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1. Introduction

Quillen [17] introduced model categories as an abstract framework for homotopy theory
which would apply to a wide range of mathematical settings. By all accounts this program
has been a success and — as, e.g., the work of Voevodsky on the homotopy theory of
schemes [15] or the work of Joyal [11, 12] and Lurie [13] on quasicategories seems to
indicate — it will likely continue to facilitate mathematical advances. In this paper we
present a novel connection between model categories and mathematical logic, inspired
by the groupoid model of (intensional) Martin-Löf type theory [14] due to Hofmann
and Streicher [9]. In particular, we show that a form of Martin-Löf type theory can be
soundly modelled in any model category. This result indicates moreover that any model
category has an associated “internal language” which is itself a form of Martin-Löf type
theory. This suggests applications both to type theory and to homotopy theory. Because
Martin-Löf type theory is, in one form or another, the theoretical basis for many of the
computer proof assistants currently in use, such as Coq and Agda (cf. [3] and [5]), this
promise of applications is of a practical, as well as theoretical, nature.

The present paper provides a precise indication of this connection between homotopy
theory and logic; a more detailed discussion of these and further results will be given in
[20].

2. Type Theory

Type theory is concerned with (at least) two basic kinds of entities: types and terms.
Types are written as A,B, . . . and terms as a, b, . . .. Every term has a unique type and
we write a : A to indicate that a is a term of type A. Types can be thought of as sets
and terms as elements of sets or, respectively, as objects of a category and global sections
thereof. Alternatively, under an interpretation known as the Curry-Howard correspon-
dence (cf. [16]), a type A can be regarded as a proposition and a term a : A as a proof
of A.

The simply typed λ-calculus is the type theory obtained by admitting the construction
of products (A×B) and exponentials (function spaces) (A→ B) of types A and B. Under
the Curry-Howard correspondence, the simply typed λ-calculus describes the behavior
of proofs in propositional (intuitionistic) logic: (A × B) is the conjunction (A ∧ B) and
(A → B) is the implication (A ⇒ B). In categorical terms, the simply typed λ-calculus
corresponds to cartesian closed categories in the evident way.
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The principal innovation of Martin-Löf’s dependent type theory over the simply typed
λ-calculus is that types are allowed to depend on or “vary over” other types, thereby
yielding a more complex and expressive theory. The meaning of type dependence is that,
when A is a given type, it is possible for a family (Bx)x:A of types to occur indexed by
A. The theory also allows families of types which are themselves indexed by elements of
other families of types, and so forth. The basic operations of the theory then correspond
to indexed sums and products. These operations, together with type dependence, allow
us to regard dependent type theory as an extension of the Curry-Howard correspondence
to first-order (intuitionistic) logic. Similarly, the kinds of categories corresponding to
dependent type theory are locally cartesian closed categories.

We now present the syntax of Martin-Löf type theory in more detail together with an
interpretation, due to Seely [18], in locally cartesian closed categories. This interpretation
is “non-split” in the sense that it does not model substitution on the nose, but only
up to canonical natural isomorphism, due to the pseudo-functoriality introduced by a
choice of pullbacks (cf. [6] and [8]). This presents a problem when one attempts to
interpret some of the structural rules of the theory. For example, the rules stating that
the type formers are well-behaved with respect substitution are satisfied only up to
isomorphism since the operations describing both the type formers and the behavior of
substitution are in general only determined up to isomorphism. In the case of extensional
type theory, these issues are resolved, as noted by Hofmann [8], using a result of Bénabou
[2] which in essence yields choices of these operations satisfying the corresponding rules.
The homotopical interpretation will be given in the Section 3.

2·1. Forms of judgement

The syntax of type theory is given by first indicating four “forms of judgement”. These
are the basic kinds of statement which can be formally made in the theory. The first form
of judgement is the type declaration ` A : type which says that A is a type. In a fixed
locally cartesian closed category C such a judgement is interpreted as an object A of C.
As mentioned above, when A is a type it is possible to consider A-indexed families of
types. That B(x) is an A-indexed family of types is indicated by the following form of
judgement

x : A ` B(x) : type . (2·1)

Such a judgment is interpreted as an arrow f : B // A with codomain A following the
usual categorical treatment of indexed families.

In (2·1) the part x : A to the left of the turnstile ` is called the context of the
judgement. More generally, a list of variable declarations

x0 : A0, x1 : A1, . . . , xn : An

is a context whenever the judgements ` A0 : type and

x0 : A0, . . . , xm : Am ` Am+1 : type

are derivable for 0 ≤ m < n. Upper-case Greek letters Γ,∆, . . . are reserved as names for
contexts. Contexts are interpreted in the natural way as chains

An
//An−1

// · · · //A0 (2·2)

of arrows. The empty context is interpreted as the terminal object.
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In addition to judgements of the form Γ ` A : type there are also judgements of the
form

Γ ` a : A, (2·3)

which state that a is a term of type A in the context Γ. In the empty context a term
a : A is interpreted as a global section 1 // A of the object A. Similarly, when Γ is
interpreted as a chain of arrows of the form (2·2) the judgement (2·3) is interpreted as a
section a : An

//A of the interpretation A //An of Γ ` A : type .
Finally, there are also forms of judgement governing definitional equality of types and

terms as follows:

Γ ` A = B : type ,

Γ ` a = b : A,

which are interpreted as identities in C. Henceforth, when no confusion will result, explicit
mention of contexts will be elided.

2·2. Dependent sums and products

Given an A-indexed family of types B(x) the dependent sum Σx:A.B(x) and the depen-
dent product Πx:A.B(x) can be formed. This is usually stated as the following formation
rules

x : A ` B(x) : type
Σ form.

` Σx:A.B(x) : type
and

x : A ` B(x) : type
Π form.

` Πx:A.B(x) : type

Under the Curry-Howard correspondence, dependent sums correspond to existential
quantifiers and dependent products correspond to universal quantifiers. The behavior
of these types is specified by introduction, elimination and conversion rules, which can
be thought of either in terms of manipulation of indexed families or their logical signifi-
cance. For example, the introduction rule for Πx:A.B(x) is stated as

x : A ` f(x) : B(x)
Π intro.

` λx:A.f(x) : Πx:A.B(x)

which states that if f is family of terms f(x) : B(x), then there is a term λx:A.f(x) of
type Πx:A.B(x). Similarly, the elimination rule

` g : Πx:A.B(x) ` a : A
Π elim.

` app(g, a) : B(a)

corresponds to the application of an element g of the indexed product to a : A. Finally,
the following conversion rule for dependent products states that the application term
app(g, a) behaves correctly when g is itself of the form λx:A.f(x):

x : A ` f(x) : B(x) ` a : A
Π conv.

` app
(
λx:A.f(x), a

)
= f(a) : B(a)

The dependent sums Σx:A.B(x) are likewise required to obey suitable introduction, elim-
ination and conversion rules. When A and B are types in the same context, the usual
product type (A × B) and exponential type (A → B) from the simply typed λ-calculus
are recovered as Σx:A.B and Πx:A.B, respectively.

In a locally cartesian closed category C, the dependent products and sums are inter-
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preted in the natural way using, respectively, the right and left adjoints to the pullback
functors.

2·3. Identity types

In addition to dependent sums and products it is required that for each type A and
terms a, b : A, there exists a type IdA(a, b) called the identity type which provides the
only explicit form of type dependence in the theory considered here. I.e., unlike depen-
dent products and sums, the formation rule for the identity type introduces new type
dependencies:

` a : A ` b : A
Id form.

` IdA(a, b) : type
(2·4)

Under the Curry-Howard correspondence, this type is regarded as the proposition which
states that a and b denote identical proofs of the proposition A. The introduction rule

` a : A
Id intro.

` rA(a) : IdA(a, a)
(2·5)

states that given a term a : A there is always a witness rA(a) to the proposition that a is
identical to itself. We call rA(a) the reflexivity term. On the other hand, the distinctive
elimination rule

x : A, y : A, z : IdA(x, y) ` D(x, y, z) : type

` p : IdA(a, b) x : A ` d(x) : D
(
x, x, rA(x)

)
Id elim.

` JA,D(d, a, b, p) : D(a, b, p)

(2·6)

can be recognized as a form of Leibniz’s law. Finally, the conversion rule

x : A, y : A, z : IdA(x, y) ` D(x, y, z) : type

` a : A x : A ` d(x) : D
(
x, x, rA(x)

)
Id conv.

` JA,D(d, a, a, rA(a)) = d(a) : D(a, a, rA(a))

(2·7)

indicates that the elimination term is equal to d(a) when p is the reflexivity term.

2·4. Locally cartesian closed categories are extensional

A model of Martin-Löf type theory is extensional if the following reflection rule is
satisfied:

` p : IdA(a, b)
Id refl.

` a = b : A.
(2·8)

I.e., the identity type IdA(a, b) in extensional models captures no more information than
whether or not a and b are definitionally equal. Although type checking is decidable in
the intensional theory, it fails to be in the extensional theory obtained by adding (2·8)
as a rule governing identity types. This fact is the principal motivation for studying in-
tensional rather than extensional type theories (cf. [19] for a more thorough discussion
of the phenomenon of intensionality and the difference between intensional and exten-
sional forms of the theory). Under the general interpretation in locally cartesian closed
categories sketched above the reflection rule is always valid.

Proposition 2·1. In the standard interpretation given above, every locally cartesian
closed category C is extensional.
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Proof. Note that it suffices to consider “parameterized” versions of the rules governing
identity types. I.e., the rules given above are equivalent, by the structural rules of the
theory, to the rules obtained by replacing any terms a, b : A and p : IdA(a, b) by variables
x, y : A and z : IdA(x, y), and stating judgements in the appropriate context. E.g., (2·6)
is equivalent to

x : A, y : A, z : IdA(x, y) ` D(x, y, z) : type

x : A ` d(x) : D
(
x, x, rA(x)

)
x, y : A, z : IdA(x, y) ` JA,D(d, x, y, z) : D(x, y, z).

As such, it suffices to prove that, when A is an object of C, any object IdA satisfying the
introduction, elimination and conversion rules for the identity type is isomorphic to the
diagonal ∆ : A //A×A. By the formation and introduction rules (2·4) and (2·5), there
exists a factorization

A

A×A
∆ ��?

??
??

??
A IdA

r // IdA

A×A
p����

��
�� (2·9)

of the diagonal. In the interpretation, r may itself be regarded as a type over IdA. By
(2·9), this type satisfies the hypotheses of the elimination rule and therefore there exists
a section J : IdA

//A of r,

A

A×A,
∆ ��?

??
??

??
A IdAr

// IdA

A×A,
p����

��
��

IdAA

J

vv

as required.

We now consider homotopy models of type theory, which do not validate the reflection
rule. We note that there are other models of type theory which also refute the reflection
rule such as the domain-theoretic ones studied by Streicher in [19].

3. Homotopy Theoretic Models

In order to obtain models of type theory which do not validate the reflection rule
additional higher-dimensional structure can be considered in the interpretation. One
way to add such structure is via the device of weak-factorization systems and Quillen
model categories (cf. [17] and [4]).

3·1. Weak factorization systems

In any category C, given maps f : A //B and g : C //D, we write

f t g
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to indicate that f has left-lifting property (LLP) with respect to g. I.e. for any commu-
tative square

B D
k

//

A

B

f

��

A C
h // C

D

g

��
B

C

l

==

there exists a map l : B // C such that g ◦ l = k and l ◦ f = h. Similarly, if M is any
collection of maps we denote by tM the collection of maps in C having the LLP with
respect to all maps in M. The collection of maps Mt is defined similarly.

A weak factorization system (L,R) in a category C consists of two collections L (the
“left-class”) and R (the “right-class”) of maps in C such that

(1) Every map f : A //B has a factorization as

A

B
f ��?

??
??

A C
i // C

B
p����

��
�

where i is a member of L and p is a member of R.
(2) Lt = R and L = tR.

3·2. Model categories

A (closed) model category [17] is a bicomplete category C equipped with subcategories
F (fibrations), C (cofibrations) and W (weak equivalences) satisfying the following two
conditions:

(1) (“Three-for-two”) Given a commutative triangle

A

C
h ��?

??
??

A B
f // B

C
g����

��
�

if any two of f, g, h are weak equivalences, then so is the third.
(2) Both (C,F ∩W) and (C ∩W,F) are weak factorization systems.

A map f is an acyclic cofibration if it is in C ∩W, i.e. both a cofibration and a weak
equivalence. Similarly, an acyclic fibration is a map in F∩W, i.e. which is simultaneously
a fibration and a weak equivalence. An object A is said to be fibrant if the canonical map
A // 1 is a fibration. Similarly, A is cofibrant if 0 //A is a cofibration.

Examples of model categories include the following:
(1) The category Top of topological spaces with fibrations the Serre fibrations, weak

equivalences the weak homotopy equivalences and cofibrations those maps which
have the LLP with respect to acyclic fibrations. The cofibrant objects in this model
structure are retracts of spaces constructed, like CW-complexes, by attaching cells.

(2) The category SSet of simplicial sets with cofibrations the monomorphisms, fibra-
tions the Kan fibrations and weak equivalences the weak homotopy equivalences.
The fibrant objects for this model structure are the Kan complexes.

(3) The category Gpd of (small) groupoids with cofibrations the functors injective
on objects, fibrations the Grothendieck fibrations and weak equivalences the cat-
egorical equivalences. Here all objects are both fibrant and cofibrant.

The reader should consult, e.g., [10] or [7] for further examples and details.
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3·3. Path objects

Recall from [10] that in a model category C a (very good) path object AI for an object
A consists of a factorization

A

A×A
∆ ��?

??
??

A AIr // AI

A×A
p����

��
�

(3·1)

of the diagonal map ∆ : A // A × A as an acyclic cofibration r followed by a fibration
p. Paradigm examples of path objects are given by exponentiation by the “unit interval”
I in either Gpd or, when the object A is a Kan complex, in SSet. With the model
structures described in Section 3·2 above, we take I in Gpd to be the free connected
groupoid with exactly two objects and one isomorphism between them (i.e., the “arrow
category”) and in SSet we take I to be the 1-simplex ∆[1].

Path objects may also be fruitfully considered in the context of weak factorization
systems, where the left class L is thought of as the acyclic cofibrations and the right
class R as the fibrations. In both weak factorization systems and model categories path
objects are guaranteed to exist, but need not be uniquely determined. Moreover, the path
object construction is often functorial.

3·4. The interpretation

Whereas the idea of the Curry-Howard correspondence is often summarized by the
slogan “Propositions as Types”, the idea underlying the interpretation of type theory in
weak factorization systems and model categories is

Fibrations as Types.
Specifically, assume that C is a finitely complete category with a weak factorization system
(L,R). Because most interesting examples arise from model categories, we refer to maps
in L as acyclic cofibrations and those in R as fibrations. We describe the interpretation
in the style of an “internal language” for C, as in Section 2 for locally cartesian closed
categories.

In such a category C, a judgement ` A : type is interpreted as a fibrant object A of
C. Similarly, x : A ` B(x) : type is interpreted as a fibration f : B // A. Contexts are
interpreted as chains of fibrations. Terms Γ ` a : A in context are interpreted, as usual,
as sections of the interpretation of Γ ` A : type .

Thinking, in this way, of fibrant objects as types and fibrations as dependent types, the
natural interpretation of the identity type IdA(a, b) should be as the fibration of paths
in A from a to b, and x, y : A ` IdA(x, y) : type should be “the” fibration of all paths
in A. That is, it should be a path object for A.

We now show that this interpretation soundly models a form of type theory with
identity types (see Appendix A for the details of this theory). The interpretation of type
formers other than identity types, together with some of the coherence issues related to
the interpretation, is discussed in Section 4.

Theorem 3·1. Let C be a finitely complete category with a weak factorization system
and a functorial choice (−)I of path objects in C, and all of its slices, which is stable
under substitution. I.e., given any fibration B // A and any arrow σ : A′ // A, the
evident comparison map is an isomorphism

σ∗
(
BI

) ∼= (
σ∗B

)I
.
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Then C is a model of a form of Martin-Löf type theory with identity types.

Proof. We may work in the empty context since the relevant structure is stable under
slicing. Given a functorial choice of path objects (3·1), we interpret, given a fibrant object
A, the judgement x, y : A ` IdA(x, y) as the path object fibration p : AI // A × A.
Because p is a fibration, the formation rule (2·4) is satisfied. Similarly, the introduction
rule (2·5) is valid because r : A //AI is a section of p.

For the elimination and conversion rules, assume that the following premisses are given

x : A, y : A, z : IdA(x, y) ` D(x, y, z) : type ,

x : A ` d(x) : D(x, x, rA(x)) .

We have, therefore, a fibration g : D // AI together with a map d : A // D such that
g ◦ d = r. This data yields the following commutative square:

AI AI .
1

//

A

AI

r

��

A D
d // D

AI .

g

��

Because g is a fibration and r is, by definition, an acyclic cofibration, there exists a
diagonal filler

AI AI .
1

//

A

AI

r

��

A D
d // D

AI .

g

��
AI

D

J

==

(3·2)

Choose such a filler J as the interpretation of the term:

x, y : A, z : IdA(x, y) ` JA,D(d, x, y, z) : D(x, y, z).

Commutativity of the bottom triangle of (3·2) is precisely the conclusion of the elimina-
tion rule (2·6) and commutativity of the top triangle is the conversion rule (2·7).

Examples of categories satisfying the hypotheses of Theorem 3·1 include Gpd, SSet and
many simplicial model categories [17] (including, e.g., simplicial sheaves and presheaves).
We include a proof of this fact for the benefit of those readers who are familiar with
simplicial model categories. This example will be considered in more detail in [20].

Corollary 3·2. Every simplicial model category C in which C is the class of monomor-
phisms satisfies the hypotheses of Theorem 3·1, and is therefore a model of intensional
type theory.

Proof. Let I be the unit interval ∆[1] in SSet, and consider, for any fibrant object A
of C, the factorization of the diagonal given by

A

A×A
∆ ��?

??
??

??
A AIr // AI

A×A
p����

��
��

�

where r is the “constant loop” map obtained as the transpose, under the (enriched)
adjunctions involved, of the projection I⊗A //A, and p is the map AI //A∂I induced
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by the inclusion of the boundary ∂I into I. Because ∂I // I is a monomorphism and A
is fibrant it follows that p is a fibration. Because r is a simplicial homotopy equivalence
it is also a weak equivalence. The required pullback stability is seen to hold using the
adjunctions defining the factorization. Stability under slicing of this choice of factorization
(as well as the structure defining simplicial model categories) is a routine verification.

4. Additional Topics

We now briefly consider the particular features of the type theory occurring as the
internal language of model categories, as well as the connection of this work with the
groupoid model of Hofmann and Streicher [9]. These topics will be addressed fully in
[20].

4·1. The internal language of model categories

The form of type theory to which Theorem 3·1 applies differs from the standard theory
presented in, say, [14] in two ways. First, because arbitrary model categories need not be
locally cartesian closed — or, even if they are, need not have Π functors which preserve
fibrations — such a category may not possess sufficient structure to interpret dependent
products in the standard way. However, for the purposes of modelling type theory this is
not much of a limitation since most model categories do possess well behaved Π functors.
So, for example, SSet as well as most other presheaf model categories do, qua toposes
with appropriate model structures, support the interpretation of dependent products.
Note that the rules for dependent sums are, trivially, always valid in this interpretation
because fibrations are stable under composition. The second distinguishing feature of
the internal language of model categories is that the interpretation of J terms need not
satisfy the “Beck-Chevalley” condition — traditionally assumed as part of Martin-Löf
type theory — which states that, given v : A ` B(v) : type and c : A together with the
other hypotheses of the elimination rule, one has(

JB(v),D

(
d(v), a(v), b(v), p(v)

))
[c/v] = JB(c),D

(
d(c), a(c), b(c), p(c)

)
. (4·1)

The reason that (4·1) need not hold is that in interpreting the J term a choice of lift
(3·2) is made, and it may not, in general, be possible to choose such lifts in a way which
is compatible with pullback. Nonetheless, there will always exists a (right) homotopy
between the interpretations of these terms and, in particular, the type

Id
(
JB(v),D

(
d(v), a(v), b(v), p(v)

)
[c/v], JB(c),D

(
d(c), a(c), b(c), p(c)

))
(4·2)

is always inhabited. Semantically, this follows from the fact that diagonal fillers for
squares

B D
k

//

A

B

f

��

A C
h // C

D

g

��

in which f is an acyclic cofibration and g is a fibration are always unique up to (right)
homotopy in model categories (cf. [10, Section 1.2]). Syntactically, (4·2) can be shown
to be inhabited using an appropriately chosen instance of (2·6).

We believe that the failure of (4·1) to hold constitutes a virtue, rather than a defect,
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of homotopy-theoretic models. Indeed, from the perspective of homotopy theory, higher-
dimensional category theory, and mechanical implementation of type theory, an internal
language with some (limited) form of higher-dimensional structure governing the behavior
of substitution is quite acceptable. Such theories, which involve a limited form of explicit
substitution (cf. [1]), will be considered in detail in [20].

4·2. Models satisfying the coherence condition

Although the form of type theory modelled in all model categories and finitely complete
categories with weak factorization systems is interesting in its own right, it is natural to
consider models satisfying the coherence condition (4·1). A detailed analysis of models
satisfying (4·1) will be found in [20]; for now, we sketch one way to obtain such models. In
order to simplify the discussion we assume the ambient category C is a cartesian closed
model category (or an appropriately enriched model category). Then, if C contains a
unit interval I satisfying certain basic axioms such that exponentiation AI yields a path
object for each A, it is possible to define a (fibered) endofunctor T : C // C the pointed
algebras of which are distinguished fibrations called split fibrations (and in many cases
T will be a monad, although this is not strictly necessary). Instead of interpreting types
as fibrations we now interpret types as split fibrations in this sense. Assuming that I
possesses appropriate structure it is possible to choose lifts (3·2) which satisfy (4·1).
For example, the Hofmann-Streicher model in Gpd is obtained in this way from the
model structure. It remains an open question whether it is possible to prove a precise
coherence (or strictification) theorem, relating homotopy-theoretic models which do not
satisfy (4·1) with models which do, analogous to the result of Hofmann [8] which, in a
sense, solves the coherence issue related to the interpretation of extensional type theory
in locally cartesian closed categories.

Appendix A. The Syntax of Type Theory

The form of type theory validated as indicated in Theorem 3·1 consists of (2·4)-(2·7)
together with the usual structural rules (cf. [14, 16]) and the following “Beck-Chevalley”
rules for the identity type and reflexivity terms:

x : C ` A(x) : type x : C ` a(x), b(x) : A(x) ` c : C
Id B.-C.

`
(

IdA(x)

(
a(x), b(x)

))
[c/x] = IdA(c)

(
a(c), b(c)

)
: type

x : C ` A(x) : type x : C ` a(x) : A(x) ` c : C
r B.-C.

`
(
rA(x)

(
a(x)

))
[c/x] = rA(c)

(
a(c)

)
: IdA(c)(a(c), a(c))
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