
From Sets to Types to Categories to Sets∗

Steve Awodey

Three different styles of foundations of mathematics are now commonplace:
set theory, type theory, and category theory. How do they relate, and how
do they differ? What advantages and disadvantages does each one have
over the others? We pursue these questions by considering interpretations
of each system into the others and examining the preservation and loss of
mathematical content thereby.

In order to stay focused on the “big picture”, we merely sketch the overall
form of each construction, referring to the literature for details. Each of the
three steps considered below is based on more recent logical research than
the preceding one. The first step from sets to types is essentially the familiar
idea of set theoretic semantics for a syntactic system, i.e. giving a model; we
take a brief glance at this step from the current point of view, mainly just
to fix ideas and notation. The second step from types to categories is known
to categorical logicians as the construction of a “syntactic category”; we give
some specifics for the benefit of the reader who is not familiar with it. The
third step from categories to sets is based on quite recent work, but captures
in a precise way an intuition from the early days of foundational studies.

With these pieces in place, we can then draw some conclusions regard-
ing the differences between the three schemes, and their relative merits. In
particular, it is possible to state more precisely why the methods of category
theory are more appropriate to philosophical structuralism.

1 Sets to Types

We begin by assuming a system of elementary set theory as given. The details
of the set theory need not concern us for the moment, but will be specified
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later. We want to show how to construct a type theory from the sets, and it
is the details of the type theory that are important for this step.

There are various different type theories that could be considered at this
point: many-sorted first-order logic, simply-typed lambda calculus, depen-
dent type theory à la Martin-Löf, the calculus of constructions, etc. We shall
consider the traditional system of higher-order logic with “powertypes”, i.e.
higher types of “properties” or collections of objects of lower types. Since
we also assume pairing and first-order logic, there are also higher types of
relations and functions. It will be convenient to consider intuitionistic rather
than classical logic, dropping the law of excluded middle, for reasons that
will be clear later. This is of course no restriction but rather a generalization,
since classical logic results simply from adding that law. Our entire discus-
sion here could be adjusted to a different choice of type theory, however, and
analogous conclusions to those arrived here would hold, mutatis mutandis,
for that theory and suitably adjusted set theories and categories.1

1.1 IHOL

To be specific, let us consider the following system IHOL of (intuitionistic)
higher-order logic.2 This type theory consists of the following data.

Basic type symbols: B1,B2, . . .

Type constructors: A× B, P(A) for given type symbols A and B.

Variables: x1, x2, · · · : A for each type A.

Basic terms: b1 : A1, b2 : A2, . . . where the types Ai are constructed from
the basic ones.

Term constructors: given terms a : A, b : B, c : A× B there are terms:

〈a, b〉 : A× B, π1(c) : A, π2(c) : B.

Also, if ϕ is any formula, then λx :A. ϕ is a term of type P(A).

1See e.g. [6] for the details of such an adjustment of step 3 below, which is the most
novel of the three.

2This informal sketch is not intended as a precise specification of a system of type
theory; for that, see e.g. [9, 8].
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Formulas: include the following, where a, b : A and p : P(A) are terms, and
ϕ, ψ are formulas:

a = b, p(a), ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, ∀x :A. ϕ, ∃x :A. ϕ

Theorems: Some formulas ϑ, . . . are distinguished as theorems, written ` ϑ.

We shall assume that the theorems always include the general laws of intu-
itionistic higher-order logic.

1.2 Semantics

Given a type theory T, there is a familiar way of interpreting it in set theory;
this consists essentially in giving a model of the theory, i.e. an interpretation
that satisfies the theorems. We start with some sets B1, B2, . . . interpreting
the basic types B1,B2, . . .. Let us use the “Scott-brackets” notation [[X]] to
indicate semantic interpretation of a bit of syntax X:

[[B1]] = B1

[[B2]] = B2

...

We extend the interpretation to all types using the set-theoretic cartesian
product and powerset operations:

[[A× B]] = [[A]]× [[B]]

[[P(A)]] = P([[A]])

Fixing interpretations for the basic terms [[bi]] ∈ [[Ai]], the constructed
terms have a natural interpretation using corresponding set-theoretic opera-
tions. For instance,

[[〈a, b〉]] = ([[a]], [[b]])

using set theoretic pairing. Given a formula ϕ, we set:

[[λx :A. ϕ]] = {x∈ [[A]] | [[ϕ]]}
Finally, formulas are interpreted by set theoretic formulas, e.g. given

terms a : A and p : P(A) and formulas ϕ, ψ, we let

[[p(a)]] = [[a]] ∈ [[p]]

[[ϕ ∧ ψ]] = [[ϕ]] ∧ [[ψ]]

[[∀x :A. ϕ]] = ∀x∈ [[A]]. [[ϕ]]

3



and so on. Note for later reference that the set theoretic formulas [[ϕ]] coming
from type theory are always ∆0, i.e. all quantifiers are bounded by sets.

Every interpretation determines a theory, the theorems of which are all
the formulas ϑ that come out true under the interpretation, i.e. such that
[[ϑ]] holds in the set theory. As an example, consider the theory PA of Peano
arithmetic, with one basic type N for the natural numbers and basic constants
o : N for zero and s : N→ N for successor (as usual, the function type N→ N
can be constructed from the type of relations P(N×N)). The interpretation
is the evident one assigning these symbols to the set of natural numbers, the
zero element, and the successor function, respectively. The theorems are all
the formulas in this language that are true under this interpretation.

A system of type theory T can be modeled in set theory in various differ-
ent ways, each determined by the interpretation of the basic types and terms
[[B]], . . . , [[b]], . . .. The formulas that always come out true, under every inter-
pretation, will of course include the general laws of intuitionistic higher-order
logic usually specified by a deductive system. This is just the “soundness”
of the system of deduction.

Now, given a system of set theory S (more precisely, a model of our
assumed elementary set theory), is there a distinguished type theory T(S)
with a distinguished interpretation in S? As basic types, we take symbols
pAq, pBq, pCq, ... for all the sets A,B,C, ... of S; as basic terms, we take
symbols paq, pbq, pcq, ... for all the elements a, b, c, ... of the sets, whereby we
of course set paq : pAq just if a ∈ A.

This type theoretic language has an obvious interpretation back into S by
setting [[pAq]] = A and [[paq]] = a, etc. As theorems, we take all the formulas
of T(S) that hold under this interpretation,

T(S) ` ϕ iff S |= [[ϕ]].

Note that for each set A there will be both a powertype P(pAq) and a
basic type pP(A)q for the powerset. However, since clearly

[[P(pAq)]] = P(A) = [[pP(A)q]],

we will have theorems of the form ` P(pAq) ∼= pP(A)q for each set A.
Thus the types P(pAq) and pP(A)q are syntactically isomorphic, since their
interpretations are equal, and thus isomorphic. The same is true for product
types pAq× pBq ∼= pA×Bq, and for all other type theoretic constructions
that are definable in set theory. So although there is a great duplication of
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data, the type theory holds there to be isos relating old to new. Of course, it
also holds that everything true in the original set theory is true in the type
theory, to the extent it can be stated there. Indeed, this type theory captures
all of the type theoretic information of S; what it omits cannot be expressed
in type theory.

2 Types to Categories

Next, given a system of type theory T, we shall construct from it a category
E(T) by identifying certain terms as the objects and arrows. This category,
it turns out, is of a very special kind known as a “topos”. This means that
it has a certain categorical structure typical of the categories of sheaves that
arise in geometry. These categories were first identified and studied by the
Grothendieck school of algebraic geometry, and have been axiomatized (by
F.W. Lawvere and M. Tierney) and investigated for their fascinating logical
properties (see [10]). We follow roughly the exposition of [9] for a sketch of
the construction of the “syntactic topos” E(T). First, let us recall the basic
definition.

2.1 Topoi

A topos is a category E such that:

• E has all finite limits: in particular, it has a terminal object 1 and all
binary products A×B, as well as all pullbacks,

A×C B - B

A
?

- C,
?

which are products in the slice categories E/C.

• E has exponentials: for every pair of objects A,B, there is an object
BA, and an isomorphism between arrows of the forms

X → BA

X × A→ B
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Moreover, this correspondence is natural in X, making (−)A : E → E
into a functor right adjoint to (−)× A : E → E .

• E has a subobject classifier: there is an object Ω with an arrow t : 1→ Ω
such that every subobject S � A fits into a pullback diagram

S - 1

A
?

?

φS

- Ω

t

?

for a unique “classifying arrow” φS : A→ Ω.

The subobject classifier axiom can be thought of as saying that every
subset has a unique characteristic function. The concept of a topos has
proven to be extremely rich and versatile. The combination of exponentials
and a subobject classifier provides for powerobjects in the form P (A) = ΩA,
and one can show that a topos must also have all finite colimits, as well as
the structure required to interpret first-order logic. There are topoi such as
the category Sets of all sets and functions, and the functor categories SetsC

for any small category C, as well as the “geometric” categories of sheaves
mentioned earlier; but there are also topoi arising naturally in logic from
forcing, permutation, and Kripke models, and realizability, as well as from
systems of type theory, as we now indicate.

2.2 Syntactic Topos

Given the type theory T, we shall construct from it a topos E(T) comprised
of syntactic material from T.

First, it is convenient to add a unit type 1 with a basic term ∗ : 1 and an
axiom

` ∀x :1. ∗ = x.

The type P(1) now acts as a type of formulas, in that for every formula ϕ
there is an associated term ϕ : P(1),

ϕ = λx :1. ϕ
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such that
` ϕ⇔ (ϕ = >)

where > = (∗ = ∗). The term ϕ can be thought of as the characteristic
function of the “extension” of ϕ.

The topos E(T) is now defined as follows.

objects: are equivalence classes under provable equality of closed terms
λx :A. ϕ of various powertypes P(A), which we write as [ x :A |ϕ ] (or
simply [ x |ϕ ] when the type A can be inferred).

arrows: of the form [ x :A |ϕ ]→ [ y :B |ψ ] are (provable-equality equivalence
classes of) provably functional relations [ (x, y) :A× B | ρ ] from ϕ to ψ,

` (∀x ∃!y. ρ) ∧ (∀x, y. (ρ⇒ ϕ ∧ ψ))

units:
1A = [ x, y | x = y ] : A→ A

composition:
[ y, z |σ ] ◦ [ x, y | ρ ] = [ x, z | ∃y. σ ∧ ρ ]

products:

1 = [ u :1 | u = u ]

[ x :A |ϕ ]× [ y :B |ψ ] = [ (x, y) :A× B |ϕ ∧ ψ ]

exponentials:

[ y :B |ψ ][ x:A |ϕ ] =

[ r :P(A× B) | (∀x ∃!y. r(x, y)) ∧ (∀x, y. (r(x, y)⇒ ϕ ∧ ψ)) ]

subobject classifier:
Ω = [ p :P(1) | p = p ]

It is straightforward to verify that this actually is a category, and that
the indicated constructions have the required universal properties making
it a topos. The syntactic topos E(T) itself also has a universal mapping
property, somewhat analogous to that of a polynomial ring, characterizing
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it as the free topos with a model of the theory T. If we take as a theory,
for instance, the empty theory T0 without any basic types or terms, and as
theorems just the deductive consequences of the conventional axioms and
rules of classical higher-order logic, then the syntactic topos is the category
Setsfin of finite sets:

E(T0) = Setsfin

This follows from a classical result of L. Henkin, the completeness of the
theory of propositional types [7]. (Note that here we really needed to add
the unit type 1 to get things going!) The general construction of a topos out
of a type theory demonstrates a completeness theorem for general deductive
higher-order logic with respect to topos models (see [9, 8]).

3 Categories to Sets

For the final step, we indicate how to extract an elementary set theory from
a topos. The resulting set theory will have the property that its sets and
functions are essentially the objects and arrows of the topos we started with,
and its theorems all hold in the topos. This construction, which was only
recently given in [4, 3, 5], involves some technical methods from category
and sheaf theory, and so we cannot give the details here; but it is similar in
spirit to an old idea from type theory, which we can use as motivation for
our sketch.

The motivating idea, which can be found e.g. in [11] and elsewhere, is
that one can “sum the types” of a type theory T to obtain a universal type

U =
⋃
A∈T

A,

into which all of the original types then embed A ⊆ U. Moreover, if the
“sum” is taken in the right way, there will also be a powertype

P(U) =
⋃
A∈T

P(A),

which in turn will also embed P(U) ⊆ U. The universal type U thus admits
an untyped membership relation

∈U ⊆ U× P(U) ⊆ U× U.

This binary relation then models an elementary set theory, the theorems of
which depend on the type theory T with which we began.
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3.1 Category of Ideals

In the type theoretic setting, the scheme of “summing the types” is more of
an figurative, guiding idea than an actual construction. But if we start from a
topos E instead of a system of type theory, we can apply certain constructions
from sheaf theory which capture that intuition in a rigorous way and allow
us in the end to actually read off an elementary set theory describing E . The
main new concept is that of an ideal in the category E , which is essentially a
order ideal in the partial ordering of monomorphisms of E , i.e. a non-empty
subcategory C ↪→ E of objects and monomorphisms such that A,B ∈ C
implies (A′ � A) ∈ C and C ∈ C for some A � C � B. The actual
definition requires either some care in specifying choices of monomorphisms,
as is done in [4], or a sheaf-theoretic approach as in [5]. In either case, the
category Idl(E) of all ideals, called the ideal completion of E , is characterized
by a universal property: it is the completion of E under filtered colimits of
monomorphisms. It is a generalization to categories of the ideal completion
of a poset, and like that construction it has some very good logical properties.

An ideal in E can be thought of as being “patched together” out of pieces
consisting of objects of E ; indeed, the notion of a scheme in algebraic geom-
etry is closely related to that of an ideal. In the logical case of a topos, we
can think of the ideals as (abstract) classes, with the principle ideals ↓(A) for
A ∈ E as the “sets”. The category Idl(E) of all ideals then has a somewhat
weaker logical structure than the original topos E (e.g. it does not have all
exponentials) but it does still support an interpretation of first-order logic.
It also has something that the topos E cannot have: an object U with a
monomorphism P (U) � U. This is made possible by the fact that the
powerobject P (C) in ideals is in effect the classes of all subsets of the ideal
C (rather than all subclasses). The universal object U is just the total ideal,
and thus also embeds all the “sets” ↓ (A) � U, as desired. (This is the
“right” way of “summing the types” mentioned above.)

In particular, there is then a membership relation

∈U � U× P (U)� U×U

on U as desired. In this way, we construct from the topos E a category
Idl(E) containing a model (U,∈U) of an elementary set theory, the sets and
functions of which form a category equivalent to E . It is quite surprising that
this set theory can be axiomatized in a simple and familiar way.
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3.2 Basic Intuitionistic Set Theory

The elementary set theory that is modeled by every topos is a variant of
conventional Zermelo-Frankel set theory ZF, which we call BIST for Basic
Intuitionistic Set Theory. It differs from ZF in the following three respects:

1. it is formulated in intuitionistic rather than classical logic,

2. it allows for “urelements”, or atoms,

3. the axiom scheme of separation is restricted to formulas with bounded
quantifiers, the so-called ∆0 formulas.

Apart from these changes, it agrees with ZF in having axioms of exten-
sionality, emptyset, singletons, pairs, unions, powersets, foundation, and re-
placement. An axiom of infinity holds for topoi with an infinite object, but
otherwise not, so we do not include it in the definition of BIST.

The use of intuitionistic logic (1) is required by the fact that the logic of
topoi is generally intuitionistic; this is not a philosophical decision, but a fact
of nature. The topoi that arise from notions of variation and continuity in ge-
ometry, for instance, just naturally satisfy intuitionistic rather than classical
logic. The possible presence of atoms (2) is required to accommodate topoi
based on some given objects and arrows, such as the representable functors
in a functor category SetsC, or the basic types and terms in a syntactic topos
E(T) coming from a type theory. The restriction in the separation scheme
(3) arises algebraically from the fact that a subideal of a principle ideal need
not itself be principle, and so not every subclass of a set need be a set. It
is interesting to note that bounded separation and full (unbounded) replace-
ment are compatible under intuitionistic logic; by contrast (full) separation
follows classically from replacement. Indeed, replacement itself can even be
given a stronger (intuitionistically) formulation, called collection. The spe-
cific formulations of some of the other axioms are also adjusted to account
for intuitionistic logic and the possibility of atoms (see [4, 3, 2] for details).

For our purposes, the remarkable fact about BIST is that it is not only
sound but also deductively complete with respect to topoi, modeled in their
ideal completions as indicated above:

BIST ` ϕ iff (U,∈U) |=Idl(E) ϕ for all E .

Of course, for a particular topos E , the set theory S(E) = (U,∈U) in the
ideal completion Idl(E) will also model more set theoretic formulas than just
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the deductive consequences of BIST. If E is boolean, for instance (like the
classical category of sets), then the set theory S(E) will satisfy excluded mid-
dle for sets, and if E satisfies the axiom of choice, then S(E) will also satisfy
that axiom for sets. In fact, given any property of objects and arrows in a
topos that is expressible by a formula of set theory, the property holds in
E if and only if the corresponding formula holds in the set theory S(E). In
that sense, E can be regarded as a category of sets and functions of the set
theory S(E). For example, if E = E(PA) is the syntactic topos of (intuitionis-
tic) Peano arithemic, then the set theory S(E(PA)) is intuitionistic ZF with
bounded separation, sometimes called IZF0, in which the arithmetic of the
natural numbers agrees with that provable in PA.

Finally, let us tie up a loose end. In section 1 we said that the details
of the set theory assumed were to be specified later. Now we can do so
succinctly: it should be (at least) BIST.

4 Composites

The three constructions that we have just sketched,

Types

Sets⇐===============
(3)

(1)

==
==

==
==

==
=⇒

Categories

(2)

===========⇒
(4)

can now be composed to yield three more interpretations,

(2) ◦ (1) : Sets⇒ Categories

(3) ◦ (2) : Types⇒ Sets

(1) ◦ (3) : Categories⇒ Types

Let us briefly consider each of these in turn.

4.1 Sets to Categories

Starting from a set theory S we compose the construction (1) of a type
theory T(S) with (2) from type theory to categories, i.e. the syntactic topos
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construction. What is the syntactic topos E(T(S))? It is not hard to see that,
up to equivalence of categories, it is just the category of sets and functions of
S. The objects of the syntactic topos are the definable sets [ x : A |ϕ ] in T(S),
all of which are isomorphic to sets coming from S; and the arrows between
these are all given by functional relations, which are all uniquely determined
by functions in S. Thus the composite of these two constructions is a familiar
construction from sets to categories, namely, taking the category of sets and
functions of a set theory.

4.2 Types to Sets

Here we start with a type theory T, make the syntactic topos E(T), take
its ideal completion Idl(E(T)), and find there the universal object model
(U,∈U) determining the set theory S(E(T)). But the guiding idea of the
ideals construction was that it gives a rigorous treatment of the informal
scheme of “summing the types” of a type theory to get a set theory, with the
definable collections of all types as the sets.

So this composite (3) ◦ (2) is just a precise formulation of that informal
idea of turning a type theory into a set theory by “summing the types”.

4.3 Categories to Types

If we start with a topos E and apply the constructions (3) and (1) in turn,
what results is essentially what the categorical logician calls the “internal
logic” of the topos (see [9]). It is a type theory in which the basic types are
the objects of the topos, the basic terms are the arrows, along with some
coordinating terms as in (1), and the axioms are all the formulas that hold
under the evident standard interpretation back into the topos. This well-
known construction of a type theory out of a topos is a sort of “inverse” to
the syntactic topos construction, lacking only a suitable notion of equivalence
of type theories in order to be an actual inverse.

5 Conclusions

We are now in a position to make a more informed comparison between these
three different approaches to foundations.
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First, let us note that there are of course further composites of the trans-
lations (1), (2), and (3), namely, going “once around” to the starting point.
In each case, the result is a system extending the original one by further
data, the behavior of which is determined by isomorphic data in the origi-
nal system. For categories, this familiar situation is just what the notion of
equivalence was invented for. Starting from a topos E and going once around
the diagram (4) of translations results in a category equivalent to E . For the
other three-fold composites, the situation is not as succinctly expressed. The
resulting systems of type or set theory are “equivalent” to the original ones,
in some sense that needs to made precise. This involves additional basic data
such as basic types and terms or atoms, which are copies of preexisting ob-
jects determining them; something like a notion of a “definitional expansion”
of the original system is about right. Perhaps the clearest thing that one can
say is that these composite constructions result in systems which, under the
further translation to categories, are categorically equivalent to the original
ones.3 (One fine point: if we start with the empty theory T0 and go once
around, the result is not equivalent, since we have added the unit type 1. To
smooth things out, every type theory should really have a unit type—which
has other benefits as well.)

The first and most obvious conclusion to be drawn from this is that the
three systems of foundations are therefore mathematically equivalent. Ele-
mentary set theory at least as strong as our basic theory BIST, type theory
in the form of higher-order logic, and category theory as represented by the
notion of a topos, all permit the same mathematical definitions, construc-
tions, and theorems—to the extent that these do not depend on the specifics
of any one system. This is perhaps the definition of the “mathematical con-
tent” of a system of foundations, i.e. those definitions, theorems, etc. that
are independent of the specific technical machinery, that are invariant under
a change of foundational schemes. The very constructions that we have been
discussing, for instance, in order to be carried out precisely, would have to
be formulated in some background theory; but what should that be? Any of
the three systems themselves would do for this purpose, and the results we
have mentioned would not depend on the choice.

Another conclusion to be drawn is this: the objects of type theory and set

3A more careful analysis shows that deductive IHOL is not only sound with respect
to models in BIST and complete with respect to models in topoi, but both sound and
complete with respect to both.
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theory are structured by the operations of their respective systems in certain
ways that are not mathematically salient. That additional information is
essentially what is lost by our comparisons, e.g. distinctions between basic
data and derived objects, between types of different complexity, ordinal rank
of a set, membership chains within a set, etc. Categorical structure is closer
to the mathematical content, and it is not lost in translation. Equivalence of
categories preserves categorical properties and structures, because these are
determined only up to isomorphism in the first place.

The structural approach implemented by category theory is thus more
stable, more robust, more invariant than type or set theoretic constructions.
On the other hand, type and set theory have certain distinctive advantages
as well. Type theory has something of a concrete, “nominalistic” character,
owing to the fact that one actually constructs its objects syntactically—
although in impredicative systems, it is of course not really the case that
everything the theory posits can be written down. Nonetheless, there is the
idea that the objects are systematically generated from some basic data by
repeated iteration of the operations, making them more managable. Set the-
ory sacrifices the nominalistic pretense in favor of greater flexibility and range
of set formation, while retaining the conception of a systematic generation
of its objects “from below”, i.e. iteratively, from basic data. This still allows
for some degree of control over the objects in the form of ordinal ranks, ε-
induction, and the like. Although these additional logical structures do not
have a stable mathematical content—no topologist or algebraist is concerned
with the logical type or ordinal rank of a manifold or module—they can
serve a useful purpose in foundational work by providing the concrete data
for specifications and calculations, facilitating constructions and proofs.

By contrast, the purely structural approach of category theory sometimes
offers comparatively little such “extra” structure to hold on to. Practically
speaking, it can be harder to give an invariant proof. That is why it’s good
to know that such logical structure can always be introduced into a category
when needed; the devices of introducing an internal logic or a set theoretic
structure into a category, as sketched in the foregoing sections, were originally
developed in order to benefit from their advantages, much like introducing
local coordinates on a manifold for the sake of calculation. The analogy
is quite a good one: no one today regards a manifold as involving specific
coordinate charts, and one generally works with coordinate free methods so
that the results obtained will apply directly—this is the modern, structural
approach. But at times it can still be useful to introduce coordinates for some
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purpose, and this is unobjectionable, as long as the results are invariant. So
it is with categorical versus logical foundations: category theory implements
the structural approach directly. It admits interpretations of the conventional
logical systems, without being tied to them. Category theory presents the
invariant content of logical foundations.
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