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The straightforward answer is: “yes, obviously”. In my paper [1], to which
Hellman [3] is referring, I distinguished between “mathematical” and “philo-
sophical” structuralism; the former refers to a certain, now typical, “ab-
stract” way of practicing mathematics; the later, to its philosophical interpre-
tation. Hellman will surely agree that category theory provides a framework
(indeed, the currently dominant one) for the practice of modern, abstract
mathematics.

In these terms, the intended question really is “Does category theory pro-
vide a framework for philosophical structuralism?”. In [1], I took a first step
toward answering this in the affirmative, by showing how the language and
methods of category theory can be used to determine a notion of “structure”
that is both precise and yet flexible enough to do some philosophical work.
I did not even attempt to lay out a “philosophical position,” some sort of
“categorical structuralism,” based on that notion. It is therefore entirely
understandable that Hellman’s discussion of what he infers such a position
would look like is somewhat off the mark.

Indeed, Hellman thinks that my proposal to use category theory to formu-
late a philosophical structuralism is “naturally viewed in the context of Mac
Lane’s repeated claim that category theory provides an autonomous founda-
tion of mathematics as an alternative to set theory” (p. 129; despite my rejec-
tion of “categorical foundations”). The reason such a foundation is needed,
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he says, is clear: “if category theory is not autonomous but rather must be
seen ultimately as developed within set theory, then Awodey’s suggestion
could not be realized... Thus, we cannot hope to assess Awodey’s suggestion
without also (re-)examining Mac Lane’s thesis.” (p. 129f.) Like some other
discussions of category theory, however, this misses the point of my proposal,
which is not to prefer this or that foundation, but to use category theory to
avoid the whole business of “foundations”. As for Mac Lane, all that talk
about “categorical foundations” was more bridge-building than foundation-
building. No one doing category theory thinks we are someday going to find
the one “true topos,” in which all mathematics happens. The translations of
set theory into topos theory (and other categories) are intended to show that
categories like toposes can be used to do a lot of mathematics for those used
to doing mathematics in set theory; they are not supposed to show that topos
theory is the new universal “system of foundations,” intended to replace set
theory. Indeed, the idea of “doing mathematics categorically” involves a dif-
ferent point of view than the customary foundational one, as I shall try to
explain in this note.

A related misunderstanding is Hellman’s “problem of the home address.”
The question “where do categories come from and where do they live?”
(p. 136) asks for something that only seems reasonable from a foundational
perspective. This requirement exemplifies a general pattern in the discus-
sion: Hellman sympathizes with the structural viewpoint, and even appreci-
ates and accepts many of the details of the categorical approach to it, but he
thinks that there is still something missing in the overall category theoret-
ical position. The something is to be provided by his modal-structuralism.
But I contend that what is missing is only a correct understanding of the
categorical approach.! That would hardly be surprising; after all, no such
categorical position has yet been articulated.? So let me now have a go at
it—at least then we’ll be talking about the same position.

I This is not to say that the modal structural approach is intended as “foundational”
in the sense to be defined below.

2 Actually, Mac Lane began trying to develop such a position under the heading of “the
protean character of Mathematics” in a couple of late papers [4, 5]. My notion of the
“schematic” character of mathematics, below, derives from that source.



Categorical structuralism

As a first, very rough, approximation, we may say that the point of view
that we are going to describe emphasizes form over content; descriptions
over constructions; specification of assumptions over deductive foundations;
characterization of essential properties over constitution of objects having
those properties.

With only slightly more precision, we can say that the “foundational
perspective,” to which we are proposing an alternative, is based on the idea of
building up specific “mathematical objects” within a particular “foundational
system,” in such a way that:

1. there are enough such objects to represent the various kinds of numbers,
as well as the spaces, groups, manifolds etc. of everyday mathematics,
and

2. there are enough laws, rules, and axioms to warrant all of the usual
inferences and arguments made in mathematics about these things,
as well as at least some of the most obvious “rounding off” statements
dealing with features of the system itself (like the well-foundedness of all
sets, a question that does not arise in non-set-theoretic mathematics).

As opposed to this one-universe, “global foundational” view, the “categorical
structural” one we advocate is based instead on the idea of specifying, for a
given theorem or theory® only the required or relevant degree of information
or structure, the essential features of a given situation, for the purpose at
hand, without assuming some ultimate knowledge, specification, or determi-
nation of the “objects” involved. The laws, rules, and axioms involved in
a particular piece of reasoning, or a field of mathematics, may vary from
one to the next, or even from one mathematician or epoch to another. The
statement of the inferential machinery involved thus becomes a (tacit) part of
the mathematics; functional analysis makes heavy use of abstract functions
and the axiom of choice, some theorems in algebra rely on the continuum
hypothesis; many arguments in homology theory are purely algebraic, once
given the non-algebraic objects that they deal with; theorems in constructive
analysis avoid impredicative constructions; 19th century analysis employed

)

3As in the topologist’s sense of “homotopy theory,” not the logician’s sense of “first-

order theory”.



other methods than modern-day analysis, and so on. The methods of reason-
ing involved in different parts of mathematics are not “global” and uniform
across fields or even between different theorems, but are themselves “local”
or relative.

Thus according to our view, there is neither a once-and-for-all universe of
all mathematical objects, nor a once-and-for-all system of all mathematical
inferences. Are there, then, various and changing universes and systems?
How are they determined, and how are they related? Here I would rather
say that there are no such universes or systems; or rather, that the question
itself is still based on a “foundationalist” preconception about the nature of
mathematical statements.

Top-down versus bottom-up

Let us try a different tack. To understand (describe) a piece of mathematics
(say, that in the complex numbers > = i) the foundationalist must “con-
struct” the terms involved (the complex numbers and their multiplication
operation, and perhaps even the identity relation) and then prove that the
specific entities so constructed do indeed have the stated property. The
structuralist can simply observe that

(i) in any ring, if 2> = —1 then 2° = z, and

(ii) the complex numbers are by definition a ring with an element i such
that 72 = —1, and having a couple of other distinctive properties.

The foundationalist may now object that he, too, can show by the same
simple proof that:

(") any ring in his universe with an element such that z? = —1 also has

2® =z, and

(ii’) his complex numbers are a ring in which 7 is a root of —1.

But this statement is vastly different from the one the structuralist makes;
it involves consideration of a possibly huge but fixed range of specific rings,
as well as of a particular ring consisting of equivalence classes of pairs of
Dedekind cuts of ... The very simple statement (i) made by the structuralist
involves the relevant features of the situation, described from the top down,
as it were; and it applies in any other situation sharing those features: two
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associative operations, one distributing over the other, etc. Isn’t this just the
statement (i’) made by the foundationalist?

No. Statement (i’) is a universal quantification over a specific range of
specific “objects”, presumed or constructed, but somehow fixed and given.
Statement (i), although it talks about “any ring”, is not about all fixed
rings in a fixed universe, or even all “possible” rings in a range of “possible
universes”. It is a schematic statement about a structure—the structure of
rings—which can have various instances. We next need to make these notions
more precise.

An example

Suppose instead of 22 = —1 we consider the condition,
P +r+l=uz, (1)

which is equivalent to the former one in rings, but also makes sense in similar
structures having no inverses, like the natural numbers (“semi-rings with
unit”). Now, one can still show that any element satisfying (1) also satisfies
2° = 1, by the following clever argument.* Multiplying (1) by z(»~V), we see
that for any n:

) gt gD = g (2)

4Due to Marcelo Fiore.



Thus, expanding and contracting by (2), we can calculate as follows:

1° = 2%+ 2° + 2*
=% +2° +2° + 2t + 23
=28+t 2t 2 42
=2 +2°+ 2+t +rt+ 2P+’ 4o
=8+ + 2+ttt +1
=+t + 3+ +1
=+t +2? + 27+t + o+ 1
=zt+22+22+2x+1
=at+?+2?++r+a+1
=2+’ +r+x+1
=2’ +z+1

=X

Now one and the same simple equational proof shows that > = 7 in the
complex numbers and that any element satisfying (1) in a semi-ring with
unit also satisfies z° = x. Moreover, it also shows that e.g. any set X such
that X? + X +1 = X also has a canonical isomorphism X° = X, obtained
by essentially the same calculation.® And the same holds for any object X in
any category with finite products and coproducts that are distributive, say,
the category Sets® of all set-valued functors on a small category C, as well
as for countless other situations that are “formally similar”.

This is not a matter of universally quantifying over a fixed range of par-
ticular instances of, say, specific sets with specific binary operations. Rather
it is a single, simple proof at a certain level of abstraction, that applies to
various different cases, each at perhaps other levels of abstraction, and none
of which must be assumed to be any more or less general or specific for the
calculation to apply.

Mathematical theorems are “schematic”

Every mathematical theorem is of the form “if such-and-such is the case,
then so-and-so holds”. That is, the “things” referred to are assumed to have

5Consider e.g. the set of freely generated terms in a language with one constant symbol,
a unary operation —t, and a binary operation s * ¢t.



certain properties, and then it is shown, using the tacitly assumed methods of
reasoning, that they also have some other properties. Any finitely generated,
abelian group has a certain decomposition; the fundamental group of any
topological space acts in a certain way on the universal covering space; and
so on. Of course, many theorems don’t literally have this form, but every
theorem has some conditions under which it obtains.

Theorems state connections, relations, and properties of the structures
involved: group, topological, continuous actions, etc. The proof of a theorem
involves the structures mentioned, and perhaps many others along the way,
together with some general principles of reasoning like those collected up in
logic, set theory, category theory, etc. But it does not involve the specific
nature of the structures, or their components, in an absolute sense. That is,
there is a certain degree of “analysis” or specificity required for the proof,
and beyond that, it doesn’t matter what the structures are supposed to be
or to “consist of”—the elements of the group, the points of the space, are
simply undetermined.

This lack of specificity or determination is not an accidental feature of
mathematics, to be described as universal quantification over all particular
instances in a specific foundational system as the foundationalist would have
it — a contrived and fantastic interpretation of actual mathematical practice
(and even more so of historical mathematics!). Rather it is characteristic of
mathematical statements that the particular nature of the entities involved
plays no role, but rather their relations, operations, etc.—the “structures”
that they bear—are related, connected, and described in the statements and
proofs of theorems. It is a theorem in topology that the first homology group
of an arcwise-connected space is naturally isomorphic to the abelianization
of the fundamental group of the space. This statement doesn’t depend on
the specific points of the space, or even on the specific space; it is about a
connection between homology and homotopy. In this sense, mathematical
statements (theorems, proofs, etc., even definitions) are about connections,
operations, relations, properties of connections, operations on relations, con-
nections between relations on properties, and so on.

The “schematic” element in mathematical theorems, definitions, and even
proofs is not captured by treating the indeterminate objects involved as uni-
versally quantified variables, as quantification requires a fixed domain over
which the range of the varaible is restricted. This schematic character is more
akin, rather, to the phenomenon Russell’s “typical ambiguity” was intended



to capture.® A somewhat analogous distinction is that between a general
statement about real numbers and a statement about the indeterminate x in
the ring R[z] of polynomials with real coefficients. For every real number z,
the number 22 + 1 has a square root; but there is of course no polynomial
p(x) such that p(z)? = 2% + 1. In the case of the quantified statement, we
consider what is true for an arbitrary real number, while in the indetermi-
nate case we, in effect, consider what holds for an arbitrary number z, in an
arbitrary ring over R. One could say, rather speculatively, that the difference
in both cases seems to be related to that between what is true for all of a
fixed range of values, as opposed to what can be proved for an indeterminate
value. Presumably, Hellman would use a modal logical approach here. I
think a more straightforward analysis is desirable. But first let us consider a
possible objection.

That sounds like Russell’s if-then-ism!

Of course, the idea that mathematics is in some sense hypothetical, and that
it is about relations of relations of relations of ... is not new—a version of it
was stated by Russell in the Principles of Mathematics. We distinguish the
position proposed here from old-fashioned “if-then-ism” in two respects:
First, if-then-ism is sometimes understood to pertain to the underlying
methods of reasoning—the laws, axioms, and rules of the foundational sys-
tem. The theorems of mathematics, even when stated in the form “if A,
then B”, are supposed to “really” mean “if the laws, axioms, and rules of
the system are true and correct, then if A, then B”. That’s the way, e.g.,
one sometimes hears set theoretical foundations described. The argument
against if-then-ism in this form is that it makes all theorems hypothetical;
they can never really be known, because the antecedent conditions will always
remain in doubt. We may never know whether the axioms of ZFC are true,
or they may even be inconsistent, and so it will not do to carry them along
as conditions on every theorem. But in our case, the conditions are rather
of the kind “if G is a finitely generated abelian group”, not “if the axioms of
ZFC are true”. There is usually no question about whether such conditions
are ever satisfied; rather, like axiomatic definitions, they serve to specify the
range of application of the subsequent statement. A theorem of the form

6In [2], Feferman recognizes the similarity between Russell’s typical ambiguity and
category theory’s relative use of the concept of “smallness”.



“If G is a normal subgroup of the fundamental group of the space X, then

.7 is not hypothetical, in the sense that the critic of if-then-ism objects to.
The truth of the consequent statement doesn’t depend on some unknown or
unknowable antecedent conditions; rather it applies only to those cases spec-
ified by the antecedent description. In cases where we are not sure whether
the conditions at issue are ever satisfied, i.e. whether they are consistent, we
have no recourse but to investigate their consequences in order to gain more
information. Of course, establishing any “if ..., then ...” implication requires
some tacitly assumed methods of reasoning, from simple chains of equations,
to, say, ZFC. And where these methods are not conventionally assumed or
obviously inferred, the statement of the theorem will generally include them:
“assuming the axiom of choice, ...” or “given a measurable cardinal, ...” or
“Intuitionistically, ...”."

But the essential difference between the position being sketched here and
old-fashioned, relational structuralism is the idea of a top-down description,
which presupposes no bottom-up hierarchy of things. For Russell, every rela-
tion had to be a relation on somethings which, even if they were themselves
analyzable into relations, had to be among some other things, ..., and this
process had to either stop somewhere (atoms), or an account had to be given
of infinite analysis.

The difficulty arises in the preoccupation with relations as the funda-
mental notion of “structure”; for a relation presupposes its relata, and off we
go into the descent of Russellean analysis. If we take instead the perfectly
autonomous notion of a morphism in a category, we can build structures out
of them to our heart’s content, without ever having to ask what might be in
them.

Why category theory?

No one claims that category theory is the only way to talk about structures
of structures of ... Or even that it is the best way (although I know of no
better one). The only claim being made in this connection is that it is a very
good way. There are reasons why this is so, of which some are historical and
accidental. Thus, while things could have gone differently, with Eilenberg

"There is also a kind of hypothetico-deductivism sometimes asserted by logicians: the-
orems are proofs from premisses in deductive systems. As this is not the kind of relational
structuralism the early Russell had in mind, nor a position the one advocated here is in
any danger of being confused with, I will not address it.



and Mac Lane instead inventing “schmategories”, given the same 50 years
of study, by the same people, for the same ends, we would now have a very
good theory of schmategories. But there are also theoretical reasons why that
the work was done on categories and not in graph theory, universal algebra,
first-order logic, or descriptive set theory. Category theory was developed
so extensively because the notion of a category, and the related notions of
functoriality, naturality, and adjointness, proved to be so effective in modern,
abstract mathematics. And the reason for this broad applicability has a
lot to do precisely with their effectiveness at specifying and manipulating
structures. I'll try very briefly to indicate why this is so.

In category theory, such notions as relation, connection, property, and
operation are all subsumed under the primitive notion of a morphism. It is
general and flexible enough that it can be made to do the work of all those
other notions and more. Need relations? use products and monomorphisms;
operations? morphisms on products; homomorphisms? consider the cate-
gory of structures; connections between structures? use functors between
categories; connections among connections? categories of functors; and so
on it goes. Many apparently different phenomena can be described in a uni-
form way, and thus easily related to each other, by the language of category
theory.

But where do all these categories live? What is their home address?
When you consider, for example, the notion (involving just a few objects
and arrows and a couple of diagrams) of a group G in an arbitrary category
C, and pass to the category Group(C) of all groups in that category, and then
to the category CE™"(© of all functors from that category of groups back
down to C, and so on, then these constructions have to take place somewhere!
They require some collection principles!

No; the idea that one is “going up” in a hierarchy, and that this requires
stronger and stronger collection principles and existence assumptions rests
on the “foundationalist” conception that the “objects” involved are fixed and
determinate. From a categorical perspective, one is rather “going down”, by
specifying more of the ambient structure to be taken into account: here, say,
a cartesian closed category £ in which the original category C is small. Where
does that category £ come from? We describe it, by the handful of axioms
for cartesian closed categories, and then assume further that there is in it a
category C with whatever properties we were interested in—in particular, it
has a group G. Is that the same category C we started with? The question
makes no sense. Neither G nor C nor £ are specific things here, they are
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schematic structures, as it were, specified or determined by configurations of
objects and arrows and conditions on them, which can be assumed or found
to hold in various different situations, which in turn may also be schematic.

Thus rather than saying, for example, “now suppose this particular solar
system is an atom in some huge piece of matter in an enormous solar system”,
one is instead saying “now suppose this particular configuration of bodies
occurs, not as a solar system, but as an atom in some piece of matter in a solar
system”. The former assumption indeed requires additional (outrageous)
existence assumptions, while the latter requires none. A configuration is
only assumed as a structure from the start, and so it can be specialized by
assuming it to occur in more special situations. The schematic character of
statements about structures is clearly essential to this approach; whatever
we were saying about C originally (e.g. that there is a group in it), can still
be said about C after we have put it into some ambient category £, because
we weren’t assuming anything particular about it in the first place.

How, then, do we make precise the notions of schematic statements about
structures that have different instances? Simply by using the usual language
and methods of category theory; they automatically treat mathematical ob-
jects as “structures”, and categorical statements about them are inherently
“schematic”, in the required sense. This is what makes category theory a
good language for structuralism. It is also what gives it an essentially differ-
ent perspective from the foundational one.

The universal structures

Certain structures are canonical, in the sense that they are distinguished
by universal properties: the natural numbers, the free algebras, the finite
sets, and other such structures (and their duals). These universal structures
reappear in many different categories; they are characterized, up to isomor-
phism, by universal properties similar to those characterizing other canonical
structures like cartesian products and exponentials.

Such structures are in a sense more specific than the general or arbitrary
ones like general categories, groups, spaces, etc. As a particular structure, the
natural numbers, for instance, have a certain autonomy; statements about
them stand alone, in a way that statements about arbitrary categories or
groups do not. A statement about the natural numbers is not conditional
or hypothetical, but rather a specific statement about a particular structure.
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On the other hand, even such universal structures as the natural numbers
have various different “instances” or “occurrences”, in the sense that they
can be found in various different categories. The natural number objects
in a particular category of sets and in an arbitrary elementary topos will
both satisfy the Peano postulates, for instance, but may differ with respect
to some other properties—even logically definable ones.® Thus, although we
can recognize different “instances” or “occurrences” of the natural numbers
in different categories by their universal property, it is not clear whether we
should call them “the same” numbers, or “the same” structure.

One interesting, if somewhat speculative, possible way to pursue this
question is to restrict the language that we use in formulating the properties
of these structures, i.e. to be more specific about what counts as a “property
of the structure”. Consider the case of the finite sets, for instance. They can
be characterized as the initial boolean topos, or as the free category with
initial object 0 and binary coproducts A + B on one object *, or in sev-
eral other ways. These descriptions make sense in many different categories
(specifically, in any category with finite limits). And a category of finite sets
can be shown to exist, for instance, in any topos with a natural numbers ob-
ject. The properties of the finite sets will thus depend to some extent also on
the ambient category. In particular, there are certain core statements about
them that are “absolute”, in the sense that they hold in all cases, and certain
other statements that may hold or fail from instance to instance. The abso-
lute statements include all those in the language of toposes, for instance.® In
that sense, the description of the finite sets as the free boolean topos fixes
all of their structural properties, independently of the ambient category.

The study of such absolute and structural properties of universal struc-
tures has not yet been developed. In fact, it is not even known whether e.g.
the real numbers or larger categories of sets than just the finite ones are uni-
versal, in the sense of being determined by universal properties. Only then
could one sensibly ask which of their properties are not just typical, but abso-
lute. This seems to me like the sort of question philosophers of mathematics
might fruitfully pursue.

8This follows from the incompleteness of arithmetic and the topos completeness of
higher-order logic. Note that it makes no sense to ask whether the natural numbers
objects in different topoi are isomorphic.

9This requires a proof, omitted here.
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Abstract: An affirmative answer is given to the question quoted in the title.

13



