C(a) is such that LF is a modality, then there
exists a family E : D → U such that LF coincides with nullification at E.

Proof. Write # :≡ LF and η for its modal unit. Define D =
∑

(a:A)(#(B(a))+#(C(a))),
and E : D → U by

E(a, inl(b)) :≡ fibηB(a)
(b)

E(a, inr(c)) :≡ fibηC(a)
(c).

Then since η is #-connected, each E(d) is #-connected, and hence every F -local type is
E-null.
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On the other hand, suppose X is an E-null type. Each ηB(a) and ηC(a) is LE-
connected, since their fibers are LE-connected (by definition); thus X is also ηB(a)-local
and ηC(a)-local. But we have the following commutative square:

B(a) #(B(a))

C(a) #(C(a))

ηB(a)

F (a) #(F (a))

ηC(a)

and #(F (a)) is an equivalence; thus X is also F (a)-local. So the F -local types coincide
with the E-null types.

This shows that the following definition of accessible modality is consistent with our
terminology of accessible reflective subuniverse.

Definition 5.7.9. A modality # on U is said to be accessible if it is the nullification
at a family of types in U , indexed by a type in U . A presentation of a modality #

consists of a family of types B : A→ U , where A : U , such that the subuniverse of modal
types coincides with the subuniverse of B-null types.

Examples 5.7.10. Our characterizations of the truncation and open and closed modalities
in Examples 5.7.3 to 5.7.5 made no reference to the ambient universe.

Example 5.7.11. By contrast, the double-negation modality ¬¬ is defined in a polymor-
phic way on all universes, but in general there seems no reason for it to be accessible
on any of them. However, if propositional resizing holds, then it is the nullification at 2
together with all propositions P such that ¬¬P holds, and hence accessible.

Whether or not any inaccessible modalities remain after imposing propositional re-
sizing may depend on large-cardinal principles. It is shown in [10] that this is the case
for the analogous question about reflective sub-(∞, 1)-categories of the (∞, 1)-category
of ∞-groupoids.

Remark 5.7.12. It is tempting to think that any reflective subuniverse # on U could be
extended to an accessible one on U ′ by localizing at the family of all functions in U that
are inverted by # (or nullifying at the family of all #-connected types in U , in the case
of modalities), which is a U ′-small family though not a U -small one. This does produce
an accessible reflective subuniverse #

′ of U ′ such that the #
′-modal types in U coincide

with the #-modal ones, but there seems no reason why the modal operators #
′ and #

should agree on types in U .



Chapter 6

The equifibrant replacement

operation

We begin this chapter with a generalization of the descent theorem for reflexive coequal-
izers Theorem 3.4.11: the modal descent theorem. Any modality # gives rise to a class of
maps f : A→ B satisfying the condition, due to Wellen [38], that the naturality square

A B

#A #B

f

η η

#f

is a pullback square. Following [38] we call such maps #-étale maps. The modal descent
theorem asserts that a #-étale map into A is equivalently described as a modal map into
#A. Every #-étale map is certainly modal, but the condition of being #-étale is slightly
stronger than the condition of being modal.

The difference between the notions of #-étale maps and modal maps becomes perhaps
most visible when we look at the left orthogonal classes of the #-étale maps and modal
maps. The #-connected maps are left orthogonal to the modal maps, whereas a map is
left orthogonal to the #-étale maps if and only if it is a #-equivalence (i.e. a map f such
that #f is an equivalence). In the case of the n-truncation there is a clear difference: a
map f : X → Y is an n-equivalence if and only if it induces an isomorphism of homotopy
groups πi(X) → πi(Y ) for any i ≤ n, whereas an n-connected map is an n-equivalence
satisfying the further condition that πn+1(X)→ πn+1(Y ) is surjective.

In Theorem 6.2.11 we show that the #-equivalences and the #-étale maps form an
orthogonal factorization system. We call this factorization system the reflective factor-
ization system of a modality. The reflective factorization system is not stable, so it does
not form a new modality. What does follow is that for the unique factorization f = fr◦fl
of f : A→ X as a #-equivalence fl followed by a #-étale map fr, the canonical map

homX(fr, e)→ homX(f, e)

is an equivalence for any #-étale map e into X.
We then proceed to apply these ideas to the case of reflexive graphs and the reflexive

coequalizer. The class of ∆-étale maps is introduces as the class of morphisms f :

127
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rGph(B,A) of reflexive graphs satisfying the condition that the square

B A

∆(rcoeq(B)) ∆(rcoeq(A))

f

constr constr

∆(rcoeq(f))

is a pullback square, and we show that the class of ∆-étale morphisms is precisely the
class of fibrations of reflexive graphs, as defined in Definition 3.4.1.

In the case of sequential colimits, another way of obtaining a cartesian transformation
from an arbitrary one is to take the sequential colimit fiberwise. We establish this
result in Theorem 6.4.3. It has many important consequences. First of all, we show in
Corollary 6.4.5 that sequential colimits commute with identity types. Second, we show
in Corollary 6.4.7 that the sequential colimit of a fiber sequence is again a fiber sequence.
Third, we show in Proposition 6.4.9 that truncation levels are closed under sequential
colimits, and that sequential colimits commute with truncations. Finally, we show in
Theorem 6.4.11 that sequential colimits commute with homotopy groups.

6.1 Modal descent

6.1.1 #-étale maps

Definition 6.1.1 (Definition 4.4.1 of [38]). We say that a map f : A→ B is #-étale if
the square

A #A

B #B

η

f #f

η

is a pullback square. We will write

is etale(f) :≡ is pullback(η, f, nat unit#(f)).

It is immediate from the definition that any equivalence is #-étale, and that the
#-étale maps are closed under composition, and that every equivalence is #-étale.

Example 6.1.2. We claim that a map f : A → B is ‖–‖-étale if and only if A →
is equiv(f). Examples of maps that satisfy this condition include equivalences, maps
between propositions, and any map of the form 0→ B.

To see that if f : A → B is #-étale, then A → is equiv(f), consider the pullback
square

A ‖A‖

B ‖B‖,

f ‖f‖

and let a : A. Then both ‖A‖ and ‖B‖ are contractible, so ‖f‖ : ‖A‖ → ‖B‖ is
an equivalence. Since equivalences are stable under pullback it follows that f is an
equivalence.
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Now suppose that A → is equiv(f). Since is equiv(f) is a proposition, we also have
‖A‖ → is equiv(f). To see that the gap map

A→ B ×‖B‖ ‖A‖

is an equivalence, we will show that its fibers are contractible. Let b : B, x : ‖A‖ and
p : |b| = ‖f‖(x). Since ‖A‖ → is equiv(f), it follows that f is an equivalence. Then
‖f‖ is also an equivalence, from which it follows that the naturality square is a pullback
square. We conclude that the fibers of the gap map are contractible.

Lemma 6.1.3. Any map between #-modal types is #-étale.

Proof. Suppose f : X → Y is a map between #-modal types. Then the top and bottom
maps in the square

X #X

Y #Y

are equivalences. Therefore this square is a pullback square, so f is #-étale.

For the following lemma, recall that for a modality all propositions are modal if and
only if all units η : X → #X are surjective.

Lemma 6.1.4. Let # be a modality for which all propositions are modal, and consider
a map f : A→ B. The following are equivalent:

(i) f is #-étale.

(ii) The commuting square

A×#A A B ×#B B

A B

π1

f×#ff

π1

f

is a pullback square.

Remark 6.1.5. In the special case of (−1)-truncation, the characterization of Lemma 6.1.4
asserts that a map f : A→ B is (−1)-étale if and only if the square

A×A B ×B

A B

π1

f×f

π1

f

is a pullback square.
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Proof. Suppose first that f is #-étale, and consider the commuting cube

A×#A A

A B ×#B B A

B #A B

#B

Since the top, bottom, and both front squares are pullback squares, it follows that both
back squares are pullback. This proves that (i) implies (ii).

Now suppose that (ii) holds. Then the map

fibη(η(a))→ fibη(η(f(a)))

is an equivalence for every a : A. Since all propositions are assumed to be modal, it
follows that

fibη(t)→ fibη(#f(t))

is an equivalence for every t : #A. Thus it follows that the square

A B

#A #B

η η

is a pullback square.

Corollary 6.1.6. If f : A→ B is #-étale, then the square

A B

A×#A A B ×#B B

δη

f

δη

f×#ff

is a pullback square.

Proof. Consider the diagram

A B

A×#A A B ×#B B

A B

δη

f

δη

π1

f×#ff

π1

f

The bottom square is a pullback square by Lemma 6.1.4, and the outer rectangle is a
pullback since both vertical composites are homotopic to the respective identity functions.
Therefore the top square is a pullback.
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Theorem 6.1.7. A map f : A→ B is 0-étale if and only if for each a : A the restriction

∑

(x:A) ‖a = x‖
∑

(y:B) ‖f(a) = y‖

A B

pr1

f

pr1

f

of f to the connected component at a of A is an equivalence.

Proof. By Lemma 6.1.4 and the fact that (|a|0 = |x|0) ≃ ‖a = x‖, it follows that f is
0-étale if and only if the square

∑

(a,x:A) ‖a = x‖
∑

(b,y:B) ‖b = y‖

A B

π1

tot(‖apf‖)

π1

f

is a pullback square. Furthermore, this square is a pullback if and only if the induced
map

(

∑

(x:A)‖a = x‖
)

→
(

∑

(y:B)‖f(a) = y‖
)

is an equivalence, for each a : A.

6.1.2 Modal descent

The following theorem can be seen as a ‘modal flattening lemma’, since it is analogous
to Theorem 3.4.11.

Theorem 6.1.8. Consider a pullback square

E′ E

B′ B

p′

g

p

f

with H : f ◦ p′ ∼ p ◦ g, where E and B are modal types. Then the square

#E′ E

#B B

g̃

#p′ p

f̃

is a pullback square, where f̃ and g̃ are the unique extensions of f and g along the modal
units of B′ and E′, respectively.
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Proof. Consider the diagram

E′
#B′ ×B E E

B′
#B′ B

gap(p′,g,H)

p′

π2

π1 p

η
f̃

In this diagram, the square on the right is a pullback by definition, and the outer rectangle
is a pullback by assumption, so the square on the left is also a pullback. Therefore
the gap map E′ → #B′ ×B E is #-connected. Moreover, since the modal types are
closed under pullbacks it follows that #B′ ×B E is modal, and therefore it follows that
π2 : #B′ ×B E → E is a modal map. Therefore the composite

E′
#B′ ×B E E

gap(p′,g,H) π2

factors g as a #-connected map followed by a #-modal map. Of course, another such
factorization is the composite g ∼ g̃ ◦ η. Since factorizations are unique, the claim
follows.

Using modal flattening we establish partial left exactness of the modality.

Corollary 6.1.9. Consider a pullback square

A′ A

B′ B,

f ′ f

where f is assumed to be #-étale. Then the square

#A′
#A

#B′
#B,

#f ′
#f

is again a pullback square.

Proof. Since f is assumed to be #-étale, the square on the right in the diagram

A′ A #A

B′ B #B

f ′ f #f

is a pullback square. Therefore the outer rectangle is a pullback square by the pullback
pasting lemma. Now the claim follows from modal flattening Theorem 6.1.8, using the
outer rectangle.
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Corollary 6.1.10. Consider a pullback square

E′ E

B′ B

p′

g

p

f

and suppose that p : E → B is #-étale. Then p′ : E′ → B′ is #-étale.

Proof. Consider the commuting cube

E′

#E′ B′ E

#B′
#E B

#B.

The vertical squares on the back right and front right are pullback squares by assumption.
Then it follows from Corollary 6.1.9 that the vertical square on the front left is a pullback
square. Therefore the square on the back left is a pullback square by the pullback pasting
property.

Definition 6.1.11. Let X be a type. We will define an operation

etale map :
(

∑

(A:U#)A→ #X
)

→
(

∑

(Y :U)

∑

(g:Y→X)is etale(g)
)

Construction. Given a map f : A→ #X we take the pullback

X ×#X A A

X #X.

π1

π2

f

η

Then the map π1 : X ×#X A→ X is #-étale by Lemma 6.1.3 and Corollary 6.1.10.

The following is a descent theorem for #-étale maps.

Theorem 6.1.12 (Modal descent). For any modality #, and any type X, the operation

etale map :
(

∑

(A:U#)A→ #X
)

→
(

∑

(Y :U)

∑

(g:Y→X)is etale(g)
)

is an equivalence.
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Proof. If g : Y → X is #-étale, then the square

Y #Y

X #X

g

η

#g

η

is a pullback square. Therefore g : Y → X is in the fiber of etale map at #g : #Y → #X.
It remains to show that for any map f : A → #X with modal domain, there is an

equivalence A ≃ #(X ×#X A) such that the triangle

A #(X ×#X A)

#X

f

≃

#(etale map(f))

commutes. To see this, note that both f ◦π2 and #(etale map(f))◦η factor the same map
as a #-connected map followed by a modal map, so the claim follows from uniqueness
of factorizations.

Corollary 6.1.13. Suppose P : X → U# is a family of modal types such that the
projection map pr1 :

(
∑

(x:X) P (x)
)

→ X is #-étale. Then P has a unique extension

X U#.

#X

η

P

P̃

It follows that the square commuting square

∑

(x:X) P (x)
∑

(t:#X) P̃ (t)

X #X

pr1 pr1

η

is a pullback square. In particular the top map is #-connected, so this square is in fact
a #-naturality square.

We conclude with a slightly more economic rephrasing of Theorem 6.1.8, which is an
easy corollary of the results in this section.

Theorem 6.1.14. Consider a commuting square

E′ E

B′ B

p′

g

p

f

with H : f ◦ p′ ∼ p ◦ g, where E and B are modal types, where p′ : E′ → B′ is #-étale.
Then the following are equivalent:



6.1. MODAL DESCENT 135

(i) The square is a pullback square.

(ii) The square

#E′ E

#B B

g̃

#p′ p

f̃

is a pullback square, where f̃ and g̃ are the unique extensions of f and g along the
modal units of B′ and E′, respectively.

6.1.3 The reflective factorization system of a modality

In this subsection we investigate the reflective factorization system associated to a modal-
ity, of which the right class is the class of #-étale maps. The left class is the class of
#-equivalences.

Definition 6.1.15. We say that a map f : A→ B is an #-equivalence if Lf : #A→
#B is an equivalence.

Remark 6.1.16. The difference between the notions of #-equivalences and #-connected
maps is best explained by an example. In the case of n-truncation, the n-equivalences
are precisely the maps that induce isomorphisms on the first n homotopy groups. The n-
connected maps are the maps that induce isomorphisms on the first n homotopy groups,
and moreover induce an epimorphism on the (n+ 1)-st homotopy group.

We also note that the n-equivalences are not stable under pullbacks, whereas the
n-connected maps are. Consider for instance the pullback square

Ω(Sn+1) 1

1 S
n+1

Here the map on the right is an n-equivalence, since S
n+1 is n-connected. However, the

map on the left is not an n-equivalence, since the n-th homotopy group of Ω(Sn+1) is
not trivial: it is the (n+ 1)-st homotopy group of Sn+1, which is Z.

Definition 6.1.17. The reflective factorization system associated to a modality #

consists of the #-equivalences as the left class, and the #-étale maps as the right class.

Our goal in this section is to show that the reflective factorization system associated
to a modality is an orthogonal factorization system.

Lemma 6.1.18. The #-equivalences satisfy the 3-for-2 property: given a commuting
triangle

A B

C,

h

f g

if any two of f , g, and h are #-equivalences, then so is the third.
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Proof. Apply # to the commuting triangle, and use the 3-for-2 property of equivalences.

Lemma 6.1.19. For a map f : A→ B the following are equivalent:

(i) f is an #-equivalence.

(ii) For any modal type X, the precomposition map

f∗ : (B → X)→ (A→ X)

is an equivalence.

Proof. Suppose first that f is an #-equivalence, and let X be #-modal. Then the square

XB XA

X#B X#A

f∗

η∗ η∗

#f∗

commutes. In this square the two vertical maps are equivalences by the universal prop-
erty of modalization, and the bottom map is an equivalence since #f is an equivalence.
Therefore the map f∗ : XB → XA is an equivalence, as desired.

Conversely, assume that f∗ : XB → XA is an equivalence for every #-modal type
X. By the square above it follows that #f∗ : X#B → X#A is an equivalence for every
#-modal type X. The fiber of #A#B → #A#A at id : #A → #A is contractible, so
we obtain a retraction g of #f . To see that g is also a section observe that the fiber of
#B#B → #B#A at #f is contractible. This fiber contains (id#B , refl#f ). However, we
also have an identification p : #f∗(#f ◦ g) = #f , since

#f∗(#f ◦ g) ≡ (#f ◦ g) ◦#f ≡ #f ◦ (g ◦#f) = #f.

Therefore (#f ◦g, p) is in the fiber of #f∗ : #B#B → #B#A at #f . By the contractibility
of the fibers it follows that (#f ◦ g, p) = (id#B , refl#f ), so it follows that #f ◦ g = id#B.
In other words, g is both a retraction and a section of #f , so #f is an equivalence.

Corollary 6.1.20. Every #-connected map is a #-equivalence.

Definition 6.1.21. Let f : A→ B be a map. We define

[A]f :≡ B ×#B #A

and we define the maps

et(f) : [A]f → B

η̄ : A→ [A]f

by the universal property of pullbacks, as indicated in the following diagram

A

[A]f #A

B #B.

f

η

η̄

et(f)

π2

#f

η
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Lemma 6.1.22. For every map f : A → B, the map η̄ : A → [A] is a #-equivalence,
and the map et(f) is #-étale.

Proof. The map et(f) is a pullback of a map between modal types, so it is #-étale by
Corollary 6.1.10. Furthermore, the map π2 : [A] → #A is a pullback of a #-connected
map, so it is #-connected. It follows from Corollary 6.1.20 that it is a #-equivalence.
Since the modal unit η : A→ #A is also #-connected, and therefore a #-equivalence, we
obtain by the 3-for-2 property of #-equivalences established in Lemma 6.1.18 that the
gap map is also a #-equivalence.

Lemma 6.1.23. The class of #-equivalences is left orthogonal to the class of #-étale
maps.

Proof. We have to show that for every #-equivalence i : A→ B, and every #-étale map
f : X → Y , the square

XB Y B

XA Y A

is a pullback square. Consider the commuting cube

XB

(#X)B XA Y B

(#X)A (#Y )B Y A

(#Y )A

In this cube the top and bottom squares are pullback by the assumption that f is #-étale
and the fact that exponents of pullback squares are again pullback squares. Furthermore,
the square in the front left is pullback, because the two vertical maps are equivalences
by the assumption that i : A → B is a #-equivalence. Therefore we conclude that the
square in the back right is also a pullback square, as desired.

Corollary 6.1.24. For any map f : X → Y , the type of factorizations into a #-
connected map followed by a #-étale map is contractible.

The class of #-étale morphisms into a given type A, thought of as objects of the slice
category U/A, form a reflective subuniverse in the following sense.

Theorem 6.1.25. Let f : A→ X be a map. Then the pre-composition function

homX(et(f), e)→ homX(f, e)

is an equivalence for every étale map e : B → X.
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Proof. Let e : B → X be a #-étale map. Then the square

B[A] BA

X [A] XA

–◦ηf

e◦– e◦–

–◦ηf

is a pullback square by Lemmas 6.1.22 and 6.1.23. Therefore we have a fiberwise equiv-
alence

∏

(i:[A]→X)fibe◦– (i)→ fibe◦– (i ◦ ηf )

by Corollary 1.4.13. Now the claim follows, since we have a commuting square

fibe◦– (i) fibe◦– (i ◦ ηf )

homX(et(f), e) homX(f, e)

≃ ≃

with equivalences on both sides, for each i : [A]→ X.

6.2 The reflective factorization system for the reflexive

coequalizer

6.2.1 ∆-étale maps

Definition 6.2.1. Let f : rGph(A,B) be a morphism of reflexive graphs. We say that f
is ∆-étale if the square

A ∆(rcoeq(A))

B ∆(rcoeq(B))

f ∆(rcoeq(f))

is a pullback square of reflexive graphs. We write is etale∆(f) for the proposition that f
is ∆-étale, and we also write R∆ for the class of ∆-étale morphisms of reflexive graphs.

Theorem 6.2.2. Consider a morphism f : rGph(A,B) of reflexive graphs. The following
are equivalent:

(i) The morphism f is a fibration in the sense of Definition 3.4.1.

(ii) The morphism f is ∆-étale.
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Proof. Consider the commuting diagram

Ã0

Ã1 B̃0 rcoeq(A)

Ã0 B̃1 rcoeq(A) rcoeq(B)

B̃0 rcoeq(A) rcoeq(B)

rcoeq(B)

If f is ∆-étale, then the three parallel vertical squares are pullback squares, hence so are
the two squares on the back left side. This shows that (ii) implies (i).

Now suppose that f is a fibration, or equivalently, that f is cartesian. Then the map
rcoeq(f) is the unique map such that the naturality squares are pullback squares. In
particular, f is a ∆-étale map.

Corollary 6.2.3. Let B be a family of reflexive graphs over A. The following are equiv-
alent:

(i) The family B is equifibered.

(ii) The morphism pr1 : rGph(Σ(A,B),A) is ∆-étale.

The following proposition is analogous to Corollary 6.1.9.

Proposition 6.2.4. Consider a pullback square

A′ A

B′ B

f ′ f

of reflexive graphs, and suppose that f is a fibration. Then the square

rcoeq(A′) rcoeq(A)

rcoeq(B′) rcoeq(B)

rcoeq(f ′) rcoeq(f)

is again a pullback square.
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Proof. Consider the diagram

A′ A ∆(rcoeq(A))

B′ B ∆(rcoeq(B))

f ′ f

constr

∆(rcoeq(f))

constr

of reflexive graphs. Since f is assumed to be a fibration, we obtain by Theorem 6.2.2
that the square on the right is a pullback square. Furthermore, since the left square is
a pullback square by assumption, it follows that the outer rectangle is again a pullback
square. Hence the assertion follows from Theorem 3.4.11.

The following proposition is analogous to Corollary 6.1.10.

Proposition 6.2.5. Consider a pullback square

A′ A

B′ B

f ′ f

of reflexive graphs, and suppose that f is a fibration. Then f ′ is a fibration.

Proof. Consider the cube

A′

∆(rcoeq(A′)) B′ A

∆(rcoeq(B′)) ∆(rcoeq(A)) B

∆(rcoeq(B)).

Then the two squares in the front and the square in the back right are pullback squares,
so it follows that the square in the back left is a pullback square.

6.2.2 The reflective factorization system of discrete graphs

Definition 6.2.6. Let f : rGph(B,A) be a morphism of reflexive graphs. We say that f
is a ∆-equivalence if the map

rcoeq(f) : rcoeq(B)→ rcoeq(A)

is an equivalence. We also write L∆ for the class of ∆-equivalences of reflexive graphs.

Lemma 6.2.7. The ∆-equivalences satisfy the 3-for-2 property. �
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Proposition 6.2.8. Let f : rGph(B,A) be a morphism of reflexive graphs. The following
are equivalent:

(i) f is a ∆-equivalence.

(ii) For any type X, the map

rGph(A,∆(X))→ rGph(B,∆(X))

is an equivalence.

Proof. We have a commuting square

rGph(rcoeq(A),X) rGph(rcoeq(B),X)

rGph(A,∆(X)) rGph(B,∆(X))

–◦rcoeq(f)

–◦f

in which the two vertical maps are equivalences. Therefore it follows that if rcoeq(f) is
an equivalence, then so is the bottom map in the square. Conversely, if the bottom map
in the square is an equivalence for every type X, then – ◦ rcoeq(f) is an equivalence for
any type X, which implies by Proposition 1.3.7 that rcoeq(f) is an equivalence.

Definition 6.2.9. Let f : rGph(B,A) be a morphism of reflexive graphs. We define the
morphisms

et∆(f) : rGph(B
≃,A)

ηf : rGph(B,B≃)

by the universal property of pullbacks, as indicated in the following diagram

B

B≃ ∆(rcoeq(B))

A ∆(rcoeq(A))

ηf

y

et∆(f)

constr

The morphism et∆(f) is called the étale factor of f , and the morphism ηf is called the
unit of the étale factor.

Lemma 6.2.10. For any morphism f : rGph(B,A), the unit ηf of the étale factor of f
is a ∆-equivalence.

Proof. By Theorem 3.4.11, it follows that the square

rcoeq(B≃) rcoeq(∆(rcoeq(B)))

rcoeq(A) rcoeq(∆(rcoeq(A)))
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is a pullback square. Since the bottom map is an equivalence of reflexive graphs, it
follows that the top map is an equivalence of reflexive graphs. In other words, we have
shown that the map

B≃ ∆(rcoeq(B))

is a ∆-equivalence. Of course, the morphism constr : B → ∆(rcoeq(B)) is also a ∆-
equivalence, so the claim follows by the 3-for-2 property of ∆-equivalences.

Theorem 6.2.11. The pair (L∆,R∆) forms an orthogonal factorization system of re-
flexive graphs.

Proof. Since any pullback of a morphism between discrete reflexive graphs is a fibration
of reflexive graphs, it follows from Lemma 6.2.10 that every morphism of reflexive graphs
factors as a ∆-equivalence followed by a ∆-étale map. Therefore it remains to show that
the class of ∆-equivalences is left orthogonal to the class of ∆-étale maps.

We have to show that for every ∆-equivalence i : A → B, and every ∆-étale morphism
f : X → Y, the square

XB YB

XA YA

is a pullback square. Consider the commuting cube

XB

∆(rcoeq(X ))B XA YB

∆(rcoeq(X ))A ∆(rcoeq(Y))B YA

∆(rcoeq(Y))A

In this cube the top and bottom squares are pullback by the assumption that f is ∆-étale
and the fact that exponents of pullback squares are again pullback squares. Furthermore,
the square in the front left is pullback, because the two vertical maps are equivalences
by the assumption that i : A → B is a ∆-equivalence. Therefore we conclude that the
square in the back right is also a pullback square, as desired.

Theorem 6.2.12. For any morphism f : rGph(B,A), the pre-composition map

rGphA(et∆(f), e)→ homA(f, e)

is an equivalence for every ∆-étale map e : C → A.

Proof. Analogous to Theorem 6.1.25.



6.2. THE REFLECTIVE FACTORIZATION SYSTEM FOR THE REFLEXIVE

COEQUALIZER 143

6.2.3 Equifibrant replacement

Definition 6.2.13. Let B and C be families of reflexive graphs over A. We define the
type

rGphA(B, C)

of morphisms of reflexive graphs over A to consist of triples (f0, f1, rfxf ) consisting of

f0(x) : B0(x)→ C0(x)

f1(e) :
∏

(u:B0(x))

∏

(v:B0(y))
B1(e, u, v) → C1(e, f0(u), f0(v))

rfxf (x) :
∏

(u:B0(x))
f1(rfxB(x, u)) = rfxC(x, f0(u))

Lemma 6.2.14. Let B and C be families of reflexive graphs over A. Then there is an
equivalence

rGphA(B, C) ≃
∑

(f :rGph(Σ(A,B),Σ(A,B)))pr1 = pr1 ◦ f.

Note that, given a reflexive graph A, any family B : rcoeq(A) → U determines an
equifibered family equifib fam(B) over A given by

equifib fam(B)0(x) :≡ B(constr0(x))

equifib fam(B)1(e) :≡ trB(constr1(e))

rfxequifib fam(B)(x, y) :≡ htpy eq(aptrB (rfxconstr(x)), y).

In other words, equifib fam is an operation that takes a family B : rcoeq(A) → U to an
equifibered family over A. Moreover, it is not hard to see that

equifib fam : (rcoeq(A)→ U)→ equifib(A)

is in fact an equivalence, where equifib(A) is the type of all (small) equifibered fami-
lies over A. In the following definition we observe that any family over A induces an
equifibered family over A.

Definition 6.2.15. Let B be a family of reflexive graphs over A. We define the equifi-
brant replacement EqF(B) of B by

EqF(B) :≡ equifib fam(fibrcoeq(pr1)),

and we define the morphism ηB : rGphA(B,EqF(B)).

Theorem 6.2.16. Consider a family B of reflexive graphs over A, and let E be an
equifibered family over A. Then the pre-composition operation

rGphA(EqF(B), E)→ rGphA(B, E)

is an equivalence for every equifibered family E over A.

Proof. First we observe that the square

Σ(A,EqF(B)) ∆(rcoeq(Σ(A,B)))

A ∆(rcoeq(A))

p rcoeq(pr1)

constr

is a pullback square of reflexive graphs. Thus, the map p is the étale factor of the
morphism pr1 : Σ(A,B)→ A. Now the claim follows by Theorem 6.2.12.
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Remark 6.2.17. By the universal property of the equifibrant replacement it follows that
the family EqF(B)0 of vertices of the equifibrant replacement of B can be seen as a
‘recursive’ higher inductive family of types. It comes equipped with

ζ :
∏

(x,y:A0)
A1(x, y)→ EqF(B)0(x) ≃ EqF(B)0(y)

ǫ :
∏

(x:A0)
ζ(rfxA(x)) ∼ idEqF(B)0(x)

η0 :
∏

(x:A0)
B0(x)→ EqF(B)0(x)

η1 :
∏

(x,y:A0)

∏

(e:A1(x,y))

∏

(u:B0(x))

∏

(v:B0(y))
B1(e, u, v)→ ζ(e, u) = v

rfxζ :
∏

(x:A0)

∏

(u:B0(x))
η1(rfxA(x), rfxB(u)) = ǫ(x, u).

In other words, the equifibrant replacement is the homotopy initial family of types over
A0 with equivalences over the edges of A (coherent with reflexivity) and a morphism
η : rGphA(B,EqF(B)).

6.2.4 Identity types of reflexive coequalizers

Definition 6.2.18. Consider a reflexive graph A with a base point a : A0. We define the
universal ∆-bundle E(a) over A at a to be the equifibered family over A corresponding
to the equifibrant replacement of the morphism a : rGph(1,A) corresponding to a : A0.

Proposition 6.2.19. Consider a reflexive graph A with a base point a : A0. Then there
are equivalences

E(a)0(x) ≃ (constr0(a) = constr0(x))

In particular, we have an equivalence E(a)0(a) ≃ Ω(rcoeq(A)).

Proof. Immediate from the definition of the equifibrant replacement.

In the following theorem we establish the universal property of the identity type of
rcoeq(A) as the initial reflexive relation R on A0 with certain extra structure.

Theorem 6.2.20. Consider a reflexive graph A, and let

R : A0 → A0 → U ,

ρ :
∏

(x:A0)
R(x, x)

be a reflexive relation on A0 equipped with a ‘composition’ operation

µ :
∏

(a,x,y:A0)
A1(x, y)→ (R(a, x) ≃ R(a, y)).

satisfying the unit law

left unitµ :
∏

(a,x:A0)

∏

(r:R(a,x))µ(rfxA(x), r) = r.

Then there is a unique extension

A (A0, R, ρ)

k(constr0)

µ̄
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of the morphism µ̄ : rGph(A, (A0, R, ρ)) consisting of

µ̄0 :≡ constr0

µ̄1(e) :≡ µ(e, ρ(x))

rfxµ̄(x) :≡ left unitµ(ρ(x)),

where k(constr0) is the pre-kernel of the function constr0 : A0 → rcoeq(A).

Proof. The data (R,µ, left unitµ) equivalently gives for every a : A an equifibered family
B(a) over A consisting of

B(a)0(x) :≡ R(a, x)

B(a)1(e) :≡ µ(e)

rfxB(a)(x, r) :≡ left unitµ(r),

and the reflexivity term ρ provides for every a : A0 a term of type B(a)0. Thus we have
by Theorem 6.2.16 for every a : A0 a unique morphism from the equifibrant replacement
of a : 1 → A to B over A. Equivalently, we have a unique extension of µ̄ along A →
k(constr0) as asserted.

Corollary 6.2.21. The loop space of the suspension ΣX of a pointed type X is the
initial pointed type Y equipped with a pointed map

X →∗ (Y ≃ Y ).

In particular, the loop space of the (n + 1)-sphere is the initial pointed type Y equipped
with a pointed map S

n → (Y ≃ Y ), or equivalently, an (n + 1)-loop Ωn+1(BAut(Y )).
Even more in particular, the loop space of the 2-sphere is the initial pointed type Y
equipped with a homotopy idY ∼ idY .

Corollary 6.2.22. The type Z if integers is the initial pointed type equipped with an
automorphism.

6.3 Equifibrant replacement for other homotopy colimits

6.3.1 Equifibrant replacement for diagrams over graphs

Recall that the colimit of a diagram D over a reflexive graph A is simply the reflexive
coequalizer of the reflexive graph Σ(A,D).

Definition 6.3.1. Let τ : D′ → D be a natural transformation of diagrams over a
reflexive graph A.

(i) We say that τ is a weak equivalence if it induces an equivalence

colim(τ) : colim(D′)→ colim(D).

We write W for the class of weak equivalences.
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(ii) We say that τ is étale if the square

Σ(A,D′) ∆(colim(D′))

Σ(A,D) ∆(colim(D))

τ colim(τ)

is a pullback square of reflexive graphs. We write R for the class of étale maps.

Theorem 6.3.2. A natural transformation τ : D′ → D is étale if and only if it is
cartesian.

Proof. This follows directly by Theorem 6.2.2 and Proposition 3.5.9.

Theorem 6.3.3. The pair (W,R) forms an orthogonal factorization system.

Proof. This follows from Theorem 6.2.11.

6.4 Equifibrant replacement for sequential colimits

Definition 6.4.1. Let B be a sequential family over A, and consider x : An. We write
Bn[x] for the type sequence

Bn(x) Bn+1(fn(x)) Bn+2(fn+1(fn(x))) · · · .

Definition 6.4.2. Let B be a sequential family over A. We will define an equifibered
sequential family �B over A equipped with a morphism

homA(B,�B)

Construction. We define

�B :
∏

(n:N)An → U

by �Bn(x) :≡ colimBn[x]. Next, we have to construct a fiberwise equivalence

g∞ :
∏

(n:N)

∏

(x:An)
�Bn(x) ≃ �Bn+1(fn(x))

Note that we have the natural transformation

Bn(x) · · · Bk+n(f
k(x)) B(k+1)+n(f

k+1(x)) · · ·

Bn+1(x) · · · Bk+(n+1)(f
k(f(x))) B(k+1)+(n+1)(f

k+1(f(x))) · · ·

Now we observe that there are identifications

(k + (n+ 1), fk(f(x))) = ((k + 1) + n, fk+1(x)),
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which we may use to construct equivalences going up diagonally in each naturality square.
An induction argument reveals that each square of the form

Bk+(n+1)(f
k(f(x))) B(k+1)+(n+1)(f

k+1(f(x)))

B(k+1)+n(f
k+1(x)) B(k+2)+n(f

k+2(x))

commutes, from which we obtain the desired equivalence.1

Theorem 6.4.3. The equifibered family �B over A satisfies the universal property that

homA(�B, E)→ homA(B, E)

is an equivalence for any equifibered family E over A.

Proof. This fact is formalized in [14]. An ‘informalized’ proof is work in progress.

Corollary 6.4.4. Let B be a sequential family over A. Then we have a commuting
triangle

colim
(

Σ(A,B)
)

∑

(x:A∞)B∞(x)

A∞

colim(pr1)
pr1

in which the top map is an equivalence.

Proof. Since �B and EqFB both satisfy the universal property of the equifibrant replace-
ment of B, they are the same sequences over A. It follows that the square

Σ(A,�B) ∆(colim(Σ(A,B)))

A ∆(colim(A))

pr1 ∆(colim(A))

seq in

is a pullback square of type sequences. We conclude that the top arrow is a colimiting
cocone, so the result follows.

Corollary 6.4.5. Consider a type sequence

A0 A1 A2 · · · .

Then the canonical map

colim(fn(x) = fn(y))→ (seq in0(x) = seq in0(y))

is an equivalence for every x, y : A0.

1A formalization of this argument appears in https://github.com/cmu-phil/Spectral/blob/master/colimit/seq_colim.hlean

https://github.com/cmu-phil/Spectral/blob/master/colimit/seq_colim.hlean
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Theorem 6.4.6. Consider a sequence

C0 C1 C2 · · ·

A0 A1 A2 · · ·

B0 B1 B2 · · ·

X0 X1 X2 · · ·

of pullback squares. Then the sequential colimit

C∞ B∞

A∞ X∞

is again a pullback square.

Proof. Since sequential colimits commute with Σ and identity types, they commute with
pullbacks.

Corollary 6.4.7. Consider a sequence of fiber sequences

F0 F1 F2 · · ·

E0 E1 E2 · · ·

B0 B1 B2 · · ·

in which all maps and homotopies are assumed to be pointed. Then the colimit

F∞ →֒ E∞ ։ B∞

is again a fiber sequence.

Corollary 6.4.8. Consider a type sequence

A0 A1 A2 · · ·

of pointed types (and pointed maps between them). Then the canonical map

colim(Ω(An))→ Ω(A∞)

is an equivalence.

Proposition 6.4.9. Consider a type sequence

A0 A1 A2 · · ·

If each An is k-truncated, then so is the sequential colimit A∞.
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Proof. We prove the claim by induction on k ≥ −2. The base case is trivial, and the
inductive step follows since sequential colimits commute with identity types.

Theorem 6.4.10. Consider a type sequence

A0 A1 A2 · · ·

Then the canonical map
colimn‖An‖k → ‖A∞‖k

is an equivalence.

Theorem 6.4.11. Consider a type sequence

A0 A1 A2 · · ·

Then the canonical map
colimn(πk(An))→ πk(A∞)

is a group isomorphism, for any k ≥ 1.





Chapter 7

Compact types

In this chapter we introduce the notion of compact type, and we show that the compact
types are closed under finite coproducts, Σ-types, finite products, pushouts, reflexive
coequalizers, and retracts. In particular it follows that the spheres are compact.

In §7.2 we show that if P and Q are families of compact types, then the subuniverse
of F -local types is reflective. Of course, one might impose stronger assumptions on the
type theory so that the subuniverse of F -local types is reflective for any family F of
maps (see for instance [28]). The setting of this dissertation is that of univalent type
theory in which the universes are closed under homotopy pushouts, so we have to find a
different way to define localizations.

The idea is to approximate the F -localization of a type X by iterated ‘quasi F -local
extensions’ of X, by which we mean a map l : X → Y equipped with a diagonal filler
for the square

XQi Y Qi

XPi Y Pi ,

l◦–

–◦Fi –◦Fi

l◦–

for each i : I. We show in Proposition 7.2.4 that, provided that F is a family of maps
between compact types, the sequential colimit of type sequence

X0 X1 X2 · · ·
l0 l1 l2

is F -local if each ln has the structure of a quasi F -local extension. We show that
there is an initial quasi F -local extension l : X → QLFX, for every type X, and in
Theorem 7.2.10 we show that the sequential colimit X → QL∞

F is an F -localization. We
establish in Theorem 7.2.10 that if F is a family of maps between compact types, then
the subuniverse of F -local types is a reflective subuniverse. Furthermore, if A is a family
of compact types, then the subuniverse of A-null types is a modality.

Dan Christensen pointed out that this construction of F -localization already appears
in section 1.B of [18], where arbitrary localizations are constructed by iterating the initial
quasi F -local extension transfinitely many times. We stick to the case ω since larger
ordinals are not yet as well understood in homotopy type theory. A minor note is that in
Theorem B.5 Dror Farjoun only establishes that the transfinite colimit QLκ

FX localizes
the homotopy groups. Our proofs are therefore different than Dror Farjoun’s.

151
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7.1 Compact types

Definition 7.1.1. Consider a type sequence A ≡ (A, f), and let X be a type. We define
the type sequence AX to consist of

AX
0 AX

1 AX
2 · · · .

f0◦– f1◦– f2◦–

Furthermore, given a natural transformation τ : Seq(A,B) of type sequences, we define
the natural transformation τX to consist of

AX
0 AX

1 AX
2 · · ·

BX
0 BX

1 BX
2 · · ·

f0◦–

τ0◦–

f1◦–

τ1◦–

f2◦–

τ2◦–

g0◦– g1◦– g2◦–

where the naturality squares commute by whiskering the naturality squares of τ .

In particular, if τ : Seq(A,∆Y ) is a cocone with vertex Y , then τX : Seq(AX , (∆Y )X)
is a cocone with vertex Y X , since (∆Y )X ≡ ∆(Y X).

Definition 7.1.2. We call a type X (sequentially) compact if for any type sequence

A0 A1 A2 · · ·

the map

seq ind(constr(A)X) : colim(X → An)→ (X → A∞)

is an equivalence.

Example 7.1.3. The empty type is compact, simply because X0 is contractible for any
type X, and a sequential colimit of contractible types is contractible.

Example 7.1.4. The unit type is compact because λx. constx : X → X1 is an equivalence
for any type X. Thus we obtain a natural equivalence

A0 A1 A2 · · ·

A1

0 A1

1 A1

2 · · · .

Thus we obtain a commuting triangle

A∞

colim(A1

n) A1

∞.

where two out of three maps are equivalences. Therefore the unit type is compact by
the 3-for-2 property.
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We will show in the remainder of this section that the compact types are closed
under finite coproducts, Σ-types (and therefore also finite products), pushouts, reflexive
coequalizers, and retracts. In the following example we note that compact types are not
closed under pullbacks, and are not closed under exponentiation either.

Remark 7.1.5. The compact types are not closed under identity types, because Z is
not compact and Z ≃ Ω(S1). To see that Z is not compact, consider the sequence
An :≡ N−n, where N−n is a version of the natural numbers of starting at −n and
An → An+1 is the inclusion map. The colimit of An is Z and the image of the map
colim(Z→ An)→ (Z→ Z) is the set of maps that are bounded from below. Thus, it is
not surjective.

Also, the compact types are not closed under exponentiation. We have the equiva-
lence (S1 → S

1) ≃ S
1 × Z, which is not compact.

Lemma 7.1.6. Finite coproducts of compact types are compact.

Proof. We have already seen that the empty type is compact. Thus it remains to show
that compact types are closed under disjoint sums.

Suppose that X and Y are compact. Then we have a commuting diagram of the
form

colim(AX+Y ) colim(AX ×AY ) colim(AX)× colim(AY )

AX+Y
∞ AX

∞ ×AY
∞

where all but one of the maps are equivalences. Thus the remaining map is an equivalence
too.

Definition 7.1.7. Let A : X → Seq be an indexed type sequence. Then we define the
type sequence

∏

(x:X)A(x) to consist of

∏

(x:X)A0(x)
∏

(x:X)A1(x) · · ·
λh. λx. f0(x,h(x)) λh. λx. f1(x,h(x))

Proposition 7.1.8. Let A : X → Seq be an indexed type sequence, indexed by a compact
type X. Then the canonical map

colim
(

∏

(x:X)An(x)
)

→
(

∏

(x:X)A∞(x)
)

is an equivalence.

Proof. Consider the commuting diagram

colim
(

∏

(x:X)A(x)
)

∏

(x:X)A∞(x) 1

colim
(

X →
∑

(x:X)An(x)
) (

X →
∑

(x:X)A∞(x)
)

(X → X).

constidX

pr1◦–
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The square on the right and the outer rectangle are pullback squares. Hence the square on
the left is a pullback square. Now observe that the type

∑

(x:X)A∞(X) is the sequential
colimit of the type sequence

∑

(x:X)An(x), by Corollary 6.4.4. Therefore it follows by the
assumption that X is compact, that the bottom map in the left square is an equivalence.
We conclude that the top map in the left square is an equivalence, proving the claim.

Corollary 7.1.9. Suppose X is compact, and Y (x) is compact for each x : X. Then the
total space

∑

(x:X) Y (x) is also compact.

Proof. Let A be a type sequence. Then we have the following commuting pentagon

colim
(

A
∑

(x:X) Y (x)
)

A

∑
(x:X) Y (x)

∞

colim
(

∏

(x:X)A
Y (x)

)

∏

(x:X)A
Y (x)
∞

∏

(x:X) colim
(

AY (x)
)

in which all but the top map are known to be equivalences. Hence it follows that the
top map is an equivalence, which shows that

∑

(x:X) Y (x) is compact.

Corollary 7.1.10. Compact types are closed under finite products.

Proposition 7.1.11. Compact types are closed under pushouts.

Proof. Consider a span S ≡ (S, f, g) from X to Y , where X, Y , and S are assumed to
be compact, and let A be a type sequence. Then we have the commuting pentagon

colim
(

AX⊔SY
)

AX⊔SY
∞

colim
(

AX ×AS AY
)

AX
∞ ×AS

∞
AY

∞

colim(AX)×colim(AS) colim(AY )

In this diagram, the downwards maps from the top left and from the top right are
equivalences by the universal property of pushouts. The downwards map to the left
side to the bottom is an equivalence since sequential colimits preserve pullbacks by
Theorem 6.4.6. The map from the bottom to the right side is an equivalence by the
assumption that X, Y , and S are all compact types. Therefore we conclude that the top
map is an equivalence, which proves the claim.
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Corollary 7.1.12. Compact types are closed under joins, suspensions, and wedges. Fur-
thermore, the cofiber of a map between compact types is again compact. In particular,
all the spheres and the finite dimensional real and complex projective spaces are compact,
and the smash product of compact pointed types is again compact.

Definition 7.1.13. A reflexive graph A is said to be compact its types of vertices and
(the total space of) edges are compact.

Corollary 7.1.14. The reflexive coequalizer of a compact reflexive graph is again com-
pact.

Proof. This follows immediately from Propositions 3.3.7 and 7.1.11.

Proposition 7.1.15. Compact types are closed under retracts.

Proof. Suppose that Y is a retract of a compact type X, i.e. we have i : Y → X and
r : X → Y such that r ◦ i = idY . Note that for any type Z, the type ZY is a retract of
ZX , since we have the section-retraction pair

ZY ZX ZY .–◦r –◦i

It follows that for any type sequence A we have a section-retraction pair

colim(AY ) colim(AX) colim(AY )

AY
∞ AX

∞ AY
∞

of morphisms. Note that the downward morphism in the middle is an equivalence by
the assumption that X is compact. Recall from Theorem 4.7.4 of [33] that a retract of
an equivalence is again an equivalence, so the claim follows.

7.2 Localizing at maps between compact types

In this section, we assume to have P,Q : I → U and a family of maps F :
∏

(i:I) P (i)→
Q(i).

Recall type of diagonal fillers for a commuting square

A B

X Y

f

i

g

j

with H : j ◦ f ∼ g ◦ i is defined to be the fiber of the gap map

gap : BX → BA ×Y A Y X

at the point (i, j, eq htpy(H)).
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Definition 7.2.1. A quasi F -local extension of X consists of a map l : X → Y
equipped with a diagonal filler for the commuting square

XQi Y Qi

XPi Y Pi ,

l◦–

–◦Fi –◦Fi

l◦–

for each i : I.

Lemma 7.2.2. For any map l : X → Y into an F -local type Y , the type of diagonal
fillers for the commuting square

XQi Y Qi

XPi Y Pi ,

l◦–

–◦Fi –◦Fi

l◦–

is contractible. In particular, any such map is a quasi F -local extension.

Proof. If Y is F -local, then the map F ∗
i : Y Qi → Y Pi is an equivalence, for any i : I.

Since equivalences are right orthogonal to any map, the claim follows.

Lemma 7.2.3. Suppose h : Seq(A,B) is a natural transformation of type sequences
equipped with the structure of a diagonal filler for each naturality square

An An+1

Bn Bn+1.

fn

hn hn+1

gn

Then the map h∞ : A∞ → B∞ is an equivalence.

Proof. Let us write jn : Bn → An+1 for the diagonal fillers, which come equipped with
homotopies

Jn : fn ∼ jn ◦ hn

Kn : hn+1 ◦ jn ∼ gn

Ln : (hn+1 · Jn) � (Kn · hn) ∼ Hn

Note that j is a natural transformation from B to the shifted sequence shift(A), with the
homotopies (fn+1 ·Kn) � (Jn+1 · gn) : fn+1 ◦ jn ∼ jn+1 ◦ gn filling the naturality squares.

We claim that the composite j ◦h is just the natural transformation f : A → shift(A).
Indeed, we have the homotopy Jn : jn ◦ hn ∼ fn. Moreover, the type of jn+1 · Ln

(jn+1 · hn+1 · Jn) � (jn+1 ·Kn · hn) ∼ jn+1 ·Hn

is equivalent to the type of homotopies

(Jn+1 · fn) � (jn+1 · hn+1 · Jn) � (jn+1 ·Kn · hn) � (jn+1 ·Hn)
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∼ htpy refl(fn+1◦fn)
� (Jn+1 · fn),

filling the diagram

An An+1

Bn Bn+1

An+1 An+2

fn

hn

fn

fn+1
hn+1

jn

gn

jn+1

hn+1

fn+1

Therefore we obtain the coherence of the naturality squares needed to conclude that
f = j ◦ h as natural transformations.

Likewise, the composite shift(h)◦j is just the natural transformation g : B → shift(B).
Therefore we obtain a commuting diagram

colim(A) colim(shift(A))

colim(B) colim(shift(B))

colim(h)

colim(f)

colim(shift(h))

colim(g)

colim(j)

Since both colim(f) and colim(g) are equivalences, it follows by the 6-for-2 property of
equivalences (see Exercise 4.5 of [33]), that the remaining maps are equivalences. In
particular colim(h) is an equivalence.

Proposition 7.2.4. Suppose F is a family of maps between compact types, and let

X0 X1 X2 · · ·l l l

be a sequence of types in which each Xn+1 is a quasi F -local extension of Xn. Then the
sequential colimit X∞ is F -local.

Proof. We have a natural transformation F ∗
i : Seq(XQi ,XPi) for which each naturality

square comes equipped with a diagonal filler

XQi

0 XQi

1 XQi

2 · · ·

XPi
0 XPi

1 XPi
2 · · ·

F ∗
i F ∗

i F ∗
i

by the assumption that each ln : Xn → Xn+1 is a quasi F -local extension. Therefore
colim(F ∗

i ) is an equivalence. Note that we have the commuting square

colim(XQi
n ) XQi

∞

colim(XPi
n ) XPi

∞

colim(F ∗
i ) F ∗

i
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in which the top and bottom maps are equivalences by the assumption that Pi and Qi

are compact. Therefore we conclude that F ∗
i : XQi

∞ → XPi
∞ is an equivalence. It follows

that X∞ is F -local.

Our goal is now to construct the initial quasi F -local extension of a type X, and use
it to show that the subuniverse of F -local types is reflective. For any i : I, we have the
maps

Fi : Pi → Qi

F ∗
i : XQi → XPi .

In the following characterization of quasi F -local extensions we use the pushout-product
F ∗
i � Fi, which is defined as follows

XQi × Pi XQi ×Qi

XPi × Pi

(

XPi × Pi

)

⊔

(

XQi×Pi

)

(

XQi ×Qi

)

XPi ×Qi

F ∗
i �Fi

by the universal property of pushouts. Also note that the outer square in the diagram

XQi × Pi XQi ×Qi

XPi × Pi

(

XPi × Pi

)

⊔

(

XQi×Pi

)

(

XQi ×Qi

)

X

ev

ev

εi

commutes, so we get a map εi as indicated.

Lemma 7.2.5. For any type l : X → Y , the type of I-indexed families of diagonal fillers
for the squares

XQi Y Qi

XPi Y Pi

l◦–

–◦Fi –◦Fi

l◦–

is equivalent to the type of morphisms j :
(

∑

(i:I)X
Pi × Qi

)

→ Y equipped with a

homotopy witnessing that the square

∑

(i:I)

(

(

XPi × Pi

)

⊔

(

XQi×Pi

)

(

XQi ×Qi

)

)

∑

(i:I)X
Pi ×Qi

X Y

tot(λi. F ∗
i �Fi)

λ(i,t). εi(t)
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commutes.

Proof. It suffices to show that for each i : I, the type of diagonal fillers in the first
description is equivalent to the type of maps j : XPi×Qi → Y equipped with a homotopy
witnessing that the square

(

(

XPi × Pi

)

⊔

(

XQi×Pi

)

(

XQi ×Qi

)

)

XPi ×Qi

X Y

F ∗
i �Fi

εi

commutes. The type XPi → Y Qi is equivalent to the type XPi ×Qi → Y by adjointness.

By the dependent universal property of pushouts established in Proposition 2.1.6,
the type l ◦ εi ∼ j ◦ (F ∗

i � Fi) is equivalent to the type of triples (K,L,M) consisting of

K :
∏

(f :Pi→X)

∏

(p:Pi)
l(f(p)) = j(f, Fi(p))

L :
∏

(g:Qi→X)

∏

(q:Qi)
l(g(q)) = j(g ◦ Fi, q)

M :
∏

(g:Qi→X)

∏

(p:Pi)
K(g ◦ Fi, p) = L(g, Fi(p)).

The type of such quadruples (j,K,L,M) is also equivalent to the fiber of the gap map

(XPi → Y Qi)→
(

XQi → Y Qi

)

×(
XQi→Y Pi

)

(

XPi → Y Pi

)

at (lQi , lPi , htpy refl).

Definition 7.2.6. For any type X, we define the initial quasi F -local extension l : X →
QLFX of X to be the pushout

∑

(i:I)

(

(

XPi × Pi

)

⊔

(

XQi×Pi

)

(

XQi ×Qi

)

)

∑

(i:I)X
Pi ×Qi

X QLFX

F ∗
i �Fi

λ(i,t). εi(t)

l

Remark 7.2.7. The initial quasi F -local extension of a type X is initial by the universal
property of the pushout and the characterization of Lemma 7.2.5.

Example 7.2.8. Consider the family of maps consisting just of the terminal projection
2 → 1. We sketch an argument that the quasi 2-local extension of X is equivalent to
X ∗ X, i.e. that we have a pushout square

(X2 × 2) ⊔X×2 X X2

X X ∗ X
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To see this, we note first that the pushouts

S B S + S S

A A ⊔S B A+B (A+B) ⊔(S+S) S

are equivalent, for any span A← S → B. Therefore it follows that the pushouts

X X2 X × 2 X

X2 X2 ⊔X X2 X2 × 2 (X2 × 2) ⊔(X×2) X

are equivalent. Therefore it suffices to compute the pushout

X2 ⊔X X2 X2

X X ⊔(X
2⊔XX2) X2.

∇δX

[π1,π2,htpy reflidX
]

Now we observe that for any cube

A111

A110 A101 A011

A100 A010 A001

A000

the following are equivalent:

(i) The cube is cocartesian.

(ii) The the square

A011 ⊔
A111 A101 A001

A010 ⊔
A110 A100 A000

is cocartesian.

We cite [Munson] for this observation, and the analogous result in homotopy type theory
is work in progress. Using the above equivalence, it follows that the pushout X2 ⊔X X2
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is the colimit of the diagram

X

X X2 X2

X X X2

π1 π2

Furthermore, by the same equivalence we see that another way of computing this colimit
is as the following pushout

X2 X

X X ⊔X
2
X,

π2

π1

which is the join X ∗ X.

Proposition 7.2.9. If X is F -local, then l : X → QLFX is an equivalence.

Proof. If X is F -local, then each F ∗
i is an equivalence. It follows that the pushout-

product F ∗
i � Fi is an equivalence. Since pushouts of equivalences are equivalences, the

claim follows.

Theorem 7.2.10. For any type X and any family F :
∏

(a:A) P (a) → Q(a) of maps
between compact types, the subuniverse of F -local types is reflective.

Proof. We define the localization η : X → LX as the sequential colimit

X QLFX QL2
FX · · ·

Since each l : QLn
FX → QLn+1

F X has the structure of a quasi F -local extension, it
follows by Proposition 7.2.4 that LX is F -local. It remains to show that for any F -local
type Y , the precomposition map

η∗ : (LX → Y )→ (X → Y )

is an equivalence.

We first show that the map

l∗ : (QLFX → Y )→ (X → Y )

is an equivalence. To see this, note that we have a commuting triangle

cocone(Y )

(QLFX → Y ) (X → Y )

π1cocone map
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We note that by Lemma 7.2.5, the fiber of π1 : cocone(Y ) → (X → Y ) is equivalent to
the type of diagonal fillers of the square

XQi Y Qi

XPi Y Pi ,

l◦–

–◦Fi –◦Fi

l◦–

This type of diagonal fillers is contractible by Lemma 7.2.2, since Y is assumed to be
F -local. In other words, the map π1 : cocone(Y ) → (X → Y ) is an equivalence. Since
cocone map : (QLFX → Y )→ cocone(Y ) is an equivalence by the universal property of
QLFX, we conclude by the 3-for-2 property that the map

l∗ : (QLFX → Y )→ (X → Y )

is an equivalence.
We conclude that any map g : X → Y extends uniquely to a cocone on the type

sequence

X QLFX QL2
FX · · · ,

and therefore it follows that η∗ : (LX → Y )→ (X → Y ) is an equivalence.

Corollary 7.2.11. For any family N : I → U of compact types, the subuniverse of
N -null types is a modality.



Bibliography

[1] M. Anel, G. Biedermann, E. Finster, and A. Joyal. “A Generalized Blakers-Massey
Theorem”. In: ArXiv e-prints (Mar. 2017). arXiv: 1703.09050 [math.AT].

[2] C. Angiuli, R. Harper, and T. Wilson. “Computational Higher Type Theory I: Ab-
stract Cubical Realizability”. In:ArXiv e-prints (Apr. 2016). arXiv: 1604.08873 [cs.LO].

[3] S. Awodey. “Natural models of homotopy type theory”. In: ArXiv e-prints (June
2014). arXiv: 1406.3219 [math.CT].

[4] Steve Awodey. “Type theory and homotopy”. In: Epistemology versus ontology.
Vol. 27. Log. Epistemol. Unity Sci. Springer, Dordrecht, 2012, pp. 183–201. doi:
10.1007/978-94-007-4435-6_9. url: http://dx.doi.org/10.1007/978-94-007-4435-6_9.

[5] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of identity
types”. In: Math. Proc. Cambridge Philos. Soc. 146.1 (2009), pp. 45–55. issn: 0305-
0041. doi: 10.1017/S0305004108001783. url: http://dx.doi.org/10.1017/S0305004108001783.

[6] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu
Sozeau, and Bas Spitters. “The HoTT Library: A Formalization of Homotopy Type
Theory in Coq”. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs. CPP 2017. Paris, France: ACM, 2017, pp. 164–172. isbn: 978-
1-4503-4705-1. doi: 10.1145/3018610.3018615. url: http://doi.acm.org/10.1145/3018610.3018615.

[7] Marc Bezem, Thierry Coquand, and Simon Huber. “A model of type theory in
cubical sets”. In: 19th International Conference on Types for Proofs and Programs.
Vol. 26. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2014, pp. 107–128.

[8] G. Brunerie. “On the homotopy groups of spheres in homotopy type theory”. In:
ArXiv e-prints (June 2016). arXiv: 1606.05916 [math.AT].

[9] Guillaume Brunerie. “On the homotopy groups of spheres in homotopy type the-
ory”. In: ArXiv e-prints (June 2016). arXiv: 1606.05916 [math.AT].

[10] Carles Casacuberta, Dirk Scevenels, and Jeffrey H. Smith. “Implications of large-
cardinal principles in homotopical localization”. In:Adv. Math. 197.1 (2005), pp. 120–
139. issn: 0001-8708.
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