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Abstract

The notion of a continuously variable quantity can be regarded as
a generalization of that of a particular (constant) quantity, and the
properties of such quantities are then akin to, and derived from, the
properties of constants. For example, the continuous, real-valued func-
tions on a topological space behave like the field of real numbers in
many ways, but instead form a ring.

Topos theory permits one to apply this same idea to logic, and
to consider continuously variable sets (sheaves). In this expository
paper, such applications are explained to the non-specialist. Some
recent results are mentioned, including a new completeness theorem
for higher-order logic.

The main argument of this paper is as follows:

1.

The distinction between the Particular and the Abstract General is
present in that between the Constant and the Continuously Variable.

More specially, continuous variation is a form of abstraction.

. Higher-order logic (HOL) can be presented algebraically. As a conse-

quence of this fact, it has continuously variable models.

Variable models are classical mathematical objects; namely, sheaves.

HOL is complete with respect to such continuously variable models.
Standard semantics appears thereby as the constant case of “no varia-

tion.” In this sense, HOL 1is the logic of continuous variation.



The argument will be developed in four sections: (i) the algebraic formu-
lation of HOL is given; (ii) rings of real-valued functions are considered as
an example of variable structure; (iii) the idea of continuously variable sets
is then discussed; and finally, (iv) it is explained how HOL is the logic of
continuous variation

1 Algebraic logic

Categorical logic can be seen as the successful completion of the program of
“algebraicizing” logic begun in the 19-century. Everyone is familiar with the
boolean algebra approach to propositional logic, but the treatment of quan-
tification in particular has posed a serious obstacle to extending the algebraic
treatment. The categorical treatment of quantifiers as adjoint functors—due
to F.W. Lawvere in the 1960s—solved this problem, although it has been
little appreciated until very recently.

Category theory is of course a branch of abstract algebra, but the sense
in which the categorical treatment of logic is “algebraic” is deeper than just
that. Rather, it is the recognition of the quantifiers—and indeed all of the
logical operations—as adjoint functors that makes logic algebraic. For it is a
general fact about adjoints that they always admit an algebraic description,
in a definite, technical sense. This is the same fact that makes possible
the equational description of e.g. cartesian products and pairing. Figure 1
shows the (two-way) rules of inference for the first-order logical operations
expressed as adjoints.!

HOL also includes quantification over “higher types” of relations, func-
tions, properties of functions, and so on. Figure 2 indicates the basic in-
gredients of algebraic HOL, as it results from the adjoint analysis of these
operations. The axioms consist of a handful of equations of the sort indi-
cated, and the rules of inference are essentially substitution of equals for
equals, as in elementary algebra.

It may be noted that these are all of the logical operations required; the
first-order operations are definable from these, as suggested in figure 3 (which
also indicates how even fewer would still suffice). The adjoint rules of figure
1 can then be proven.

In categorical logic we extend the treatment of propositional logic as a

IThe quantifier rules require the variable  not occur freely in 9. For a full statement
see [4, 2]



Figure 1: Adjoint rules for FOL
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Figure 2: Algebraic formulation of HOL

Types: X x Y, Y* P(X), P
Terms: (s,t), mt, mat, Azx.t, t(s), {z | ¢}
Formulas: s =1t, s €1
Axioms: equations such as:
(s, 1) = s
Ard(z) =1
re{e|pl=9

Rules: substitution of equals for equals



Figure 3: Logical operations defined
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boolean algebra to HOL, by introducing the new notion of a topos. A topos is
a certain kind of algebraic object (a category equipped with a certain adjoint
structure) that bears the same relation to HOL as does a boolean algebra to
propositional logic:

propositional logic  higher-order logic

boolean algebra topos

It should be emphasized that this reformulation is still equivalent to stan-
dard deductive HOL with respect to the logical formulas and consequences.
We do not change the “logical theorems” but only the presentation of the
logical system, replacing the machinery of formal deductive systems with
elementary algebraic manipulations.

It also should be noted that we are making no use of either what the
logician calls standard or Henkin semantics. Instead, from a logical point of
view, we are going to specify a new kind of semantics. Indeed, the algebraic
formulation just given admits continuously variable models, resulting in so-
called topological semantics. This possibility results from general facts about
algebraic objects and continuous variation; so it may be useful to briefly
recall how it works in the familiar case of rings, before considering the new
one of algebraic logic.

2 Rings of R-valued functions

The real numbers R form a topological space, an abelian group, a commuta-
tive ring, a complete ordered field, and much more.



We shall consider just the properties expressed in the language of rings:
0,1,a+b,a-b,—a
and first-order logic. For example, R is a field:
REVz(z=0Vdy.z-y=1)
Now consider the product ring R x R, with elements of the form
r=(ry,r)

and the product operations:

0,0)
1,1)

1+ Y1, T2+ y2)
L1 Y1, T2 92)
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Since these operations are still associative, commutative, and distributive,
R x R is still a ring.

But the element (1,0) # 0 cannot have an inverse, since (1,0)~! would
have to be (17',07!). Therefore R x R is not a field.

In a similar way, one can form the more general product rings R x... xR =
R™, or R’ for any index-set I. Elements have the form:

r=(ri)ier

the pointwise operations are defined by:

0 = (0);
1= (1),
(z0) + (i) = (zi + i)
() - (i) = (i - ya)
— (i) = (—i)

R’ is again a ring, but with still fewer properties of R. Product rings R’
are, however, always (von Neumann) regular:

Ri=Vedy. z-y-z ==
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For, given z, we can take y = (y;) with:

o 7t ifa £0
700, ifai=0

Then:

(x y-z)i=a yi-2; =

xi-xi—l-xi:xi, ifz; #0
0-0-0=ua,, ifz; =0

The main point of these examples is that one can produce rings that
violate even more properties of R by passing to “continuously varying reals”.
But what is a “continuously varying real number”?

Let X be a topological space. A “real number r, varying continuously
over X” is just a continuous function:

r: X =R

We equip these functions with the pointwise operations, as before:

(f +9)(z) = f(z) + g(z), etc.

The set C(X) of all such functions then forms a subring of the product ring
over the index set of points | X|:

C(X) C R¥I
But unlike the product ring, C(X) is in general not regular:

C(X)EVf3g. f-g-f=T]
For take e.g. X = R and f(z) = 22, then we must have:

1
g(”l?) = T if z 7£ 0
but of course:

1
g(0) = limg(z) = lim — = oo

r—0 r—0 I

so there can be no continuous g satisfying f-¢g-f = f.

Summarizing the lesson of these examples, we’ve seen that the “continu-
ously varying reals” C(X) have even fewer properties of the field of “constant”
reals R than do the product rings R?. In that sense, they are closer to a gen-
eral notion of “quantity”. Passing from constants to continuous variation
therefore “abstracts away” some properties of the constants. We note by the
way that it does so without introducing any new “abstract entities”.



Figure 4: Analogy

Real numbers Sets
Algebraic operations Algebraic operations
r+y,z-y,27 10,1 X <Y, YX P(X),0
Algebraic condition Algebraic condition
(formula in ring operations) (formula in HOL operations)
Vedy.z-y-z == Vfe ABJge BA fogof=f
Variable real number Variable set
(continuous R-valued function) (sheaf)

3 Continuously variable sets

Now let us take stock: we have an algebraic presentation of HOL, and we have
seen how continuously varying algebraic structures like rings can violate some
properties of the constant ones. We now proceed according to the analogy
indicated in figure 3, comparing real numbers to sets. The similarity rests on
regarding reals as linear magnitudes, while sets are extensive magnitudes.

The condition Vf € AP3g € B2 fogo f = f on (non-empty) sets
corresponding to regularity is actually a form of the axiom of choice (see [5]).
The notion of a “continuously variable set” that we seek will turn out to be
that of a sheaf.

First, observe that the (algebraically specified) logical operations can be
interpreted in other “universes” of sets, e.g. in the universe of “pairs of sets”:

Sets x Sets

The elements have the form:

A — (Al, AQ)



and the operations are defined componentwise:

(Al,AQ) X (Bl,BQ) = (Al X Bl,AQ X Bg)
,P(AlvAQ) = (,P(Al)vlp(AQ))
(al,ag) € (Al,AQ) = ap € Al and a9 € A2

etc.

This interpretation models HOL, but it doesn’t satisfy all the properties
of Sets. For example:

SetsEA=ZO0Vvde.z€ A

But in Sets x Sets we can take (1,0) 2 0 as A, and then a € (1,0) means
a = (a,az) with a; € 1 and ay € 0, which is impossible.

Next, just as in the case of rings, we can generalize to Sets x ... x Sets =
Sets”, and indeed to Sets’ for any index set I, to get the “universe” of I-
indexed families of sets:

A= (A)ier

etc.

These families again model HOL, but they have still fewer properties of Sets.

However, all such “product universes” do satisfy e.g. the axiom of choice.
To find even more general “universes” that violate it, we can consider even
more general families of sets:

(Fx)mEX

varying continuously over an arbitrary space X. (This generalizes the case
where the set [ in the previous example is regarded as a discrete space). But
what should a “continuously varying set” be? The problem is that we cannot
simply take a “continuous set-valued function”

F: X — Sets

as we did for rings of real-valued functions, since Sets is not a topological
!
space!



Of course, there are people who already know how to do this sort of
thing, so let us look at what the topologists and algebraists do when they
need continuously varying structures.

A “continuously varying space” (Y;).ex over a space X is called a fiber
bundle. It consists of a space Y = 3 Y, and a continuous “indexing”
projection 7 : Y — X, with 77 {z} = Y,, as indicated below.

Y:Zn

reX

X

A “continuously varying group” (A;)-ex is a sheaf of groups. It consists
essentially of a fiber bundle 7 : A — X as indicated below,

A:ZAQE

reX

X

satisfying the additional requirements:
1. 7 is a local homeomorphism (see below),
2. each A, is a group,
3. the operations in the fibers A, “fit together continuously”.

Now, what should a “continuously varying set” be? Clearly, it should be
a sheaf of sets: an indexed family (F,)ex as indicated below,

F:ZFI

reX



such that each fiber F, = 7~1(z) is discrete, and moreover 7 is a local home-
omorphism: each point y € F has some neighborhood U on which 7 is a
homeomorphism U/ = 7(U). This ensures that the variation over the space
is continuous.

Some of the logical operations on sheaves can be defined pointwise:

(FxG), = (F, xGy)

Others, however, cannot. The exponential G¥ of sheaves F, G is the “sheaf-
valued hom” hom(F, (), defined in terms of germs of continuous maps F' —

G-

(GT), =2 hom(F,G), (germs of maps F' — G)
% Gy

The “universe” Sh(X) of all sheaves on a space X models HOL,

but in general it violates the axiom of choice:
Sh(X) E AC

Indeed, one can find sheaf models of HOL that violate many other properties
of sets.

Thus we’ve seen that HOL can be modeled in various “universes” other
than Sets. In particular, the “universe” of all sets varying continuously
over a space models HOL, where the notion of a continuously varying set is
reasonably taken as that of a sheaf. Moreover, sheaves violate some properties
of sets.

4 The logic of continuous variation

It’s time to be more precise about the notion of a “universe”. We’ve seen
that only a few constructions are required to model HOL:

0, Ax B, P(A), a€A,...

A topos is defined as a category equipped with adjoint structure correspond-
ing to these operations (see [6]). In this sense, a topos is a “universe of
abstract sets”. It’s worth noting the following theorem, which just says that
we have the definition right.
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Theorem. (Topos completeness of HOL)
A sentence of HOL is provable iff it is true in every topos model.

Given the foregoing discussion, it should come as no surprise to learn that
the categories Sets, Sets x Sets, Sets’ are toposes. Moreover, the category
Sh(X) of all sheaves of sets on a space X is also a topos.

The topos Sh(X) of sheaves consists of sets F}, varying continuously in a
parameter x € X. The logic of the constant sets is quite strong; the logic of
variable sets is much weaker. Fewer things are true of variable sets in general
than are true of constant ones (think of the difference between the field of
real numbers and the ring of real-valued functions)

What is the logic of continuously varying sets? That is, which formulas
of HOL are true in all sheaf models? The answer is given by the following
theorem from [2]:

Theorem. Logic of sheaves = classical deductive HOL.

The proof of this fact uses recent, non-trivial results in topos theory.? The
sheaf-theory on which it rests [3] is rooted in geometry, not logic. It is worth
emphasizing that, unlike the preceding theorem, there is no obvious reason
why this one needs to be true. Sheaves are classical mathematical objects,
and their logical properties depend on continuous variation, not deduction.
HOL is a classical deductive system going back to Frege and Russell and
having nothing to do with continuity. That these things should coincide is
remarkable.

Note that the Godel incompleteness of deductive higher-order logic can
be easily understood in these terms:

Godel’s “true but unprovable”
involves only “true of all constant sets”
but not “true of all variable sets”

A “true but unprovable” Godel sentence is therefore true only of constant
sets, not of all variable ones.

Thus, summing up, we see that fewer things are true of all continuously
varying sets than of all constant ones. HOL captures just those statements
that are “variably true”. Precisely: HOL is deductively complete with respect
to topological semantics, which is the real statement of the second theorem
mentioned above.

2The treatment of classical logic (with the law of excluded middle) is also somewhat
delicate, requiring a different interpretation than the usual one in topos theory.
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