
Homotopy Type Theory
and

Univalent Foundations of Mathematics

Steve Awodey
Carnegie Mellon University

February 2012
CMU PAL

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Introduction

A new connection has recently come to light between Logic and
Topology, namely an interpretation of the constructive type theory
of Martin-Löf into homotopy theory.

1. Homotopy can be used as a tool to construct models of
systems of logic.

2. Constructive type theory can be used as a formal calculus to
reason about homotopy.

3. The computational implementation of type theory allows
computer verified proofs in homotopy theory.

4. The homotopy interpretation suggests new logical
constructions and axioms.

5. Voevodsky’s Univalent Foundations program combines these
aspects into a new program of foundations for mathematics.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .

I Dependent Types: x : A ` B(x)
I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)

I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X , Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of terms and equations – like polynomials, only
more complicated.

Propositions as Types

The system has a curious dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is also known as the Curry-Howard correspondence.

Propositions as Types

The system has a curious dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is also known as the Curry-Howard correspondence.

Propositions as Types

The system has a curious dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is also known as the Curry-Howard correspondence.

Identity types

According to the logical interpretation we have:

I propositional logic: A× B,A→ B,

I predicate logic: B(x),C (x , y), with quantifiers
∏

and
∑

.

So it’s natural to add a primitive relation of identity between any
terms of the same type:

x , y : A ` IdA(x , y)

This type represents the logical proposition “x is identical to y”.

On the mathematical side, the identity type admits a newly
discovered geometric interpretation.

Identity types

According to the logical interpretation we have:

I propositional logic: A× B,A→ B,

I predicate logic: B(x),C (x , y), with quantifiers
∏

and
∑

.

So it’s natural to add a primitive relation of identity between any
terms of the same type:

x , y : A ` IdA(x , y)

This type represents the logical proposition “x is identical to y”.

On the mathematical side, the identity type admits a newly
discovered geometric interpretation.

Identity types

According to the logical interpretation we have:

I propositional logic: A× B,A→ B,

I predicate logic: B(x),C (x , y), with quantifiers
∏

and
∑

.

So it’s natural to add a primitive relation of identity between any
terms of the same type:

x , y : A ` IdA(x , y)

This type represents the logical proposition “x is identical to y”.

On the mathematical side, the identity type admits a newly
discovered geometric interpretation.

Rules for identity types

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of Leibniz’s law:

a : A ` d(a) : D
(
a, a, r(a)

)
c : IdA(a, b) ` Jd(a, b, c) : D(a, b, c)

Schematically:

D(a, a) & IdA(a, b) ⇒ D(a, b)

Rules for identity types

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of Leibniz’s law:

a : A ` d(a) : D
(
a, a, r(a)

)
c : IdA(a, b) ` Jd(a, b, c) : D(a, b, c)

Schematically:

D(a, a) & IdA(a, b) ⇒ D(a, b)

Rules for identity types

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of Leibniz’s law:

a : A ` d(a) : D
(
a, a, r(a)

)
c : IdA(a, b) ` Jd(a, b, c) : D(a, b, c)

Schematically:

D(a, a) & IdA(a, b) ⇒ D(a, b)

Intensionality

The rules are such that if a and b are equal:

a = b

then they are also identical:

t : IdA(a, b) (for some t).

But the converse is not true — this is called intensionality.

It gives rise to a structure of great combinatorial complexity.

Intensionality

The rules are such that if a and b are equal:

a = b

then they are also identical:

t : IdA(a, b) (for some t).

But the converse is not true — this is called intensionality.

It gives rise to a structure of great combinatorial complexity.

Intensionality

The rules are such that if a and b are equal:

a = b

then they are also identical:

t : IdA(a, b) (for some t).

But the converse is not true — this is called intensionality.

It gives rise to a structure of great combinatorial complexity.

The homotopy interpretation
Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types ; Spaces

Terms ; Maps

a : A ; Points a : 1→ A

p : IdA(a, b) ; Paths p : a⇒ b

α : IdIdA(a,b)(p, q) ; Homotopies α : p V q

...

The homotopy interpretation
Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types ; Spaces

Terms ; Maps

a : A ; Points a : 1→ A

p : IdA(a, b) ; Paths p : a⇒ b

α : IdIdA(a,b)(p, q) ; Homotopies α : p V q

...

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).

The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).
The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).
The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).
The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).
The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

We still need to interpret dependent types x : A ` B(x).
The identity rules imply the following:

p : IdA(a, b) a : B(a)

p∗a : B(b)

Logically, this just says “a = b & B(a)⇒ B(b)”.

But topologically, it is a lifting property:

B

��

a // p∗a

A a
p

// b

This is the notion of a “fibration”.

The homotopy interpretation

Thus we continue the homotopy interpretation as follows:

Dependent types x : A ` B(x) ; Fibrations B

��
A

The type B(a) is the fiber of B // A over the point a : A

B(a)

��

// B

��
1 a

// A.

The homotopy interpretation

Thus we continue the homotopy interpretation as follows:

Dependent types x : A ` B(x) ; Fibrations B

��
A

The type B(a) is the fiber of B // A over the point a : A

B(a)

��

// B

��
1 a

// A.

The homotopy interpretation

To interpret the identity type x , y : A ` IdA(x , y), we thus require
a fibration over A× A.

Take the space AI of all paths in A:

Identity type x , y : A ` IdA(x , y) ; Path space AI

��
A× A

The fiber IdA(a, b) over a point (a, b) ∈ A× A is the space of
paths from a to b in A.

IdA(a, b)

��

// AI

��
1

(a,b)
// A× A.

The homotopy interpretation

To interpret the identity type x , y : A ` IdA(x , y), we thus require
a fibration over A× A.
Take the space AI of all paths in A:

Identity type x , y : A ` IdA(x , y) ; Path space AI

��
A× A

The fiber IdA(a, b) over a point (a, b) ∈ A× A is the space of
paths from a to b in A.

IdA(a, b)

��

// AI

��
1

(a,b)
// A× A.

The homotopy interpretation

To interpret the identity type x , y : A ` IdA(x , y), we thus require
a fibration over A× A.
Take the space AI of all paths in A:

Identity type x , y : A ` IdA(x , y) ; Path space AI

��
A× A

The fiber IdA(a, b) over a point (a, b) ∈ A× A is the space of
paths from a to b in A.

IdA(a, b)

��

// AI

��
1

(a,b)
// A× A.

The homotopy interpretation

The path space AI classifies homotopies ϑ : f ⇒ g between maps
f , g : X → A,

AI

��
X

ϑ

77ooooooooooooooo
(f ,g)

// A× A.

So given any terms x : X ` f , g : A, an identity term

x : X ` ϑ : IdA(f , g)

is interpreted as a homotopy between f and g .

The homotopy interpretation

The path space AI classifies homotopies ϑ : f ⇒ g between maps
f , g : X → A,

AI

��
X

ϑ

77ooooooooooooooo
(f ,g)

// A× A.

So given any terms x : X ` f , g : A, an identity term

x : X ` ϑ : IdA(f , g)

is interpreted as a homotopy between f and g .

The homotopy interpretation

Instead of concrete spaces and homotopies, for the formal
interpretation we use the abstract axiomatic description provided
by Quillen model categories.

I Gives a wide range of different models.

I Includes classical homotopy of spaces and simplicial sets.

I Allows the use of standard methods from categorical logic.

The homotopy interpretation

Instead of concrete spaces and homotopies, for the formal
interpretation we use the abstract axiomatic description provided
by Quillen model categories.

I Gives a wide range of different models.

I Includes classical homotopy of spaces and simplicial sets.

I Allows the use of standard methods from categorical logic.

The homotopy interpretation

Instead of concrete spaces and homotopies, for the formal
interpretation we use the abstract axiomatic description provided
by Quillen model categories.

I Gives a wide range of different models.

I Includes classical homotopy of spaces and simplicial sets.

I Allows the use of standard methods from categorical logic.

The homotopy interpretation

Instead of concrete spaces and homotopies, for the formal
interpretation we use the abstract axiomatic description provided
by Quillen model categories.

I Gives a wide range of different models.

I Includes classical homotopy of spaces and simplicial sets.

I Allows the use of standard methods from categorical logic.

Soundness of the homotopy interpretation

Theorem (Awodey & Warren 2008)

Martin-Löf type theory has a sound interpretation into any Quillen
model category.

Remarks.

I We consider here only the “theory of identity”, no
∑

or
∏

.

I There is an issue of “coherence” of the interpretation, which
requires a technical condition on the QMC.

I One doesn’t need the full QMC structure, but only a weak
factorization system.

Soundness of the homotopy interpretation

Theorem (Awodey & Warren 2008)

Martin-Löf type theory has a sound interpretation into any Quillen
model category.

Remarks.

I We consider here only the “theory of identity”, no
∑

or
∏

.

I There is an issue of “coherence” of the interpretation, which
requires a technical condition on the QMC.

I One doesn’t need the full QMC structure, but only a weak
factorization system.

Soundness of the homotopy interpretation

Theorem (Awodey & Warren 2008)

Martin-Löf type theory has a sound interpretation into any Quillen
model category.

Remarks.

I We consider here only the “theory of identity”, no
∑

or
∏

.

I There is an issue of “coherence” of the interpretation, which
requires a technical condition on the QMC.

I One doesn’t need the full QMC structure, but only a weak
factorization system.

Soundness of the homotopy interpretation

Theorem (Awodey & Warren 2008)

Martin-Löf type theory has a sound interpretation into any Quillen
model category.

Remarks.

I We consider here only the “theory of identity”, no
∑

or
∏

.

I There is an issue of “coherence” of the interpretation, which
requires a technical condition on the QMC.

I One doesn’t need the full QMC structure, but only a weak
factorization system.

Soundness and completeness

The logical notion of soundness means that a provable statement
is always true under the specified interpretation:

provable ===
sound
⇒ true in all models

The converse notion is completeness: a statement is provable if
its interpretation is always true:

provable ⇐====
complete

true in all models

Soundness and completeness

The logical notion of soundness means that a provable statement
is always true under the specified interpretation:

provable ===
sound
⇒ true in all models

The converse notion is completeness: a statement is provable if
its interpretation is always true:

provable ⇐====
complete

true in all models

Completeness of the homotopy interpretation

Theorem (Gambino & Garner 2009)

The homotopy interpretation of Martin-Löf type theory is also
complete.

More precisely: in the theory of identity, a statement that is true
under any coherent interpretation in a weak factorization system is
also provable.

A benefit of the abstract semantics: the proof uses the standard
method of syntactic categories to construct a canonical model.

Completeness of the homotopy interpretation

Theorem (Gambino & Garner 2009)

The homotopy interpretation of Martin-Löf type theory is also
complete.

More precisely: in the theory of identity, a statement that is true
under any coherent interpretation in a weak factorization system is
also provable.

A benefit of the abstract semantics: the proof uses the standard
method of syntactic categories to construct a canonical model.

Completeness of the homotopy interpretation

Theorem (Gambino & Garner 2009)

The homotopy interpretation of Martin-Löf type theory is also
complete.

More precisely: in the theory of identity, a statement that is true
under any coherent interpretation in a weak factorization system is
also provable.

A benefit of the abstract semantics: the proof uses the standard
method of syntactic categories to construct a canonical model.

Conclusion of Part I

Martin-Löf type theory provides a “logic of homotopy”.

The Fundamental Groupoid of a Type

It’s now reasonable to ask, how expressive is the logical system as
a formal language for homotopy theory?

What homotopically relevant facts, properties, and constructions
are logically expressible?

One example: the topological fundamental group and its higher
generalizations are logical constructions.

The Fundamental Groupoid of a Type

It’s now reasonable to ask, how expressive is the logical system as
a formal language for homotopy theory?

What homotopically relevant facts, properties, and constructions
are logically expressible?

One example: the topological fundamental group and its higher
generalizations are logical constructions.

The Fundamental Groupoid of a Type

It’s now reasonable to ask, how expressive is the logical system as
a formal language for homotopy theory?

What homotopically relevant facts, properties, and constructions
are logically expressible?

One example: the topological fundamental group and its higher
generalizations are logical constructions.

Fundamental groupoids

Let’s return to the system of identity terms of various orders:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

ϑ : IdIdId... (α, β)

These can be represented suggestively as follows:

•
a

•
a

•
b
//

p
•
a

•
b

p

##

q

;;��
α

�!

α

}�

β_*4
ϑ

•
a

•
b

p

��

q

EE

Fundamental groupoids

Let’s return to the system of identity terms of various orders:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

ϑ : IdIdId... (α, β)

These can be represented suggestively as follows:

•
a

•
a

•
b
//

p
•
a

•
b

p

##

q

;;��
α

�!

α

}�

β_*4
ϑ

•
a

•
b

p

��

q

EE

Fundamental groupoids

As in topology, the terms of order 0 and 1, (“points” and “paths”),

•
a

•
b
//

p

bear the structure of a groupoid.

The laws of identity correspond to the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b → c

This was first shown by Hofmann & Streicher (1998), who gave a
model of intensional type theory using groupoids as types.

Fundamental groupoids

As in topology, the terms of order 0 and 1, (“points” and “paths”),

•
a

•
b
//

p

bear the structure of a groupoid.

The laws of identity correspond to the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b → c

This was first shown by Hofmann & Streicher (1998), who gave a
model of intensional type theory using groupoids as types.

Fundamental groupoids

As in topology, the terms of order 0 and 1, (“points” and “paths”),

•
a

•
b
//

p

bear the structure of a groupoid.

The laws of identity correspond to the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b → c

This was first shown by Hofmann & Streicher (1998), who gave a
model of intensional type theory using groupoids as types.

Fundamental groupoids
But also just as in topology, the groupoid equations of
associativity, inverse, and unit:

p · (q · r) = (p · q) · r
p−1 · p = 1 = p · p−1

1 · p = p = p · 1

do not hold strictly, but only “up to homotopy”.

This means they are witnessed by terms of the next higher order:

ϑ : IdId
(
p−1 · p, 1

)

•a

•
b

• a

p
22

p−1

��

1

66��

ϑ

Fundamental groupoids
But also just as in topology, the groupoid equations of
associativity, inverse, and unit:

p · (q · r) = (p · q) · r
p−1 · p = 1 = p · p−1

1 · p = p = p · 1

do not hold strictly, but only “up to homotopy”.

This means they are witnessed by terms of the next higher order:

ϑ : IdId
(
p−1 · p, 1

)

•a

•
b

• a

p
22

p−1

��

1

66��

ϑ

Fundamental groupoids

The entire system of identity terms of all orders forms an
infinite-dimensional graph, or “globular set”:

A⇔ IdA ⇔ IdIdA
⇔ IdIdIdA ⇔ . . .

It has the structure of a weak, infinite-dimensional, groupoid
(as defined by Batanin 1998 and occurring homotopy theory):

Theorem (Lumsdaine, Garner & van den Berg, 2009)

The system of identity terms of all orders over any fixed type is a
weak ω-groupoid.

Every type has a fundamental groupoid.

Fundamental groupoids

The entire system of identity terms of all orders forms an
infinite-dimensional graph, or “globular set”:

A⇔ IdA ⇔ IdIdA
⇔ IdIdIdA ⇔ . . .

It has the structure of a weak, infinite-dimensional, groupoid
(as defined by Batanin 1998 and occurring homotopy theory):

Theorem (Lumsdaine, Garner & van den Berg, 2009)

The system of identity terms of all orders over any fixed type is a
weak ω-groupoid.

Every type has a fundamental groupoid.

Fundamental groupoids

The entire system of identity terms of all orders forms an
infinite-dimensional graph, or “globular set”:

A⇔ IdA ⇔ IdIdA
⇔ IdIdIdA ⇔ . . .

It has the structure of a weak, infinite-dimensional, groupoid
(as defined by Batanin 1998 and occurring homotopy theory):

Theorem (Lumsdaine, Garner & van den Berg, 2009)

The system of identity terms of all orders over any fixed type is a
weak ω-groupoid.

Every type has a fundamental groupoid.

Conclusion of Part II

I The fundamental groupoid of a space is a logical construction.

I The topological fact that points, paths, and (higher)
homotopies form a weak, higher dimensional groupoid, is not
just analogous to type theory; it’s the same construction.

I Grothendieck’s “Homotopy Hypothesis”: weak ω-groupoids
classify homotopy types of spaces.

I Logical methods suffice in principle to capture a great deal of
homotopy theory.

Conclusion of Part II

I The fundamental groupoid of a space is a logical construction.

I The topological fact that points, paths, and (higher)
homotopies form a weak, higher dimensional groupoid, is not
just analogous to type theory; it’s the same construction.

I Grothendieck’s “Homotopy Hypothesis”: weak ω-groupoids
classify homotopy types of spaces.

I Logical methods suffice in principle to capture a great deal of
homotopy theory.

Conclusion of Part II

I The fundamental groupoid of a space is a logical construction.

I The topological fact that points, paths, and (higher)
homotopies form a weak, higher dimensional groupoid, is not
just analogous to type theory; it’s the same construction.

I Grothendieck’s “Homotopy Hypothesis”: weak ω-groupoids
classify homotopy types of spaces.

I Logical methods suffice in principle to capture a great deal of
homotopy theory.

Conclusion of Part II

I The fundamental groupoid of a space is a logical construction.

I The topological fact that points, paths, and (higher)
homotopies form a weak, higher dimensional groupoid, is not
just analogous to type theory; it’s the same construction.

I Grothendieck’s “Homotopy Hypothesis”: weak ω-groupoids
classify homotopy types of spaces.

I Logical methods suffice in principle to capture a great deal of
homotopy theory.

Univalent Foundations

Vladimir Voevodsky’s Univalent Foundations Program combines:

I the foregoing representation of homotopy theory in
constructive type theory

I the well-developed implementations of type theory in
computational proof assistants like Coq and Agda.

Allows computer verified proofs in homotopy theory, and related
fields.

Univalent Foundations

Vladimir Voevodsky’s Univalent Foundations Program combines:

I the foregoing representation of homotopy theory in
constructive type theory

I the well-developed implementations of type theory in
computational proof assistants like Coq and Agda.

Allows computer verified proofs in homotopy theory, and related
fields.

Univalent Foundations

Vladimir Voevodsky’s Univalent Foundations Program combines:

I the foregoing representation of homotopy theory in
constructive type theory

I the well-developed implementations of type theory in
computational proof assistants like Coq and Agda.

Allows computer verified proofs in homotopy theory, and related
fields.

Univalent Foundations

Vladimir Voevodsky’s Univalent Foundations Program combines:

I the foregoing representation of homotopy theory in
constructive type theory

I the well-developed implementations of type theory in
computational proof assistants like Coq and Agda.

Allows computer verified proofs in homotopy theory, and related
fields.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.

We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.
We can formalize this in type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of terms of type
IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in the automated proof assistant
Coq and verified to be correct. In this way, we can use the
homotopical interpretation to verify proofs in homotopy theory.

A computational example

(* An adaptation to Coq of Dan Licata’s Agda proof that the higher homotopy groups are abelian,

by Jeremy Avigad. This file depends on the library in the "UnivalentFoundations" directory of

Andrej Bauer’s Github repository. The code is written for Coq 8.3, which means that variables

are introduced automatically.*)

Implicit Arguments homotopy_concat [A x y z p p’ q q’].

Implicit Arguments idpath_left_unit [A x y].

Implicit Arguments idpath_right_unit [A x y].

Lemma map2 {A B C} {x x’ : A} {y y’ : B} (f : A -> B -> C)

(p : x ~~> x’) (p’ : y ~~> y’) : (f x y) ~~> (f x’ y’).

Proof. induction p; induction p’; trivial. Defined.

(* The next four lemmas are needed to prove the left and right identity laws,

generalizing those laws to path spaces. *)

Lemma adjust_l {A} {x y : A} {p q : x ~~> y} (R : p ~~> q) :

idpath x @ p ~~> idpath x @ q.

Proof. exact (idpath_left_unit p @ R @ !(idpath_left_unit q)). Defined.

(* induction R doesn’t given a term that is explicit enough. *)

Lemma homotopy_concat_id_left {A} {x y : A} {p p’ : x ~~> y}

(R : p ~~> p’) : homotopy_concat (idpath (idpath x)) R ~~> adjust_l R.

Proof. induction R; induction x0; trivial. Defined.

Lemma adjust_r {A} {x y: A} {p q : x ~~> y} (R : p ~~> q) :

p @ idpath y ~~> q @ idpath y.

Proof. exact (idpath_right_unit p @ R @ !(idpath_right_unit q)). Defined.

Lemma homotopy_concat_id_right {A} {x y : A} {p p’ : x ~~> y}

(R : p ~~> p’) : homotopy_concat R (idpath (idpath y)) ~~> adjust_r R.

Proof. induction R; induction x0; trivial. Defined.

Lemma concat_interchange {A} {x y z : A} {p q r : x ~~> y} {p’ q’ r’ : y ~~> z}

{R : p ~~> q} {S : q ~~> r} {T : p’ ~~> q’} {U : q’ ~~> r’} :

homotopy_concat (R @ S) (T @ U) ~~>

(homotopy_concat R T) @ (homotopy_concat S U).

Proof.

induction R; induction S; induction T; induction U.

induction x0; induction x1; trivial.

Defined.

(* Here is the standard proof. It is phrased in terms of Pi_2, but instantiating "A" and "base"

accordingly yields the corresponding result for any n >= 2. *)

Section Pi2_Abelian.

Variables (A : Type) (base : A).

Definition Pi1 := (base ~~> base).

Definition Pi2 := (idpath base) ~~> (idpath base).

Notation "p @@ q" := (homotopy_concat p q) (at level 60).

Notation "[id]" := (idpath (idpath base)).

Lemma comp_left_unit {p : Pi2} : [id] @@ p ~~> p.

Proof.

apply (concat (homotopy_concat_id_left p)).

path_via (p @ [id]); apply idpath_left_unit.

Defined.

Lemma comp_right_unit {p : Pi2} : p @@ [id] ~~> p.

apply (concat (homotopy_concat_id_right p)).

path_via (p @ [id]); apply idpath_left_unit.

Defined.

Lemma comp_interchange {a b c d : Pi2} :

(a @ b) @@ (c @ d) ~~> (a @@ c) @ (b @@ d).

Proof. exact concat_interchange. Defined.

Lemma comp_same {a b : Pi2} : a @ b ~~> a @@ b.

Proof.

path_via ((a @@ [id]) @ b). apply (!comp_right_unit).

path_via ((a @@ [id]) @ ([id] @@ b)). apply (!comp_left_unit).

path_via ((a @ [id]) @@ ([id] @ b)). apply (!comp_interchange).

path_via (a @@ ([id] @ b)).

apply map2; [apply idpath_right_unit | apply idpath].

apply map2; [apply idpath | apply idpath_left_unit].

Defined.

(* Here path_via calls path_tricks, which decomposes "_ @ _ = _ @ _" too aggressively. *)

Lemma Pi2_abelian {a b : Pi2} : a @ b ~~> b @ a.

Proof.

apply @concat with (y := ([id] @@ a) @ b).

path_tricks; apply (!comp_left_unit).

apply @concat with (y := ([id] @@ a) @ (b @@ [id])).

path_tricks; apply (!comp_right_unit).

apply (concat (!comp_interchange)); apply (concat (!comp_same)); path_tricks.

Defined.

End Pi2_Abelian.

Conclusion of Part III

I Voevodsky has implemented a large amount of basic
homotopy theory, and proven some surprising new results in
foundations.

I The program is being pursued by a group of researchers,
formalizing parts of homotopy theory and other mathematics
in this settting.

I Some new logical constructions and axioms are suggested by
the homotopy interpretation.

Conclusion of Part III

I Voevodsky has implemented a large amount of basic
homotopy theory, and proven some surprising new results in
foundations.

I The program is being pursued by a group of researchers,
formalizing parts of homotopy theory and other mathematics
in this settting.

I Some new logical constructions and axioms are suggested by
the homotopy interpretation.

Conclusion of Part III

I Voevodsky has implemented a large amount of basic
homotopy theory, and proven some surprising new results in
foundations.

I The program is being pursued by a group of researchers,
formalizing parts of homotopy theory and other mathematics
in this settting.

I Some new logical constructions and axioms are suggested by
the homotopy interpretation.

Higher-dimensional inductive types

(Work in progress by Lumsdaine, Shulmann & others.)

The natural numbers N are implemented in type theory as an
inductively defined structure of type:

o : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f) : N→ X

such that:

rec(a, f)(o) = a

rec(a, f)(sn) = f (rec(a, f)(n))

Higher-dimensional inductive types

(Work in progress by Lumsdaine, Shulmann & others.)

The natural numbers N are implemented in type theory as an
inductively defined structure of type:

o : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f) : N→ X

such that:

rec(a, f)(o) = a

rec(a, f)(sn) = f (rec(a, f)(n))

Higher-dimensional inductive types

(Work in progress by Lumsdaine, Shulmann & others.)

The natural numbers N are implemented in type theory as an
inductively defined structure of type:

o : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f) : N→ X

such that:

rec(a, f)(o) = a

rec(a, f)(sn) = f (rec(a, f)(n))

Higher-dimensional inductive types

(Work in progress by Lumsdaine, Shulmann & others.)

The natural numbers N are implemented in type theory as an
inductively defined structure of type:

o : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f) : N→ X

such that:

rec(a, f)(o) = a

rec(a, f)(sn) = f (rec(a, f)(n))

Higher-dimensional inductive types

This says just that (N, o, s) is the free structure of this type:

1
o

���������
a

��????????

Ns 88 rec
// X fff

The map rec(a, f) : N→ X is unique with this property.

Higher-dimensional inductive types

This says just that (N, o, s) is the free structure of this type:

1
o

���������
a

��????????

Ns 88 rec
// X fff

The map rec(a, f) : N→ X is unique with this property.

Higher-dimensional inductive types

The topological circle S = S1 can also be given as an inductive
type, now involving a higher-dimensional generator:

b : S
p : b b

Here we have written p : b b for the “loop” p : IdS(b, b).

Higher-dimensional inductive types

There is an associated recursion property, captured again by an
elimination rule:

a : X q : a a

rec(a, q) : S→ X

such that:

rec(a, q)(b) = a

rec(a, q)1(p) = q

Here rec(a, q)1 is the effect of the map rec(a, q) on paths.

Higher-dimensional inductive types

There is an associated recursion property, captured again by an
elimination rule:

a : X q : a a

rec(a, q) : S→ X

such that:

rec(a, q)(b) = a

rec(a, q)1(p) = q

Here rec(a, q)1 is the effect of the map rec(a, q) on paths.

Higher-dimensional inductive types

This says that (S, b, p) is the free structure of this (higher) type:

1
b

���������
a

��????????

bp 99 S rec
// X a qdd

The map rec(a, q) : S→ X is then unique up to homotopy.

Higher-dimensional inductive types

This says that (S, b, p) is the free structure of this (higher) type:

1
b

���������
a

��????????

bp 99 S rec
// X a qdd

The map rec(a, q) : S→ X is then unique up to homotopy.

Higher-dimensional inductive types

Here is a sanity check:

Theorem (Shulmann 2011)

The type-theoretic circle S has the correct homotopy groups:
π1(S) = Z, and πn(S) = 0 when n 6= 1.

The proof is implemented in Coq. It combines classical homotopy
theory with methods from constructive type theory, and uses
Voevodsky’s new Univalence Axiom.

Higher-dimensional inductive types

Here is a sanity check:

Theorem (Shulmann 2011)

The type-theoretic circle S has the correct homotopy groups:
π1(S) = Z, and πn(S) = 0 when n 6= 1.

The proof is implemented in Coq. It combines classical homotopy
theory with methods from constructive type theory, and uses
Voevodsky’s new Univalence Axiom.

Higher-dimensional inductive types

The unit interval I = [0, 1] is also an inductive type, on the data:

0, 1 : I
p : 0 1

Again we have written p : 0 1 for the path p : IdI(0, 1).

Remark. In topology, the interval is used to define the notion of a
path. Here we have the notion of a path as a logical primitive, and
can use it to define the interval.

Higher-dimensional inductive types

The unit interval I = [0, 1] is also an inductive type, on the data:

0, 1 : I
p : 0 1

Again we have written p : 0 1 for the path p : IdI(0, 1).

Remark. In topology, the interval is used to define the notion of a
path. Here we have the notion of a path as a logical primitive, and
can use it to define the interval.

Higher-dimensional inductive types

Many other basic spaces and constructions can be introduced in
this way:

I the higher spheres Sn and disks Dn,

I the suspension ΣA of a space A,

I finite cell complexes, tori, cylinders, . . . ,

I homotopy algebras – i.e. algebraic structures with equations
holding up to homotopy,

I the mapping cylinder of a map f : A→ B.

Using higher-inductive types, one can show there is a rudimentary
Quillen model structure in the type theory.

Higher-dimensional inductive types

Many other basic spaces and constructions can be introduced in
this way:

I the higher spheres Sn and disks Dn,

I the suspension ΣA of a space A,

I finite cell complexes, tori, cylinders, . . . ,

I homotopy algebras – i.e. algebraic structures with equations
holding up to homotopy,

I the mapping cylinder of a map f : A→ B.

Using higher-inductive types, one can show there is a rudimentary
Quillen model structure in the type theory.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Some further topics

I The Univalence Axiom:

Isomorphic structures are identical.

I Consistency:

Voevodsky has constructed a model of
the Univalence Axiom in simplicial sets.

I Foundations:

Sets are spaces too, as are propositions, so logic and set
theory are subsumed.

New “invariant” foundations for mathematics, with geometric
content and a computational character.

Conclusion

Under this new homotopy interpretation, constructive type theory
captures a substantial amount of homotopy theory, permitting
purely formal reasoning which can even be implemented on a
computer.

The homotopy interpretation also suggests a new approach to
foundations of math with intrinsic geometric content, capturing
some forms of reasoning more naturally than traditional
foundations in set theory.

Conclusion

Under this new homotopy interpretation, constructive type theory
captures a substantial amount of homotopy theory, permitting
purely formal reasoning which can even be implemented on a
computer.

The homotopy interpretation also suggests a new approach to
foundations of math with intrinsic geometric content, capturing
some forms of reasoning more naturally than traditional
foundations in set theory.

References and Further Information

www.HomotopyTypeTheory.org

	The Fundamental Groupoid of a Type

