
Lecture Notes:

Introduction to Categorical Logic

[DRAFT: March 12, 2008]

Steven Awodey Andrej Bauer

March 12, 2008





Contents

1 Review of Category Theory 7
1.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 The empty category 0 . . . . . . . . . . . . . . . . . . . . 8
1.1.2 The unit category 1 . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Other finite categories . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Groups as categories . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Posets as categories . . . . . . . . . . . . . . . . . . . . . 9
1.1.6 Sets as categories . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.7 Structures as categories . . . . . . . . . . . . . . . . . . . 9
1.1.8 Further Definitions . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Functors between sets, monoids and posets . . . . . . . . 12
1.2.2 Forgetful functors . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Constructions of Categories and Functors . . . . . . . . . . . . . 12
1.3.1 Product of categories . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Slice categories . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Opposite categories . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Representable functors . . . . . . . . . . . . . . . . . . . . 14
1.3.5 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Natural Transformations and Functor Categories . . . . . . . . . 16
1.4.1 Directed graphs as a functor category . . . . . . . . . . . 18
1.4.2 The Yoneda Embedding . . . . . . . . . . . . . . . . . . . 19
1.4.3 Equivalence of Categories . . . . . . . . . . . . . . . . . . 21

1.5 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.1 Adjoint maps between preorders . . . . . . . . . . . . . . 24
1.5.2 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.3 The Unit of an Adjunction . . . . . . . . . . . . . . . . . 28
1.5.4 The Counit of an Adjunction . . . . . . . . . . . . . . . . 30

1.6 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.1 Binary products . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.2 Terminal object . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.3 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.4 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.5 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

[DRAFT: March 12, 2008]



4

1.6.6 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.6.7 Binary Coproducts . . . . . . . . . . . . . . . . . . . . . . 39
1.6.8 The initial object . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.9 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.10 Pushouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.11 Limits and Colimits as Adjoints . . . . . . . . . . . . . . 42
1.6.12 Preservation of Limits and Colimits by Functors . . . . . 43

2 Type Theories 47
2.1 Algebraic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.1 Many-sorted algebraic theories . . . . . . . . . . . . . . . 49
2.1.2 Models of Algebraic Theories . . . . . . . . . . . . . . . . 50
2.1.3 Algebraic theories as categories . . . . . . . . . . . . . . . 52
2.1.4 Models of Algebraic Theories as Functors . . . . . . . . . 54
2.1.5 Completeness and Universal Models . . . . . . . . . . . . 57

2.2 Cartesian Closed Categories . . . . . . . . . . . . . . . . . . . . . 60
2.2.1 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.2 Cartesian Closed Categories . . . . . . . . . . . . . . . . . 63
2.2.3 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.4 Heyting Algebras . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.5 Intuitionistic Propositional Calculus . . . . . . . . . . . . 69
2.2.6 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . 72

2.3 Simply Typed λ-calculus . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.1 Untyped λ-calculus . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Completeness of λ-calculus . . . . . . . . . . . . . . . . . . . . . 82

4 Elementary Logic 91
4.1 First-order Theories . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 The Subobject Functor . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Lex Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Subset types . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Completeness of Lex Logic . . . . . . . . . . . . . . . . . 109

4.4 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.1 Beck-Chevalley Condition . . . . . . . . . . . . . . . . . . 113
4.4.2 Universal Quantifiers in LCCC’s . . . . . . . . . . . . . . 114
4.4.3 Implication from Universal Quantifiers . . . . . . . . . . . 118

4.5 Regular Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5.1 Regular Categories . . . . . . . . . . . . . . . . . . . . . . 120
4.5.2 Images and existential quantifiers . . . . . . . . . . . . . . 124
4.5.3 Regular Theories . . . . . . . . . . . . . . . . . . . . . . . 126

4.6 First-order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 131

Index 131

[DRAFT: March 12, 2008]



Foreword

These lecture notes were written in the Fall of 2002 for two introductory courses
in categorical logic—the first author gave such a course at the Department of
Philosophy at Carnegie Mellon University, and at the same time the second
author gave a very similar course at the Department of Mathematics and Physics
at University of Ljubljana. This was the third time such a course was given at
Carnegie Mellon University, and so the material was deemed mature enough to
be written up as lecture notes.

The course is intended for advanced undergraduate students and graduate
students who have some background in category theory. We expect that students
who have heard and used basic concepts of category theory in undergraduate
courses, such as algebraic topology and abstract algebra, will be able to follow
the material. We hope that the extensive review of category theory in Chapter 1
will also allow motivated students who lack category-theoretic background to
quickly catch up.

Categorical logic is a broad subject, and so an introductory course must
necessarily make certain choices. From a desire to keep the required category-
theoretic machinery at a minimum we avoided any use of fibered categories.
Throughout, our motto was “types are objects, propositions are subobjects”.
From a technical point of view this approach leads to problems when one consid-
ers dependent types, but from an educational point of view it is far outweighed
by the simpler setup and transparency of ideas. In particular, we present the
semantics of dependent types in terms of locally cartesian categories, and only
comment briefly on problems involving equality of types that arise in this kind
of semantics.

If you find any mistakes in the notes, and undoubtedly there are some,
please contact us. An updated version of the notes and a list of known mistakes
is available at http://andrej.com/catlog/.

Steve Awodey and Andrej Bauer

[DRAFT: March 12, 2008]
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Chapter 1

Review of Category Theory

1.1 Categories

Definition 1.1.1 A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain
cod f , which are objects. This is written as

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely
determined composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A→ A which
is a unit for composition:

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not
actually have to be functions, and objects need not be sets or spaces of any
sort. We often write C instead of C0.
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8 Review of Category Theory

Definition 1.1.2 A category C is small when the objects C0 and the mor-
phisms C1 are sets (as opposed to proper classes). A category is locally small
when for all objects A,B ∈ C0 the class of morphisms with domain A and
codomain B is a set.

We normally restrict attention to locally small categories, so unless we spec-
ify otherwise all categories are taken to be locally small. Next we consider
several examples of categories.

1.1.1 The empty category 0

The empty category has no objects and no arrows.

1.1.2 The unit category 1

The unit category, also called the terminal category, has one object ⋆ and one
arrow 1⋆:

⋆ 1⋆dd

1.1.3 Other finite categories

There are other finite categories, for example the category with two objects and
one (non-identity) arrow, and the category with two parallel arrows:

⋆ // • ⋆ 77
''
•

1.1.4 Groups as categories

Every group (G, ·), is a category with a single object ⋆ and each element of G
as a morphism:

⋆

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the
group operation is associative and the group unit is the unit for the composition.
In order to get a category, we do not actually need to know that every element
in G has an inverse. It suffices to take a monoid, also known as semigroup,
which is an algebraic structure with an associative operation and a unit.

We can turn things around and define a monoid to be a category with a
single object. A group is then a category with a single object in which every
arrow is an isomorphism.
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1.1 Categories 9

1.1.5 Posets as categories

Recall that a partially ordered set, or a poset (P,≤), is a set with a reflexive,
transitive, and antisymmetric relation:

x ≤ x (reflexive)

x ≤ y ∧ y ≤ z =⇒ x ≤ z (transitive)

x ≤ y ∧ y ≤ z =⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a
single arrow p → q between p, q ∈ P if, and only if, p ≤ q. Composition of
p → q and q → r is the unique arrow p → r, which exists by transitivity of ≤.
The identity arrow on p is the unique arrow p → p, which exists by reflexivity
of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We
do not need antisymmetry in order to obtain a category, i.e., a preorder would
suffice.

Again, we may define a preorder to be a category in which there is at most
one arrow between any two objects. A poset is a skeletal preorder. We allow
for the possibility that a preorder or a poset is a proper class rather than a set.

A particularly important example of a poset category is the posets of open
sets OX of a topological space X , ordered by inclusion.

1.1.6 Sets as categories

Any set S is a category whose objects are the elements of S and the only arrows
are the identity arrows. A category in which the only arrows are the identity
arrows is a discrete category.

1.1.7 Structures as categories

In general structures like groups, topological spaces, posets, etc., determine cat-
egories in which composition is composition of functions and identity morphisms
are identity functions:

• Group is the category whose objects are groups and whose morphisms are
group homomorphisms.

• Top is the category whose objects are topological spaces and whose mor-
phisms are continuous maps.

• Set is the category whose objects are sets and whose morphisms are func-
tions.2

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A×B such that for every x ∈ A there

exists a unique y ∈ B for which 〈x, y〉 ∈ f . A morphism in Set is a triple 〈A, f, B〉 such that
f ⊆ A× B is a function.
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10 Review of Category Theory

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

Such categories of structures are generally large.

1.1.8 Further Definitions

We recall some further basic notions in category theory.

Definition 1.1.3 A subcategory C′ of a category C is given by a subclass of
objects C′0 ⊆ C0 and a subclass of morphisms C′1 ⊆ C1 such that f ∈ C′1 implies
dom f, cod f ∈ C′0, 1A ∈ C′1 for every A ∈ C′0, and g ◦ f ∈ C′1 whenever f, g ∈ C′1
are composable.

A full subcategory C′ of C is a subcategory of C such that, for all A,B ∈ C′0,
if f : A→ B is in C1 then it is also in C′1.

Definition 1.1.4 An inverse of a morphism f : A → B is a morphism f−1 :
B → A such that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or an iso. If there exists
a pair of inverse morphisms f : A → B and f−1 : B → A we say that the
objects A and B are isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A
left inverse is a morphism g : B → A such that g ◦ f = 1A, and a right inverse
is a morphism g : B → A such that f ◦ g = 1B. A left inverse is also called a
retraction, whereas a right inverse is called a section.

Definition 1.1.5 A monomorphism, or mono, is a morphism f : A → B that
can be canceled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h =⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be canceled on the
right: for all g : B → C, h : B → A,

g ◦ f = h ◦ f =⇒ g = h .

In Set monomorphisms are the injective functions and epimorphisms are the
surjective functions. Isomorphisms in Set are the bijective functions. Thus, in
Set a morphism is iso if, and only if, it is both mono and epi. However, this
example is misleading! In general, a morphism can be mono and epi without
being an iso. For example, the non-identity morphism in the category consisting
of two objects and one morphism between them is both epi and mono, but it
has no inverse. (See examples in the next section.)
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1.2 Functors 11

A more realistic example of morphisms that are both epi and mono but are
not iso occurs in the category Top of topological spaces and continuous map
because not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are
objects of a category and edges are morphisms between them, for example:

A
f //

g

��

B
h // C

j
��~~

~~
~~

~~
~~

~~

D
k

//

m

??~~~~~~~~~~~~
E

Such a diagram is said to commute when the composition of morphisms along
any two paths with the same beginning and end gives equal morphisms. Com-
mutativity of the above diagram is equivalent to the following two equations:

f = m ◦ g , j ◦ h ◦m = k .

From these we can derive k ◦ g = h ◦ h ◦ f .

1.2 Functors

Definition 1.2.1 A functor F : C → D from a category C to a category D
consists of functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,

F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor maps commutative diagrams to commutative diagrams because it
preserves composition.

We may form the “category of categories” Cat whose objects are small cat-
egories and whose morphisms are functors. Composition of functors is com-
position of the corresponding functions, and the identity functor is one that is
identity on objects and on morphisms. The category Cat is large and locally
small.

Definition 1.2.2 A functor F : C → D is faithful when it is injective on mor-
phisms: for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is surjective on morphisms: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.
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12 Review of Category Theory

1.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors
turn out to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G
to H .

• A functor between posets P and Q is a monotone function from P to Q.

Exercise 1.2.3 Verify that the above claims are correct.

1.2.2 Forgetful functors

For categories of structures Group, Top, Graphs, Poset, . . . , there is a forgetful
functor U which maps an object to the underlying set and a morphism to the
underlying function. For example, the forgetful functor U : Group → Set maps
a group (G, ·) to the set G and a group homomorphism f : (G, ·) → (H, ⋆) to
the function f : G→ H .

There are also forgetful functors that forget only part of the structure, for ex-
ample the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the
additive group (R,+) and a ring homomorphism f : (R,+R, ·S) → (S,+S , ·S)
to the group homomorphism f : (R,+R)→ (S,+S).

1.3 Constructions of Categories and Functors

1.3.1 Product of categories

Given categories C and D, we form the product category C×D whose objects are
pairs of objects 〈C,D〉 with C ∈ C and D ∈ D, and whose morphisms are pairs
of morphisms 〈f, g〉 : 〈C,D〉 → 〈C′, D′〉 with f : C → C′ in C and g : D → D′

in D. Composition is given by 〈f, g〉 ◦ 〈f ′, g′〉 = 〈f ◦ f ′, g ◦ g′〉.
There are evident projection functors

C × D

π0

}}zz
zz

zz
zz

zz
zz

z
π1

""D
DD

DD
DD

DD
DD

DD

C D

which act as indicated in the following diagrams:

〈C,D〉9
π0

||yy
yy

yy
yy

y � π1

""F
FFFFFFF

C D

〈f, g〉;
π0

}}{{
{{

{{
{{

�
π1

!!B
BB

BB
BB

B

f g
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1.3 Constructions of Categories and Functors 13

Exercise 1.3.1 Show that, for any categories A, B, C,

1× C ∼= C

B × C ∼= C × B

A× (B × C) ∼= (A× B)× C

What does ∼= mean here?

1.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects
morphisms into A,

B

f
��
A

(1.1)

and as morphisms commutative diagrams over A,

B

f ��@
@@

@@
@@

g // B′

f ′
~~}}

}}
}}

}

A

(1.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′

such that f = f ′ ◦ g. Composition of morphisms in C/A is composition of
morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (1.1) to its
domain B, and a morphism (1.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “compo-
sition by h”,

C/h : C/A→ C/A′

which maps an object (1.1) to the object h ◦ f : B → A′ and a morphisms (1.2)
to the morphism

B

h ◦ f   @
@@

@@
@@

@
g // B′

h ◦ f ′~~}}
}}

}}
}}

A′

The construction of slice categories itself is a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A
and each morphism h : A→ A′ to the functor C/h : C/A→ C/A′.

[DRAFT: March 12, 2008]



14 Review of Category Theory

Since Cat is a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− factors through the forgetful functor UC :
Cat/C → Cat via a functor C : C → Cat/C,

C
C //

C/−
!!C

CC
CC

CC
CC

CC
CC

Cat/C

UC

��
Cat

where, for A ∈ C, CA is the object

C/A

UA

��
C

and, for h : A→ A′ in C, Ch is the morphism

C/A

UA   B
BB

BB
BB

B

C/h
// C/A′

UA′}}{{
{{

{{
{{

C

1.3.3 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all
the morphisms are turned around, that is, a morphism f : A → B in Cop is
a morphism f : B → A in C. Composition and identity arrows in Cop are the
same as in C. Clearly, the opposite of the opposite of a category is the original
category.

A functor F : Cop → D is sometimes called a contravariant functor (from C
to D), and a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P
turned upside down, (P,≥).

Exercise 1.3.2 Given a functor F : C → D, can you define a functor F op :
Cop → Dop such that −op itself becomes a functor? On what category is it a
functor?

1.3.4 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the
collection of all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B)
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1.3 Constructions of Categories and Functors 15

or C(A,B). For every A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is
indeed a functor because, for any morphisms

A
f // B

g // C
h // D (1.3)

we have

C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f . We may also ask whether C(−, B) is
a functor. If we define its action on morphisms to be precomposition,

C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (1.3) we
have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a
functor of the form C(−, B) is a (contravariant) representable functor.

To summarize, hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A
to B, and it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the
function

C(f, g) : C(A,B)→ C(A′, B′)

defined by

C(f, g) : h 7→ g ◦ h ◦ f .
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16 Review of Category Theory

1.3.5 Group actions

A group (G, ·) is a category with one object ⋆ and elements of G as the mor-
phisms. Thus, a functor F : G → Set is given by a set F⋆ = S and for each
a ∈ G a function Fa : S → S such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a · x instead of (Fa)x, the above
two equations become the familiar requirements for a left group action:

e · x = x , (a · b) · x = a · (b · x) .

Exercise 1.3.3 A right group action by a group (G, ·) on a set S is an operation
· : S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.

1.4 Natural Transformations and Functor Cat-

egories

Definition 1.4.1 Let F : C → D and G : C → D be functors. A natural
transformation η : F =⇒ G from F to G is a map η : C0 → D1 which assigns
to every object A ∈ C a morphism ηA : FA → GA, called the component of η
at A, such that, for every f : A → B, ηB ◦ Ff = Gf ◦ ηA, i.e., the following
diagram commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

As an example of a natural transformation, consider groups G and H as
categories and two homomorphisms f, g : G→ H as functors between them. A
natural transformation η : f =⇒ g is given by a single element η⋆ = b ∈ H such
that, for every a ∈ G, the following diagram commutes:

⋆
b //

fa
��

⋆

ga
��

⋆
b

// ⋆
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1.4 Natural Transformations and Functor Categories 17

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words,
a natural transformation f =⇒ g is a conjugation operation b−1 · − · b which
transforms f into g.

For every functor F : C → D there exists the identity transformation 1F :
F =⇒ F defined by (1F )A = 1A. If η : F =⇒ G and θ : G =⇒ H are
natural transformations, then their composition θ ◦ η : F =⇒ H , defined by
(θ ◦ η)A = θA ◦ ηA is also a natural transformation. Composition of natural
transformations is associative because it is function composition. This leads to
the definition of functor categories.

Definition 1.4.2 Let C and D be categories. The functor category DC is the
category whose objects are functors from C to D and whose morphisms are
natural transformations between them.

A functor category may be quite large, too large in fact. In order to avoid
problems with size we normally require C to be a locally small category. The
“hom-class” of all natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC(F,G).
Suppose we have functors F , G, and H with a natural transformation θ :

G =⇒ H , as in the following diagram:

C
F // D

G
''

H

77
�� ��
�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose
component at A ∈ C is (θ ◦ F )A = θFA.

Similarly, if we have functors and a natural transformation

C

G
''

H

77
�� ��
�� θ D

F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component
at A ∈ C is (F ◦ θ)A = FθA.

A natural isomorphism is an isomorphism in a functor category. Thus, if F :
C → D and G : C → D are two functors, a natural isomorphism between them
is a natural transformation η : F =⇒ G whose components are isomorphisms.
In this case, the inverse natural transformation η−1 : G =⇒ F is given by
(η−1)A = (ηA)

−1
. We write F ∼= G when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact
that, for any small categories A, B, C,

Cat(A× B, C) ∼= Cat(A, CB) . (1.4)
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18 Review of Category Theory

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB

defined on objects A ∈ A, B ∈ B by

(F̃A)B = F 〈A,B〉

and on a morphism f : A→ A′ by

(F̃ f)B = F 〈f, 1B〉 .

The functor F̃ is called the transpose of F .
The inverse isomorphism takes a functor G : A → CB to the functor G̃ :

A× B → C, defined on objects by

G̃〈A,B〉 = (GA)B

and on a morphism 〈f, g〉 : A×B → A′ ×B′ by

G̃〈f, g〉 = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

1.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of
edges GE . Each edge e ∈ GE has a uniquely determined source srcG e ∈ GV
and target trgG e ∈ GV . We write e : a → b when a is the source and b is
the target of e. A graph homomorphism φ : G → H is a pair of functions
φ0 : GV → HV and φ1 : GE → HE , where we usually write φ for both φ0

and φ1, such that whenever e : a → b then φ1e : φ0a → φ0b. The category of
directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇉ · be the category with two objects and two parallel morphisms,
depicted by the following “sketch”:

E

t

66

s
((
V

An object of the functor category Set·⇉· is a functor G : (·⇉ ·) → Set, which
consists of two sets GE and GV and two functions Gs : GE → GV and Gt :
GE → GV . But this is precisely a directed graph whose vertices are GV , the
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1.4 Natural Transformations and Functor Categories 19

edges are GE, the source of e ∈ GE is (Gs)e and the target is (Gt)e. Conversely,
any graph G is a functor G : (·⇉ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

If category theory is worth anything, it should be the case that the morphisms
in Set·⇉· are precisely the graph homomorphisms. Indeed, a natural transfor-
mation φ : G =⇒ H between graphs is a pair of functions,

φE : GE → HE and φV : GV → HV

whose naturality is expressed by the commutativity of the following two dia-
grams:

GE
φE //

srcG

��

HE

srcH

��
GV

φV
// HV

GE
φE //

trgG

��

HE

trgH

��
GV

φV
// HV

This is precisely the requirement that e : a→ b implies φEe : φV a→ φV b.

1.4.2 The Yoneda Embedding

The example Graph = Set·⇉· leads one to wonder which categories C can be
represented as functor categories SetD for a suitably chosen D or, when that is
not possible, at least as full subcategories of SetD.

For a locally small category C, there is the hom-set functor

C(−,−) : Cop × C → Set .

By transposing it we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A→ A′ in C to the natural transformation yf : yA =⇒ yA′

whose component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor is called the Yoneda embedding.

Theorem 1.4.3 (Yoneda embedding) For any locally small category C the

Yoneda embedding y : C → SetC
op

is full and faithful, and injective on objects.
Therefore, C is a full subcategory of SetC

op

.
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The proof of the theorem uses Yoneda Lemma.

Lemma 1.4.4 (Yoneda) Every functor F : Cop → Set is naturally isomorphic
to the functor Nat(y−, F ). That is, for every A ∈ C,

Nat(yA,F ) ∼= FA ,

and this isomorphism is natural in A.

Proof. The desired natural isomorphism θA maps a natural transformation
η ∈ Nat(yA,F ) to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the
natural transformation (θA

−1x) whose component at B maps f ∈ C(B,A) to
(Ff)x. To summarize, for η : C(−, A) =⇒ F , x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F )→ FA , θA
−1 : FA→ Nat(yA,F ) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f,A)

��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the com-
mutativity of the following diagram, with g : A→ A′:

Nat(yA,F )
θA // FA

Nat(yA′, F )
θA′

//

Nat(yg, F )

OO

FA′

Fg

OO

The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =

ηA(g ◦ 1A) = (Nat(yg, F )η)A1A = θA(Nat(yg, F )η) ,

where the second equality is justified by naturality of η.
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Proof. [Proof of Theorem 1.4.3] That the Yoneda embedding is full and
faithful means that for all A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A → B to yf : yA =⇒ yB is an isomorphism. But this is just
Yoneda Lemma applied to the case F = yB. Indeed, with notation as in the
proof of Yoneda Lemma and g : C → A, we see that the isomorphism

θ−1
A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA

−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A)
which can only happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary 1.4.5 For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also
reflects them. A functor F : C → D is said to reflect isomorphisms when Ff :
FA→ FB being an isomorphisms implies that f : A→ B is an isomorphism.

Exercise 1.4.6 Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are
called presheaf categories, and a functor F : Cop → Set is a presheaf on C. We
also use the notation Ĉ = SetC

op

.

1.4.3 Equivalence of Categories

An isomorphism of categories C and D in Cat consists of functors

C
F

**
D

G

ii

such that G ◦ F = 1C and F ◦ G = 1D. This is often too restrictive a no-
tion. A more general notion which replaces the above identities with natural
isomorphisms is required.

Definition 1.4.7 An equivalence of categories is a pair of functors

C
F

**
D

G

ii
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such that

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ≃ D.
A functor F : C → D is called an equivalence functor if there exists G : D →

C such that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all cate-
gorical properties, but ignores those concepts that are not at interest from a
categorical point of view, such as identity of objects.

The following proposition requires the Axiom of Choice as stated in general
form. However, in many specific cases a canonical choice can be made without
appeal to the Axiom of Choice.

Proposition 1.4.8 A functor F : C → D is an equivalence functor if, and only
if, F is full and faithful, and essentially surjective on objects, which means that
for every B ∈ D there exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they
are sufficient. Suppose F : C → D is full and faithful, and essentially surjective
on objects. For each B ∈ D, choose an object GB ∈ C and an isomorphism
ηB : F (GB)→ B. If f : B → C is a morphism in D, let Gf : GB → GC be the
unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (1.5)

Such a unique morphism exists because F is full and faithful. This defines a
functor G : D → C, as can be easily checked. In addition, (1.5) ensures that η
is a natural isomorphism F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C . For A ∈ C, let θA : G(FA) → A
be the unique morphism such that FθA = ηFA. Naturality of θA follows from
functoriality of F and naturality of η. Because F reflects isomorphisms, θA is
an isomorphism for every A.

Example 1.4.9 As an example of equivalence of categories we consider the
category of sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆
A, called the support3 of f , and taking values in B. Composition of partial
functions f : A ⇀ B and g : B ⇀ C is the partial function g ◦ f : A ⇀ C
defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)

3The support of a partial function f : A ⇀ B is usually called its domain, but this
terminology conflicts with A being the domain of f as a morphism.
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Composition of partial functions is associative. This way we obtain a category
Par of sets and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed
function f : (A, a) → (B, b) between pointed sets is a function f : A→ B such
that fa = b. The category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F :
Set• → Par maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed
function f : (A, a) → (B, b) to the partial function Ff : F (A, a) ⇀ F (B, b)
defined by

supp (Ff) =
{
x ∈ A

∣∣ fx 6= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the
pointed set GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not
belong to A. A partial function f : A ⇀ B is mapped to the pointed function
Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A as a special “undefined
value”. Let us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .

F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example 1.4.10 Another example of an equivalence of categories arises when
we take the poset reflection of a preorder. Let (P,≤) be a preorder, If we think
of P as a category, then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a.
Isomorphism ∼= is an equivalence relation, therefore we may form the quotient
set P/∼=. The set P/∼= is a poset for the order relation ⊑ defined by

[a] ⊑ [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,⊑) the poset reflection
of P . The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed
as categories. By Proposition 1.4.8, q is an equivalence functor. Trivially, it
is faithful and surjective on objects. It is also full because a ≤ b in P implies
qa ⊑ qb in P/∼=.

1.5 Adjoint Functors

The notion of adjunction is arguably the most important concept unveiled by
category theory. It is a general logical and mathematical concept that occurs
everywhere and often marks an important and interesting connection between
two objects of interest. In logic, adjoint functors are pervasive, although this is
only recognizable from the category-theoretic approach to logic.
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1.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder
(P,≤) is a category in which there is at most one morphism between any two
objects. A functor between preorders is a monotone map. Suppose we have
preorders P and Q with two monotone maps between them,

P

f
**
Q

g
jj

We say that f and g are adjoint, and write f ⊣ g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (1.6)

Note that adjointness is not a symmetric relation. The map f is the left adjoint
and g is the right adjoint.4

Equivalence (1.6) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies
the bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication

Consider a propositional calculus whose only logical operations are conjunc-
tion ∧ and implication ⇒.5 The formulas of this calculus are built from vari-
ables x0, x1, x2, . . . , the truth values ⊥ and ⊤, and the logical connectives ∧
and ⇒. The logical rules are given in natural deduction style:

⊤
⊥

A

A B

A ∧B

A ∧B

A

A ∧B

B

A⇒ B A

B

[u : A]

...

B

A⇒ B
u

For example, we read the last two inference rules as “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions)

4Remember it like this: the left adjoint stands on the left side of ≤, the right adjoint stands
on the right side of ≤.

5Nothing changes if we consider a calculus with more connectives.
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we infer A ⇒ B”, respectively. We indicate assumptions by enclosing them in
brackets. The symbol u in [u : A] is a label for the assumption. When an
assumption is discharged its label is written to the right of the inference rule
that discharges it, as above.

Logical entailment ⊢ between formulas of the propositional calculus is the
relation A ⊢ B which holds if, and only if, from assuming A we can prove B
(by using only the inference rules of the calculus). It is trivially the case that
A ⊢ A, and also

if A ⊢ B and B ⊢ C then A ⊢ C .

In other words, ⊢ is a reflexive and transitive relation on the set P of all propo-
sitional formulas so that (P,⊢) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the
maps

fB = (A ∧B) , gB = (A⇒ B) .

The maps f and g are functors because they respect entailment. Indeed, if
B ⊢ B′ then A ∧ B ⊢ A ∧ B′ and A ⇒ B ⊢ A ⇒ B′ by the following two
derivations:

[A ∧B]

A

[A ∧B]

B
...

B′

A ∧B′

[A⇒ B] [u : A]

B
...

B′

A⇒ B′
u

We claim that f ⊣ g. For this we need to prove that A ∧B ⊢ C if, and only if,
B ⊢ A⇒ C. The following two derivations establish the equivalence:

[u : A] [B]

A ∧B
...

C

A⇒ C
u

[A ∧B]

B
...

A⇒ C
[A ∧B]

A
C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint

Recall that a topological space (X,OX) is a set X together with a family
OX ⊆ PX of subsets of X which contains ∅ and X , and is closed under fi-
nite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained
in S:

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S

}
.
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Both OX and PX are posets ordered by subset inclusion. The inclusion i :
OX → PX is a monotone map, and so is the interior int : PX → OX :

OX
i

++
PX

int

kk

For U ∈ OX and S ∈ PX we have

iU ⊆ S

U ⊆ intS

Therefore, topological interior is a right adjoint to the inclusion of OX into PX .

1.5.2 Adjoint Functors

Let us now generalize the notion of adjoint monotone maps to the general situ-
ation

C
F

**
D

G

ii

with arbitrary categories and functors. For monotone maps f ⊣ g, the adjunc-
tion is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy.
This is the notion that generalizes the special case; for any A ∈ C, B ∈ D we
require a bijection between D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition 1.5.1 An adjunction F ⊣ G between functors

C
F

**
D

G

ii

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B)→ C(A,GB) ,
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and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the
following diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)

��

D(A,GB)

C(f,Gg)

��
D(FA′, B′)

θA′,B′

// C(A′, GB′)

Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is a left adjoint and G is a right adjoint.

We have already seen examples of adjoint functors. For any category B we
have functors −× B and −B from Cat to Cat. Recall the isomorphism (1.4),

Cat(A× B, C) ∼= Cat(A, CB) .

This isomorphism is in fact natural so that

−× B ⊣ −B .

Similarly, for any set B ∈ Set there are functors

−×B : Set→ Set , −B : Set→ Set ,

where A × B is the cartesian product of A and B, and CB is the set of all
functions from B to C. For morphisms, f ×B = f × 1B and fB = f ◦−. Then
we have, for all A,C ∈ Set, a natural isomorphism

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A×B → C to the function (f̃x)y = f〈x, y〉. There-
fore, −×B ⊣ −B.

Exercise 1.5.2 Verify that the definition (1.6) of adjoint monotone maps be-
tween preorders is a special case of Definition 1.5.1.

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint
P ⊣ U . The functor P is the free construction of a category from a graph; it
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maps a graph G to the category of paths P (G). The objects of P (G) are the
vertices of G. The morphisms of P (G) are finite paths

v1
e1 // v2

e2 // · · ·
en // vn+1

of edges in G, composition is concatenation of paths, and the identity morphism
on a vertex v is the empty path starting and ending at v.

By using Yoneda Lemma we can easily prove that adjoints are unique up to
natural isomorphism.

Proposition 1.5.3 Let F : C → D and G : D → C be functors. If F ⊣ G,
F ⊣ G′ and F ′ ⊣ G then F ∼= F ′ and G ∼= G′.

Proof. Suppose F ⊣ G and F ⊣ G′. By Yoneda Embedding, GB ∼= G′B if,
and only if, C(−, GB) ∼= C(−, G′B), which holds because, for any A ∈ C,

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) .

Therefore, G ∼= G′. That F ⊣ G and F ′ ⊣ G implies F ∼= F ′ is proved similarly,
except that the Yoneda Embedding must be replaced by its covariant version.

1.5.3 The Unit of an Adjunction

Let F : C → D and G : D → C be adjoint functors, F ⊣ G, and let θ :
D(F−,−) → C(−, G−) be the natural isomorphism witnessing the adjunction.
For any object A ∈ C there is a distinguished morphism ηA = θA,FA1FA : A→
G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

The transformation η : 1C =⇒ G ◦ F is natural. It is called the unit of the
adjunction F ⊣ G. In fact, we can recover θ from η as follows, for f : FA→ B:

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any
f : FA→ B, the following diagram commutes:

A
ηA //

θA,Bf
""D

DD
DD

DD
DD

DD
DD

D G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the
form g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA)
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is a universal morphism to G, or that η has the following universal mapping
property: for every A ∈ C, B ∈ D, and g : A → GB, there exists a unique
f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g

""D
DD

DD
DD

DD
DD

DD
D G(FA)

Gf

��

FA

f

��
GB B

This means that an adjunction can be given in terms of its unit. The isomor-
phism θ : D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition 1.5.4 A functor F : C → D is left adjoint to a functor G : D → C
if, and only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map
θA,B : D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an ad-
junction appears as a well known construction in algebra. Consider the forgetful
functor from monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a
“most economical” way of making a monoid FX from a given set X . Such a
construction readily suggests itself, namely the free monoid on X , consisting of
finite sequences of elements of X ,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 ∧ x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor,
it should also map morphisms to morphisms. If f : X → Y is a function, define
Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .
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There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the
singleton sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The free monoid FX is “free” in the sense that for every every monoid M
and a function f : X → UM there exists a unique homomorphism f : FX →M
such that the following diagram commutes:

X
ηX //

f
""E

EEEEEEEEEEEE U(FX)

Uf

��
UM

This is precisely the condition required by Proposition 1.5.4 for η to be the unit
of the adjunction F ⊣ U . In this case, the universal mapping property of η is
just the usual characterization of free monoid FX generated by the set X : a
homomorphism from FX is uniquely determined by its values on the generators.

1.5.4 The Counit of an Adjunction

Let F : C → D and G : D → C be adjoint functors, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object
B ∈ D there is a distinguished morphism εB = θ−1

GB,B1GB : F (GB)→ B,

1GB : GB → GB

εB : F (GB)→ B

The transformation ε : F ◦G =⇒ 1D is natural and is called the counit of the
adjunction F ⊣ G. It is the dual notion to the unit of an adjunction. We state
briefly the basic properties of counit, which are easily obtained by “turning
around” all morphisms in the previous section and exchanging the roles of the
left and right adjoints.

The bijection θ−1
A,B can be recovered from the counit. For g : A→ GB in C,

we have
θ−1
A,Bg = θ−1

A,B(1GB ◦ g) = θ−1
A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D,
and f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bbEEEEEEEEEEEEE

A

g

OO

The following is the dual of Proposition 1.5.4.
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Proposition 1.5.5 A functor F : C → D is left adjoint to a functor G : D → C
if, and only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map
θ−1
A,B : C(A,GB)→ D(FA,B), defined by

θ−1
A,Bg = εB ◦ Fg ,

is an isomorphism.

Let us consider again the forgetful functor U : Mon→ Set and its left adjoint
F : Set→ Mon, the free monoid construction. For a monoid (M,⋆) ∈ Mon, the
counit of the adjunction F ⊣ U is a monoid homomorphism εM : F (UM)→M ,
defined by

εM (x1x2 . . . xn) = x1 ⋆ x2 ⋆ · · · ⋆ xn .

It has the following universal mapping property: for X ∈ Set, (M,⋆) ∈ Mon,
and a homomorphism f : FX →M there exists a unique function f : X → UM
such that f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the
left-hand side, and as an element of the free monoid FX on the right-hand side.
To summarize, the universal mapping property of the counit ε is the familiar
piece of wisdom that a homomorphism f : FX → M from a free monoid is
already determined by its values on the generators.

1.6 Limits and Colimits

1.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B
together with projections π0 : A × B → A and π1 : A × B → B such that, for
every object C ∈ C and all morphisms f : C → A, g : C → B there exists a
unique morphism h : C → A×B for which the following diagram commutes:

C

f

||zz
zz

zz
zz

zz
zz

z

h

��

g

""D
DD

DD
DD

DD
DDD

D

A A×Bπ0

oo
π1

// B

We normally refer to the product (A×B, π0, π1) just by its object A×B, but you
should keep in mind that a product is given by an object and two projections.
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The arrow h : C → A×B is denoted by 〈f, g〉. The property

∀C:C . ∀ f :C → A . ∀ g:C → B . ∃!h:C → A× B .

(π0 ◦ h = f ∧ π1 ◦ h = g)

is the universal mapping property of the product A × B. It characterizes the
product of A and B uniquely up to isomorphism in the sense that if (P, p0:P →
A, p1:P → B) is another product of A and B then there exists a unique isomor-
phism r : P

∼
→ A×B such that p0 = π0 ◦ r and p1 = π1 ◦ r.

If in a category C every two objects have a product, we can turn binary
products into an operation6 by choosing a product A × B for each pair of
objects A,B ∈ C. In general this requires the Axiom of Choice, but in many
specific cases a particular choice of products can be made without appeal to the
axiom of choice. When we view binary products as an operation, we say that “C
has chosen products”. The same holds for other specific and general instances
of limits and colimits.

For example, in Set the usual cartesian product of sets is a product. In
categories of structures, products are the usual construction: the product of
topological spaces in Top is their topological product, the product of directed
graphs in Graph is their cartesian product, the product of categories in Cat is
their product category, and so on.

1.6.2 Terminal object

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C
there exists a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton.
The terminal object in Cat is the unit category 1 consisting of one object and
one morphism.

Exercise 1.6.1 Prove that if 1 and 1′ are terminal objects in a category then
they are isomorphic.

Exercise 1.6.2 Let Field be the category whose objects are fields and mor-
phisms are field homomorphisms.7 Does Field have a terminal object?

1.6.3 Equalizers

Given objects and morphisms

E
e // A

f //
g

// B

6More precisely, binary product is a functor from C × C to C, cf. Section 1.6.11.
7A field (F,+, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses.

We also require that 0 6= 1. A homomorphism of fields preserves addition and multiplication,
and consequently also 0, 1 and inverses.
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we say that e equalizes f and g when f ◦ e = g ◦ e.8 An equalizer of f and g
is a universal equalizing morphism; thus e : E → A is an equalizer of f and g
when it equalizes them and, for all k : K → A, if f ◦ k = g ◦ k then there exists
a unique morphism m : K → E such that k = e ◦m:

E
e // A

f //
g

// B

K

m

OO

k

??~~~~~~~~~~~~

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers
can be thought of as those subobjects (subsets, subgroups, subspaces, . . . ) that
can be defined by a single equation.

Exercise 1.6.3 Show that an equalizer is a monomorphism, i.e., if e : E → A
is an equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition 1.6.4 A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the
category Top: a continuous map f : X → Y is mono when it is injective, whereas
it is a regular mono when it is a topological embedding.9

1.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms
p0 : P → A and p1 : P → B such that f ◦p0 = g ◦p1, and whenever r0 : R→ A,
r1 : R → B are such that f ◦ r0 = g ◦ r1, then there exists a unique h : R → P

8Note that this does not mean the diagram involving f , g and e is commutative!
9A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the

image f [U ] is an open subset of the image im(f); this means that there exists V ∈ OY such
that f [U ] = V ∩ im(f).
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such that r0 = p0 ◦ h and r1 = p1 ◦ h:

R
r1

!!

h

��

r0

��

P
_

�
p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in
the above diagram. Sometimes we denote the pullback P by A×C B.

In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
〈x, y〉 ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0〈x, y〉 = x,
p1〈x, y〉 = y.

When we form the pullback of f : A → C and g : B → C we also say that
we pull back g along f and draw the diagram

f∗B
_
�

//

f∗g

��

B

g

��
A

f
// C

We think of f∗g : f∗B → A as the inverse image of B along f . This terminology
is explained by looking at the pullback of a subset inclusion u : U →֒ C along a
function f : A→ C in the category Set:

f∗U
_

�
//

��

U
� _

u

��
A

f
// B

In this case the pullback is
{
〈x, y〉 ∈ A× U

∣∣ fx = y
}
∼=

{
x ∈ A

∣∣ fx ∈ U
}

=
f∗U , the inverse image of U along f .
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Exercise 1.6.5 Prove that in a category C, a morphism f : A→ B is mono if,
and only if, the following diagram is a pullback:

A
1A //

1A

��

A

f

��
A

f
// B

1.6.5 Limits

Let us now define a general notion of a limit.
A diagram of shape I in a category C is a functor D : I → C, where the

category I is called the index category. We use letters i, j, k, . . . for objects
of an index category I, call them indices, and write Di, Dj , Dk, . . . instead of
Di, Dj, Dk, . . .

For example, if I is the category with three objects and three morphisms

1

13

��

12

����
��

��
��

��
��

2
23

// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~}}
}}

}}
}}

}}
}}

D2
d23

// D3

(1.7)

Given an object A ∈ C, there is a constant diagram of shape I, which is the
constant functor ∆A : I → C that maps every object to A and every morphism
to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C
is a natural transformation α : ∆A =⇒ D. This means that for every index
i ∈ I there is a morphism αi : A→ Di such that whenever u : i → j in I then
αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a
category Cone(D) whose objects are cones on D. A morphism between cones
f : (A,α) → (B, β) is a morphism f : A→ B in C such that αi = βi ◦ f for all
i ∈ I. Morphisms in Cone(D) are composed as morphisms in C. A morphism
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f : (A,α) → (B, β) is also called a factorization of the cone (A,α) through the
cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly,
a limit of D is given by a cone (L, λ) such that for every other cone (A,α) there
exists a unique morphism f : A → L such that αi = λi ◦ f for all i ∈ I. We
denote a limit of D by one of the following:

limD limi∈I Di lim←−i∈IDi .

Limits are also called projective limits. We say that a category has limits of
shape I when every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of
limits:

• a product A × B is the limit of the functor D : 2 → C where 2 is the
discrete category on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from
the empty category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇉ ·) → C
which maps one morphism to f and the other one to g.

• the pullback of f : A → C and g : B → C is the limit of the functor
D : I → C where I is the category

•

2
��

•
1

// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects

{
Ai ∈ C

∣∣ i ∈ I
}
.

Such a family is a diagram of shape I, where I is viewed as a discrete category.
A product

∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai

such that, whenever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I
}

there
exists a unique morphism 〈fi〉i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that
a terminal object is the product of an empty family. It is not hard to show
that a category has finite products precisely when it has a terminal object and
binary products.

A diagram D : I → C is small when I is a small category. A small limit is
a limit of a small diagram. A finite limit is a limit of a diagram whose index
category is finite.
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Exercise 1.6.6 Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary
limits from simpler ones. We omit detailed proofs as they can be found in any
standard textbook on category theory.

Proposition 1.6.7 The following are equivalent for a category C:

1. C has all pullbacks and a terminal object.

2. C has finite products and equalizers.

3. C has has finite limits.

Proof. We only show how to get binary products from pullbacks and a
terminal object. For objects A and B, let P be the pullback of !A and !B:

P
_

�
π1 //

π0

��

B

!B

��
A

!A
// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and
g : X → B, it is trivially the case that !A ◦ f = !B ◦ g.

Proposition 1.6.8 The following are equivalent for a category C:

1. C has small products and equalizers.

2. C has small limits.

Proof. We indicate how to construct an arbitrary limit from a product and
an equalizer. Let D : I → C be a small diagram of an arbitrary shape I. First
form an I0-indexed product P and an I1-indexed product Q

P =
∏

i∈I0

Di , Q =
∏

u∈I1

Dcodu .

By the universal property of products, there are unique morphisms f : P → Q
and g : P → Q such that, for all morphisms u ∈ I1,

πQu ◦ f = Du ◦ πPdom u , πQu ◦ g = πPcod u .

Let E be the equalizer of f and g,

E
e // P

f //

g
// Q
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For every i ∈ I there is a morphism εi : E → Di, namely εi = πPi ◦ e. We claim
that (E, ε) is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j
in I,

Du ◦ εi = Du ◦ πPi ◦ e = πQu ◦ f ◦ e = πQu ◦ g ◦ e = πPj ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A→ P such that αi = πPi ◦ t
for all i ∈ I. For every u : i→ j in I we have

πQu ◦ g ◦ t = πPj ◦ t = tj = Du ◦ ti = Du ◦ πPi ◦ t = πQu ◦ f ◦ t ,

therefore g◦t = f ◦t. This implies that there is a unique factorization k : A→ E
such that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πPi ◦ e ◦ k = πPi ◦ t = αi

so that k : A → E is the required factorization of the cone (A,α) through the
cone (E, ε). To see that k is unique, suppose m : A→ E is another factorization
such that αi = εi ◦ m for all i ∈ I. Since e is mono it suffices to show that
e ◦m = e ◦ k, which is equivalent to proving πPi ◦ e ◦m = πPi ◦ e ◦ k for all i ∈ I.
This last equality holds because

πPi ◦ e ◦ k = πPi ◦ t = αi = εi ◦m = πPi ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely
complete or lex when it has finite limits.

Limits of presheaves

Let C be a locally small category. Then the presheaf category Ĉ = SetC
op

has all
small limits and they are computed pointwise, e.g., (P × Q)A = PA ×QA for

P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set

is small complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and
a natural transformation δA : ∆(limDA) =⇒ DA. The value of LA is supposed
to be just the object part of limDA. From a morphism f : A→ B we obtain for
each i ∈ I a function Dif ◦ (δA)i : LA→ DiB, and thus a cone (LA,Df ◦ δA)
on DB. Presheaf L maps the morphism f : A→ B to the unique factorization
Lf : LA =⇒ LB of the cone (LA,Df ◦ δA) on DB through the limit cone LB
on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family
{Λi}i∈I

is a natural transformation from ∆LA to DA. This gives us a cone
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(L,Λ) on D, which is in fact a limit cone. Indeed, if (S,Σ) is another cone on D
then for every A ∈ C there exists a unique function φA : SA→ LA because SA
is a cone on DA and LA is a limit cone on DA. The family {φA}A∈C

is the
unique natural transformation φ : S =⇒ L for which Σ = φ ◦ Λ.

1.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C
is a limit of the dual diagram Dop : Iop → Cop in the dual category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Equivalently, the colimit of a diagram D : I → C is the initial object in the
category of cocones Cocone(D) on D. A cocone (A,α) on D is a natural trans-
formation α : D =⇒ ∆A. It is given by an object A ∈ C and, for each i ∈ I,
a morphism αi : Di → A, such that αi = αj ◦Du whenever u : i → j in I. A
morphism between cocones f : (A,α) → (B, β) is a morphism f : A → B in C
such that βi = f ◦ αi for all i ∈ I.

Explicitly, a colimit of D : I → C is given by a cocone (C, ζ) on D such that,
for every other cocone (A,α) on D there exists a unique morphism f : C → A
such that αi = f ◦ ζi for all i ∈ D. We denote a colimit of D by one of the
following:

colimD colimi∈I Di colim−−−→i∈IDi .

Colimits are also called inductive limits.

Exercise 1.6.9 Formulate the dual of Proposition 1.6.7 and Proposition 1.6.8
for colimits (coequalizers are defined in Subsection 1.6.9).

1.6.7 Binary Coproducts

In a category C, the (binary) coproduct of objects A and B is an object A+ B
together with injections ι0 : A → A + B and ι1 : B → A + B such that, for
every object C ∈ C and all morphisms f : A → C, g : B → C there exists a
unique morphism h : A+B → C for which the following diagram commutes:

A
ι0 //

f
""D

DD
DD

DD
DD

DD
DD

A+B

h

��

B
ι1oo

g

||zz
zzz

zz
zzz

zz
z

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A + B is the colimit of the diagram D : 2 → C, where I is

the discrete category on two objects 0 and 1, and D0 = A, D1 = B.
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In Set the coproduct is the disjoint union, defined by

X + Y =
{
〈0, x〉

∣∣ x ∈ X
}
∪

{
〈1, y〉

∣∣ x ∈ Y
}
,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X →
Z and g : Y → Z, the unique function [f, g] : X +Y → Z is the usual definition
by cases :

[f, g]u =

{
fx if u = 〈0, x〉

gx if u = 〈1, x〉 .

Exercise 1.6.10 Suppose A and B are Abelian groups.10 What is the dif-
ference between their coproduct in the category Group of groups, and their
coproduct in the category AbGroup of Abelian groups?

1.6.8 The initial object

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C
there exists a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise 1.6.11 What is the initial and what is the terminal object in the
category of groups?

A zero object is an object that is both initial and terminal.

Exercise 1.6.12 Show that in the category of Abelian groups finite products
and coproducts agree, that is 0 ∼= 1 and A×B ∼= A+B.

1.6.9 Coequalizers

Given objects and morphisms

A
f //
g

// B
q // Q

we say that q coequalizes f and g when e ◦ f = e ◦ g. A coequalizer of f and g is
a universal coequalizing morphism; thus q : B → Q is a coequalizer of f and g
when it coequalizes them and, for all s : B → S, if s◦ f = s◦ g then there exists
a unique morphism r : Q→ S such that s = r ◦ q:

A
f //

g
// B

q //

s

��?
??

??
??

??
??

? Q

r

��
S

10An Abelian group is one that satisfies the commutative law x · y = y · x.

[DRAFT: March 12, 2008]



1.6 Limits and Colimits 41

In Set the coequalizer of parallel functions f : A→ B and g : A→ B is the
quotient set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy =⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each
element x ∈ B its equivalence class [x] ∈ B/∼. In general, coequalizers can be
thought of as quotients of those equivalence relations that that can be defined
(generated) by a single equation.

Exercise 1.6.13 Show that a coequalizer is an epimorphism, i.e., if q : B → Q
is a coequalizer of f and g, then, for all u, v : Q→ T , u◦ q = v ◦ q implies u = v.
[Hint: use the duality between limits and colimits and Exercise 1.6.3.]

Definition 1.6.14 A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is best illustrated in the cate-
gory Top: a continuous map f : X → Y is epi when it is surjective, whereas it
is a regular epi when it is a topological quotient map.11

1.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms
q0 : B → Q and q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R,
r1 : C → R are such that r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R
such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

_�

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in
the above diagram. The above pushout Q is sometimes denotes by B +A C.

A pushout, as in the above diagram, is the colimit of the diagram D : I → C
where the index category I is

•
2 //

1
��

•

•

11A continuous map f : X → Y is a topological quotient map when it is surjective and, for
every U ⊆ Y , U is open if, and only if, f∗U is open.
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and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence
relation on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y],
where [x] is the equivalence class of x.

1.6.11 Limits and Colimits as Adjoints

An object A ∈ C can be viewed as a functor from the terminal category 1 to
C, namely the functor which maps the only object ⋆ of 1 to A and the only
morphism 1⋆ to 1A.

Now if C has a terminal object 1C we can ask whether the corresponding
functor 1C : 1→ C has any adjoints. Since 1 is the terminal object in Cat, there
exists a unique functor !C : C → 1, which maps every object of C to ⋆. This
functor is indeed adjoint to 1C because, for every A ∈ C we have a (trivially
natural) bijective correspondence

!A : A→ 1C

1⋆ : !CA→ ⋆

Similarly, an initial object is left adjoint to !C :

0C ⊣ !C ⊣ 1C .

If C has binary products then they can be viewed as a functor

−×− : C × C → C

which maps 〈A,B〉 to A×B and a pair of morphisms 〈f : A→ A′, g : B → B′〉
to the unique morphism f × g : A×B → A′×B′ for which π0 ◦ (f × g) = f ◦ π0

and π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×B
π0oo π1 //

f × g

��

B

g

��
A′ A′ ×B′

π0

oo
π1

// B′

The binary product functor has a left adjoint, namely the diagonal diagram
functor

∆ : C → C × C
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defined by ∆A = 〈A,A〉, ∆f = 〈f, f〉. Indeed, there is a natural bijective
correspondence

〈f, g〉 : 〈A,A〉 → 〈B,C〉

f × g : A→ B × C

Similarly, binary coproducts are left adjoint to the diagonal functor:

(−+−) ⊣ ∆ ⊣ (−×−) .

In general, suppose C has limits of shape I. Then the limit construction is a
functor

lim : CI → C

that maps each diagram D ∈ CI to its limit limD. In the opposite direction
there is the constant diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. These two are adjoint
because there is a natural bijective correspondence between cones α : ∆A =⇒ D
on D, and their factorizations through the limit of D,

α : ∆A =⇒ D

A→ limD

An analogous correspondence holds for colimits so that we obtain a pair of
adjunctions

colim ⊣ ∆ ⊣ lim .

Exercise 1.6.15 How are the functors lim : CI → C, colim : CI → C, and
∆ : C → CI defined on morphisms?

1.6.12 Preservation of Limits and Colimits by Functors

We say that a functor F : C → D preserves products when, given a product

A A×B
π0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves
binary products if, and only if, the unique morphism f : F (A×B)→ FA×FB

[DRAFT: March 12, 2008]



44 Review of Category Theory

which makes the following diagram commutative is an isomorphism: 12

F (A×B)

f

��

Fπ0

{{vvvvvvvvvvvvvv
Fπ1

##H
HHHHHHHHHHHHH

FA FA× FBπ0
oo

π1
// FB

In general, a functor F : C → D is said to preserve limits of shape I when it
maps limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL, F ◦λ)
is a limit of F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when
it maps colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C
then (FC,F ◦ ζ) is a colimit of F ◦D : I → D.

Proposition 1.6.16 (a) A functor preserves finite (small) limits if, and only
if, it preserves equalizers and finite (small) products. (b) A functor preserves
finite (small) colimits if, and only if, it preserves coequalizers and finite (small)
coproducts.

Proof. This follows from the fact that limits are constructed from equaliz-
ers and products, cf. Proposition 1.6.8, and that colimits are constructed from
coequalizers and coproducts, cf. Exercise 1.6.9.

Proposition 1.6.17 For a locally small category C, the Yoneda embedding y :
C → Ĉ preserves all limits that exist in C.

Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding

maps D to the diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦D, consider a cone (M,µ) on y ◦D.
Then µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and
A ∈ C,

(µi)A : MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)

12Products are determined up to isomorphism only, so it would be too restrictive to require
F (A × B) = FA × FB. When that is the case, however, we say that the functor F strictly

preserves products.
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There exists a unique morphism φAm : A → L such that (µi)Am = λi ◦ φAm.
The family of functions

φA : MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization φ : M =⇒ yL of the cone (M,µ) through the cone (L, λ).
This factorization is unique because each φAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set

preserves existing limits,

C(A, lim
i∈I

Di) ∼= lim
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps
existing colimits to limits,

C(colim
i∈I

Di, A) ∼= lim
i∈I
C(Di, A) .

Exercise 1.6.18 Prove the above claim that a contravariant representable func-
tor C(−, A) : Cop → Set maps existing colimits to limits. Use duality between
limits and colimits. Does it also follow by a simple duality argument that a con-
travariant representable functor C(−, A) maps existing limits to colimits? How
about a covariant representable functor C(A,−) mapping existing colimits to
limits?

Exercise 1.6.19 Prove that a functor F : C → D preserves monos if it pre-
serves limits. In particular, the Yoneda embedding preserves monos. Hint:
Exercise 1.6.5.

Proposition 1.6.20 Right adjoints preserve limits, and left adjoints preserve
colimits.

Proof. Suppose we have adjoint functors

C

F
((

⊥ D

G

hh

and a diagram D : I → D whose limit exists in D. We would like to use the
following slick application of Yoneda Lemma to show that G preserves limits:
for every A ∈ C,

C(A,G(limD)) ∼= D(FA, limD) ∼= lim
i∈I
D(FA,Di) ∼=

lim
i∈I
C(A,GDi) ∼= C(A, lim(G ◦D)) ,

therefore G(limD) ∼= lim(G ◦ D). However, this argument only works if we
already know that the limit of G ◦D exists.
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We can also prove the stronger claim that whenever the limit of D : I → D
exists then the limit of G ◦D exists in C and its limit is G(limD). So suppose
(L, λ) is a limit cone of D. Then (GL,G ◦ λ) is a cone on G ◦ D. If (A,α) is
another cone on G ◦D, we have by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ).
Again by adjunction, we obtain a unique factorization g : A→ GL of the cone
(A,α) through the cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f
uniquely from α, and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.
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Chapter 2

Type Theories

2.1 Algebraic Theories

In this section we study a general approach to algebraic structures such as
groups, rings, modules, and lattices. These are characterized by axiomatizations
which involve only constants, operations, and equations. It is important that
the operations are defined everywhere, which excludes two important examples:
fields because the inverse of 0 is undefined, and categories because composition
is defined only for some pairs of morphisms.

Let us start with the quintessential algebraic theory—the theory of a group.
A group is a set G with a binary operation · : G × G → G, satisfying the two
axioms

∀x, y, z:G . (x · y) · z = x · (y · z)

∃ e:G . ∀x:G . ∃ y:G . (e · x = x · e = x ∧ x · y = y · x = e)

We want to pay attention to the logical form of the axioms, because axioms with
a simpler logical structure can be interpreted more widely. The second axiom,
which expresses the existence of a unit and inverse elements, is particularly
unsatisfactory because it involves nested quantifiers.

If we require the unit to be a distinguished constant e ∈ G and the inverse
to be an operation −1 : G → G we obtain an equivalent formulation in which
all axioms are equations :

x · (y · z) = (x · y) · z

x · e = x e · x = x

x · x−1 = e x−1 · x = e

It is understood that equality is an equivalence relation and that we may sub-
stitute equals for equals. Notice that the universal quantifier is not needed
anymore, provided we interpret the variables as ranging freely over G. In fact,
we do not need to explicitly mention the underlying set G at all. Additionally, a
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constant can be thought of as a nullary operation, i.e., a function 1→ G. This
leads to the general definition of an algebraic theory.

Definition 2.1.1 A signature Σ for an algebraic theory consists of a family of
sets {Σk}k∈N

. The elements of Σk are called the k-ary operations. In particular,
the elements of Σ0 are the nullary operations or constants.

The terms of a signature Σ are expressions constructed inductively by the
following rules:

1. variables x, y, z, . . . , are terms,

2. if 〈t1, . . . , tk〉 is a k-tuple of terms and f ∈ Σk is a k-ary operation then
f〈t1, . . . , tk〉 is a term.

Definition 2.1.2 (cf. Definition 2.1.14) An algebraic theory A = (Σ, A) is
given by a signature Σ and a set A of axioms, which are equations between
terms.

Algebraic theories are also called equational theories and Lawvere theories.

Example 2.1.3 The theory of a commutative ring with unit is an algebraic the-
ory. There are two nullary operations (constants) 0 and 1, a unary operation −,
and two binary operations + and ·. The equations are:

(x + y) + z = x+ (y + z) (x · y) · z = x · (y · z)

x+ 0 = x x · 1 = x

0 + x = x 1 · x = x

x+ (−x) = 0 (x + y) · z = x · z + y · z

(−x) + x = 0 z · (x+ y) = z · x+ z · y

x+ y = y + x x · y = y · x

Example 2.1.4 The theory with no operations and no equations is the theory
of a set.

Example 2.1.5 The theory with one constant and no equations is the theory
of a pointed set, cf. Example 1.4.9.

Example 2.1.6 Let R be a ring. A left R-module is an algebraic theory. It has
one constant 0, a unary operation −, a binary operation +, and for each a ∈ R
a unary operation a, called scalar multiplication by a. The following equations
hold:

(x+ y) + z = x+ (y + z) , x+ y = y + x ,

x+ 0 = x , 0 + x = x ,

x+ (−x) = 0 , (−x) + x = 0 .
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For every a, b ∈ R we also have the equations

a(x + y) = a x+ a y , a(b x) = (ab)x , (a+ b)x = a x+ b x .

Scalar multiplication by a is usually written as a ·x instead of a x. If we replace
the ring R by a field F we obtain an algebraic theory of a vector space over F,
even though the theory of fields is not algebraic.

Example 2.1.7 In computer science, inductive datatypes are examples of al-
gebraic theories. For example, the datatype of binary trees with leaves labeled
by integers might be defined as follows in a programming language:

type tree = Leaf of int | Node of tree * tree

This corresponds to the algebraic theory with a constant Leaf n for each in-
teger n and a binary operation Node. There are no equations. Actually, when
computer scientists define a datatype like this, they have in mind a particular
model of the theory, namely the free one.

2.1.1 Many-sorted algebraic theories

It is sometimes necessary to consider algebraic theories with more than one set.
In Example 2.1.6 we saw that the theory of a left R-module is algebraic, for a
fixed ring R. However, if we wanted to have a general theory of left modules, we
would need an algebraic structure consisting of two carrier sets, a ring R and
a module M , together with operations and equations. To cover such examples
we would have to consider many-sorted algebraic theories. Here we only give
several motivating examples of many-sorted algebraic theories, and postpone
the general study of many-sorted theories to subsequent sections.

Example 2.1.8 As already mentioned, the theory of left modules is a two-
sorted algebraic theory. There are two sorts, R and M . The axioms express the
fact that R is a ring, M is a commutative group, and that scalar multiplication
has the desired properties, cf. Example 2.1.6.

Example 2.1.9 The theory of a directed graph is a two-sorted algebraic theory
with a sort E for edges and a sort V for vertices. There are two unary operations
src : E → V and trg : E → V , which give the source and the target of an edge.
There are no equations.

A symmetric graph is a graph in which for every edge e : a → b there is an
edge e : b → a in the other direction. This can be axiomatized with a unary
operation e 7→ e which satisfies the axioms

src e = trg e , trg e = src e .

A simple graph is one in which every two vertices are connected with at most
one edge. An axiom which expresses this fact is

(src e = src f ∧ trg e = trg f) =⇒ e = f .
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However, this axiom has the form of an implication, so it seems that the theory
of a simple graph is not algebraic.

Example 2.1.10 Modern computers are equipped with random access memory
(RAM). An idealized RAM consists of a number of memory locations indexed by
a set A of addresses. Each memory location contains data which is an element
of a set D. For example, the addresses might be 64-bit integers and data might
be 8-bit integers.1 The two basic operations on memory are a memory lookup
and a memory update.

Let M be the set of all possible memory configurations. For each address
a ∈ A we have an operation lookupa : M → D which returns the content of
location a, and an update operation updatea : M × D → M which updates
the content of location a and returns the updated memory configuration. These
operations satisfy the following equations, for all m ∈M , d, e ∈ D, and a, b ∈ A
with a 6= b:

lookupa (updatea 〈m, d〉) = d

lookupa (updateb 〈m, d〉) = lookupam

updatea 〈updateb 〈m, e〉, d〉 = updateb 〈updatea 〈m, d〉, e〉

updatea 〈updatea 〈m, d〉, e〉 = updatea 〈m, e〉

We see that random access memory can be formalized as a two-sorted algebraic
theory with a sort M of memory configurations and a sort D of data. The
addresses A are not a sort, they just parameterize the lookup and update oper-
ations. Had we made A into a sort, we would encounter problems because the
second and the third axioms above would have to express the condition a 6= b,
which cannot be done with equations in general.

2.1.2 Models of Algebraic Theories

Let us now consider what a model of an algebraic theory is. In classical algebra,
a group is given by a set G, an element e ∈ G, a function m : G ×G→ G and
a function i : G→ G, satisfying the group axioms:

m〈x,m〈y, z〉〉 = m〈m〈x, y〉, z〉 ,

m〈x, i x〉 = m〈i x, x〉 = e ,

m〈x, e〉 = m〈e, x〉 = x .

We would like to generalize this notion so that we can speak of models of group
theory in categories other than Set. This can be accomplished by translating
everything into the language of category theory: a group is given by an object
G ∈ Set and three morphisms

e : 1→ G , m : G×G→ G , i : G→ G .

1An n-bit integer is an integer between 0 and 2n − 1.
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Associativity of m is expressed by commutativity of the following diagram:

G×G×G
m× π2 //

π0 ×m
��

G×G

m
��

G×G m
// G

Similarly, the axioms for the unit and the inverse are expressed by commuta-
tivity of the following diagrams:

G× 1
1G × e //

π0
$$JJJJJJJJJJJ G×G

m
��

1×G
e× 1Goo

π1
zzttttttttttt

G

G
〈1G, i〉//

!G
��

G×G

m
��

G
〈i, 1G〉oo

!G
��

1 e
// G 1e

oo

We see that this formulation makes sense in any category C with finite products.
In general, an interpretation I of the terms of a theory A in a category C

is given by an object IA ∈ C and, for each basic operation f of arity k, a
morphism If : (IA)k → IA. In particular, basic constants are interpreted
as morphisms 1 → IA. A general term t is always interpreted together with
a context of variables x1, . . . , xn, where the variables appearing in t must be
among the variables appearing in the context. We write

x1, . . . , xn | t (2.1)

to indicate that the term t is to be understood in context x1, . . . xn. The inter-
pretation of (2.1) is a morphism It : (IA)n → IA, determined by the following
rules:

1. The interpretation of a variable xi is the i-th projection πi : (IA)n → IA.

2. A term of the form f〈t1, . . . , tk〉 is interpreted as the composition

(IA)n
〈It1, . . . , Itk〉 // (IA)k

If // A

where Iti : (IA)n → IA is the interpretation of the subterm ti, for i =
1, . . . , k, and If is the interpretation of the basic operation f .

It is clear from this that the interpretation of a term really depends on the
context. For example, the term f x1 is interpreted as a morphism If : IA→ IA
in context x1, and as the morphism If ◦ π1 : (IA)2 → IA in the context x1, x2.

Suppose u and v are terms in context x1, . . . , xn. Then we say that the
equation u = v is satisfied by the interpretation I if Iu and Iv are interpreted
as the same morphism. In particular, suppose u = v is an axiom of the theory,
and let x1, . . . , xn be all the variables appearing in u and v. We say that I
satisfies the axiom u = v when x1, . . . , xn | u and x1, . . . , xn | u are interpreted
as the same morphism by I.
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Definition 2.1.11 (cf. Definition 2.1.19) A model M of an algebraic the-
ory A in a category C with finite products is an interpretation of the theory that
satisfies all the axioms of the theory.

Example 2.1.12 A model of the theory of a set in a category C with finite
products is determined by an object A ∈ C. In other words, the mathematicians
who live in category C think of the objects of the category as ordinary sets.

Exercise 2.1.13 A model of group theory in Set is just an ordinary group. But
we can also ask what a model of a group is in an arbitrary category with finite
products. Determine what the models of a group are in the following categories:
the category of finite sets FinSet, the category of topological spaces Top, the
category of graphs Graph, and the category of groups Group.

Hint: Only the last case is tricky. Before thinking about it, prove the follow-
ing lemma [Bor94b, Lemma 3.11.6]. Let G be a set provided with two binary
operations · and ⋆ and a common unit e, so that x · e = e ·x = x ⋆ e = e ⋆ x = x.
Suppose the two operations commute, i.e., (x ⋆ y) · (z ⋆ w) = (x · z) ⋆ (y · w).
Then they coincide, are commutative and associative.

2.1.3 Algebraic theories as categories

The preceding account of models of algebraic theories is rather syntactic in
nature. We would prefer an approach that emphasizes the algebraic point of
view. The first step towards this is a representation-free notion of algebraic
theories.

Let us consider group theory again. The usual axiomatization in terms of
unit, multiplication and inverse is not the only possible one. For example, an
alternative axiomatization in terms of the unit e and a binary operation ⊙,
called double division, can be given with a single axiom [McC93]:

(x ⊙ (((x⊙ y)⊙ z)⊙ (y ⊙ e)))⊙ (e⊙ e) = z .

The usual group operations are related to right division as follows:

x⊙ y = x−1 · y−1 , x−1 = x⊙ e , x · y = (x ⊙ e)⊙ (y ⊙ e) .

There may be various reasons why we prefer to work with one formulation
of group theory rather than another, but this should not be reflected in the
general idea of what is a group. We want to avoid particular choices of basic
constants, operations, and axioms.2 This is accomplished by a rather brute
method—simply take all operations built from unit, multiplication, and inverse
as basic, and all valid equations of group theory as axioms. We can even go
one step further and collect all the operations into a category. We describe the
construction of such a category for a general algebraic theory.

2This is akin to a basis-free theory of vector spaces: it is better to formulate the idea of a
vector space without speaking explicitly of vector bases, even though every vector space has
one. Without a doubt, vector bases are important, but they really are a derived concept.
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Let A be an algebraic theory. We construct a category, which is also denoted
by A, as follows. As objects we take sequences of variables, called contexts,

[x1, . . . , xn] . (n ≥ 0)

A morphism from [x1, . . . , xm] to [x1, . . . , xn] is an n-tuple 〈t1, . . . , tn〉, where
each tk is a term of the theory whose variables are among x1, . . . , xm. Two
such morphisms 〈t1, . . . , tn〉 and 〈u1, . . . , un〉 are equal if, and only if, the axioms
of the theory imply that tk = uk for every k = 1, . . . , n.3 The composition of
morphisms

〈t1, . . . , tm〉 : [x1, . . . , xk]→ [x1, . . . , xm]

〈u1, . . . , un〉 : [x1, . . . , xm]→ [x1, . . . , xn]

is the morphism 〈v1, . . . , vn〉 whose i-th component is obtained by simultane-
ously substituting in ui the terms t1, . . . , tm for the variables x1, . . . , xm:

vi = ui[t1, . . . , tm/x1, . . . , xm] (1 ≤ i ≤ n)

The identity morphism on [x1, . . . , xn] is 〈x1, . . . , xn〉. Observe that the object
[x1, . . . , xn+m] is the product of [x1, . . . , xn] and [x1, . . . , xm] so that all finite
products exist. Furthermore, every object is a product of finitely many instances
of the object [x1].

The category A contains precisely the same “algebraic” information as the
theory A which it was built from. Thus we are lead to the following alternative
definition.

Definition 2.1.14 (cf. Definition 2.1.2) An algebraic theory A is a small
category with finite products whose objects form a sequence A0, A1, A2, . . . such
that Am × An = Am+n for all m,n ∈ N. In particular, 1 = A0 is the terminal
object and every object is a product of finitely many copies of A = A1.

An algebraic theory A in the sense of the above definition determines an
algebraic theory in the sense of Definition 2.1.2 as follows. As basic operations
with arity k we take the morphisms Ak → A. There is a canonical interpreta-
tion in A of terms built from variables and morphisms Ak → A, namely each
morphism is interpreted by itself. An equation u = v is taken as an axiom of
the theory A if the canonical interpretations of u and v coincide.

The new view of algebraic theories immediately suggest some interesting
examples.

Example 2.1.15 The algebraic theory C∞ of smooth maps is the category
whose objects are n-dimensional Euclidean spaces 1, R, R2, . . . , and whose

3Strictly speaking, morphisms are equivalence classes of terms, where two terms are equiv-
alent when the theory proves them to be equal. It is cumbersome to work with equivalence
classes of terms, so we prefer to work directly with terms but keep in mind that equality
between them is equality in the algebraic theory.
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morphisms are C∞-maps between them. Recall that a C∞-map f : Rn → R

is a function which has all higher partial derivatives, and that a function f :
Rn → Rm is a C∞-map when its compositions πk ◦ f : Rn → R with projections
πk : Rm → R are C∞-maps.

Example 2.1.16 Recall that a (total) recursive function f : Nm → Nn is one
that can be computed by a Turing machine. This means that there exists a
Turing machine which on input 〈a1, . . . , am〉 outputs the value of f〈a1, . . . , am〉.
The algebraic theory Rec of recursive functions is the category whose objects
are finite powers of the natural numbers 1, N, N

2, . . . , and whose morphisms are
recursive functions between them. The reason for considering this theory is that
its models in a category C with finite products give a a theory of computability
in C, cf. Example 2.1.25.

Example 2.1.17 In a category C with finite products every object A ∈ C de-
termines a full subcategory consisting of the finite powers 1, A,A2, A3, . . . and
morphisms between them. This is the theory of the object A.

Exercise 2.1.18 In Example 2.1.4 we saw that the theory S with no operations
and no axioms is the theory of a set. Prove that the corresponding category S is
equivalent to FinSetop where FinSet is the category of finite sets and functions.

2.1.4 Models of Algebraic Theories as Functors

Having successfully turned the notion of an algebraic theory into a special kind
of category, we naturally want to know what we can do about the notion of a
model.

Suppose A is a theory and M is a model of A in a category C. Then the
interpretation M determines a functor M : A → C from the corresponding
category A, defined on objects by

M [x1, . . . , xk] = (MA)k ,

and on morphisms by the following rules:

1. The morphism 〈xi〉 : [x1, . . . , xk] → [x1] is mapped to the i-th projection
πi : (MA)k →MA.

2. The morphism
〈f〈t1, . . . , tm〉〉 : [x1, . . . , xk]→ [x1]

is mapped to the composition

(MA)m
〈Mt1, . . . ,Mtm〉 // (MA)k

Mf // A

where Mti : (MA)n → MA is the value of M on the morphisms 〈ti〉 :
[x1, . . . , xk] → [x1], for i = 1, . . . ,m, and Mf is the interpretation of the
basic operation f .
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3. The morphism

〈t1, . . . , tm〉 : [x1, . . . , xk]→ [x1, . . . , xm]

is mapped to the morphism 〈Mt1, . . . ,Mtm〉 where Mti is the value of M
on the morphism 〈ti〉 : [x1, . . . , tk]→ [x1].

That M : A → C really is a functor follows from the assumption that the
interpretation M is a model, which means that all the equations of the theory
are satisfied by it. Observe that the functor M is defined in such a way that it
preserves finite products.

Suppose N : A → C is a functor from the category A that corresponds to
the theory A. When does it determine a model of the theory? Clearly, if N is
to be a model of a theory, then it must interpret variables as projections, N(xi :
[x1, . . . , xn] → [x1]) = πi, which only makes sense if N [x1, . . . , xn] = (N [x1])

n.
In other words, N must preserve finite products. But that is all that is required
because functoriality of N guarantees that all valid equations of the theory are
satisfied, so the axioms are certainly satisfied as well. Thus we see that models
of algebraic theories are just finite products preserving functors.

Definition 2.1.19 (cf. Definition 2.1.11) A model of an algebraic theory A

in a category C with finite products is a functor M : A → C which preserves
finite products.

So far we have not spoken of homomorphisms between models of an alge-
braic theory. Now a suitable notion presents itself: since models are functors,
homomorphisms between models are natural transformations.

Definition 2.1.20 Let A be an algebraic theory and let C be a category with
finite products. The category ModC(A) of A-models in C has as objects functors
M : A→ C that preserve finite products and as morphisms natural transforma-
tions between such functors.

Definition 2.1.21 An algebraic category is a category that is equivalent to a
category of models ModC(A) of an algebraic theory.

Example 2.1.22 At the beginning of this section we mentioned that the theory
of a field is not algebraic because inverse of 0 is undefined. In principle there
could be an equivalent algebraic formulation of the theory of a field which would
somehow circumvent this problem. We can now show that this is not the case
by proving that the category Field of fields and field homomorphisms is not
algebraic.

First observe that a category of models ModC(A) has a terminal object be-
cause C has a terminal object 1 and the constant functor ∆1 : A → C which
maps every context to 1 is a model. The functor ∆1 is the terminal object in
ModC(A) because it is the terminal functor in the functor category CA. Now in
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order to see that Field is not algebraic it is sufficient to show that there is no
terminal field, which was Exercise 1.6.2.

By the way, the solution to Exercise 1.6.2 goes as follows: if T were a terminal
field then by considering the unique homomorphism Z2 → T we see that 1+1 = 0
in T , and by the unique homomorphism Z3 → T we see that 1+1+1 = 0 in T ,
from which we get the impossibility 1 = 0.

Example 2.1.23 Let us see what the preceding definitions give us in the case
of group theory G. Recall that the category G consists of contexts [x1, . . . , xn]
and terms built from variables and the basic group operations. A finite product
preserving functor M : G→ Set is then determined up to natural isomorphism
by its action on the context [x1] and the terms representing the basic operations.
If we set

G = M [x1] , e = M(· | e) ,

i = M(x1 | x1
−1) , m = M(x1, x2 | x1 · x2) ,

then (G, e, i,m) is a just a group with unit e, inverse i and multiplication m.
That G satisfies the axioms for groups follows from functoriality of M . Con-
versely, any group (G, e, i,m) determines a finite product preserving functorMG :
G→ Set defined by

MG[x1, . . . , xn] = Gn , MG(· | e) ,

MG(x1 | x1
−1) = i , MG(x1, x2 | x1 · x2) = m .

This suggests that ModSet(G) is equivalent to Group, provided both categories
have the same notion of morphisms.

Suppose then that (G, eG, iG,mG) and (H, eH , iH ,mH) are groups, and let
φ : MG =⇒ MH be a natural transformation between the corresponding func-
tors. Then φ is already determined by its component at [x1] because by natu-
rality the following diagram commutes, for 1 ≤ k ≤ n:

Gn
φ[x1,...,xn]//

Gπk = πk

��

Hn

Hπk = πk

��
G

φ[x1]

// H

If we write φ′ = φ[x1] then it follows that φ[x1,...,xn] = φ′ × · · · × φ′. Again, by
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naturality of φ we see that the following diagram commutes:

G×G
φ′ × φ′ //

mG

��

H ×H

mh

��
G

φ′
// H

Similar commutative squares show that φ′ preserves the unit and commutes with
the inverse operation, therefore φ′ : G → H is indeed a group homomorphism.
Conversely, a group homomorphism ψ′ : G → H determines a natural trans-
formation ψ : G =⇒ H whose component at [x1, . . . , xn] is the n-fold product
ψ′ × · · ·ψ′ : Gn → Hn. This demonstrates that

ModSet(G) ≃ Group .

Example 2.1.24 Consider the theory C∞ of smooth maps from Example 2.1.15.
A model of this theory in Set is a finite product preserving functor A : C∞ → Set.
Up to natural isomorphism it can be described as follows. A C∞-model is given
by a set A and for every smooth map f : Rn → R a function Af : An → A such
that if f : Rn → R and gi : Rm → R, i = 1, . . . , n, are smooth maps then, for
all a1, . . . , am ∈ A,

Af((Ag1)〈a1, . . . , am〉, . . . , (Agn)〈a1, . . . , am〉) =

A(f ◦ 〈g1, . . . , gn〉)〈a1, . . . , am〉 .

In particular, since multiplication and addition are smooth maps, A is a com-
mutative ring with unit. Such structures are known as C∞-rings. Therefore,
the models in Set of the theory of smooth maps are the C∞-rings.

Example 2.1.25 In Example 2.1.16 we defined the algebraic theory Rec with
objects the finite powers of N and morphisms recursive functions. We now
consider the category of its set-theoretic models R = ModSet(Rec).

First, there is the “identity” model I ∈ R, defined by INk = Nk and If = f .
Given any model S ∈ R, its object part is determined by S1 = SN since
SNk = Sk1 . For every n ∈ N there is a morphism 1 → N in Rec defined by
⋆ 7→ n. Thus we have for each n ∈ N an element sn = S(⋆ 7→ n) : 1→ S1. This
defines a function s : N→ S1 which in turn determines a natural transformation
σ : I =⇒ S whose component at Nk is s× · · · × s : Nk → Sk1 .

2.1.5 Completeness and Universal Models

In the last section of this chapter we summarize our method of studying algebraic
theories. The same method will be used for studying other kinds of theories as
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well. We then conclude the chapter by proving that categorical semantics of
algebraic theories is complete.

Categorical logic has two sides, the logical and the categorical one. The
logical side is embodied in the notion of a logical system, which consists of four
parts:

Type theory
A logical system has a type theory, which is a calculus of types and
terms. For algebraic theories the calculus of types is trivial, since there
is only one type which is not even explicitly mentioned. The terms are
built from variables and basic operations.

Logic A logical system has a logic. A variety of different kinds of logic can be
considered. Algebraic theories have a very simple kind of logic that only
involves equations and equational reasoning.

Theory
A theory is given by basic types, basic terms, and axioms. The types
and the terms must be expressed in the type theory of the system, and
the axioms must be expressed in the logic of the system.

Interpretations and Models
The type theory and logic of a logical system can be interpreted in a cate-
gory with sufficiently rich structure. For algebraic theories we considered
categories with finite products. The interpretation is denotational, which
means that it is defined inductively on the structure of types, terms, and
logical formulas. An interpretation of a theory is a model if it satisfies
all the axioms of the theory.

The type theory or the logic of a logical system can be very simple. When the
logic is restricted to just equations between terms we usually speak of a type
theory rather than a logical system. When the type system is trivial, so that all
terms have the same type, we speak of of a single-sorted logic. On the other end
of the spectrum are complicated logical systems in which type theory and logic
are intertwined, for example in first-order logic over a dependent type theory
with subset and quotient types. It can also happen that the type-theoretic and
logical parts are identified, for example in Martin-Löf type theory.

Complementary to the logical system is its categorical semantics :

Theories are categories
From a theory we can construct a category which expresses essentially
the same information as the theory but hides syntactic details. The
structure of the category reflects the underlying type theory and logic.
For example, algebraic theories are categories that are sequences of finite
powers of an object.

Models are functors
A model is a functor from a theory to a category with sufficiently rich
structure. The requirement that all axioms of the theory must be sat-
isfied by a model then translates to the requirement that the model is
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a functor and that it preserves the structure of the theory. For models
of algebraic theories we only required that they preserve finite products,
whereas functoriality ensured that all valid equations of the theory, hence
also the axioms, were preserved.

Homomorphisms are natural transformations
We obtain a notion of homomorphisms between models for free: since
models are functors, homomorphisms are natural transformations be-
tween them. Homomorphisms between models of algebraic theories
turned out to be the usual notion of morphisms that preserved the al-
gebraic structure.

Completeness and universal models
It is desirable for a categorical semantics to be complete, or to even have
universal models. We explain what this means next.

Consider an algebraic theory A and an equation u = v of the theory. If the
equation can be proved from the axioms of the theory, then every model of the
theory satisfies the equation. The converse statement is

“Every model of A satisfies u = v.” =⇒ “A proves equation u = v.” .

This property is called semantic completeness. Models of algebraic theories are
semantically complete.

Theorem 2.1.26 (Completeness for algebraic theories) Suppose A is an
algebraic theory. Then there exists a category A and a model U ∈ ModA(A),
called the universal model for A, with the property that, for every equation u = v
of the theory A,

“U satisfies u = v.” ⇐⇒ “A proves u = v.”

Therefore, categorical semantics of algebraic theories is complete.

Proof. The algebraic theory A is a category with finite products, so for the
category A we can simply take A itself! The models of A in A = A are functors
A → A that preserve finite products. One such model is the identity functor
U = 1A : A → A. Clearly, the identity functor identifies two k-ary operations
f : Ak → A and g : Ak → A if, and only if, f = g.

Classically, when we speak of models of algebraic theories we have in mind
models in Set. Therefore, it is a bit unsatisfactory that the universal model
from the preceding theorem is not set-theoretic. Nevertheless, we can always
find a universal model in a category of generalized sets, namely in a presheaf
category.4

Proposition 2.1.27 Let A be an algebraic theory. The Yoneda embedding y :
A→ Â is a universal model for A.

4 Recall that the objects of a presheaf category SetC
op

are functors Cop → Set, which can
be thought of as sets parametrized by objects of C. In this sense they are generalized sets.
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Proof. The Yoneda embedding y : A→ Â preserves limits, and in particular
finite products, hence it is a model of A in Â. Because it is a functor it satisfies
all equations that are proved by A, and because it is faithful it does not validate
any equations that are not proved by A. In other words, it is a universal model.

Example 2.1.28 We consider group theory one last time. The universal group
is a group that satisfies every equation that is satisfied by all groups, and no
others. Let us describe it as a generalized set. Recall that the theory of a group
is a category G whose objects are contexts [x1, . . . , xn], n ∈ N. The carrier U of
the universal group is the Yoneda embedding of the context with one variable,

U = y[x1] = G(−, [x1]) .

This is a set parametrized by the objects of G. For every n ∈ N, we get a
set Un = G([x1, . . . , xn], [x1]) that consists of all terms built from n variables,
modulo equations of group theory—which is precisely the free group on n gen-
erators! Unit, inverse, and multiplication on U are defined at each stage Un as
the corresponding operations on the free group on n generators.

To summarize, the universal group is the free group on n-generators, where
n ∈ N is a parameter.

Exercise 2.1.29 The universal group U is a functor G
op → Set. In the last

example we described the object part of U . What is the action of U on mor-
phisms?

Exercise 2.1.30 Let s be a term of group theory with variables x1, . . . , xn.
On one hand we can think of s as an element of the free group Un, and on the
other we can consider the interpretation of s in the universal group U , namely
a natural transformation Us : Un =⇒ U . Suppose t is another term of group
theory with variables x1, . . . , xn. Show that Us = Ut if, and only if, s = t in
the free group Un.

2.2 Cartesian Closed Categories

2.2.1 Exponentials

We motivate the notion of exponentials with a couple of examples. Consider
first the category Poset of posets and monotone functions. For posets P and
Q the set Hom(P,Q) of all monotone functions between them is again a poset
with the pointwise order:

f ≤ g ⇐⇒ ∀x:P . fx ≤ gx . (f, g : P → Q)

We see that Hom(P,Q) is again an object of Poset, when equipped with a
suitable order.
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Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure
on Hom(K,M) defined by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

On the other hand, in the category of groups there seems to be no natural way of
defining a group structure on the set of all homomorphisms Hom(G,H) between
groups G and H because not all homomorphisms are bijections.

These examples suggest that there ought to be a general notion of “exponen-
tials” in a category. Speaking informally, the idea is that for objects A and B an
exponential BA is an “object of morphisms A → B” which corresponds to the
hom-set Hom(A,B). The other ingredient needed is an “evaluation” operation
e : BA ×A→ B which evaluates a morphism f ∈ BA at an argument x ∈ A to
give a value e〈f, x〉 ∈ B.

Definition 2.2.1 In a category C with binary products, an exponential (BA, e)
of objects A and B is an object BA together with a morphism e : BA×A→ B,
called the evaluation morphism, such that for every f : C ×A→ B there exists
a unique morphism f̃ : C → BA, called the transpose5 of f , for which the
following diagram commutes:

BA BA ×A

e

""E
EEEE

EEE
EEEE

E

C

f̃

OO

C ×A

f̃ × 1A

OO

f
// B

The commutativity of the above diagram means that f = e ◦ (f̃ × 1A).

The above condition is called the universal property of exponentials. It is
just the category-theoretic way of saying that a function f : C ×A→ B of two
variables can be viewed as a function f̃ : C → BA of one variable that maps
z ∈ C to a function f̃z = f〈z,−〉 : A → B that maps x ∈ A to f〈z, x〉. The

relationship between f and f̃ is then

f〈z, x〉 = (f̃ z)x .

That is all there is to it, really, except that variables and elements are never
mentioned. The benefit of this is that the definition is completely general and
applicable in categories whose objects are not sets.

In Poset the exponential QP of posets P and Q is the set of all monotone
maps P → Q, ordered pointwise. The evaluation map e : QP×P → Q is just the
usual evaluation of a function at an argument. The transpose of a monotone
map f : R × P → Q is the map f̃ : R → QP , defined by, (f̃ z)x = f〈z, x〉.
Therefore, Poset has all exponentials.

5Also, f is called the transpose of ef , so that f and ef are each other’s transpose.
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An object A ∈ C is exponentiable when the exponent BA exists for every B ∈
C. Sometimes, an object B ∈ C is called baseable when the exponent BA exists
for every A ∈ C.

Proposition 2.2.2 In a category C with binary products an object A is expo-
nentiable if, and only if, the functor

−×A : C → C

has a right adjoint
−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is
(BA, εB), where ε : −A×A =⇒ 1C is the counit of the adjunction. The universal
property of the exponential is precisely the universal property of the counit ε.

Conversely, suppose for every B there is an exponential (BA, εB). The object
part of the right adjoint is BA. For the morphism part, given g : B → C, we
define gA : BA → CA to be the transpose of g ◦ εB,

gA = (g ◦ εB)∼ .

We use the formulation of adjoints by counit, cf. Proposition 1.5.5, to show that
− ×A ⊣ −A. The counit ε : −A × A =⇒ 1C at B is εB. The naturality square
for ε,

BA ×A
εB //

fA × 1A

��

B

f

��
CA ×A εC

// C

commutes because it is just the defining property of (f ◦ εB)∼:

εC ◦ (fA × 1A) = εC ◦ ((f ◦ εB)∼ × 1A) = f ◦ εB .

The universal property of counit ε is precisely the universal property of the
exponentials.

Because exponentials are expressed as right adjoints to binary products, they
are determined uniquely up to isomorphism.

Example 2.2.3 Consider propositional calculus P with conjunction and im-
plication, as in Subsection 1.5.1. Recall that P is the set of all propositions
constructed from propositional variables, truth ⊤, falsehood ⊥, conjunction ∧,
and implication =⇒. It is a preorder under the logical entailment relation ⊢.
We saw already that implication is right adjoint to conjunction,

(− ×A) ⊣ (A =⇒ −) . (2.2)
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A conjunction A ∧ B is a greatest lower bound of A and B, because we have,
A ∧B ⊢ A, A ∧B ⊢ B, and for all propositions C,

if C ⊢ A and C ⊢ B then C ⊢ A ∧B.

Since in a preorder binary products are the same thing as greatest lower bounds,
we see that conjunction is a binary product. Therefore, its right adjoint impli-
cation, is the exponential in P. The counit of the adjunction, or equivalently,
the “evaluation” morphism, is the entailment

(A =⇒ B) ∧A ⊢ B ,

which is the well known logical rule of modus ponens. This provides further
evidence that concepts in logic arise as adjoints and their related notions.

Exercise 2.2.4 What is the unit of adjunction (2.2) in logical terms?

2.2.2 Cartesian Closed Categories

Definition 2.2.5 A cartesian category is a category that has finite products.

Definition 2.2.6 A cartesian closed category (ccc) is a category that has finite
products and exponentials.

Equivalently, we could require the existence of the terminal object, binary
products, and exponentials. The definition of cartesian closed categories can be
phrased in terms of adjoint functors.

Proposition 2.2.7 A category C is cartesian closed if, and only if, the following
functors have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,

(− ×A) : C → C . (A ∈ C)

Proof. Here !C is the unique functor from C to the terminal category 1, and
∆ is the diagonal functor,

∆A = 〈A,A〉 , ∆f = f × f .

The right adjoint of !C is a terminal object, the right adjoint of ∆ is the binary
product, and the right adjoint of −×A is exponentiation by A.
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We give a third formulation of cartesian closed categories, in terms of equa-
tions. A category C is cartesian closed if, and only if, it has the following
structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A×B for all A,B ∈ C together with morphisms πA,B0 : A×B →

A and πA,B1 : A × B → B, and for every pair of morphisms f : C → A,
g : C → B a morphism 〈f, g〉 : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism eA,B : BA×A→

B, and a morphism f̃ : C → BA for every morphism f : C ×A→ B.

We usually write π0 and π1 instead of πA,B0 and πA,B1 . For morphisms f : A→ B
and g : A′ → B′ we define f × g : A× A′ → B ×B′ to be

f × g = 〈f ◦ πA,A
′

0 , g ◦ πA,A
′

1 〉 .

The types and morphisms satisfy the following equations:

1. For every f : A→ 1,
f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π0 ◦ 〈f, g〉 = f , π1 ◦ 〈f, g〉 = g , 〈π0 ◦ h, π1 ◦ h〉 = h .

3. For all f : C ×A→ B, g : C → BA,

eA,B ◦ (f̃ × 1A) = f , (eA,B ◦ (g × 1A))∼ = g .

These equations ensure that certain diagrams commute and that morphisms
which are required to exist are unique. For example, let us prove that (A ×
B, π0, π1) is the product of A and B. For f : C → A and g : C → B there exists
a morphism 〈f, g〉 : C → A×B. Equations

π0 ◦ 〈f, g〉 = f and π1 ◦ 〈f, g〉 = g

enforce the commutativity of the two triangles in the following diagram:

C

f

""D
DD

DD
DD

DD
DD

DD

g

||zzz
zz

zz
zz

zz
zz

〈f, g〉

��
A A×Bπ0

oo
π1

// B

Suppose h : C → A×B is another morphism such that f = π0◦h and g = π1◦h.
Then by the third equation for products we get

h = 〈π0 ◦ h, π1 ◦ h〉 = 〈f, g〉 ,

and so 〈f, g〉 is unique.

We now look at examples of cartesian closed categories.
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Example 2.2.8 The first example is the category Set. We already know that
the terminal object is a singleton set and that binary products are cartesian
products. The exponential of X and Y in Set is the set of all functions from X
to Y ,6

Y X =
{
f ⊆ X × Y

∣∣ ∀x:X . ∃! y:Y . 〈x, y〉 ∈ f
}
,

and the evaluation morphism e : Y X × X → Y is the usual evaluation of a
function at an argument, i.e., e〈f, x〉 is the unique y ∈ Y for which 〈x, y〉 ∈ f .

Example 2.2.9 The category Cat of all small categories is cartesian closed.
The exponential of small categories C and D is the functor category DC , cf. iso-
morphism 1.4 on page 17.

Example 2.2.10 A presheaf category Ĉ is cartesian closed, provided C is small.
To see what the exponential of presheaves P and Q ought to be, we use Yoneda
Lemma. If QP exists, then by Yoneda Lemma and the adjunction (− × P ) ⊣
(−P ), we have for all A ∈ C,

QPA ∼= Nat(yA,QP ) ∼= Nat(yA× P,Q) .

Because C is small Nat(yA × P,Q) is a set, so we can define QP to be the
presheaf

QP = Nat(y−× P,Q) .

The evaluation morphism E : QP × P =⇒ Q is the natural transformation
whose component at A is

EA : Nat(yA× P,Q)× PA→ QA ,

EA : 〈η, x〉 7→ ηA〈1A, x〉 .

The transpose of a natural transformation φ : R × P =⇒ Q is the natural
transformation φ̃ : R =⇒ QP whose component at A is the function that maps
z ∈ RA to the natural transformation φ̃Az : yA × P =⇒ Q, whose component
at B ∈ C is

(φ̃Az)B : C(B,A)× PB → QB ,

(φ̃Az)B : 〈f, y〉 7→ φB〈(Rf)z, y〉 .

Exercise 2.2.11 Verify that the above definition of QP really gives an expo-
nential of presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed
because it is the presheaf category Set·⇉·.

We have already seen that the exponential of posets P and Q is the poset
QP of monotone functions from P to Q, ordered pointwise. Therefore Poset

is cartesian closed. It is worth noting that even though the forgetful func-
tor U : Poset→ Set preserves finite limits, it does not preserve exponentials; in
general U(QP ) is a proper subset of (UQ)UP .

6In set theory, a function is the same thing as a functional relation.
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Exercise 2.2.12 There is a full and faithful functor I : Set→ Poset. Describe
it and show that it preserves finite limits as well as exponentials.

Exercise 2.2.13 This exercise is for students with some background in linear
algebra. Let Vec be the category of real vector spaces and linear maps between
them. Given vector spaces X and Y , the linear maps L(X,Y ) between them
form a vector space. So define L(X,−) : Vec → Vec to be the functor which
maps a vector space Y to the vector space L(X,Y ), and it maps a linear map
f : Y → Z to the linear map L(X, f) : L(X,Y )→ L(X,Z) defined by h 7→ f ◦h.
Show that L(X,−) has a left adjoint −⊗X , but this adjoint is not the binary
product in Vec.

Next we consider two important categories of cartesian closed posets—frames
and Heyting algebras. They play an important role in logic and frames are
important for topology, too.

2.2.3 Frames

A poset (P,≤), viewed as a category, is cocomplete when it has suprema (least
upper bounds) of arbitrary subsets. This is so because coequalizers in a poset
always exist, and coproducts are precisely least upper bounds. Recall that the
supremum of S ⊆ P is an element

∨
S ∈ P such that, for all y ∈ S,

∨
S ≤ y ⇐⇒ ∀x:S . x ≤ y .

In particular,
∨
∅ is the least element of P and

∨
P is the greatest element

of P . Similarly, a poset is complete when it has infima (greatest lower bounds)
of arbitrary subsets; the infimum of S ⊆ P is an element

∧
S ∈ P such that,

for all y ∈ S,
y ≤

∧
S ⇐⇒ ∀x:S . y ≤ x .

Proposition 2.2.14 A poset is complete if, and only if, it is cocomplete.

Proof. Infima and suprema are expressed in terms of each other as follows:
∧
S =

∨ {
y ∈ P

∣∣ ∀x:S . y ≤ x
}
,

∨
S =

∧ {
y ∈ P

∣∣ ∀x:S . x ≤ y
}
.

Thus, we usually speak of complete posets only, even when we work with
arbitrary suprema.

Suppose P is a complete poset. When is it cartesian closed? Being a com-
plete poset, it has the terminal object, namely the greatest element 1 ∈ P , and
it has binary products which are binary infima. If P is cartesian closed then
for all x, y ∈ P there exists an exponential (x⇒ y) ∈ P , which satisfies, for all
z ∈ P ,

z ∧ x ≤ y

z ≤ x⇒ y
.
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With the help of this adjunction we derive the infinite distributive law, for an
arbitrary family

{
yi ∈ P

∣∣ i ∈ I
}
,

x ∧
∨
i∈I yi =

∨
i∈I(x ∧ yi) (2.3)

as follows:
x ∧

∨
i∈I yi ≤ z

∨
i∈I yi ≤ (x⇒ z)

∀ i:I . (yi ≤ (x⇒ z))

∀ i:I . (x ∧ yi ≤ z)
∨
i∈I(x ∧ yi) ≤ z

Now since x∧
∨
i∈I yi and

∨
i∈I(x∧ yi) have the same upper bounds they must

be equal.
Conversely, suppose the distributive law (2.3) holds. Then we can define

x⇒ y to be

(x⇒ y) =
∨ {

z ∈ P
∣∣ x ∧ z ≤ y

}
. (2.4)

The best way to show that x ⇒ y is the exponential of x and y is to use the
characterization of adjoints by counit, as in Proposition 1.5.5. In the case of ∧
and ⇒ this amounts to showing that, for all x, y ∈ P ,

x ∧ (x⇒ y) ≤ y , (2.5)

and that, for z ∈ P ,

(x ∧ z ≤ y) =⇒ (z ≤ x⇒ y) .

This implication follows directly from (2.4), and (2.5) follows from the distribu-
tive law:

x ∧ (x⇒ y) = x ∧
∨ {

z ∈ P
∣∣ x ∧ z ≤ y

}
=

∨ {
x ∧ z

∣∣ x ∧ z ≤ y
}
≤ y .

Complete cartesian closed posets are called frames.

Definition 2.2.15 A frame is a poset that is complete and cartesian closed.
Equivalently, a frame is a complete poset satisfying the distributive law

x ∧
∨
i∈I yi =

∨
i∈I(x ∧ yi) .

A frame morphism is a function f : L→M between frames that preserves finite
infima and arbitrary suprema. The category of frames and frame morphisms is
denoted by Frame.

Example 2.2.16 The topology OX of a topological space X , ordered by inclu-
sion, is a frame because finite intersections and arbitrary unions of open sets are
open. The distributive law holds because intersections distribute over unions.
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If f : X → Y is a continuous map between topological spaces, the inverse image
map f∗ : OY → OX is a frame homomorphism. Thus, there is a functor

O : Top→ Frameop

which maps a space X to its topology OX and a continuous map f : X → Y
to the inverse image map f∗ : OY → OX .

The category Frameop is called the category of locales and is denoted by Loc.
When we think of a frame as an object of Loc we call it a locale.

Exercise∗ 2.2.17 This exercise is meant for students with some background
in topology. For a topological space X and a point x ∈ X , let N(x) be the
neighborhood filter of x,

N(x) =
{
U ∈ OX

∣∣ x ∈ U
}
.

Recall that a T0-space is a topological space X in which points are determined
by their neighborhood filters,

N(x) = N(y) =⇒ x = y . (x, y ∈ X)

Let Top0 be the full subcategory of Top on T0-spaces. The functorO : Top→ Loc

restricts to a functor O : Top0 → Loc. Prove that O : Top0 → Loc is a faithful
functor. Is it full?

2.2.4 Heyting Algebras

A lattice is a poset that has finite limits and colimits. In other words, a lattice
(L,≤,∧,∨, 0, 1) is a poset (L,≤) with distinguished elements 0, 1 ∈ L, and
binary operations meet ∧ and join ∨, satisfying for all x, y, z ∈ L,

0 ≤ x ≤ 1
z ≤ x z ≤ y

z ≤ x ∧ y

x ≤ z x ≤ y

x ∨ y ≤ z

A lattice homomorphism is a function f : L → K between lattices which pre-
serves finite limits and colimits, i.e., f0 = 0, f1 = 1, f(x ∧ y) = fx ∧ fy, and
f(x ∨ y) = fx ∨ fy. The category of lattices and lattice homomorphisms is
denoted by Lat.

A lattice can be axiomatized equationally as a set with two distinguished
elements 0 and 1 and two binary operations ∧ and ∨, satisfying the following
equations:

(x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,

x ∧ y = y ∧ x , x ∨ y = y ∨ x ,

x ∧ x = x , x ∨ x = x ,

1 ∧ x = x , 0 ∨ x = x ,

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x .

(2.6)
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The partial order on L is then determined by

x ≤ y ⇐⇒ x ∧ y = x .

Exercise 2.2.18 Show that in a lattice x ≤ y if, and only if, x ∧ y = x if, and
only if, x ∨ y = y.

A lattice is distributive if the following distributive laws hold in it:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) ,

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .
(2.7)

It turns out that if one distributive law holds then so does the other [Joh82,
I.1.5].

A Heyting algebra is a cartesian closed lattice H . This means that it has an
operation ⇒, satisfying for all x, y, z ∈ H

z ∧ x ≤ y

z ≤ x⇒ y

A Heyting algebra homomorphism is a lattice homomorphism f : K → H be-
tween Heyting algebras that preserves implication, i.e., f(x⇒ y) = (fx⇒ fy).
The category of Heyting algebras and their homomorphisms is denoted by Heyt.

A Heyting algebra can be axiomatized equationally as a set H with two
distinguished elements 0 and 1 and three binary operations ∧, ∨ and ⇒. The
axioms for a Heyting algebra are the ones listed in (2.6), as well as the following
ones for ⇒:

(x⇒ x) = 1 ,

x ∧ (x⇒ y) = x ∧ y ,

y ∧ (x⇒ y) = y ,

(x⇒ (y ∧ z)) = (x⇒ y) ∧ (x⇒ z) .

(2.8)

For a proof, see [Joh82, I.1.10].
It turns out that every Heyting algebra is distributive [Joh82, I.1.11].
Every frame is a Heyting algebra because it has all limits and colimits,

therefore also the finite ones.

2.2.5 Intuitionistic Propositional Calculus

There is a forgetful functor U : Heyt→ Set which maps a Heyting algebra to its
underlying set, and it maps a morphism of Heyting algebras to the underlying
function. Because Heyting algebras are an equational theory there is a left
adjoint H ⊣ U which is the usual “free” construction that maps a set S to the
free Heyting algebra HS generated by it. The construction of HS is performed
in two steps: first we define a setHS of formal expressions, and then we quotient
it by an equivalence relation generated by the axioms for Heyting algebras.

So let HS by the set of formal expressions generated inductively by the
following rules:
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1. Constants: ⊥,⊤ ∈ HS.

2. Generators: if x ∈ S then x ∈ HS.

3. Connectives: if φ, ψ ∈ HS then φ ∧ ψ, φ ∨ ψ, φ⇒ ψ ∈ HS.

We impose an equivalence relation on HS, which we write as equality = and
think of it as such, to be the smallest equivalence relation satisfying axioms (2.6)
and (2.8). This forces HS to be a Heyting algebra. We still need to define the
action of H on morphisms: a function f : S → T is mapped to the Heyting
algebra morphism Hf : HS → HT defined by

(Hf)⊥ = ⊥ , (Hf)⊥ = ⊥ , (Hf)x = fx ,

(Hf)(φ ⋆ ψ) = ((Hf)φ) ⋆ ((Hf)ψ) ,

where ⋆ stands for ∧, ∨ or ⇒.
There is an inclusion ηS : S → U(HS) of generators into the underlying set

of HS. In fact we get a natural transformation η : 1Set =⇒ U ◦ H which is
the unit of the adjunction H ⊣ U . To see this, consider a Heyting algebra K
and an arbitrary function f : S → UK. Then the Heyting algebra morphism
f : HS → K defined by

f⊥ = ⊥ , f⊥ = ⊥ , fx = fx ,

f(φ ⋆ ψ) = (fφ) ⋆ (fψ) ,

where ⋆ stands for ∧, ∨ or ⇒, makes the following triangle commute:

S
ηS //

f
""D

DD
DD

DD
DD

DD
DD

D U(HS)

Uf

��
K

It is a unique such morphism because any two morphisms from HS which agree
on generators are equal. This is proved by induction on the structure of formal
expressions in HS.

We may now define the intuitionistic propositional calculus (IPC) to be
the free Heyting algebra IPC on countably many generators p0, p1, . . . , called
atomic propositions or propositional variables. This is a somewhat unorthodox
definition from a logician’s point of view—normally a calculus consists of a
language, judgments, and rules of inference—but here we want to emphasize
the idea that objects of interest, even when they are syntactically constructed,
are characterized by their universal properties.

Having said that, let us also describe IPC in the usual way. The formulas
of IPC are built inductively from propositional variables p0, p1, . . . , constants
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falsehood ⊥ and truth ⊤, and binary operations conjunction ∧, disjunction ∨
and implication ⇒. In IPC the basic judgment is logical entailment

u1:A1, . . . , uk:Ak ⊢ B

which means “hypotheses A1, . . . , Ak entail proposition B”. The hypotheses
are labeled with distinct labels u1, . . . , uk so that we can distinguish them,
which is important when the same hypothesis appears more than once. Because
the hypotheses are labeled it is irrelevant in what order they are listed, as long
as the labels are not getting mixed up. Thus, the hypotheses u1:A∨B, u2:B are
the same as the hypotheses u2:B, u1:A ∨ B, but different from the hypotheses
u1:B, u2:A ∨B. Sometimes we do not bother to label the hypotheses.

The left-hand side of a logical entailment is called the context and the right-
hand side is the conclusion. Thus logical entailment is a relation between con-
texts and conclusions. The context may be empty. If Γ is a context, u is a label
which does not occur in Γ, and A is a formula, then we write Γ, u:A for the
context Γ extended by the hypothesis u:A. Logical entailment is the smallest
relation satisfying the following rules:

1. Conclusion from a hypothesis:

Γ ⊢ A
if u:A occurs in Γ

2. Truth:

Γ ⊢ ⊤

3. Falsehood:
Γ ⊢ ⊥

Γ ⊢ A

4. Conjunction:

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B

Γ ⊢ A ∧B

Γ ⊢ A

Γ ⊢ A ∧B

Γ ⊢ B

5. Disjunction:

Γ ⊢ A

Γ ⊢ A ∨B

Γ ⊢ B

Γ ⊢ A ∨B

Γ ⊢ A ∨B Γ, u:A ⊢ C Γ, v:B ⊢ C

Γ ⊢ C

6. Implication:
Γ, u:A ⊢ B

Γ ⊢ A⇒ B

Γ ⊢ A⇒ B Γ ⊢ A

Γ ⊢ B

A proof of Γ ⊢ A is a finite tree built from the above inference rules whose
root is Γ ⊢ A. For example, here is a proof of A ∨B ⊢ B ∨A:

A ∨B ⊢ A ∨B
A ∨B,A ⊢ A

A ∨B,A ⊢ B ∨A
A ∨B,B ⊢ B

A ∨B,B ⊢ B ∨A
A ∨B ⊢ B ∨A
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We did not bother to label the hypotheses. A judgment Γ ⊢ A is provable if
there exists a proof of it. Observe that every proof has at its leaves either the
rule for ⊤ or a conclusion from a hypothesis.

You may wonder what happened to negation. In intuitionistic propositional
calculus, negation is defined in terms of implication and falsehood as

¬A ≡ A⇒ ⊥ .

Properties of negation are then derived from the rules for implication and false-
hood, see Exercise 2.2.22

Let P be the set of all formulas of IPC, preordered by the relation

A ⊢ B , (A,B ∈ P )

where we did not bother to label the hypothesis A. Clearly, it is the case that
A ⊢ A. To see that ⊢ is transitive, suppose Π1 is a proof of A ⊢ B and Π2 is a
proof of B ⊢ C. Then we can obtain a proof of A ⊢ C from a proof Π2 of B ⊢ C
by replacing in it each use of the hypothesis B by the proof Π1 of A ⊢ B. This
is worked out in detail in the next two exercises.

Exercise 2.2.19 Prove the following statement by induction on the structure
of the proof Π: if Π is a proof of Γ, u:A, v:A ⊢ B then there is a proof of
Γ, u:A ⊢ B.

Exercise 2.2.20 Prove the following statement by induction on the structure
of the proof Π2: if Π1 is a proof of Γ ⊢ A and Π2 is a proof of Γ, u:A ⊢ B, then
there is a proof of Γ ⊢ B.

Let IPC be the poset reflection of the preorder (P,⊢). The elements of IPC are
equivalence classes [A] of formulas, where two formulas A and B are equivalent
if both A ⊢ B and B ⊢ A are provable. The poset IPC is just the free Heyting
algebra on countably many generators p0, p1, . . .

2.2.6 Boolean Algebras

An element x ∈ L of a lattice L is said to be complemented when there exists
y ∈ L such that

x ∨ y = 1 , x ∧ y = 0 .

We say that y is the complement of x.
In a distributive lattice, the complement of x is unique if it exists. Indeed,

if both y and z are complements of x then

y ∧ z = (y ∧ z) ∨ 0 = (y ∧ z) ∨ (y ∧ x) = y ∧ (z ∨ x) = y ∧ 1 = y ,

hence y ≤ z. A symmetric argument shows that z ≤ y, therefore y = z. The
complement of x, if it exists, is denoted by ¬x.
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A Boolean algebra is a distributive lattice in which every element is comple-
mented. In other words, a Boolean algebra B has the complementation opera-
tion ¬ which satisfies, for all x ∈ B,

x ∧ ¬x = 0 , x ∨ ¬x = 1 . (2.9)

The full subcategory of Lat consisting of Boolean algebras is denoted by Bool.

Exercise 2.2.21 Prove that every Boolean algebra is a Heyting algebra. Hint:
how is implication encoded in terms of negation and disjunction in classical
logic?

In a Heyting algebra not every element is complemented. However, we can
still define a pseudo complement or negation operation ¬ by

¬x = (x⇒ 0) ,

Then ¬x is the largest element for which x∧¬x = 0. While in a Boolean algebra
¬¬x = x, in a Heyting algebra we only have ¬¬x ≤ x in general. An element x
of a Heyting algebra for which ¬¬x = x is called a regular element.

Exercise 2.2.22 Derive the following properties of negation in a Heyting alge-
bra:

x ≤ ¬¬x ,

¬x = ¬¬¬x ,

x ≤ y =⇒ ¬y ≤ ¬x ,

¬¬(x ∧ y) = ¬¬x ∧ ¬¬y .

Exercise 2.2.23 The topology OX of a topological space X is a frame, there-
fore a Heyting algebra. Describe in topological language negation on OX and
regular elements in OX .

Exercise 2.2.24 Show that for a Heyting algebra H , the regular elements of H
form a Boolean algebra H¬¬ =

{
x ∈ H

∣∣ x = ¬¬x
}
. Here H¬¬ is viewed as a

subposet of H . Hint: negation ¬′, conjunction ∧′, and disjunction ∨′ in H¬¬

are expressed as follows in terms of negation, conjunction and disjunction in H ,
for x, y ∈ H¬¬:

¬′x = ¬x , x ∧′ y = ¬¬(x ∧ y) , x ∨′ y = ¬¬(x ∨ y) .

The classical propositional calculus (CPC) is obtained from the intuitionistic
propositional calculus by the addition of the logical rule known as tertium non
datur, or the law of excluded middle:

Γ ⊢ A ∨ ¬A
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Alternatively, we could add the law known as reductio ad absurdum, or proof by
contradiction:

Γ ⊢ ¬¬A

Γ ⊢ A
.

If we identify logically equivalent formulas of CPC we obtain a poset CPC or-
dered by logical entailment. This poset can be described by a universal property:
it is the free Boolean algebra on countably many generators. The construction
of a free Boolean algebra is performed just like the construction of a free Heyt-
ing algebra. The equational axioms for a Boolean algebra are the axioms for a
lattice (2.6), the distributive laws (2.7), and the complement laws (2.9).

Exercise∗ 2.2.25 Is CPC isomorphic to the Boolean algebra IPC¬¬ of the reg-
ular elements of IPC?

Exercise 2.2.26 Show that in a Heyting algebra H , ¬¬x = x for all x ∈ H if,
and only if, y ∨ ¬y = 1 for all y ∈ H . Hint: half of the equivalence is easy. For
the other half, observe that the assumption ∀x:H .¬¬x = x means that double
negation is an order-reversing bijection H → H . Therefore it transforms joins
into meets and vice versa, and so De Morgan laws hold:

¬(x ∧ y) = ¬x ∨ ¬y , ¬(x ∨ y) = ¬x ∧ ¬y .

De Morgan laws together with y ∧ ¬y = 0 easily imply y ∨ ¬y = 1. See [Joh82,
I.1.11].

2.3 Simply Typed λ-calculus

The λ-calculus is the abstract theory of functions, just like group theory is the
abstract theory of symmetries. There are two basic operations that can be
performed with functions. The first one is the application of a function to an
argument: if f is a function and a is an argument, then fa is the application
of f to a. The second operation is abstraction: if x is a variable and t is an
expression in which x may appear, then there is a function f defined by

fx = t .

Here we gave the name f to the newly formed function. But we could have
expressed the same function without giving it a name; this is usually written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation,
which is more convenient when abstractions are nested:

λx. t .
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This operation is called λ-abstraction.7 For example, λx. λy. (x+ y) is the func-
tion which maps an argument a to the function λy. (a+ y).

In an expression λx. t the variable x is bound in t. This means that we can
rename it and we still have the same λ-abstraction. For example, λx. λy. (x+ y),
λu. λy. (u+ y), and λu. λx. (u+ x) are all the same λ-abstraction. This is sim-
ilar to bound variables in integrals, summations, and quantified formulas:

∫
1

1 + ax2
dx ,

∞∑

k=1

1

kn
, ∃u:A .P (u, v) .

The bound variables are x, k, and u, respectively. The other variables, a, n
and v, are free. If t is an expression then we denote by FV(t) the set of free
variables of t. The fact that λ-abstraction binds a variable is expressed by the
rules for computing FV(t):

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a constant

FV(t u) = FV(t) ∪ FV(u)

FV(λx. t) = FV(t) \ {x} .

When we rename a bound variable, or substitute for a free one, we must be
careful not to capture any variables. For example, if we want to substitute 1+ z
for y in the expression

λx. λz. (x+ y + z) ,

then we must first rename the bound variable z, say to w, and only then sub-
stitute:

λx. λw. (x+ 1 + z + w) .

If we substituted directly, we would get λx. λz. (x+ 1 + z + z), which is not
what was intended because z was captured by the λ-abstraction.

There are two kinds of λ-calculus, the typed and the untyped one. In the
untyped version there are no restrictions on how application is formed, so that
an expression such as

λx. (xx)

is valid, whatever it means. In typed λ-calculus every expression has a type,
and there are rules for forming valid expressions and types. For example, we
can only form an application f, a when a has a type A and f has a type A→ B,
which indicates a function taking arguments of type A and giving results of
type B. The judgment that expression t has a type A is written as

t : A .

7Why is the letter λ used? The notation goes back to Alonzo Church. We have it on good
authority that once professor Church was sent a postcard asking him “Why λ?” He wrote
the answer onto the same postcard and returned it. The answer was this: “enie menie miney
mo”.
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To computer scientists the idea of expressions having types is familiar from
programming languages, whereas mathematicians can think of types as sets and
read t : A as t ∈ A. In these notes we will concentrate on the typed λ-calculus.

We now give a precise definition of what constitutes a simply-typed λ-calculus.
First, we are given a set of basic types. We express the fact that A is a basic
type with an axiom

A type

which is read as “A is a type”. There is a unit type 1:

1 type

We can also form product types and function types :

A type B type

A×B type

A type B type

A→ B type

To summarize, the set of all types is generated from the basic types and the unit
type 1 by formation of product and function types. Function types associate to
the right:

A→ B → C ≡ A→ (B → C) .

We assume there is a countable set of variables x, y, u, . . . We are also given
a set of basic constants. The set of terms is generated from the basic constants
by the following grammar:

t :: = [var]
∣∣ [const]

∣∣ ∗
∣∣ 〈t, t′〉

∣∣ fst t
∣∣ snd t

∣∣ t t′
∣∣ λx:A . t

In words, this means:

1. a variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if u and t are terms then 〈u, t〉 is a term, called a pair,

5. if t is a term then fst t and snd t are terms,

6. if u and t are terms then u t is a term, called an application

7. if x is a variable, A is a type, and t is a term, then λx:A . t is a term, called
a λ-abstraction.
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The variable x is bound in λx:A . t. Application associates to the left, thus
s t u = (s t)u. The free variables FV(t) of a term t are computed as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(〈u, t〉) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

If u and t are terms and x is a variable, then we obtain a new term t[u/x] by
substitution of u for x in t. This means that we replace every free occurrence
of x in t by u. If u has any free variables, we must make sure that they are
not captured by the bound variables in t. This is accomplished by renaming
the bound variables in t so that they are disjoint from the free variables in u.
Assuming that this is the case, the rules for substitution are as follows:

x[u/x] = u

y[u/x] = y if x 6= y

a[u/x] = a if a is a basic constant

〈s, t〉[u/x] = 〈s[u/x], t[u/x]〉

fst t[u/x] = fst (t[u/x])

snd t[u/x] = snd (t[u/x])

(s t)[u/x] = (s[u/x])(t[u/x])

(λy:A . t)[u/x] = λy:A . (t[u/x]) if x 6= y and y 6∈ FV(u)

If x1, . . . , xn are distinct variables and A1, . . . , An are types then the
sequence

x1:A1, . . . , xn:An

is a typing context, or just context. The empty sequence is sometimes denoted
by a dot ·, and it is a valid context. Context are denoted by capital Greek
letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition the free variables
of t must occur in Γ, but Γ may contain other variables as well. We read the
above judgment as “in context Γ the term t has type A”. Next we describe the
rules for deriving typing judgments.

Each basic constant a has a uniquely determined type A,

Γ | a : A
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The type of a variable is determined by the context:

x1:A1, . . . , xi:Ai, . . . , xn:An | xi : Ai
(1 ≤ i ≤ n)

The constant ∗ has type 1:

Γ | ∗ : 1

The typing rules for pairs and projections are:

Γ | u : A Γ | t : B

Γ | 〈u, t〉 : A×B

Γ | t : A×B

Γ | fst t : A

Γ | t : A×B

Γ | snd t : B

The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | u : A

Γ | t u : B

Γ, x:A | t : B

Γ | (λx:A . t) : A→ B

Lastly, we have equations between terms; for terms of type A in context Γ,

Γ | u : A , Γ | t : B ,

the judgment that they are equal is written as

Γ | u = t : A .

Note that u and t necessarily have the same type; it does not make sense to
compare terms of different types. We have the following rules for equations:

1. Equality is an equivalence relation:

Γ | t = t : A

Γ | t = u : A

Γ | u = t : A

Γ | t = u : A Γ | u = v : A

Γ | t = v : A

2. The weakening rule:
Γ | u = t : A

Γ, x:B | u = t : A

3. Unit type:

Γ | t = ∗ : 1

4. Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | 〈u, s〉 = 〈v, t〉 : A×B

Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B

Γ | snd s = snd t : A

Γ | t = 〈fst t, snd t〉 : A×B

Γ | fst 〈u, t〉 = u : A Γ | snd 〈u, t〉 = t : A
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5. Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x:A | t = u : B

Γ | (λx:A . t) = (λx:A . u) : A→ B

Γ | (λx:A . t)u = t[u/x] : A
(β-rule)

Γ | λx:A . (t x) = t : A→ B
if x 6∈ FV(t) (η-rule)

This completes the description of a simply-typed λ-calculus.
Apart from the above rules for equality we might want to impose additional

equations. In this case we do not speak of a λ-calculus but rather of a λ-theory.
Thus, a λ-theory T is given by a set of basic types, a set of basic constants, and
a set of equations of the form

Γ | u = t : A .

We summarize the preceding definitions.

Definition 2.3.1 A simply-typed λ-calculus is given by a set of basic types and
a set of basic constants together with their types. A simply-typed λ-theory is a
simply-typed λ-calculus together with a set of equations.

We use letters S, T, U, . . . to denote theories.

Example 2.3.2 The theory of a group is a simply-typed λ-theory. It has one
basic type G and three basic constant, the unit e, the inverse i, and the group
operation m,

e : G , i : G→ G , m : G× G→ G ,

with the following equations:

x : G | m〈x, e〉 = x : G

x : G | m〈e, x〉 = x : G

x : G | m〈x, i x〉 = e : G

x : G | m〈i x, x〉 = e : G

x : G, y : G, z : G | m〈x, m〈y, z〉〉 = m〈m〈x, y〉, z〉 : G

These are just the familiar axioms for a group.

Example 2.3.3 In general, any algebraic theory A determines a λ-theory. There
is one basic type A and for each operation f of arity k there is a basic constant
f : Ak → A, where Ak is the k-fold product A × · · · × A. It is understood that
A0 = 1. The terms of A are translated to the terms of the corresponding λ-theory

[DRAFT: March 12, 2008]



80 Type Theories

in a straightforward manner. For every axiom t = u of A the corresponding ax-
iom in the λ-theory is

x1:A, . . . , xn:A | t = u : A

where x1, . . . , xn are the variables occurring in t and u.

Example 2.3.4 The theory of a directed graph is a simply-typed theory with
two basic types, V for vertices and E for edges, and two basic constant, source src
and target trg,

src : E→ V , trg : E→ V .

There are no equations.

Example 2.3.5 An example of a λ-theory is readily found in the theory of
programming languages. The mini-programming language PCF is a simply-
typed λ-calculus with a basic type nat for natural numbers, and a basic type
bool of Boolean values,

nat type bool type

There are basic constants zero 0, successor succ, the Boolean constants true

and false, comparison with zero iszero, and for each type A the conditional
condA and the fixpoint operator fixA. They have the following types:

0 : nat

succ : nat→ nat

true : bool

false : bool

iszero : nat→ bool

condA : bool→ A→ A

fixA : (A→ A)→ A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 2.3.6 Another example of a λ-theory is the theory of a reflexive type.
This theory has one basic type D and two constants

r : D→ D→ D s : (D→ D)→ D
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satisfying the equation

f : D→ D | r (s f) = f : D→ D (2.10)

which says that s is a section and r is a retraction, so that the function type
D → D is a subspace (even a retract) of D. A type with this property is said to
be reflexive. We may additionally stipulate the axiom

x : D | s (r x) = x : D (2.11)

which implies that D is isomorphic to D→ D.

2.3.1 Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are
generated by the following grammar:

t :: = [var]
∣∣ t t′

∣∣ λx. t .

In words, a variable is a term, an application t t′ is a term, for any terms t
and t′, and a λ-abstraction λx. t is a term, for any term t. Variable x is bound
in λx. t. A context is a list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed
in Γ. The judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really
necessary but we include it because it is always good practice to list the free
variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | (λx. t)u = t[u/x]
(β-rule)

Γ | λx. (t x) = t
if x 6∈ FV(t) (η-rule)
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The untyped λ-calculus can be translated into the theory of a reflexive type
from Example 2.3.6. An untyped context Γ is translated to a typed context Γ∗

by typing each variable in Γ with the reflexive type D, i.e., a context x1, . . . , xk is
translated to x1:D, . . . , xk:D. An untyped term t is translated to a typed term t∗

as follows:

x∗ = x if x is a variable ,

(u t)∗ = (r u∗)t∗ ,

(λx. t)∗ = s (λx:D . t∗) .

For example, the term λx. (xx) translates to s (λx:D . ((r x)x)). A judgment

Γ | u = t (2.12)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (2.13)

Exercise∗ 2.3.7 Prove that if equation (2.12) is provable then equation (2.13)
is provable as well. Identify precisely at which point in your proof you need
to use equations (2.10) and (2.11). Does provability of (2.13) imply provability
of (2.12)?

2.4 Completeness of λ-calculus

We now consider semantic aspects of λ-calculus and λ-theories. Suppose T is a
λ-calculus and C is a cartesian closed category. An interpretation of T in C is
given by the following data:

1. For every basic type A in T an object [[A]] ∈ C. The interpretation is
extended to all types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

2. For every basic constant c of type A a morphism [[c]] : 1→ [[A]].

The interpretation is extended to all terms in contexts as follows. A context
Γ = x1:A1, · · · , xn:An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object 1. A typing judg-
ment

Γ | t : A

is interpreted as a morphism

[[Γ | t : A]] : [[Γ]]→ [[A]] .

The interpretation is defined inductively by the following rules:
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1. The i-th variable is interpreted as the i-th projection,

[[x0:A0, . . . , xn:An | xi : Ai]] = πi : [[Γ]]→ [[Ai]] .

2. A basic constant c : A in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

3. The interpretation of projections and pairs is

[[Γ | 〈t, u〉 : A×B]] = 〈[[Γ | t : A]], [[Γ | u : B]]〉 : [[Γ]]→ [[A]]× [[B]]

[[Γ | fst t : A]] = π0 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[A]]

[[Γ | snd t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[B]] .

4. The interpretation of application and λ-abstraction is

[[Γ | t u : B]] = e ◦ 〈[[Γ | t : A→ B]], [[Γ | u : A]]〉 : [[Γ]]→ [[B]]

[[Γ | λx:A . t : A→ B]] = ([[Γ, x:A | t : B]])∼ : [[Γ]]→ [[B]][[A]]

where e : [[A → B]] × [[A]] → [[B]] is the evaluation morphism for [[B]][[A]]

and ([[Γ, x:A | t : B]])∼ is the transpose of the morphism

[[Γ, x:A | t : B]] : [[Γ]]× [[A]]→ [[B]] .

An interpretation of the λ-calculus of a theory T is a model of the theory if
it satisfies all axioms of T. This means that, for every axiom Γ | t = u : A, the
interpretations of u and t coincide, [[Γ | u : A]] = [[Γ | t : A]]. It follows that all
equations provable in T are satisfied in the model.

In Section 2.1 we saw that algebraic theories can be viewed as categories, cf.
Definition 2.1.14, and models as functors, cf. Definition 2.1.19. The same can
be done with λ-theories and their models. The first step is to build a category
from a λ-theory.

Given a λ-theory T, we construct a syntactic category S(T) as follows. The
objects of S(T) are the types of T. Morphisms A→ B are terms in context

x : A | t : B ,

where two such terms x : A | t : B and x : A | u : B represent the same
morphism when T proves x : A | t = u : B. Composition of terms

x : A | t : B and y : B | u : C

is the term obtained by substituting t for y in u:

x : A | u[t/y] : C .

The identity morphism on A is the term x : A | x : A.

Proposition 2.4.1 The syntactic category S(T) built from a λ-theory is carte-
sian closed.
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Proof. The terminal object is the unit type 1. For any type A the unique
morphism !A : A→ 1 is

x : A | ∗ : 1 .

This morphism is unique because

Γ | t = ⋆ : 1

is an axiom for the terms of unit type 1. The product of objects A and B is the
type A×B. The first and the second projections are the terms

p : A×B | fst p : A , p : A×B | sndp : B .

Given morphisms

z : C | t : A , z : C | u : B ,

the term
z : C | 〈t, u〉 : A×B

represents the unique morphism satisfying

z : C | fst 〈t, u〉 = t : A , z : C | snd 〈t, u〉 = u : B .

Indeed, if fst s = t and snd s = u then

s = 〈fst s, snd s〉 = 〈t, u〉 .

The exponential of objects A and B is the type A → B with the evaluation
morphism

p : (A→ B)×A
∣∣ (fst p)(sndp) : B .

The transpose of the morphism p : C ×A | t : B is

z : C | λx:A . (t[〈z, x〉/p]) : A→ B .

Showing that this is the transpose of t amounts to

(λx:A . (t[〈fst p, x〉/p]))(snd p) = t[〈fst p, sndp〉/p] = t[p/p] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique,
because any morphism z : C | s : A→ B that satisfies

(s[fst p/z])(sndp) = t

is equal to λx:A . (t[〈z, x〉/p]). First observe that

t[〈z, x〉/p] = (s[fst p/z])(sndp)[〈z, x〉/p] =

(s[fst 〈z, x〉/z])(fst 〈z, x〉) = (s[z/z])x = s x .

Therefore,
λx:A . (t[〈z, x〉/p]) = λx:A . (s x) = s ,

as required.
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The syntactic category allows us to define models as functors.

Definition 2.4.2 A model M of a λ-theory T in a cartesian closed category C
is a functor M : S(T)→ C that preserves finite products and exponentials.

We can now proceed much as we did in the case of algebraic theories and
prove that the semantics of λ-theories in cartesian closed categories is complete:

“T proves Γ | t = u : A.” ⇐⇒ “Every model of T satisfies Γ | t = u : A.”

This is proved exactly the same way as for algebraic theories. A λ-theory T

has a canonical interpretation in the syntactic category S(T) which interprets
a basic type A as itself, and a basic constant c of type A as the morphism
x : 1 | c : A. The canonical interpretation is a model of T, also known as the
syntactic model. It is in fact a universal model for T because by construction
of S(T), for any terms Γ | u : A and Γ | t : A,

“T proves Γ | u = t : A” ⇐⇒ “Syntactic model satisfies Γ | u = t : A” .

We take one step further and organize λ-theories into a category. For this we
need to define a suitable notion of morphisms. A translation τ : T → U of a
λ-theory T into a λ-theory U is given by the following data:

1. For each basic type A in T a type τA in U. The translation is then
extended to all types by the rules

τ1 = 1 , τ(A ×B) = τA × τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type A in A a term τc of type τA in U. The
translation of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ〈t, u〉 = 〈τt, τu〉 , τ(λx:A . t) = λx:τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

A context Γ = x1:A1, . . . , xn:An is translated by τ to the context

τΓ = x1:τA1, . . . , xn:τAn .

Furthermore, a translation is required to preserve the axioms of T: if Γ | t =
u : A is an axiom of T then U proves τΓ | τt = τu : τA. It then follows that all
equations proved by T are translated to valid equations in U.

A moment of consideration shows that a translation τ : T → U is the same
thing as a model of T in S(U).

Clearly, λ-theories and translations between them form a category. Trans-
lations compose as functions, therefore composition is associative. The identity
translation ιT : T→ T translates every type to itself and every constant to itself.
It corresponds to the canonical interpretation of T in S(T).
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Definition 2.4.3 λThr is the category whose objects are λ-theories and mor-
phisms are translations between them.

Let C be a small cartesian closed category. There is a λ-theory L(C) that
corresponds to C, called the internal language of C, defined as follows:

1. For every object A ∈ C there is a basic type pAq.

2. For every morphism f : A→ B there is a basic constant pfq whose type
is pAq→ pBq.

3. For every A ∈ C there is an axiom

x : pAq | p1Aq x = x : pAq .

4. For all morphisms f : A → B, g : B → C, and h : A → C such that
h = g ◦ f , there is an axiom

x : pAq | phq x = pgq (pfq x) : pCq .

5. There is a constant
T : 1→ p1q ,

and for all A,B ∈ C there are constants

PA,B : pAq× pBq→ pA×Bq , EA,B : (pAq→ pBq)→ pBAq .

They satisfy the following axioms:

u : p1q | T ∗ = u : p1q

z : pA×Bq | PA,B〈pπ0qz, pπ1qz〉 = z : pA×Bq

w : pAq× pBq | 〈pπ0q(PA,Bw), pπ1q(PA,Bw)〉 = w : pAq× pBq

f : pBAq | EA,B(λx:pAq . (pevA,Bq(PA,B〈f, x〉))) = f : pBAq

f : pAq→ pBq | λx:pAq . (pevA,Bq(PA,B〈(EA,Bf), x〉)) = f : pAq→ pBq

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure
the isomorphisms p1q ∼= 1, pA × Bq ∼= pAq × pBq, and pBAq ∼= pAq → pBq.
Types A and B are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that T proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories T and U is a pair of translations

T

τ
**
U

σ
ii
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such that, for any type A in T and any type B in U,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : Ccc→ λThr ,

where Ccc is the category of small cartesian closed categories and functors be-
tween them that preserve finite products and exponentials. Such functors are
also called cartesian closed functors or ccc functors. If F : C → D is a cartesian
closed functor then L(F ) : L(C)→ L(D) is the translation given by:

1. A basic type pAq is translated to pFAq.

2. A basic constant pfq is translated to pFfq.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and
EFA,FB, respectively.

We now posses a functor L : Ccc → λThr. How about the other direction?
We already have the construction of syntactic category which maps a λ-theory T

to a small cartesian closed category S(T). This extends to a functor

S : λThr→ Ccc ,

because a translation τ : T → U induces a functor S(τ) : S(T) → S(U) in an
obvious way: a basic type A ∈ S(T) is mapped to the object τA ∈ S(U), and a
basic constant x:1 | c : A is mapped to the morphism x:1 | τc : A. The rest of
S(τ) is defined inductively on the structure of types and terms.

Theorem 2.4.4 The functors L : Ccc → λThr and S : λThr → Ccc constitute
an equivalence of categories, “up to equivalence”. This means that for any
C ∈ Ccc there is an equivalence of catgories

C ≃ S(L(C)) ,

and for any T ∈ λThr there is an equivalence of theories

T ≃ L(S(T)) .

Proof. For a small cartesian closed category C, consider the functor ηC : C →
S(L(C)), defined for an object A ∈ C and f : A→ B in C by

ηCA = pAq , ηCf = (x : pAq | pfqx : pBq) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : pAq | p1Aqx = x : pAq
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and for all f : A→ B and g : B → C,

x : pAq | pg ◦ fq x = pgq(pfq x) : pCq .

To see that ηC is an equivalence of categories, it suffices to show that for every
object X ∈ S(L(C)) there exists an object θCX ∈ C such that ηC(θCX) ∼= X .
The choice map θC is defined inductively by

θC1 = 1 , θCpAq = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)θCY .

We skip the verification that ηC(θCX) ∼= X . In fact, θC can be extended to a
functor θC : S(L(C))→ C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1S(L(C)).

Given a λ-theory T, we define a translation τT : T → L(S(T)). For a basic
type A let

τTA = pAq .

The translation τTc of a basic constant c of type A is

τTc = px : 1 | c : τTAq .

In the other direction we define a translaton σT : L(S(T)) → T as follows. If
pAq is a basic type in L(S(T)) then

σT pAq = A ,

and if px : A | t : Bq is a basic constant of type pAq→ pBq then

σT px : A | t : Bq = λx:A . t .

The basic constants T, PA,B and EA,B are translated by σT into

σT T = λx:1 . x ,

σT PA,B = λp:A×B . p ,

σT EA,B = λf :A→ B . f .

If A is a type in T then σT(τTA) = A. For the other direction, we would like
to show, for any type X in L(S(T)), that τT(σTX) ∼= X . We prove this by
induction on the structure of type X :

1. If X = 1 then τT(σT1) = 1.

2. If X = pAq is a basic type then A is a type in T. We proceed by induction
on the structure of A:

(a) If A = 1 then τT(σTp1q) = 1. The types 1 and p1q are isomorphic
via the constant T : 1→ p1q.

(b) If A is a basic type then τT(σTpAq) = pAq.
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(c) If A = B × C then τT(σTpB × Cq) = pBq × pCq. But we know
pBq× pCq ∼= pB × Cq via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τT(σT(Y × Z)) = τT(σTY ) × τT(σTZ). By induction
hypothesis, τT(σTY ) ∼= Y and τT(σTZ) ∼= Z, from which we easily obtain

τT(σTY )× τT(σTZ) ∼= Y × Z .

4. The case X = Y → Z is similar.

Exercise 2.4.5 In the previous proof we defined, for each C ∈ Ccc, a functor
ηC : C → S(L(C)). Verify that this determines a natural transformation η :
1Ccc =⇒ S ◦ L. Can you say anything about naturality of the translations τT

and σT? What would it even mean for a translation to be natural?
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Chapter 4

Elementary Logic

Having considered type theories, we now move on to first-order logic. This is
the usual logic with propositional connectives ∧, =⇒, and ∨, and quantifiers ∀
and ∃. The general approach to studying logic via category theory is similar to
the approach taken for type theory—we specify certain categorical structures
and show how to model in them first-order logic, or a suitable fragment of it.
Here adjoint functors play an imporant role, as the basic logical operations
are recognized as adjoints. We also show that semantics is “functorial”, which
means that models of a theory are functors that preserve suitable categorical
structure. Finally, we construct classifying categories, which are the logical
counterparts of syntactic models of type theories.

Let us demonstrate our approach with an example. In Section 2.1 we studied
algebraic theories, in which we can express properties in terms of equations, for
example commutativity

x · y = y · x .

As we saw, such equations could be interpreted in any category with finite
products. This provided a large scope for categorical semantics of algebraic
theories. However, there are many relevant properties of algebraic structures
which cannot with equations. Consider the statement that a group (G, e, ·,−1)
has no non-trivial roots of unit,

∀x:G . (x · x = e =⇒ x = e) . (4.1)

This is a first-order logic statement which cannot be rewritten as a system of
equations. To see what its categorical interpretation ought to be, we look at its
usual set-theoretic interpretation. Each of subformulas, x · x = e and x = e,
determines a subset of G:

{
x ∈ G

∣∣ x · x = e
}

''

i
''NNNNNNNNNNN

// //
{
x ∈ G

∣∣ x = e
}

xx

j
xxqqqqqqqqqq

G
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The implication x · x = e =⇒ x = e holds when
{
x ∈ G

∣∣ x · x = e
}

is con-

tained in
{
x ∈ G

∣∣ x = e
}
. In categorical language we say that the mono i

factors through the mono j. Observe also that such a factorization is neces-
sarily a mono and is unique, if it exists. The defining formulas of the subsets{
x ∈ G

∣∣ x · x = e
}

and
{
x ∈ G

∣∣ x = e
}

are equations and so the subsets can
be constructed as equalizers:

{
x ∈ G

∣∣ x · x = e
}

// // G
〈1G, 1G〉 //

e ◦ !G

33G×G
· // G

{
x ∈ G

∣∣ x = e
}

// // G
1G //

e ◦ !G
// G

The second equalizer is in fact isomorphic to the morphism e : 1→ G. Thus we
can interpret condition (4.1) in any category with products and equalizers, in
other words a category with finite limits.1 This allows us to define the notion of
a group without roots of unit in any category C with finite limits as an object
G with morphisms e : 1 → G, m : G × G → G and i : G → G such that
(G, e,m, i) is a group in C, and the equalizer of m ◦ 〈1G, 1G〉 and e ◦ !G factors
through e : 1→ G.

The aim of this chapter is to analyze how such examples can be studied in
general. We want to relate first-order logic and fragments of it to categorical
structures that are suitable for interpreation of the logic.

4.1 First-order Theories

A first-order theory L consists of an underlying type theory and a fragment of
first-order logic. Recall from Chapter 2 that a simple type theory is given by a
set of basic types, a set of basic constants together with their types, rules for
forming types, rules and axioms for deriving typing judgments

x1:A1, . . . , xn:An | t : B ,

expressing that term t has type B in typing context x1:A1, . . . , xn:An, and a
set of axioms and rules of inference which tell us which equations between terms

x1:A1, . . . , xn:An | t = u : B .

are valid.
A fragment of first-order logic is given by a set of basic relation symbols to-

gether with a specification of which part of first-order logic is being considered.

1We are not claiming that finite limits suffice for an interpretation of arbitrary formulas
built from universal quantifiers and implications. The formula at hand has a very special form
∀x . (ϕ(x) ⇒ ψ(x)), where ϕ(x) and ψ(x) do not contain further ∀ or ⇒.
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Each basic relation symbol has a specified signature (A1, . . . , An), which speci-
fies the types of its arguments. The arity of a relation symbol is the number of
arguments it takes. The judgment

x1:A1, . . . , xn:An | φ pred

states that φ is a well-formed formula in typing context x1:A1, . . . , xn:An. For
each basic relation symbol R with signature (A1, . . . , An) there is an inference
rule

Γ | t1 : A1 · · · Γ | tn : An
Γ | R(t1, . . . , tn) pred

Depending on what fragment of first-order logic is included, there might be other
rules for forming logical formulas. For example, if equality is present, then for
each type A there is a rule

Γ | t : A Γ | u : A

Γ | t =A u pred

and if conjunction is present, then there is a rule

Γ | ϕ pred Γ | ψ pred

Γ | ϕ ∧ ψ pred

Other such rules will be given when we come to the study of particular logical
operations.

The basic logical judgment of a first-order theory is logical entailment

x1:A1, . . . , xn:An | ϕ1, . . . , ϕm ⊢ ψ

which states that in the typing context x1:A1, . . . , xn:An the hypotheses ϕ1,
. . . , ϕm entail ψ. It is understood that the terms appearing in the formulas are
well-typed in the typing context, and that formulas ϕ1, . . . , ϕm, ψ are part of
the fragment of the logic of T. In the theory T there are axioms and inference
rules for deriving valid judgments. When the fragment contains equality, we
replace the type-theoretic equality judgments

x1:A1, . . . , xn:An | t = u : B

with the logical statements

x1:A1, . . . , xn:An | · ⊢ t =B u .

The subscript at the equality sign indicates the type at which the equality is
taken.

Fragments of first-order logic can be given in various ways. The usual one
is to select a subset of logical connectives and quantifiers. There are several
standard fragments:
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1. Full first-order logic is built from logical operations

= ⊤ ⊥ ∧ ∨ =⇒ ∀ ∃ .

Equality is more properly considered as a family of binary relation sym-
bols, one for each type of the underlying type calculus. Thus each type A
is equipped with its own equality =A.

2. Lex2 logic is the fragment built from

= ⊤ ∧ .

3. Regular logic is the fragment built from

= ⊤ ∧ ∃ .

4. Coherent logic is the fragment built from

= ⊤ ∧ ∃ ⊥ ∨ .

5. A geometric formula is a formula of the form

∀x:A . (ϕ⇒ ψ) ,

where ϕ and ψ are coherent formulas.

The names for these fragments come from the names of categorical structures
in which they are interpreted.

The well formed terms and the formulas of a first-order theory T constitute
its language. It may seem that we are doing things backwards, because we
should have spoken of first-order languages before we spoke of first-order theo-
ries. While this may be possible for simple theories, it certainly becomes hard
to do when we consider complicated theories in which types and logical formu-
las are intertwined. In such cases the typing judgments and logical entailments
might be given by a mutual recursive definition. In order to find out whether
a given term is well formed, we might have to prove a logical statement. In
everyday mathematics this occurs all the time, for example, to show that the
term

∫ ∞

0
f denotes a real number, it may be necessary to prove that f : R→ R

is an integrable function and that the integral has a finite value. This is why it
does not always make sense to strictly differentiate a language from a theory.3

In order to emphasize the logical part of first-order theories, we are going to
limit attention to only two very simple kinds of type theory. A single-sorted first-
order theory has as its underlying type theory a single type A and for each k ∈ N

a set of basic k-ary function symbols. The rules for typing judgments are:

2The name ”lex” comes from ”left exact”, which refers to a category with finite limits.
3However, it does make sense to distinguish syntax from theory. Rules of substitution and

the behaviour of free and bound variables are syntactic considerations, for example.
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1. Variables in contexts:

x1:A, . . . , xn:A | xi : A

2. For each basic function symbol f of arity k, there is an inference rule

Γ | t1 : A · · · Γ | tn : A

Γ | f〈t1, . . . , tn〉 : A

This is essentially like an algebraic theory, except that the type is explicitly
named. In addition a single-sorted first-order theory may contain relation sym-
bols, formulas, axioms, and rules of inference which an algebraic theory does
not.

A slight generalization of a single-sorted theory is a multi-sorted one. Its
underlying type theory is given by a set of types, and a set of basic function
symbols. Each function symbol f has a signature (A1, . . . , An;B), where n is
the arity of f and A1, . . . , An, B are types. The rules for typing judgments are:

1. Variables in contexts:

x1:A1, . . . , xn:An | xi : Ai

2. For each basic function symbol f with signature (A1, . . . , An;B), there is
an inference rule

Γ | t1 : A1 · · · Γ | tn : An
Γ | f〈t1, . . . , tn〉 : B

We often write suggestively f : A1×· · ·×An → B to indicate that (A1, . . . , An;B)
is the signature of f . However, this does not mean that A1 × · · · × An → B is
a type! A multi-sorted type theory does not have any type forming operations,
such as × and →.4

4.2 The Subobject Functor

Let A be an object in a category C. If i : I  A and j : J  A are monos
into A, we say that i is smaller than j, and write i ≤ j, when there exists a
morphism k : I → J such that the following diagram commutes:

I
k //

��

i ��?
??

??
??

J
��

j����
��

��

A

4However, a simple type theory can be viewed as a multi-sorted type theory, if we forget
that it has type forming operations.
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If such a k exists then it is unique, and it is always mono. The class Mono(A) of
all monos into A is preordered by ≤. Let Sub(A) be its poset reflection. Thus
the elements of Sub(A) are equivalence classes of monos, where monos i : I  A
and j : J  A are equivalent when i ≤ j and j ≤ i. The induced relation ≤
on Sub(A) is a partial order.

We have to be a bit careful with the formation of Sub(A), since it is defined as
a quotient of a class Mono(A). In many particular cases the general construction
by quotients can be avoided. If we is demonstrate that the preorder Mono(A)
is equivalent, as a category, to a poset P then we can take Sub(A) = P . At any
rate, we usually require that Sub(A) is small.

Definition 4.2.1 A category is essentially small when it is equivalent to a
small category.

Definition 4.2.2 A category C is well-powered when, for allA ∈ C, the category
Mono(A) is equivalent to a small poset. In other words, for every A ∈ C, Sub(A)
is a small category.

We often speak of subobjects as if they were monos rather than equivalence
classes of monos. It is understood that we mean the subobjects represented by
monos and not the monos themselves. Sometimes we refer to a mono i : I  A
by its domain I only, even though the object I itself does not determine the
morphism i. Hopefully this will not cause confusion, as it is always going to be
clear which mono is meant to go along with the object I.

The assignment A 7→ Sub(A) is the object part of the subobject functor

Sub : Cop → Poset .

The morphism part of Sub is pullback. More precisely, given a morphism f :
A → B, let Sub(f) = f∗ : Sub(B) → Sub(A) be the monotone map which
maps the subobject [i : I  B] to the subobject [f∗i : f∗I  A], where
f∗i : f∗I  A is a pullback of i along f :

f∗I
_
�

//
��

f∗i

��

I
��

i

��
A

f
// B

Recall that a pullback of a mono is again mono, so this definition makes sense.
We need to verify that Sub(1A) = 1Sub(A) and Sub(g ◦f) = Sub(f)◦Sub(g). The
first equations is obvious and the second one follows from the following lemma.
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Lemma 4.2.3 Suppose both squares in the following diagram are pullbacks:

·
_

�

��

// ·
_
�

��

// ·

��
· // · // ·

Then the outer rectangle is a pullback diagram as well.

Proof. This is left as an exercise in diagram chasing.

Pullbacks are only determined up to isomorphism, but this does not cause
any problems because isomorphic monos represent the same subobject.

In categorical semantics, a formula

x : A | ϕ pred

is interpreted as a subobject

[[x : A | ϕ]] // // [[A]]

Logical operations then correspond to operations on the poset Sub(A). There-
fore, the structure of Sub(A) determines which logical connectives can be in-
terpreted. If Sub(A) is a Heyting algebra, then we can interpret intuitionistic
propositional calculus, cf. Subsection 2.2.4, but if Sub(A) only has binary meets
then all that can be interpreted is ⊤ and ∧. We will work this out in detail in
the following sections.

Another use of subobjects appears in the interpretation of substitution.
There are two kinds of substitution, in a term and in a formula. We may
substitute a term x : A | t : B for a variable y in a term y : B | u : C to obtain
a new term x : A | u[t/y] : C. If t and u are interpreted as morphisms

[[A]]
[[t]]

// [[B]]
[[u]]

// [[C]]

then u[t/y] is interpreted as their composition:

[[x : A | u[t/y] : C]] = [[y : B | u : C]] ◦ [[x : A | t : B]] .

Thus, substitution in a term is composition.

The second kind of substitution occurs when we substitute a term x : A |
t : B for a variable y in a formula y : B | ϕ pred to obtain a new formula
x : A | ϕ[t/y] pred. If t is interpreted as a morphism [[t]] : [[A]] → [[B]] and ϕ
is interpreted as a subobject [[ϕ]]  [[B]] then the interpretation of ϕ[t/y] is the
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pullback of [[ϕ]] along [[t]]:

[[ϕ[t/y]]] = [[t]]∗[[ϕ]]
_

�
//

��

��

[[ϕ]]
��

��
[[A]]

[[t]]
// [[B]]

Thus, substitution in a formula is pullback,

[[x : A | ϕ[t/y] pred]] = Sub([[x : A | t : B]])[[y : B | ϕ pred]] .

Because substitution is a very basic operation, we should expect that categorical
structure needed to interpret various logical operations must behave well with
respect to pullbacks. We say that a categorical property or structure is stable
(under pullbacks) if it is preserved by pullbacks. For example, a category C
has stable binary coproducts if it has binary coproducts and that the pullback
of [f, g] : A + B → C along h : D → C is (isomorphic to) [h∗f, h∗g] : h∗A +
h∗B → D:

h∗A+ h∗B
_
�

//

[h∗f, h∗g]

��

A+B

[f, g]

��
D

h
// C

4.3 Lex Logic

As a first example we look at the categorical semantics of lex logic over a multi-
sorted type theory with unit type 1. We have already dealt with multi-sorted
type theories and the axioms for the unit type, so we concentrate on the logic
instead.

The logical connectives are =, ⊤, and ∧. The rules for forming formulas are
as follows:

1. Substitution:
Γ | t : A Γ, x : A | ϕ pred

Γ | ϕ[t/x] pred

2. Weakening:
Γ | ϕ pred

Γ, x : A | ϕ pred

3. For each basic relation symbol R with signature (A1, . . . , An) there is a
rule

Γ | t1 : A1 · · · Γ | tn : An
Γ | R(t1, . . . , tn) pred

[DRAFT: March 12, 2008]



4.3 Lex Logic 99

4. The logical constant ⊤ is a formula:

Γ | ⊤ pred

5. For each type A, there is a rule

Γ | t : A Γ | u : A

Γ | t =A u pred

6. Conjunction:
Γ | ϕ pred Γ | ψ pred

Γ | ϕ ∧ ψ pred

The rules of inference are:

1. Weakening:
Γ | Ψ ⊢ ϕ

Γ | Ψ, ψ ⊢ ϕ

2. Substitution:
Γ | t : A Γ, x:A | Ψ ⊢ ϕ

Γ | Ψ[t/x] ⊢ ϕ[t/x]

3. Cut:
Γ | Ψ ⊢ θ Γ | Ψ, θ ⊢ ϕ

Γ | Ψ ⊢ ϕ

4. Axioms:

Γ | ψ1, . . . , ψn ⊢ ψi
(1 ≤ i ≤ n)

5. Truth:

Γ | Ψ ⊢ ⊤

6. Equality:

Γ | Ψ ⊢ t =A t

Γ | Ψ ⊢ t =A u Γ | Ψ ⊢ ϕ[t/z]

Γ | Ψ ⊢ ϕ[u/z]

7. Conjunction:

Γ | Ψ ⊢ ϕ Γ | Ψ ⊢ ψ

Γ | Ψ ⊢ ϕ ∧ ψ

Γ | Ψ ⊢ ϕ ∧ ψ

Γ | Ψ ⊢ ψ

Γ | Ψ ⊢ ϕ ∧ ψ

Γ | Ψ ⊢ ϕ

Exercise 4.3.1 Derive symmetry and transitivity of equality:

Γ | Ψ ⊢ t =A u

Γ | Ψ ⊢ u =A t

Γ | Ψ ⊢ t =A u Γ | Ψ ⊢ u =A v

Γ | Ψ ⊢ t =A v

Before we embark on semantics of lex logic, we note a couple of useful propo-
sitions.

Proposition 4.3.2 If a category C has pullbacks then, for every A ∈ C, Sub(A)
has finite limits.
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Proof. The poset Sub(A) has finite limits if it has a top object and binary
meets. The top object of Sub(A) is the subobject [1A : A → A]. The meet of
subobjects i : I  A and j : J  A is the subobject i∧ j = i◦ (i∗j) = j ◦ (j∗i) :
I ∧ J  A obtained by pullback, as in the following diagram:

I ∧ J
_
�
// j

∗i //
��

i∗j

��

J
��

j

��
I //

i
// A

It is easy to verify that I ∧ J is the infimum of I and J .

Proposition 4.3.3 If a category has finite products and pullbacks of monos
along monos then it has all finite limits.

Proof. It is sufficient to show that the category has equalizers. To construct
the equalizer of parallel arrows f : A→ B and g : A→ B, first observe that the
arrows

A
〈1A, f〉 // A×B A

〈1A, g〉 // A×B

are monos because the projection π0 : A×B → A is their left inverse. Therefore,
we may construct the pullback

P
_

�
// p //

��

q

��

A
��

〈1A, f〉

��
A //
〈1A, g〉

// A×B

The morphisms p and q coincide because 〈1A, f〉 and 〈1A, g〉 have a common
left inverse π0:

p = 1A ◦ p = π0 ◦ 〈1A, f〉 ◦ p = π0 ◦ 〈1A, f〉 ◦ q = 1A ◦ q = q .

Let us show that p : P → A is the equalizer of f and g. First, p equalizes f
and g,

f ◦ p = π1 ◦ 〈1A, f〉 ◦ p = π1 ◦ 〈1A, g〉 ◦ q = g ◦ q = g ◦ p .

If k : K → A also equalizes f and g then

〈1A, f〉 ◦ k = 〈k, f ◦ k〉 = 〈k, g ◦ k〉 = 〈1A, g〉 ◦ k ,

therefore by the universal property of the constructed pullback there exists a
unique factorization k : K → P such that k = p ◦ k, as required.
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We now explain how lex logic is interpreted in a finitely complete category C.
Let T be a multi-sorted lex theory. Recall that the type theory of T is specified
by a set of sorts (types) and a set of basic function symbols together with their
signatures. The logic is given by a set of basic relation symbols with their
signatures, and a set of axioms in the form of logical entailments

Γ | Ψ ⊢ ϕ .

An interpretation of T in C is given by the following data, where Γ stands
for a typing context x1:A1, . . . , xn:An, and Ψ stands for a sequence of formu-
las ψ1, . . . , ψk:

1. A sort A is interpreted as an object [[A]].

2. The unit sort 1 is interpreted as the terminal object 1.

3. A typing context x1:A1, . . . , xn:An is interpreted as the product [[A1]] ×
· · · × [[An]]. The empty context is interpreted as the terminal object 1.

4. A basic function symbol f with signature (A1, . . . , Am;B) is interpreted
as a morphism [[f ]] : [[A1]]× · · · [[Am]]→ [[B]].

5. A term in a context Γ | t : B is interpreted as a morphism [[Γ | t : B]] :
[[Γ]]→ [[B]], as follows:

(a) A variable x0:A1, . . . , xn:An | xi : Ai is interpreted as the i-th pro-
jection πi : [[A1]]× · · · × [[An]]→ [[Ai]].

(b) The interpretation of Γ | ∗ : 1 is the unique morphism ![[Γ]] : [[Γ]]→ 1.

(c) A composite term Γ | f(t1, . . . , tm) : B, where f is a basic function
symbol with signature (A1, . . . , Am;B), is interpreted as the compo-
sition

[[Γ]]
〈[[t1]], . . . , [[tm]]〉

// [[A1]]× · · · × [[Am]]
[[f ]]

// [[B]]

Here [[ti]] is shorthand for [[Γ | ti : Ai]].

6. A basic relation symbol R with signature (A1, . . . , An) is interpreted as a
subobject [[R]] ∈ Sub([[A1]]× · · · × [[An]]).

7. A formula in a context Γ | ϕ pred is interpreted as a subobject [[Γ | ϕ]] ∈
Sub([[Γ]]). The details are given below.

8. A logical entailment Γ | Ψ ⊢ ϕ is interpreted as an inequality [[Ψ]] ≤ [[ϕ]]
in Sub([[Γ]]). Here the interpretation of Ψ is the infimum [[Ψ]] = [[ψ1]]∧· · ·∧
[[ψk]]. The empty sequence of hypotheses is interpreted as the maximal
subobject 1[[Γ]] : [[Γ]]  [[Γ]].
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It remains to explain how formulas are interpreted as subobjects. As was
explained in the previous section, a formula formed by substitution is interpreted
as the left-hand side of the pullback:

[[Γ | ϕ[t/x]]]
_

�
//

��

��

[[Γ, x:A | ϕ]]
��

��
[[Γ]]

〈1Γ, [[t]]〉
// [[Γ]]× [[A]]

A formula formed by weakening is interpreted as pullback along a projection:

[[Γ, x:A | ϕ]]
_

�
//

��

��

[[Γ | ϕ]]
��

i

��
[[Γ]]× [[A]] π0

// [[Γ]]

This pullback can be computed and the interpretation of [[Γ, x:A | ϕ]] turns out
to be the subobject

[[Γ | ϕ]]× [[A]] // i× 1A // [[Γ]]× [[A]]

An atomic formula Γ | R(t1, . . . , tm), where R is a basic relation symbol with
signature (A1, . . . , Am) is interpreted as the left-hand side of the pullback pull-
back

[[R(t1, . . . , tm)]]
_
�

//
��

��

[[R]]
��

��
[[Γ]]

〈[[t1]], . . . , [[tm]]〉
// [[A1]]× · · · × [[Am]]

The logical constant ⊤ is interpreted as the maximal subobject:

[[Γ | ⊤]] = [1[[Γ]] : [[Γ]]→ [[Γ]]] .

An equation Γ | t =A u pred is interpreted as the subobject represented by the
equalizer of [[Γ | t : A]] and [[Γ | u : A]]:

[[Γ | t =A u]] // // [[Γ]]
[[t]]

//

[[u]]
// [[A]]
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By Proposition 4.3.2, each Sub(A) is a poset with binary meets. Thus we
interpret a conjunction Γ | ϕ ∧ ψ pred as the infimum of subobjects

[[Γ | ϕ ∧ ψ]] = [[Γ | ϕ]] ∧ [[Γ | ψ]] .

This concludes the description of an interpretation of lex theory T in a lex
category C.

When we deal with many interpretations at once we name them M , N , . . . ,
and subscript the semantic brackets accordingly, [[Γ]]M , [[Γ]]N , . . .

If Γ | Ψ ⊢ ψ is a logical entailment in T such that [[Γ | Ψ]]M ≤ [[Γ | ϕ]]M holds
in an interpretation M , then we say that M satisfies or models Γ | Ψ ⊢ ψ and
write

M |= Γ | Ψ ⊢ ψ .

An interpretation M is a model of T if it satisfies all the axioms of T.

Theorem 4.3.4 (Soundness of lex logic) If a lex theory T proves an entail-
ment

Γ | Ψ ⊢ ψ

then every model M of T satisfies the entailment:

M |= Γ | Ψ ⊢ ψ .

Proof. The proof proceeds by induction on the proof of the entailment. In
the following we usually omit the typing context Γ to simplify notation, and all
inequalities are interpreted in Sub([[Γ]]). We consider all possible last steps in
the proof of the entailment:

1. Weakening: if [[Ψ]] ≤ [[ϕ]] then

[[Ψ, ψ]] = [[Ψ]] ∧ [[ψ]] ≤ [[Ψ]] ≤ [[ϕ]] .

2. Substitution: recall that substitution is interpreted by pullback so that
[[ϕ[t/x]]] = 〈1[[Ψ]], [[t]]〉

∗[[ϕ]] and [[Ψ[t/x]]] = 〈1[[Ψ]], [[t]]〉
∗[[Ψ]]. Because

〈1[[Ψ]], [[t]]〉
∗ : Sub([[Ψ]])→ Sub([[Ψ]]× [[A]])

is a functor it is a monotone map, therefore [[Ψ]] ≤ [[ϕ]] implies

〈1[[Ψ]], [[t]]〉
∗[[Ψ]] ≤ 〈1[[Ψ]], [[t]]〉

∗[[ϕ]] .

3. Cut: if [[Ψ]] ≤ [[θ]] and [[Ψ, θ]] ≤ [[ϕ]] then

[[Ψ]] = [[Ψ]] ∧ [[θ]] = [[Ψ, θ]] ≤ [[ϕ]] .

4. Axioms: trivially

[[ψ1, . . . , ψk]] = [[ψ1]] ∧ · · · ∧ [[ψk]] ≤ [[ψi]] .
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5. Truth: trivially [[Ψ]] ≤ [[⊤]].

6. Equality: an axiom t =A t is satisfied because an equalizer of [[t]] with
itself is the maximal subobject:

[[Ψ]] ≤ [1[[Γ]] : [[Γ]]→ [[Γ]]] = [[t =A t]] .

For the other axiom, suppose [[Ψ]] ≤ [[t =A u]] and [[Ψ]] ≤ [[ϕ[t/z]]]. It
suffices to show [[t =A u]] ∧ [[ϕ[t/z]]] ≤ [[ϕ[u/z]]] for then

[[Ψ]] ≤ [[t =A u]] ∧ [[ϕ[t/z]]] ≤ [[ϕ[u/z]]] .

The interpretation of P = [[t =A u]]∧[[ϕ[t/z]]] is obtained by two successive
pullbacks, as in the following diagram:

P
_

�
//

��

��

[[ϕ[t/z]]]
_
�

//
��

��

[[ϕ]]
��

��
[[t =A u]] //

e
// [[Γ]]

〈1Γ, [[t]]〉
// [[Γ]]× [[A]]

Here e is the equalizer of [[u]] and [[t]]. Observe that e equalizes 〈1[[Γ]], [[t]]〉
and 〈1[[Γ]], [[u]]〉 as well:

〈1[[Γ]], [[t]]〉 ◦ e = 〈e, [[t]] ◦ e〉 = 〈e, [[u]] ◦ e〉 = 〈1[[Γ]], [[u]]〉 ◦ e .

Therefore, if we replace 〈1[[Γ]], [[t]]〉 with 〈1[[Γ]], [[u]]〉 in the above diagram, the
outer rectangle still commutes. By the universal property of the pullback

[[Γ | ϕ[u/z]]]
_
�

//
��

��

[[Γ, z:A | ϕ]]
��

��
[[Γ]]

〈1Γ, [[u]]〉
// [[Γ]]× [[A]]

it follows that P factors through [[ϕ[u/z]]], as required.

7. The rules for conjunction clearly hold because by the definition of infimum
[[Ψ]] ≤ [[ϕ ∧ ψ]] if, and only if, [[Ψ]] ≤ [[ϕ]] and [[Ψ]] ≤ [[ψ]].
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Example 4.3.5 The theory of a poset is a lex theory. There is one basic sort P
and one binary relation symbol ≤ with signature (P, P). The axioms are the
familiar axioms for reflexivity, transitivity, and antisymmetry:

x:P | · ⊢ x ≤ x

x:P, y:P, z:P | x ≤ y, y ≤ z ⊢ x ≤ z

x:P, y:P | x ≤ y, y ≤ x ⊢ x =P y

A poset in a lex category C is given by an object P , which is the interpretation of
the sort P, and a subobject r : R  P ×P , which the interpretation of ≤, such
that the axioms are satisfied. As an example we spell out when the reflexivity
axiom is satisfied. The interpretation of x:P | x ≤ x is obtained by the following
pullback:

[[x ≤ x]]
_
�

// //
��

��

R
��
r
��

P //
δP

// P × P

where δP = 〈1P , 1P 〉 is the diagonal. The first axiom is satisfied when [[x ≤ x]] =
P , which happens if, and only if, δP factors through r. Therefore, reflexivity
can be expressed as follows: there exists a “reflexivity” morphism ρ : P → R
such that r ◦ ρ = δP . Equivalently, morphisms π0 ◦ r and π1 ◦ r have a common
right inverse ρ.

4.3.1 Subset types

Let us consider whether the theory of a category is a lex theory. We begin by
expressing the definition of a category so that it can be interpreted in any lex
category C. An internal category in C consists of an object of morphisms C1, an
object of objects C0, and domain, codomain, and identity morphisms,

dom : C1 → C0 , cod : C1 → C0 , id : C0 → C1 .

There is also a composition morphism c : C2 → C1, where C2 is obtained by the
pullback

C2
_
�

p0

��

p1 // C1

dom

��
C1

cod
// C0

The following equations must hold:

dom ◦ i = 1C0
= cod ◦ i ,

cod ◦ p1 = cod ◦ c , dom ◦ p0 = dom ◦ c .

c ◦ 〈1C1
, i ◦ dom〉 = 1C1

= c ◦ 〈i ◦ cod, 1C1
〉 ,
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The first two equations state that the domain and codomain of an identity
morphism 1A are both A. The second equation states that cod (f ◦ g) = cod f
and the third one that dom (f ◦ g) = dom g. The fourth equation states that
f ◦ 1dom f = f = 1cod f ◦ f . It remains to express associativity of composition.
For this purpose we construct the pullback

C3
_

�

q01

��

q2 // C1

dom

��
C2

cod ◦ p1

// C0

The object C3 can be thought of as the set of triples of morphisms (f, g, h)
such that cod f = dom g and cod g = domh. We denote q0 = p0 ◦ q01 and
q1 = p1 ◦ q01. The morphisms q0, q1, q2 : C3 → C1 are like three projections
which select the first, second, and third element of a triple, respectively. With
this notation we can write q01 = 〈q0, q1〉C2

because q01 is the unique morphism
such that p0 ◦ q01 = q0 and p1 ◦ q01 = q1. The subscript C2 reminds us that the
“pair” 〈q0, q1〉C2

is obtained by the universal property of the pullback C2.
Morphisms c ◦ q01 : C3 → C1 and q2 : C3 → C1 factor through the pullback

C2 because
cod ◦ c ◦ q01 = cod ◦ p1 ◦ q0 = dom ◦ q2 .

Thus let r : C3 → C2 be the unique factorization for which p0 ◦ r = c ◦ q01 and
p1◦r = q2. Because p0 and p1 are like projections from C2 to C1, morphism r can
be thought of as a pair of morphisms, so we write r = 〈c ◦ q01, q2〉C2

. Morphism
c ◦ 〈c ◦ q01, q2〉C2

: C3 → C1 corresponds to the operations 〈f, g, h〉 7→ (f, g) ◦ h,
whereas the morphism corresponding to 〈f, g, h〉 7→ f ◦ (g ◦ h) is obtained in a
similar way and is equal to

c ◦ 〈q0, c ◦ 〈q1, q2〉C2
〉C2

: C3 → C1 .

Thus associativity is expressed by the equation

c ◦ 〈c ◦ 〈q0, q1〉C2
, q2〉C2

= c ◦ 〈q0, c ◦ 〈q1, q2〉C2
〉C2

.

Example 4.3.6 An internal category in Set is a small category.

We have successfully formulated the theory of a category so that it makes
sense in any lex category. In fact, the definition of an internal category refers
only to certain pullbacks, hence the notion of an internal category makes sense
in any category with pullbacks. However, if we try to formulate it as a multi-
sorted lex theory, there is a problem. Obviously, there ought to be a basic sort
of objects C0 and a basic sort of morphisms C1. There are also basic function
symbols with signatures

dom : (C1; C0) cod : (C1; C0) id : (C0, C1) .
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However, it is not clear what the signature for composition should be. It is
not (C1, C1; C1) because composition is undefined for non-composable pairs of
morphisms. We might be tempted to postulate another basic sort C2 but then
we would have no way of stating that C2 is the pullback of dom and cod. And
even if we somehow axiomatized the fact that C2 is a pullback, we would then
still have to formalize the object C3 of composable triples, C4 of composable
quadruples, and so on. What we lack is the ability to define the type C2 as a
subset type of C1 × C1.

In order to remedy the situation we need to use a richer type theory, namely
one that allows simple subset types. We explain what these are. The formation
rule for simple subset types is

x:A | ϕ pred

{x:A |ϕ} type

We can think of {x:A |ϕ} as the subset of all those x : A that satisfy ϕ. Note
that we did not allow an arbitrary context Γ to be present. This means that
we cannot define subset types that depend on parameters, which why they are
called “simple”.

Inference rules for subset types are as follows:

Γ | t : {x:A |ϕ}

Γ | inϕ t : A

Γ | t : {x:A |ϕ}

Γ | · ⊢ ϕ[t/x]

Γ | t : A Γ | · ⊢ ϕ[t/x]

Γ | rsϕ t : {x:A |ϕ}

Γ, x:A | Ψ, ϕ ⊢ θ

Γ, y:{x:A |ϕ} | Ψ[inϕ y/x] ⊢ θ[inϕ y/x]

The first rule states that a term t of subset type {x:A |ϕ} can be converted
to a term inϕ t of type A. We can think of the constant inϕ as the inclusion
inϕ : {x:A |ϕ} → A. The second rule states that every term of a subset
type {x : A |ϕ} satisfies the defining predicate ϕ. The third rule states that
a term t of type A which satisfies ϕ can be converted to a term rsϕ t of type
{x:A |ϕ}. A good way to think of the constant rsϕ is as a partially defined
restriction, or a type-casting operations, rsϕ : A ⇀ {x:A |ϕ}.5 The last rule
tells us how to replace a variable x of type A and an assumption ϕ about it
with a variable y of type {x:A |ϕ} and remove the assumption. Note that this
is a two-way rule.

There are two more axioms that relate inclusions and restrictions:

Γ | t : {x:A |ϕ}

Γ | · ⊢ rsϕ (inϕ t) = t

Γ | t : A Γ | · ⊢ ϕ[t/x]

Γ | · ⊢ inϕ (rsϕ t) = t .

In an informal discussion it is customary for the inclusions and restrictions to
be omitted, or at least for the subscript ϕ to be missing.6

5Inclusions and restrictions are like type-casting operations in some programming lan-
guages. For example in Java, an inclusion corresponds to an (implicit) type cast from a class
to its superclass, whereas a restriction corresponds to a type cast from a class to a subclass.
Must I write that Java is a registered trademark of Sun Microsystems?

6Strictly speaking, even the notation inϕ t is imprecise because it does not indiciate that φ
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Exercise 4.3.7 Suppose x:A | ψ and x:A | ϕ are formulas. Show that

x:A | ψ ⊢ ϕ

is provable if, and only if, {x:A |ψ} factors through {x:A |ϕ}, which means
that there exists a term k,

y : {x:A |ψ} | k : {x:A |ϕ} ,

such that

y : {x:A |ψ} | · ⊢ inψ y =A inϕ k

is provable. Show also that k is determined uniquely up to provable equality.

Example 4.3.8 We are now able to formulate the theory of a category as a lex
theory whose underlying type theory has product types and subset types. The
basic types are the type of objects C0 and the type of morphisms C1. We define
the type C2 to be

C2 ≡ {p : C1 × C1 | cod(fst p) = dom(snd p)} .

The basic function symbols and their signatures are:

dom : C1 → C0 , cod : C1 → C0 , id : C0 → C1 , c : C2 → C1 .

The axioms are:

a : C0 | · ⊢ dom(id(a)) = a

a : C0 | · ⊢ cod(id(a)) = a

f : C1, g : C1 | cod(f) = dom(g) ⊢ dom(c(rs 〈f, g〉)) = f

f : C1, g : C1 | cod(f) = dom(g) ⊢ cod(c(rs 〈f, g〉)) = g

f : C1 | · ⊢ c(rs 〈id(dom(f)), f〉) = f

f : C1 | · ⊢ c(rs 〈f, id(cod(f))〉) = f

Lastly, the associativity axiom is

f : C1, g : C1, h : C1 | cod(f) = dom(g), cod(g) = dom(h) ⊢

c(rs 〈c(rs 〈f, g〉), h〉) = c(rs 〈f, c(rs 〈g, h〉)〉) .

This notation is quite unreadable. If we write g ◦ f instead of c(rs 〈f, g〉) then
the axioms take on a more familiar form. For example, associativity is just
h ◦ (g ◦ f) = (h ◦ g) ◦ f . However, we need to remember that we may form the
term g ◦ f only if we first prove dom(g) = cod(f).

stands in the context x : A. The correct notation would be in(x:A|ϕ) t, where x is bound in
the subscript. A similar remark holds for rsϕ t.
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A subset type {x:A |ϕ} is interpreted as the domain of a monomorphism
representing x:A | ϕ:

[[{x:A |ϕ}]] //
[[x:A | ϕ]]

// [[A]]

Some care must be taken here because monos representing a given subobject
are only determined up to isomorphism. We assume that a suitable canonical
choice of monos can be made.

An inclusion Γ | inϕ t : A is interpreted as the composition

[[Γ]]
[[t]]

// [[{x:A |ϕ}]] //
[[x:A | ϕ]]

// [[A]]

A restriction Γ | rsϕ t : {x:A |ϕ} is interpreted as the unique [[t]] which makes
the following diagram commute:

[[Γ]]
[[t]]

//

[[t]]
##F

FFFFFFFFFFFF
[[x:A | ϕ]]

��

��
[[A]]

Exercise 4.3.9 Formulate and prove a soundness theorem for subset types.
Pay attention to the interpretation of restrictions, where you need to show
unique existence of [[t]].

4.3.2 Completeness of Lex Logic

4.4 Quantifiers

The categorical semantics of quantification is one of the central features of the
subject, and quite possibly one of the nicest contributions of categorical logic to
the field of logic. You might expect that the quantifiers ∀ and ∃ are “just a big
conjunction and disjunction”, respectively. In fact the Polish school of algebraic
logicians worked to realize this point of view—but categorical logic shows how
quantifiers are treated algebraically as adjoint functors to give a much more
satisfactory theory.

Let us first recall the rules of inference for quantifiers. The formation rules
are:

Γ, x:A | ϕ pred

Γ | (∀x:A .ϕ) pred

Γ, x:A | ϕ pred

Γ | (∃x:A .ϕ) pred

The variable x is bound in ∀x:A .ϕ and ∃x:A .ϕ. If x and y are distinct variables
and x does not occur freely in the term t then substitution of t for y commutes
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with quantification over x:

(∃x:A .ϕ)[t/y] = ∃x:A . (ϕ[t/y]) ,

(∀x:A .ϕ)[t/y] = ∀x:A . (ϕ[t/y]) .

For each quantifier we have a two-way rule of inference:

Γ, x:A | Ψ ⊢ ϕ

Γ | Ψ ⊢ ∀x:A .ϕ

Γ, x:A | Ψ, ϕ ⊢ θ

Γ | Ψ, (∃x:A .ϕ) ⊢ θ

Note that the last rule implicitly imposes the usual condition that x must not
occur freely in Ψ or θ because Ψ and θ are supposed to be well formed in
context Γ, which does not contain x.

Exercise 4.4.1 A common way of stating the inference rules for quantifiers is
as follows. For the universal quantifier, the introduction and elimination rules
are

Γ, x:A | Ψ ⊢ ϕ

Γ | Ψ ⊢ ∀x:A .ϕ

Γ | t : A Γ | Ψ ⊢ ∀x:A .ϕ

Γ | Ψ ⊢ ϕ[t/x]

The introduction rule for existential quantifier is

Γ | t : A Γ | Ψ ⊢ ϕ[t/x]

Γ | Ψ ⊢ ∃x:A .ϕ

and the elimination rule is

Γ | Ψ ⊢ ∃x:A .ϕ Γ, x:A | Ψ, ϕ ⊢ θ

Γ | Ψ ⊢ θ

Note that these rules implicitly impose a requirement that x does not occur
in Γ and that it does not occur freely in Ψ because the context Γ, x:A must be
well formed and the hypotheses Ψ must be well formed in context Γ. Show that
these rules can be derived from the ones above, and vice versa. Of course, you
may also use the inference rules for lex logic, cf. page 99.

In order to discover what the semantics of existential quantifier ought to be,
we look at the following instance of the two-way rule for quantifiers:

y:B, x:A | ϕ ⊢ θ

y:B | ∃x:A .ϕ ⊢ θ
(4.2)

First observe that this rule implicitly requires

y:B, x:A | ϕ pred y:B | θ pred y:B | (∃x:A .ϕ) pred

[DRAFT: March 12, 2008]



4.4 Quantifiers 111

Therefore the interpretations of ϕ, θ, and ∃x:A .ϕ are subobjects

[[y:B, x:A | ϕ]] ∈ Sub([[B]]× [[A]]) ,

[[y:B | θ]] ∈ Sub([[B]]) ,

[[y:B | ∃x:A .ϕ]] ∈ Sub([[B]]) .

In fact, θ appears twice, once in the context y:B and once in the context
y:B, x:A. The later instance is obtained from the former by a weakening rule

y:B | θ pred

y:B, x:A | θ pred

The interpretation of weakening is pullback along a projection, cf. page 102, as
in the following pullback diagram:

[[y:B, x:A | θ]]
_

�
//

��

��

[[y:B | θ]]
��

��
[[B]] × [[A]] π0

// [[B]]

Thus we have

[[y:B, x:A | θ]] = π∗
0 [[y:B | θ]] = [[y:B | θ]]× [[A]] .

We want to interpret existential quantification ∃x:A as a suitable functor ∃A :
Sub([[B]] × [[A]])→ Sub([[B]]) so that

[[y:B | ∃x:A .ϕ]] = ∃A[[y:B, x:A | ϕ]] .

The two-way rule (4.2) is then interpreted as a two-way inequality rule

[[y:B, x:A | ϕ]] ≤ π∗
0 [[y:B | θ]]

∃A[[y:B, x:A | ϕ]] ≤ [[y:B | θ]]

If we replace the interpretations of ϕ and θ by general subobjects S ∈ Sub([[B]]×
[[A]]) and T ∈ Sub([[B]]), we obtain

S ≤ π∗
0T

∃AS ≤ T

This is nothing but an adjunction between ∃A and π∗
0 ! Therefore, existential

quantification is left-adjoint to weakening:

∃A ⊣ π
∗
0 .

A dual argument shows that universal quantification is right-adjoint to weaken-
ing:

π∗
0 ⊣ ∀A .
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Let us see how all this works for the usual interpretation in Set. A predicate
y:B, x:A | ϕ corresponds to a subset ϕ ⊆ B × A, and y:B | θ corresponds to a
subset θ ⊆ B. Weakening of θ is the subset π∗

0θ = θ × A ⊆ B × A. Then we
have

∃Aϕ =
{
y ∈ B

∣∣ ∃x:A . 〈x, y〉 ∈ ϕ
}
⊆ B ,

∀Aϕ =
{
y ∈ B

∣∣ ∀x:A . 〈x, y〉 ∈ ϕ
}
⊆ B .

A moment’s thought convinces us that with this interpretation we really have

ϕ ⊆ θ ×A

∃Aϕ ⊆ θ

θ ×A ⊆ ϕ

θ ⊆ ∀Aϕ

The unit of the adjunction ∃A ⊣ π∗
0 amounts to the inequality

ϕ ⊆ (∃Aϕ)×A , (4.3)

and the universal property of the unit says that ∃Aϕ is the smallest set satisfy-
ing (4.3). Similarly, the counit of the adjunction π∗

0 ⊣ ∀A is just the inequality

(∀Aϕ)×A ⊆ ϕ , (4.4)

and the universal property of the counit says that ∀Aϕ is the largest set satisfy-
ing (4.4). Figure 4.1 shows the geometric meaning of existential and universal
quantification.
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Figure 4.1: ∃ϕ and ∀ϕ

Exercise 4.4.2 What do the universal properties of the counit of ∃A ⊣ π∗
0 and

the unit of π∗
0 ⊣ ∀A say?
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The weakening functor π∗
0 is a special case of a pullback functor f∗ : Sub(B)→

Sub(A) for a morphism f : B → A. This gives us the idea that we may regard
the left and the right adjoint to f∗ as a kind of generalized existential and
universal quantifier.

We may also be tempted to define quantifiers as left and right adjoints to
pullback functors. However there is a bit more to quantifiers than that—we are
still missing the important Beck-Chevalley condition.

4.4.1 Beck-Chevalley Condition

Recall that quantification commutes with substitution, as long as no variables
are captured by the quantifier. Thus if Γ | t : B and Γ, y:B, x:A | ϕ pred then

(∃x:A .ϕ)[t/y] = ∃x:A . (ϕ[t/y]) .

(∀x:A .ϕ)[t/y] = ∀x:A . (ϕ[t/y]) .

If semantics of quantifiers is to be sound, the interpretation of these equations
must be valid. Because substitution of a term in a formula is interpreted as
pullback this means that quantifiers must be stable under pullbacks. This is
known as the Beck-Chevalley condition.

Definition 4.4.3 A family of functors Ff : Sub(A)→ Sub(B) parametrized by
morphisms f : A → B is said to satisfy the Beck-Chevalley condition when for
every pullback on the left-hand side, the right-hand square commutes:

D
_
�

h //

k

��

C

g

��
A

f
// B

Sub(D)

Fk

��

Sub(C)
h∗oo

Fg

��
Sub(A) Sub(B)

f∗
oo

Definition 4.4.4 A lex category C has existential quantifiers if, for every f :
A → B, the left adjoint ∃f ⊣ f∗ exists and it satisfies the Beck-Chevalley
condition. Similarly, C has universal quantifiers if the right adjoints f∗ ⊣ ∀f
exist and they satisfy the Beck-Chevalley condition.

To convince ourselves that Beck-Chevalley condition is what we want, we
spell it out in the case of a substitution into an existentially quantified formula.
In order to keep the notation simple we omit the semantic brackets [[−]]. Suppose
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we have a term Γ | t : B and a formula Γ, y:B, x:A | ϕ pred. The diagram

Γ×A
_

�
〈π0, t ◦ π0, π1〉 //

πΓ,A
0

��

Γ×B ×A

πΓ,B,A
0

��
Γ

〈1Γ, t〉
// Γ×B

is a pullback. By Beck-Chevalley condition for ∃, the following square commutes:

Sub(Γ×A)

∃Γ,AA

��

Sub(Γ×B ×A)

∃Γ,B,AA

��

〈π0, t ◦ π0, π1〉∗oo

Sub(Γ) Sub(Γ×B)
〈1Γ, t〉∗

oo

Therefore, for Γ, y:B, x:A | ϕ pred,

[[(∃x:A .ϕ)[t/y]]] = 〈1Γ, t〉
∗(∃Γ,B,AA [[ϕ]]) =

∃Γ,AA (〈π0, t ◦ π0, π1〉
∗[[ϕ]]) = [[∃x:A . (ϕ[t/y])]] .

This is precisely the equation we wanted.

Exercise 4.4.5 In Set we can identify Sub(−) with powersets because Sub(X) ∼=
PX . Then quantifiers along a function f : A→ B are functions

∃f : PA→ PB , ∀f : PA→ PB .

Verify that

∃fU = f∗U =
{
b ∈ B

∣∣ ∃ a:A . (fa = b ∧ a ∈ U)
}
,

∀fU =
{
b ∈ B

∣∣ ∀ a:A . (fa = b =⇒ a ∈ U)
}
.

Thus ∃fU is just the usual direct image of U by f . But have you seen ∀fU
before? It can also be written as ∀fU =

{
b ∈ B

∣∣ f∗ {b} ⊆ U
}
. What is the

meaning of ∃q and ∀q when q : A → A/∼ is a canonical quotient map that
maps an element x ∈ A to its equivalence class qx = [x] under an equivalence
relation ∼ on A?

4.4.2 Universal Quantifiers in LCCC’s

Recall that a cartesian closed category is a category that has products and
exponentials. We consider those categories for which every slice is cartesian
closed.
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Definition 4.4.6 A category C is locally cartesian closed (lccc) when it has a
terminal object and every slice C/A is cartesian closed.

A slice category C/A always has a terminal object, namely the identity mor-
phism 1A : A→ A.

Proposition 4.4.7 A category C has pullbacks if, and only if, every slice C/A
has binary products.

Proof. This is obvious, since the universal property of pullbacks in C over
an object A is exactly the universal property of products in C/A.

Thus a locally cartesian closed category has all finite limits because it has a
terminal object and pullbacks. In addition, a locally cartesian closed category
is cartesian closed because C ∼= C/1.

We describe how exponentials in a slice C/A can be computed in terms of
change of base functors and dependent products. Given a morphism f : B → A
in C, the “change of base along f” is a construction

f∗ : C/A→ C/B ,

which maps c : C → A to f∗c : f∗C → B, as in the pullback

f∗C
_

�
c∗f //

f∗c

��

C

c

��
B

f
// A

and it maps a morphism

C
h //

c $$H
HHHHH D

dzzvvvvvv

A

to the unique f∗[h] : f∗C → f∗D which makes the following diagram commu-
tative:7

f∗C
c∗f //

f∗[h]

""F
FF

FF
FF

F

f∗c

��3
33

33
33

33
33

33
33

C
f

����
��

��
��

c

����
��
��
��
��
��
��
�

f∗D
_
�

f∗d
��

d∗f // D

d
��

B
f

// A

7We use the funny notation f∗[h] to distinguish the action of f∗ on morphisms in C/A
from the usual pullback of an object in C/A along f .
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The mapping f∗ : C/A → C/B is usually referred to as the “change of base
functor f∗”, even though in general it is only a pseudofunctor. If f∗ were a
functor, it would have to satisfy the equation

f∗[k ◦ h] = f∗[k] ◦ f∗[h]

but in general it only satisfies the isomorphism

f∗[k ◦ h] ∼= f∗[k] ◦ f∗[h] .

Thus f∗ is a “functor up to isomorphism”. For certain purposes this is a se-
rious technical nuisance, most notably in dependent type theory. However, for
our aims f∗ will do just fine because we will only be concerned with adjunc-
tions and other “up to isomorphism” constructions. For example, we can safely
speak of left and right adjoints to the “functor” f∗ because adjunctions are
natural isomorphisms between functors, not equations. For presicse definition
of pseudofunctors and related notions see [Bor94a, Definition 7.5.1].

Exercise 4.4.8 Show that the change of base functor f∗ always has a left
adjoint Σf : C/B → C/A, called a dependent sum along f . It maps an object
c : C → B to the object Σfc = f ◦ c : C → A, and a morphism h : C → D
with domain c : C → B and codomain d : D → B in C/B to the morphism
h : C → D with domain f ◦ c : C → A and codomain f ◦ d : D → A in C/A.

A right adjoint to f∗, when it exists, is called a dependent product along f ,

Πf : C/B → C/A .

Now an exponential of b : B → A and c : C → A in C/A can be computed in
terms of Πb and b∗. For any d : D → A, we have b ×A d = (b∗d) ◦ b = Σb(b

∗d),
hence

b×A d→ c

Σb(b
∗d)→ c

b∗d→ b∗c

d→ Πb(b
∗c)

Therefore, cb = Πb(b
∗c).

We have proved that if a lex category C has dependent product Πf : C/A→
C/B along every morphism f : A → B then it is locally cartesian closed. The
converse holds as well, that is every lccc has dependent products. For a proof
see [MM92, Theorem I.9.4].

Exercise 4.4.9 In Set consider the dependent sum and product along a func-
tion !I : I → 1. Show that for a : A→ I the set Π!IA is the set of right inverses
of a:

Π!IA =
{
s : I → A

∣∣ a ◦ s = 1I
}
.
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If (Ai)i∈I is a family of sets indexed by I and we take

A =
∐
i∈I Ai =

{
〈i, x〉 ∈ I ×

⋃
i∈I Ai

∣∣ i ∈ I ∧ x ∈ Ai
}

with a = π0 : 〈i, x〉 7→ i then Π!IA is precisely the cartesian product Πi∈IAi.
Calculate what Πf is in Set for a general f : J → I and conclude that Set is
locally cartesian closed.

Proposition 4.4.10 In an lccc C, for any f : A→ B the change of base functor
f∗ : C/B → C/A preserves the ccc structure.

Proof. We need to show that f∗ preserves terminal objects, binary products,
and exponentials in slices. Because f∗ is a right adjoint it preserves limits, hence
it preserves terminal objects and binary products. To see that it preserves
exponentials we first show that f∗ ◦ Πg

∼= Πf∗g ◦ (g∗f)∗ for g : C → B. Given
any d : D → C, and e : E → A:

e→ f∗(Πgd)

Σfe→ Πgd

g∗(Σfe)→ d

g∗(f ◦ e)→ d

(g∗f) ◦ ((f∗g)∗e)→ d

(f∗g)∗e→ (g∗f)∗d

e→ Πf∗g((g
∗f)∗d)

By Yoneda Lemma it follows that f∗(Πgd) ∼= Πf∗g((g
∗f)∗d). Now we have, for

any d : D → A and c : C → A,

f∗cd = f∗(Πd(d
∗c)) = Πf∗d((d

∗f)∗(d∗c)) =

Πf∗d((f
∗d)∗(f∗c)) = (f∗c)(f

∗d) .

Exercise 4.4.11 State precisely which instance of Yoneda Lemma is used in
the conclusion of the last proof.

Exercise 4.4.12 In the preceding proof we used the fact that (d∗f)∗(d∗c) ∼=
(f∗d)∗(f∗c) and g∗(f ◦ e) ∼= (g∗f) ◦ ((f∗g)∗e). Prove that this is really so.

Locally cartesian closed categories are an important example of categories
with universal quantifiers.

Proposition 4.4.13 A locally cartesian closed category has universal quanti-
fiers.
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Proof. Suppose C is locally cartesian closed. First observe that a morphism
m : M → A is mono if, and only if, the morphism

M
m //

m   A
AA

AA
AA

A A

1A��~~
~~

~~
~

A

is mono in C/A. Because right adjoints preserve monos, Πf : C/A → C/B
preserve monos for any f : A → B, that is, if m : M  A is mono then
Πfm : ΠfM → B is mono in C. Therefore, we may define ∀f as the restriction
of Πf to Sub(A). To be more precise, a subobject [m : M  A] is mapped
by ∀f to the subobject [Πfm : ΠfM  B]. This works because for any monos
m : M  A and n : N  B we have

f∗[m : M  A] ≤ [n : N  B] in Sub(B)

f∗m→ n in C/B

m→ Πfn in C/A

[m] ≤ ∀f [n] in Sub(A)

The Beck-Chevalley condition for ∀f follows from Proposition 4.4.10. Indeed, if
g : C → B and m : M  C then

f∗(Πgm) ∼= Πf∗g((g
∗f)∗m) ,

therefore

f∗(∀g[m : M  C]) = ∀f∗g((g
∗f)∗[m : M  C]) ,

as required.

4.4.3 Implication from Universal Quantifiers

Recall that the rules of inference for implication state that ⇒ is right adjoint
to ∧:

Γ | θ pred Γ | ϕ pred

Γ | (θ ⇒ ϕ) pred

Γ | Ψ, θ ⊢ ϕ

Γ | Ψ ⊢ θ ⇒ ϕ

Exercise 4.4.14 Show that the above two-way rule can be replaced by the
following introduction and elimination rules:

Γ | Ψθ ⊢ ϕ

Γ | Ψ ⊢ θ ⇒ ϕ

Γ | Ψ ⊢ θ ⇒ ϕ Γ | Ψ ⊢ θ

Γ | Ψ ⊢ ϕ
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We expect that in order to interpret implication in a lex category C we
require Sub(A) to be a Heyting algebra for every A ∈ C. However, we must not
forget that implication interacts with substitution by the rule

(θ ⇒ ϕ)[t/x] = θ[t/x]⇒ ϕ[t/x] .

Semantically this means that implication is stable under pullbacks.

Definition 4.4.15 A lex category C has implications when, for every A ∈ C,
the poset Sub(A) is a Heyting algebra with stable implication ⇒. This means
that for U, V ∈ Sub(A) and f : B → A,

f∗(U ⇒ V ) = (f∗U ⇒ f∗V ) .

Proposition 4.4.16 If a lex category has universal quantifiers then it has im-
plications.

Proof. Let [u : U  A] and [v : V  A] be subobjects of A. Define

([u]⇒ [v]) = ∀u(u
∗[v]) .

Then for any subobject [w : W  A]

[w] ≤ [u]⇒ [v] in Sub(A)

[w] ≤ ∀u(u
∗[v]) in Sub(A)

u∗[w] ≤ u∗[v] in Sub(U)

u∗w → u∗v in C/U

Σu(u
∗w)→ v in C/A

u ◦ (u∗w)→ v in C/A

[u] ∧ [w] ≤ [v] in Sub(A)

Stability of ⇒ follows from Beck-Chevalley condition for ∀.

Exercise 4.4.17 Prove the last claim of the proof.

4.5 Regular Logic

In this section we consider the question when a lex category has existential
quantifiers. It turns out that this is related to the notion of a regular category,
which was arose independently of categorical logic.
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4.5.1 Regular Categories

Throughout this section we work in a lex category C. The kernel pair of a
morphism f : A → B is the pair of morphisms k1, k2 : K → A obtained as in
the following pullback

K
_
�
k2 //

k1

��

A

f

��
A

f
// B

Note that a kernel pair determines an equivalence relation 〈k1, k2〉 : K  A×A.
Without going into details about what an equivalence relation is a general lex
category, let us just note that in Set the mono 〈k1, k2〉 : K  A×A corresponds
to the equivalence relation ∼ on A defined by

x ∼ y ⇐⇒ fx = fy .

The quotient by the equivalence relation determined by the kernel pair k1, k2 is
their coequalizer q : A→ Q, if it exists,

K
k1 //

k2

// A
q // // Q

Such a coequalizer is called a kernel quotient.
Because f◦k1 = f◦k2, f factors through q by a unique morphismm : Q→ A,

B

K
k1 //

k2

// A q
// //

f
88pppppppppp
Q

m
OO

(4.5)

It is of some interest to know when m is guaranteed to be a mono. For example,
in Set the function m : Q → B is defined by m[x] = fx, where Q = A/∼ as
above. In this case m is injective because m[x] = m[y] implies fx = fy, hence
x ∼ y and [x] = [y].

Definition 4.5.1 A category with finite limits is regular when it has kernel
quotients and stable regular epis, meaning that:

1. every kernel pair has a coequalizer, and

2. a pullback of a regular epi is a regular epi.

Recall that an epi is regular if it is a coequalizer. In diagrams we denote
regular epis by arrows with triangular heads, for example

A
e � ,,2B
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Exercise 4.5.2 Suppose e : A ։ B is a regular epi. Prove that it is the
coequalizer of its kernel pair.

Let us return to (4.5) and show that in a regular category m is mono. Con-
sider the following diagram, in which h1, h2 are constructed as the kernel pair
of m, and the other three squares are constructed as pullbacks:

K
_

�
p2 � ,,2

p1

_���

r

� ��%
@@

@@
@@

@@
@@

@ ·
_

�

s2

_���

// A

q

_���
·

_
� s1

� ,,2

��

H
_

�
h2 //

h1

��

Q

m

��
A q

� ,,2Q m
// B

Because all the smaller squares are pullbacks the large square is a pullback as
well, therefore the morphism across the top is k2 : K → A, and the left-hand
vertical morphism is k1 : K → A. Morphisms s1, s2, p1, and p2 are all regular
epis because they are pullbacks of regular epis. The morphism r = s2 ◦ p2 =
s1 ◦ p1 is epi because it is a composition of regular epis. Observe that

h1 ◦ r = q ◦ k1 = q ◦ k2 = h2 ◦ r ,

and because r is epi, h1 = h2. But this means that m is monic, since given
u, v : U → Q with m ◦u = m ◦ v there exists w : U → H such that u = w ◦h1 =
w ◦ h2 = v.

Proposition 4.5.3 In a regular category every morphism f : A → B factors
as a composition of a regular epi q and a mono m,

A q
� ,,2

f

''
Q //

m
// B

The factorization in unique up to isomorphism.

Proof. By uniqueness of factorization we mean that if

A
q′

� ,,2

f

''
Q′ //

m′
// B

is another such factorization, then there exists an isomorphism i : Q→ Q′ such
that q′ = i ◦ q and m = m′ ◦m.
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As the factorization of f we take the one constructed in (4.5). Then q is
regular epi by construction, and we have just shown that m is mono. So it
only remains to show that the factorization is unique. Suppose f also factors
as f = m′ ◦ q′ where q′ is regular epi and m is mono. Consider the following
diagram, in which k1, k2 is the kernel pair of f , q is the coequalizer of k1 and k2,
and h1, h2 is the kernel pair of q′ so that q′ is the coequalizer of h1 and h2:

H

h2

��

h1

��
K

k1 //

k2

// A
q � ,,2

q′

_���

Q
��

m

��

i

��
Q′ //

m′
//

j

??

B

Because m′ ◦ q′ ◦ k1 = m ◦ q ◦ k1 = m ◦ q ◦ k2 = m′ ◦ q′ ◦ k2 and m′ is mono,
q′ ◦ k1 = q′ ◦ k2. So there exists a unique i : Q → Q′ such that q′ = i ◦ q. But
then m′ ◦ i ◦ q = m′ ◦ q′ = f = m ◦ q and because q is epi, m′ ◦ i = m.

We prove that i is iso by constructing its inverse j. Because m ◦ q ◦ h1 =
m′ ◦ q ◦ h1 = m′ ◦ q ◦ h2 = m ◦ q ◦ h2 and m is mono, q ◦ h1 = q ◦ h2. So there
exists a unique j : Q′ → Q such that q = j ◦ q′. Now we have i ◦ j ◦ q′ = i ◦ q =
1Q′ ◦ q′, from which we conclude that i ◦ j = 1Q′ because q′ is epi. Similarly,
j ◦ i ◦ q = j ◦ q′ = 1Q ◦ q, therefore j ◦ i = 1Q.

A factorization f = m ◦ q as in the previous Proposition determines a sub-
object

im(f) = [m : Q  B] ∈ Sub(B) ,

called the image of f . It is characterized as the least subobject [u : U  B]
of B through which f factors.

Proposition 4.5.4 In a regular category C, the image im(f) of a morphism
f : A→ B is the least subobject [u : U  B] of B such that f factors through u.

Proof. Suppose f factors through v : V  B as

A g
//

f

''
V //

v
// B

and consider the factorization of f , as in (4.5). Since v ◦ g ◦ k1 = f ◦ k1 =
f ◦ k2 = v ◦ g ◦ k2 and v is mono, g ◦ k1 = g ◦ k2, therefore there exists a unique
g : Q→ V such that g = g ◦ q. Now v ◦ g ◦ q = v ◦ g = f = m ◦ q and because q
is epi, v ◦ g = m as required.
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A morphism f : A→ B is sometimes called a generalized element or gener-
alized point of B. If U ≤ B is a subobject of B, we write f ∈ U when f factors
through U . With this notation we have

f ∈ U ⇐⇒ im(f) ≤ U .

At first sight it may seem unreasonable to use the phrases “element” and “point”
for something that clearly is a morphism. But this is in perfect accordance with
mathematical practice. For example, in mechanics we often say things like “the
velocity ṗ of a point mass p moving in space” which just means that p is a vector
in R3 parametrized by time—in other words a generalized point p : R→ R3.

In set theory the axiom of extensionality say that “a set is determined by
its elements”, that is, for any sets A and B,

A = B ⇐⇒ ∀x . (x ∈ A ⇐⇒ x ∈ B) .

The corresponding statement in an arbitrary category is that objects A and B
are isomorphic if, and only if, they have naturally isomorphic sets of generalized
elements:

A ∼= B ⇐⇒ Hom(−, A) ∼= Hom(−, B) .

This is Corollary 1.4.5, which says that the Yoneda embedding reflects isomor-
phisms.

Let us consider some examples of regular categories. The category Set is
regular. It is complete and cocomplete, so it has finite limits and coequalizers.
The pullback of a regular epi is again regular epi because in Set every epi is
regular, and it is always the case that the pullback of an epi is epi.

In general, any presheaf category Ĉ is regular because it is complete and
cocomplete, and every epi is regular.

The next example deserves to be a proposition.

Proposition 4.5.5 The category ModSet(A) of set-theoretic models of an alge-
braic theory A is regular.

Proof. We sketch a proof, for details see [Bor94b, Theorem 3.5.4]. Recall
that the objects of Mod(A) = ModSet(A) are A-algebras, which are structures
X = (|X |, f1, f2, . . .) where |X | is the carrier set and f1, f2, . . . are the basic
operations on |X |. Every such A-algebra is also required to satisfy the equational
axioms of A. A morphism f : X → Y is a function f : |X | → |Y | that preserves
the basic operations.

The category of A-algebras Mod(A) has small limits, which are computed
as in Set. Thus the product of A-algebras X and Y has as its carrier set
|X×Y | = |X |×|Y |, and the basic operations of X×Y are computed separately
on each component. An equalizer of morphisms f, g : X → Y has as its carrier
set the equalizer of f, g : |X | → |Y |, and the basic operations inherited from X .
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To see that coequalizers of kernel pairs exist, consider a morphism h : X →
Y . We can form the quotient A-algebra Q whose carrier set is |Q| = |X |/∼,
where ∼ is the relation defined by

x ∼ y ⇐⇒ hx = hy .

A basic operation fQ : Qk → Q is induced by the basic operation fX : Xk → X
by

fQ〈[x1], . . . , [xk]〉 = [fX〈x1, . . . , xk〉] .

It is easily verified that Q is an A-algebra and that the canonical quotient map
q : |X | → |Q| is the coequalizer of the kernel pair of h.

Lastly regular epis in Mod(A) are stable because pullbacks and kernel pairs
are computed as in Set, and a morphism f : X → Y is regular epi in Mod(A)
if, and only if, the underlying function f : |X | → |Y | is regular epi in Set.

We now know that categories of groups, rings, modules, C∞-rings and other
algebraic categories are regular. The preceding proposition is useful also for
showing that certain structures cannot be axiomatized by algebraic theories.
For example the category of posets is not regular, therefore the theory of partial
orders cannot be axiomatized solely by equations.

Exercise 4.5.6 Why is Poset not regular?

Exercise∗ 4.5.7 Is Top regular? Hint: is there is a topological quotient map
q : X ։ X ′ and a space Y such that q× 1Z : X×Y ։ X ′×Y is not a quotient
map?

Definition 4.5.8 A functor F : C → D is regular if it preserves finite limits
and regular epis. It follows that F preserves image factorizations. The category
of regular functors C → D and natural transformations is denoted by Reg(C,D).

Exercise 4.5.9 Let H be a complete Heyting algebra. The category of H-sets
has as its objects X = (|X |, eX : |X | → H) where |X | is a set and eX is a
function, called the existence predicate of X . For x ∈ |X |, eXx is the “amount
by which x exists as an element of |X |”. A morphism f : X → Y is a function
f : |X | → |Y | satisfying, for all x ∈ |X |,

eXx ≤ eY (fx) .

Prove that H-sets form a regular category.

4.5.2 Images and existential quantifiers

Recall that Sub(A) is equivalent to the category Mono(A) of monos into A.
If we compose an equivalence functor Sub(A) → Mono(A) with the inclusion
Mono(A) → C/A we obtain an inclusion functor I : Sub(A) → C/A. In the
other direction we have the “image functor” im : C/A→ Sub(A) which maps an
object b : B → A in C/A to the subobject im(f) = [im(f)  A].
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Exercise 4.5.10 In order to show that im is in fact a functor, prove that f =
g ◦ h implies im(f) ≤ im(g).

Proposition 4.5.4 says that the image functor is left adjoint to the inclusion
functor I : Sub(A)→ C/A,

im ⊣ I .

Furthermore, images are stable in the sense that the following diagram com-
mutes for all f : A→ B:

C/A

imA

��

C/B
f∗

oo

imB

��
Sub(A) Sub(B)

f∗
oo

(4.6)

The functor f∗ on the top is the change of base functor, and the functor f∗ on
the bottom is the pullback functor. To see this, consider g : C → B and the
following diagram:

f∗C
_
�

//

_���
f∗g

��

C

_���
g

��

im(f)
_
�

//
��

��

im(g)
��

��
A

f
// B

On the right-hand side we have the factorization of g, which is then pulled back
along f . Because monos and regular epis are stable, this gives us a factorization
of f∗g, hence

im(f∗g) = f∗(im(g)) .

Proposition 4.5.11 A regular category has existential quantifiers. The exis-
tential quantifier along f : A→ B is

∃f [m : M  A] = im(f ◦m) .
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Proof. First we verify that ∃f ⊣ f∗. For subobjects [u : U  A] and
[v : V  B]:

∃f [u] ≤ [v] in Sub(B)

im(f ◦ u) ≤ [v] in Sub(B)

f ◦ u→ I[v] in C/B

f ◦ u→ v in C/B

Σfu→ v in C/B

u→ f∗v in C/A

[u] ≤ f∗[v] in Sub(A)

In the second step in the above derivation we used the adjunction between
im : C/B → Sub(B) and the inclusion Sub(B)→ C/B.

The Beck-Chevalley condition follows from stability of image factorizations.
Given a pullback

D
_

�
h //

k

��

C

g

��
A

f
// B

and a mono u : U  C, (4.6) gives

f∗(∃g[u]) = f∗(im(g ◦ u)) = im(f∗(g ◦ u)) =

im(k ◦ (h∗u)) = ∃k(h
∗u) = ∃k(h

∗[u]) .

4.5.3 Regular Theories

A regular category has finite limits and image factorizations, therefore it allows
us to interpret a type theory with the terminal type and binary products, and a
logic with equality, conjunction, and existential quantifiers. Such logic is called
regular logic.

Definition 4.5.12 A multi-sorted regular theory T is a multi-sorted type the-
ory together with axioms expressed in the fragment of logic built from =, ∧,
and ∃.

Let us recall that an interpretation of a regular theory T in a regular cate-
gory C is given, as usual, by the following data:

1. Each basic sort A is interpreted as an object [[A]].
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2. Each basic constant f with signature (A1, . . . , An;B) is interpreted as a
morphism [[f ]] : [[A1]]× · · · × [[An]]→ [[B]].

3. Each basic relation symbol R with signature (A1, . . . , An) is interpreted
as a subobject [[R]] ∈ Sub([[A1]]× · · · × [[A1]]).

An interpretation is then extended to all terms and formulas of the theory T.
The lex part of logic is interpreted as was explained in Section 4.3. Existential
quantification is interpreted by the existentials in the category,

[[Γ | ∃x:A .ϕ]] = ∃A[[Γ, x:A
∣∣ ϕ]] ,

where ∃A = ∃Γ,Aπ0
: Sub([[Γ]]× [[A]])→ Sub([[Γ]]).

If all the axioms of T are valid in a given interpretation, then we say that the
interpretation is a model of T. Once again we would like to show that semantics
of regular categories is functorial, i.e., that the models of a theory T can be
viewed as structure-preserving functors,

Reg(S(T), C) ≃ ModC(T) .

where on the left-hand side S(T) is a suitable regular category, called the clas-
sifying category for T, and Reg(−,−) indicates that we take regular functors.
Once we do this, we can also define morphisms between models to be natural
transformations.

Let us sketch the construction of S(T). An object is represented by a formula
in a context

[Γ | ϕ]

where Γ | ϕ pred. Two such objects [Γ | ϕ] and [Γ | ψ] are equal if T proves
both

Γ | ϕ ⊢ ψ , Γ | ψ ⊢ ϕ .

Objects which differ only in the names of free variables are also considered equal.
A morphism

[x:A | ϕ]
ρ // [y:B | ψ]

is represented by a formula x:A, y:B | ρ such that T proves that ρ is a functional
relation from ϕ to ψ:

x:A | ϕ ⊢ ∃ y:B . ρ (total)

x:A, y:B, z:B | ρ, ρ[z/y] ⊢ y = z (single-valued)

x:A, y:B | ρ ⊢ ϕ ∧ ψ (well-defined)

Two functional relations ρ and σ represent the same morphism if T proves both

x:A, y:B | ρ ⊢ σ , x:A, y:B | σ ⊢ ρ ,
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Relations which only differ in the names of free variables are considered equal.
The identity morphism on [x:A | ϕ] is represented by the relation

x:A, y:A | (x = y) ∧ ϕ ∧ ϕ[y/x] .

Composition of morphisms

[x:A | ϕ]
ρ // [y:B | ψ]

τ // [z:C | θ]

is given by the relation

x:A, z:C | ∃ y:B . (ρ ∧ τ) .

We leave a detailed proof that S(T) as exercise. Let only show that composition
of morphisms is associative. Given morphisms

[x:A | ϕ]
ρ // [y:B | ψ]

τ // [z:C | θ]
σ // [t:D | ζ]

we need to derive in context x:A, t:D

ξ = ∃ y:B . (ϕ ∧ (∃ z:C . (τ ∧ σ)))

from
∃ z:C . ((∃ y:B . (ρ ∧ τ)) ∧ σ)

and vice versa. In one direction we have:

x:A, t:D | ∃ y:B . (ρ ∧ ∃ z:C . (τ ∧ σ)) ⊢ ξ

x:A, t:D, y:B | ρ ∧ ∃ z:C . (τ ∧ σ) ⊢ ξ

x:A, t:D, y:B | ρ, ∃ z:C . (τ ∧ σ) ⊢ ξ

x:A, t:D, z:C, y:B | ρ, τ ∧ σ ⊢ ξ

x:A, t:D, z:C, y:B | ρ, τ, σ ⊢ ξ

x:A, t:D, z:C, y:B | ρ ∧ τ, σ ⊢ ξ

x:A, t:D, z:C | (∃ y:B . (ρ ∧ τ)), σ ⊢ ξ

x:A, t:D, z:C | (∃ y:B . (ρ ∧ τ)) ∧ σ ⊢ ξ

x:A, t:D | ∃ z:C . ((∃ y:B . (ρ ∧ τ)) ∧ σ) ⊢ ξ

The other direction is equally boring.

Exercise 4.5.13 Extend the definition of S(T) to morphisms between objects
with arbitrary contexts,

[Γ | ϕ]
ρ // [∆ | ψ]

and provide a proof that S(T) is a category.
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The category S(T) is a regular. We sketch the constructions required for
regularity. The terminal object is [· | ⊤]. The product of [x:A | ϕ] and [y:B | ψ],
where x and y are distinct variables, is the object

[x′:A, y′:B | ϕ[x′/x] ∧ ψ[y′/y]] .

The first projection from the product is

x′:A, y′:B, x:A | x′ = x ∧ ϕ[x′/x] ∧ ψ[y′/y]

and the second projection is

x:A, y:B, y′:B | y′ = y′ ∧ ϕ[x′/x] ∧ ψ[y′/y] .

An equalizer of morphisms

[x:A | ϕ]
ρ //
τ

// [y:B | ψ]

is

[x:A | ϕ ∧ ∃ y:B . (ρ ∧ τ)]
ε // [x′:A | ϕ[x′/x]]

where ε is the morphism

x:A, x′:A | (x = x′) ∧ ϕ ∧ ∃ y:B . (ρ ∧ τ) .

Finally, let us consider coequalizers of kernel pairs. The kernel pair of ρ : [x:A |
ϕ]→ [y:B | ψ] is

K
κ1 //
κ2

// [x:A | ϕ]

where K is the object

[u:A, v:A | ϕ[u/x] ∧ ϕ[v/x] ∧ ∃ y:B . (ρ[u/x] ∧ ρ[v/x])] ,

the morphism κ1 is
u:A, v:A, x:A | (u = x) ∧ ϕ

and κ2 is
u:A, v:A, x:A | (v = x) ∧ ϕ .

Now the coequalizer of κ1 and κ2 is the morphism

[x:A | ϕ]
ρ // [y:B | ∃x:A . ρ] .

Exercise 4.5.14 Show that in S(T) the regular-epi mono factorization of a
morphism ρ : [x:A | ϕ]→ [y:B | ψ] is given by

[x:A | ϕ]
ρ // [y:B | ∃x:A . ρ]

ι // [z:B | ψ[z/y]]

where ι is the morphism

y:B, z:B | (y = z) ∧ (∃x:A . ρ) ∧ ψ[z/y] .
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Theorem 4.5.15 Semantics of regular logic in regular categories is sound and
complete: a regular theory T proves

Γ | ϕ ⊢ ψ

if, and only if, every model of T satisfies it.

Proof. Soundness is proved by induction on the proof of Γ | ϕ ⊢ ψ. All
that needs to be checked is that rules of inference preserve validity. This was
done for lex logic in Section 4.3. The inference rule for existential quantifiers
preserves validity as well, because it translates to the universal property of the
adjunction ∃ ⊣ π0.

Completeness follows from the fact that T has a universal model U in S(T).
In this model a sort A is interpreted by the object [x:A | ⊤] and a basic con-
stant f with signature (A1, . . . , An;B) is interpreted by the relation

x1:A1, . . . , xn:An, y:B | f(x1, . . . , xn) = y .

A relation symbol R with signature (A1, . . . , An) is interpreted by the subobject
represented by the morphism

ρ : [x1:A1, . . . , xn:An | R(x1, . . . , xn)] −→ [y1:A1, . . . , yn:An | ⊤]

where ρ is the formula

R(x1, . . . , xn) ∧ x1 = y1 ∧ · · · ∧ xn = yn .

The model U has the property

U |= Γ | ϕ ⊢ ψ ⇐⇒ T proves Γ | ϕ ⊢ ψ .

4.6 First-order Logic
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regular, 41
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in IPC, 72

object, 7

baseable, 61

exponentiable, 61

zero, 40

partial function, 22

pointed set, 23
poset, 9, 23

as category, 9
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algebraic, 48, 53
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transpose
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model, 59

property
of exponential, 61
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