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JAMES W. GARSON

UNIFYING QUANTIFIED MODAL LOGIC

1. INTRODUCTION

Quantified modal logic (QML) has reputation for complexity. Complete-
ness results for the various systems appear piecemeal. Different tactics are
used for different systems, and success of a given method seems sensitive
to many factors, including the specific combination of choices made for the
quantifiers, terms, identity, and the strength of the underlying propositional
modal logic. The lack of a unified framework in which to view QMLs and
their completeness properties puts pressure on those who develop, apply,
and teach QML to work with the (allegedly) simplest systems, namely
those that adopt the Barcan Formulas and predicate logic rules for the
quantifiers. In these systems, the quantifier ranges over a fixed domain
of possible individuals, so advocates of these logics are sometimes called
possibilists. A literature has grown up rationalizing the choice of possibilist
logics despite ordinary intuitions that the resulting theorems are too strong
(Cresswell, 1991; Linsky and Zalta, 1994). Williamson (1998, p. 262) even
takes the view that the complications to be faced within the weaker logics
“are a warning sign of philosophical error”. It is the purpose of this paper
to show that abandonment of the weaker QMLs is excessively fainthearted,
since most QMLs can be given relatively simple formulations within one
general framework. Given the straightforward nature of the systems and
their completeness results, the purported complications evaporate, along
with any philosophical warnings one might have associated with them.

L.1. The Motivation for this Study

It is not the purpose of this paper to rebut arguments supporting the view
that the “right” QML is based on classical predicate logic and the Bar-
can Formulas. However, some considerations are worth recording here to
motivate the unification project. Heavy demands are placed on possibilists
to pacify the ontological scruples of those with an aversion to quantifi-
cation over possibilia. So whatever arguments are presented to support
possibilism, some philosophers will remain unconvinced.! Given that it




622 JAMES W. GARSON

is the function of logic to provide reasoning tools that do not beg questions
still under dispute, it is of interest to provide technical results exploring the
weaker logics and their relationships one to another.

In the battle over possibilism, one may forget that significant appli-
cations of logic lie outside of philosophy, notably in artificial reasoning
and natural language processing, where disputes over the metaphysics of
modal quantification are largely not in play. A serious problem for pos-
sibilist logics is that they entail theorems such as Vx[3yy = x, which
ﬁo.zsmooocﬁmzo when quantifiers are given the reading found in normaf
conversation: everything necessarily exists. Possibilists will point out that
on their interpretation VxO3yy = x is acceptable; and if one wants, an
actualist quantifier V,x that conforms more closely to ordinary usage can
be defined within their logic by V,xAx =4 Vx (Ex — Ax), where Eis a
predicate letter for ‘is actual’. However, this fails to provide a convincing
argument for abandoning study of the weaker logics. Kripke semantics
shows that modal logics can be embedded in set theory, but that embed-
ding does not disarm the importance of locating consistent and complete
systems expressed wholly in the language of modal logic. Similarly, al-
though actualist quantifiers can be embedded in a possibilist logic, it is still
important to find out what logical principles adequately govern a language
containing only the actualist quantifier.

Even if they win the possibilist-actualist debate, possibilists still face
another problem. Ix(x = ¢ is a theorem, but invalid on the possibilist
reading of the quantifier when the term 7 is a non-rigid designator — a term
that refers to different objects in different possible worlds.? Possibilists
will respond by eliminating non-rigid terms from the language in favor
of definite descriptions. But again, the possibility of such an embedding
into a description theory does not undermine the value of working out the
logical principles governing non-rigid terms in the original language. So
even within the possibilist approach to quantification, weaker logics are

needed to give a thorough account of non-rigid designation. Considering

the widespread use of non-rigid terms in ordinary language, logics that
introduce such terms directly should be explored.

1.2, Main Ideas Behind the Unification

The unification of QML presented here begins with a weak but general
logic G. A collection of axioms and rules for extending G is then intro-
duced. Completeness results for G and (almost) all its extensions are shown
in a common framework by demonstrating that the rules and axioms added
to G guarantee corresponding conditions on a canonical model. With one
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notable exception, major systems found in the literature can be brought
under this general scheme.

This unification does not depend on deep technical insights. The com-
pleteness results are “easy” in that they transparently follow given well
known strategies. Instead, progress has resulted from choosing the right
generalizations in the proof theory and semantics for G. One useful (but
not essential) proof theoretic idea has been to generalize natural deduction

propositional modal logic (Garson, 2001, p. 298). A variation on this idea
is to “promote” the [ that indexes such a subproof to the head of the
subproof, treating the [J as an “honorary” hypothesis. Within this more
general scheme, a modal argument L / C is composed of a hypothesis
list L consisting of an (ordered) Iist of sentences and occurrences of [7J. The
modal sequent L - C asserts that there is a proof of C within subproofs
headed by members of L (in that order). So for example, the sequent p, [,
q b r, expresses that » can be derived in nested subproofs headed by P,

the rules ((JIn) and ({OO0u):

L OFA (C0ur) L+0A
LFDOa LOFA
This greatly simplifies the presentation of the rules for the basic system G,
and provides resources for simplifying the soundness and completeness
proofs as well.
For example, a major annoyance in formulating universal generaliza-
tion principles for weaker QMLs has been the need to “prefix” the ordinary

rule with arbitrarily long sequences of strict implications as follows.
A — A = (A= (Ec — >ﬁvvv
A oA o —
A - (A; = VxA) - .-

1> (A = - )

where ¢ is a free variable not in the conclusion.

(UIn)

(Here ‘A = B’ abbreviates [J(A — B).) However, when rules are formu-

lated with modal sequents, the rule takes on a simple form familiar from
free logic.

LFEc— Ac
L-VxA

» where ¢ is a free variable not in the conclusion,
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On the semantical side, the various treatments of modal quantifica-
tion are all brought under a general intensional truth condition which is
a generalization of the substantial interpretation of the quantifier (Garson,
2001, p. 283). Quantification in G ranges over individual concepts, that is,
functions from the set W of possible worlds to a set D of objects. A global
domain of individual concepts I is introduced, along with sets Iw of indi-
vidual concepts to serve as local domains for each of the possible worlds w.
Note that the Iw need not be subsets of I, and the intensions of some terms
may be chosen outside any of the Iw and even outside I This freedom
is important accommodating different treatments of the quantifiers, espe-
cially the objectual interpretation. The generalization in the treatment of
the domains Iw is reflected in the truth conditions for the primitive exis-
tence predicate E. The formula Ef is true in a world w iff the individual
concept assigned to ¢ is a member of Iw (not the object assigned to ¢ at
world w).#

The syntax of G includes symbols A for (contingent) identity, and E for
existence. Since ] creates opaque contexts, the normal rule of substitution
is restricted to atomic formulas. The existence predicate E creates opaque
contexts as well. Therefore the substitution principle s~ — (Es — Ef)
is invalid. In its place, the weaker rule (iE) is required, which guarantees
substitution of ¢ for s behind E when s~ is a theorem.

GE) o os=r

F Es — Et

Garson (2001, p. 300) omits this rule, and still manages to prove complete-
ness. But this was possible only because there happened to be no theorems
of the form s~ in systems he considered. If G is to serve as a correct
foundation for description theory, mathematics or science, (iE) is crucial.

1.3. Some Results of the Unification

One may feel that the “intensional” treatment of quantification just de-
scribed is excessively general. However, this paper provides evidence that
it is fundamental. The substitution interpretation of the quantifier pro-
vides a test bed for treating quantification in an ontologically neutral way,
since no explicit domain of quantification is required. In Section 6.1, it
is shown that G validates exactly the arguments valid for the substitution
interpretation of the quantifier. ,
The standard approach to quantification in QML is the objectual in-
terpretation, where quantifiers range over objects rather than individual
concepts. This choice may be captured in G with the condition (Ic) that
I be the set of all constant functions with values in D. Since constant
functions may be “identified” with their values, (Ic) has exactly the effect
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of quantification over objects. (See Section 6.2 for a detailed proof.) By
locating the principles that correspond to the condition that I contain all
and only constant functions in the canonical model, the corresponding
logic oG is generated. Constructing oG as an extension of G simplifies
the rules for the objectual interpretation, and provides insight into the role
of rules previously given in the literature.

The idea that the objectual interpretation can be captured with the stip-
ulation that the domains contain constant functions is nothing new. For
example, Garson (2001, Section 1.4) suggests this in passing. However,
the situation is more complicated than it may first seem. It is not clear
that the result is even forthcoming given the semantics provided there.
That semantics contains the local domains Iw, but I is not introduced,
and so not mentioned in the truth condition for the quantifier. The attempt
to capture the objectual interpretation within this semantics by stipulating
that members of Iw are constant functions does not succeed because this
validates Bt &Es&r~s — [Ir=zs, which is not valid on the objectual inter-
pretation given that terms s and ¢ are non-rigid. When the constant function
condition is imposed on I, rather than Iw, the difficulties are resolved.

The presence of non-rigid terms complicates the formulation of systems
for the objectual quantification in another way. The problem has been to
define an adequate rule of Universal Instantiation. When the term ¢ is non-
rigid, the standard axiom VxA — Ar fails, and so does its free logic
counterpart VxA — (Et — Ar). The failure is due to the fact that the
bound variable x in VxA may lie in an opaque context, so that replacement
of ¢ for x in A does not preserve truth in world w, even when x and ¢
corefer in world w (Garson, 2001, p- 303). Hintikka (1970) proposes a
very complex alternative instantiation principle but gives no completeness
proof. Thomason (1970) shows completeness when the modality is S4 or
stronger, where Hintikka’s rule can be simplified to VxA — (Ax0x~t —
Atr). Such complications have caused many to avoid systems that include
non-rigid terms.

The solution provided by oG is surprisingly simple, and does not de-
pend on the strength of the underlying propositional modal logic. Here
the free variables are treated as rigid designators, thus validating VxA —
(Ec — Ac) - the free logic rule restricted to free variables c. Hintikka and
Thomason apparently labor under the misconception that completeness
requires some additional (and more complex) rule to govern instantiation
for the non-rigid terms, and Garson (2001, p- 304) presumes that the in-
troduction of a primitive existence predicate is required. However, no new
instantjation principle is needed to guarantee completeness of the logic, for
Hintikka’s complex instantiation principles emerge in oG as derived rules.’
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Furthermore, the existence predicate can be eliminated in oG by defining
it in the “normal” way: Bt =4 Ixx~st.

The system oG also throws light on the role of a principle first used by
Thomason to develop complete systems for the system Q3—S4.° It may be
simplified to the following rule of oG.

(3i) E, where ¢ does not appear in L, or ¢.
LFL

One wonders whether this rule or its ancestors can be dispensed with,
and the answer is that they cannot. In the semantics for G, (3i) corresponds
to the condition that for each world w and each term ¢, there is an individual
concept i in I such that i(w) = ay(z). The completeness proof supporting
this correspondence immediately provides an independence proof for ()
within, oG, since models of the remainder of oG that lack this condition
are easily constructed. (See Section 7.1 for the details.) It also reveals the
important role of (3i) in guaranteeing that the set of constant functions I
includes a member whose value is d, for each object d in D, so that the full
force of the objectual interpretation is obtained.

This way of looking at (3i) has led to the discovery that (Ji) secures a
proof of Ef <> Ixx~t in oG to support the elimination of E by definition.
Given these major simplifications possible in oG, there is no Jjustice in the
complaint that actualist logics must be significantly more complex than
their possibilist rivals.

The unification also provides interesting results concerning the Barcan
Formula. Within G, the Barcan Formula (BF) is too weak to enforce the
“Contracting Domains” condition (CD) with which it has been tradition-
ally associated.

(BF) vxUA — [OVxA
(CD) If wRy then the domain for v is a subset of the domain for w.

It will be shown in Section 7.2 that the axiom (oCD): O0Ec¢ — Ec which
captures the idea more directly, is independent in G+(BF), even when the
underlying modality is S5. Only in stronger systems such as oG does (BF)
suffice. This result resolves a puzzle posed by Fitting and Mendelsohn
(1998, p. 185). They presume (BF) is derivable in a logic for “expanding
domains” given the symmetry axiom (B), and (CBF), the Converse of the
Barcan Formula.

(B) A — O0A
(CBF) OVxA — Vx[A

However, they report that they cannot find the proof when = is absent
from the language. In Section 7.2 it is shown that there cannot be such a
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proof. Note that Corsi (2002) obtains the same result using a very different
strategy.

It should be admitted that the results given here do not thoroughly unify
QML. First, the completeness proofs given below are not entirely modular,
i.e. they do not cover every conceivable combination of principles listed as
possible additions to G. Second, there are limitations related to the strength
of the underlying propositional modal logic. For example, the method does
not work for some conditions on frames (such as convergence) that are
expressed in the metalanguage with existential quantification over possible
worlds. This is to be expected since some of these QMLs are known to be
incomplete. Possibilists decrying the complexities of actualist logic can
take little encouragement from these limitations, for completeness fails for
possibilist systems as well. For example, systems with Barcan Formulas
and convergent frames are not complete (Cresswell, 1995).

Although most of the major approaches to QML can be treated within G,
there is one important exception. G is based on rules for free logic, but
the standard quantifier rules may be obtained by adopting an additional
axiom that entails the classical principle of Universal Instantiation. One
consequence of formulating the rules with modal sequents is that the stan-
dard quantifier rules immediately entail the Barcan Formula (as well as
its converse). Therefore the “expanding domain” systems (Hughes and
Cresswell, 1996, Ch. 15), which adopt classical quantifier rules without
the Barcan Formula, lie outside this unification. (For results unifying such
systems see (Corsi, 2002).) Note that the modal sequent version (VIn) of
Universal Generalization (given below) is demonstrably stronger than the
standard rule of Universal Generalization, for it is well known that (BF) is
not provable in the weaker expanding domain systems. On the other hand,
it is easy to prove that (VIn) is derivable from the standard rules when (BF)
is available, so results given here apply to all systems of this kind.

2. THE BASIC SYSTEM G

2.1, Syntax

A language for the system G contains parentheses, V, —, L (for a con-
tradiction), ~ (for contingent identity), E (for existence), predicate letters
P',P”, ... bound variables x',x”, ... and terms, some of which belong to
an infinite set C of free variables. (Complex terms such as descriptions and
function symbols are omitted in this study but they may be added without
difficulty.) To simplify the presentation, it is assumed that the free and
bound variables are distinct and that no well-formed formula contains a
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bound variable x outside the scope of the quantifier Vx. We use ‘s, ‘¢,
and ‘#’ to range over terms and ‘a’, ‘b’, and ‘¢’ to range over the set C
of free variables. The logical constants ~, &, V, <>, 3, are defined from
this basic vocabulary in the usual way. (For example, ~A is defined by
A— 1)

- Incontexts where a universal sentence Vx A has been mentioned, we use
the notation ‘A#’ to indicate the result of substituting the term ¢ properly
for all occurrences of bound variable x in A.” We leave the formation rules
for wifs of the language of G to the reader. We use ‘I’ and ‘I’ as metavari-
ables over lists 71, ..., t, of terms (including null lists), and presume that
atomic sentences are formed by concatenating a predicate letter P with a
list / whose length is the arity of P.

2.2. Proof Theory

The rules of G include principles for propositional logic,? axioms for a
propositional modal logic meeting the conditions to be described in Sec-
tion 5.1, plus the following principles governing [J, ¥, E, and .

L OFA L+ OA

- Out) —mM——
N ST GO T5ra

L+ Ec — Ac L+ VxA

- A VOut
V) TEvea VOu) T Ee S Ac

for c notin L or VxA.
Lk trs

w2t R Oy e e
B st
B e SE

2.3. Semantics

A G-model (W, R, D, 1, a) contains a frame (W, R) appropriate for the
underlying propositional modal logic, and a set (non-empty) D of objects.
I consists of I, a non-empty subset of IC, the set of functions from W into
D, and local domains Iw which are subsets of IC (not necessarily subsets
of I, for each possible world w in W. The assignment function a assigns
an intension a(e) to each primitive expression e of the language as follows.

(c) a(c) e L

(t) a(r) € IC.

(P) a(P) is a function from W into the powerset of the set of all lists of
objects in D of length i, where { is the arity of P.
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Note that (c) is required to guarantee the validity of (YOut). When a(e)
is the intension of an expression e, we abbreviate the extension a(e)(w)

of a(e) in world w by ‘a(e)’. When / is the list #1, . .., 1,, the following
abbreviation is in force.

W aw) =aw(t, ..., 1) =ay(), ..., a4 ().

The extension given by the assignment function for any sentence is defined
as either T (true) or F (false) by the following.

Basic Truth Conditions.
(L) ay(Ll) =F.
() aw(s~r) = Tiff ay(s) = ay(t).
(PD) ay(Pl) = Tiffa,() ay(P).
(iE) aw(Er) = Tiffa(t) e Iw.
(=) aw(A — B) = Tiffay(A) = For ay,(B)=T.
() ay(OA) = T iff for each v such that wRyv, a,(A) = T.
(¥) aw(VxA) =Tiffalli € 1,ifi € Iw, then a, (Ai) = T.

The notation ‘ay(Ai) = T’ in condition (V) abbreviates ‘al, (Ac) = T,
where c is the alphabetically first free variable chosen so that it does not
appear in Yx A, and al, is the assignment function exactly like a save that
al.(c) = i. Truth conditions (~), (¥), and (3) for defined notation are fixed
by the basic truth conditions, and are left to the reader. This completes the
definition of a G-model.

Validity for modal arguments L/C is defined as follows. The notation
‘aw(L) = T (for ‘L is satisfied by a at w’), is defined recursively on the
length of L as follows.

When L is empty, a,(L) = T.
ay(L, A) = Tiff a, (L) = T and a,(A) = T.
ay (L, 1) = T iff for some v in W, vRw and a,(L)=T.

So for example, ay(p,,q9) = T provided that there is a world v in W
such that ay(p) = T and vRw and ay(g) = T. When S is some condition
on G-models, we say L is S-satisfiable iff L is satisfied by a at w in some
G-model which obeys S. Argument L/C has an S-counterexample iff the
list L, ~C is S-satisfiable, and L/C is S-valid (L ks C) iff L/C has
no S-counterexample. A rule preserves S-validity just in case whenever
the premise(s) of the rule is (are) S-valid so is the conclusion. Officiaily,
axioms are treated as zero premise rules, and should be written as modal
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sequents with the form: L - C. However, we omit ‘L I’ in the statement
of axioms. An axiom preserves S-validity iff it is S-valid.

3. EXTENSIONS OF G

Here rules and axioms (hereafter called rules) will be listed which can be
used to extend G to a stronger logic S. For each rule or rules, we list to its
left a corresponding condition on models. With certain restrictions to be
noted in Section 5.1, any system S formed by adding these rules to G is
adequate (i.e. both sound and complete) with respect to S-validity where
S is the conjunction of the corresponding conditions for those rules. For
convenience, rules, systems and their corresponding conditions are given
the same names. For condition (¢E) below, the (extensional) domain Dw
for each world w is defined by (Dw).

(Dw) Dw={f(w) : f e Iw).

Semantic Condition Rule(s)

(JE) Iw is not empty dxEx

(Ec) a(c) e Iw Ec

(Et) a(t) e Iw Ez

(EI) If wRy, then Iw C Iv Et — [E:

(CI) If wRyv, thenIv C Iw QEr — Bt

(31) forsomei € Li(w) =au(t) LI ~t~c/L 1, cnotinL, ¢
(rc) a(c) is a constant function (b~c — Obme)&

(~b~c — O~bric)
(Ic) 1is the set of all constant (Ic)y = (Fi) + (o)
functions with values in D.

(eE) ay(Et) = Tiff ay(t) € Dw st — (Es — Er)

System oS for the objectual interpretation is defined as S + (Ic) + (eB).
All the correspondences above hold for oS plus the following.
Semantic Condition Rule
(cEc) Dw=D Ec
(oED) If wRy, then Dw € Dv  Ec¢ — [(JEc or
(CBF): OVxA — Vx[OA
(oCD) If wRy, then Dy € Dw  OEc — Ecor (BF): VxOA — OvxA
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4. CONSISTENCY
4.1. Consistency of G

The adequacy proofs for the QMLs described in this paper depend on the
following two theorems, which can be proven by induction on the structure
of A.

INSTANCE THEOREM. Ifa(t) = i then ay(Ar) = a, (AQ).

NO ¢ THEOREM. If two S models are identical save that their respec-
tive assignment functions a and b agree on all predicate letters and terms
except for a single term c, and ¢ does not appear in VxA, then ay(Ai) =
by (Ai), and if ¢ does not appear in A, then ay(A) = by(A), hence when
cisnotinl, a,(L) = by (L).

To show that G is consistent, one shows that the rules of G preserve G-
validity. Details related to rules (UIn) and (VIn) are given here, and the
rest is left to the reader. (Throughout this paper, subscripts on ‘+ and =%
are dropped where they can be recovered from the context.) The proofs
that (OIn) and (OOut) preserve S-validity depend on the following feature
of the definition of a,(L).

(L) If ay (L., [J) = T iff for some v W, a,(L) = T and vRw.

(UlIn) To show thatif L, O |= A then L = UA, assume that L, O = A,
and suppose there is a G-model with a world v in W where ay(L) =T, and
show ay([JA) = T as follows. Suppose that w is any world such that vRw.
By (L), au(L,0) = T, and so by L, O = A, a,(A) = T. So whenever
VRw, ay,(A) = T and a,(OA) = T follows by the truth condition ({J).

The proof for ((JOut) is similar.

(VIn) Assuming L = Ec — Ac and ¢ is not in L nor in VxA, we
must show L |= VxA. To do that, suppose (W, R, D, I, a) is any G-model
where aw(L) =T, and i is any member of both I and Iw, and demonstrate
ay(Ai) = T as follows. Construct a new G-model (W,R,D, 1, b) with
b identical to al,, hence b(c) = i. We have b(c) € Iw, so by (iB),
byw(Ec) = T. Since ¢ does not appear in L, the No ¢ Theorem entails
by(L) = T, and soby L = Ec — Ac, by(Bc — Ac) = T. Since
by(Ec) = T, (—) guarantees bw(Ac) = T. By the Instance Theorem,
by (Ai) = T. Since c is not in VxA, aw(Ai) = T follows from the No ¢
Theorem.

4.2. Consistency of Extensions of G

It is not difficult to show that each rule mentioned in Section 3 preserves
S-validity when its corresponding condition is in S. Details for (di) and
(rc) are given here, and the rest left to the reader.
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(i) Forsome i € L i(w) = ay(t) L+ ~t~c/LE L, cnotinL, or t

Suppose ¢ is not in L or 7, that L. = ~t~sc, and that L ¥ | for reductio.
Then there is a S-model (W, R, D, I, a) with world w in W where ay(L) =
T. By the condition (i), there is a function i € I such that i (w) = ay(r).
Now construct the model (W, R, D, I, b) where b is a¥.. Hence by (c) =
i(w) = ay(t). Since ¢ does not appear in L nor in ¢, it follows by the No
¢ Theorem that by (L) = ay(L) = T and b, () = aw(t) = by(c). So
by (&), by(t=~c) = T. Since L = ~t~ec,-it follows by by(L) = T that
bw(t~c) = F, which yields the desired contradiction.

(rc) ay(c) = ay(c) forc € C (b~ — Obrec) & (~br~e — O~b=c)

To show the left conjunct, assume ay(b~%¢) = T and WRy for any
world v. We have a,(b) = ay(c) by (&), and by condition (rc), it follows
that ay(b) = ay(c), hence a,(b~sc) = T. Therefore, for any world such
that wRv, a,(b~c) = T, and a,((0b~c) = T by (00). The proof for the
right conjunct is similar.

5. COMPLETENESS

5.1. Limits on the Completeness Results

Here the restrictions on the completeness results are explained. Once (rc)
isin S, it is necessary to include the other two rules that make up 0G. Call
this the (rc) restriction.

(rc) Restriction. If (rc) is in S, then so are (3i) and (eE).

There are also limitations on the choice of the underlying modality. The
method only works for a propositional modal logic whose frame conditions
shrink, which means they hold in the frame of its canonical model, and
in all its subframes. (W', R') is a subframe of frame (W, R) provided
W' € Wand R’ is Rrestricted to W.) Frame conditions that shrink include
Reflexivity, Transitivity, Symmetry and others that are expressed in the
metalanguage only with universal quantification over worlds. Conditions
involving existential quantification over W such as Seriality, Density and
Convergence do not shrink since the claim that there exists a member u in
W with a certain property might fail in a subset of W that omits u. Even
though Seriality does not shrink, the seriality axiom guarantees that the
frame is serial in the canonical models to be given below, so the complete-
ness method works in this case. The method does not work for Density and
Convergence. The failure for Convergence is expected, since it has been
shown that possibilist logics are incomplete for this condition (Cresswell,
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1995). Notice that the condition that R be universal (i.e. that wRyv for ail
worlds w and v), does not shrink because this condition does not hold for
the frame of the canonical model of S5, Completeness can be shown for
such systems, but only when the additional axiom (BD) is present.’

(ED)) Us~¢t —> (BEs — Er)

5.2. Saturated Sets

Completeness is proven for any QML meeting the above restrictions fol-
lowing essentially strategy 4 of Garson (2001, p. 297), which generalizes
the definition of saturation used for predicate logic. When L/C is a modal
argument, the result of applying ((JIn) and Conditional Proof repeatedly to
it produces its corresponding sentence L = C. For example, when L/C is
the modal argument A, 0, B, [I/C, the corresponding sentence L = C is
A — OB — JC). The following lemma should be obvious; it serves as
a modal generalization of the Deduction Theorem.

= LEMMA. When L' is finite, L, L' - Ciff L - L' = C.

When we write ‘M F A’ in the case of a set M, we mean that H -5 A for
some finite list H whose members are all in M. M is a r-ser (for a given
language) if and only if it obeys the following two conditions.

(V-set) f M L = (Ec — Ac) for every free variable ¢, then M - L =
VxA.

(~-set) If (Ji)isin S, and M F L = ~r~ec for every free variable c, then
MFE L = ~tr,

A set M is consistent iff M V¥ L. M is maximal iff for every sentence
A, either A or ~A is in M. M is samurated for a language if and only
if M is maximal, consistent, r-set. M is ready when it is a r-set or there
are infinitely many free variables of the language not appearing in sen-
tences of M. The next three lemmas are basic to the completeness result.
Their proofs (and unremarkable proofs for other lemmas) are given in the
notes.

ADDITION LEMMA. If M is finite, and M is ready, then so is MUM’.10

READY LEMMA. IfM is ready and consistent for a given language, then
M satisfies both of the following:

@ If ~(L = VxA) € M, then M, ~(L = (Bc — Ac)) ¥ 1, for some
free variable c of the language.

(®) If (Ji) isin S, and ~(L = ~t~1) € M, then M, ~(L = ~tRc) L,
for some free variable c of the language.'!
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SATURATED SET LEMMA. IfM is consistent and ready, then M has a
saturated extension.?

5.3. The Canonical Model

To show completeness for S, a familiar strategy is used: to show that any
consistent set H is S-satisfiable. Suppose H ¥ L. Now consider a language
with infinitely many free variables not in the syntax of S. H is ready in this
language, and so, according to the Saturated Set Lemma, can be extended
to a saturated set h. We then define the canonical model for S. ¥f it can be
established that h belongs to the W of that model and a,(H) = T, H will
be S-satisfiable.

So the main task will be to define the canonical model and show it
satisfies any consistent set h. The set U of terms is defined so that when
(rc) is in S, U is C, otherwise U is the set of all terms. In the canonical
model, we take the extension aw(¢) of a term ¢ to be an equivalence class
of members of U such that w - r~u.

The canonical model (W, R, D, I, a) for S, is defined as follows.

(R) wRu iff for all sentences B, if w - (B then v - B.
(W) When S includes (rc), W is the set of all saturated sets in the ancestry
of h; otherwise W is the set of all saturated sets.

(The ancestry of h is defined as the smallest set such that h is in the
ancestry of h, and if w is in the ancestry of h and wRY then so is v.)

) ucay@)iff wkrt~uandu e U.

(D) D = {ay(#) : 7 is a term and w is some member of W}.
@ I={a(c) : for some ¢ € C}.

(Iw) Iw = {a(s) : w - Es, for some term s}.

(P) a,(P) = {ay(l) : w I P/, for some list of terms /}.

The values of the sentences on the canonical model are determined by the
Basic Truth Clauses.

We are now ready to prove the main result concerning the canonical
model.

TRUTHLEMMA. ay(A) =T ifwk A

Proof of the Truth Lemma. The proof is by induction on the structure
of A. Details are given here for sentences with shapes s=¢, B¢, (A, and
VxA; the rest is left to the reader.

The case for s~t. The proof relies on the next two lemmas and (=),
which follows from the rules for =,
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(=) If w - s~t, then w - s~y iff w - tauu.
If w - t~u and w - s~u, then w - s~¢.

¢ LEMMA. When (3i) is in S, w I t~sc for some free variable ¢.13

~LEMMA. Forallu € U, w - s~t iff, w - s~u iff wh t~u.

Proof. The proof from left to right follows from (/). For the proof
from right to left, assume for any term u € U, w - s~ iff w - ru. If U
is the set of all terms, this assumption yields w - s~ iff w I #~¢, from
which w - sast follows from (~In). In case U is C, (rc) is in S. By the uc
Restriction, (Ji) is in S. But then the ¢ Lemma yields that there is a free
variable ¢ such that, w - t~sc. The original assumption now guarantees
that w - s~c. By (=), w |- s=~r.

The case for sentences with the shape s=¢ follows from (=), (t) and the
~Lemma.

The case for Et. The case rests on the next two lemmas.

Ev LEMMA. Ifw - Es and w - ~Et, then for some vin W, v - ~t=s.

Proof of the Ev Lemma. Suppose w - Es and w - ~E¢. The proof
varies depending on whether S contains (rc) or not.

S contains (rc). The (rc) Restriction requires that S contains (eE), and
we have w I~ t~ss — (Es — Er). Hence given w - Es and w - ~Ez, w ¥
t/zs, since otherwise w is not consistent. Since w is maximal, w - ~t~ss,
World w is in the ancestry of h, so w is the v in W, such that v - ~t=zs.

S does not contain (rc). S contains rule (iE), so we have that if - 1=y,
then - Es — Er, and hence w - Es — Et. So givenw F Es and w - ~Et,
it cannot be that + #~s for this would make w inconsistent. So ¥ 1Ry,
hence ~t~s I L by propositional logic. So the set containing ~r~%s as
its only member is consistent. Since it is finite, there are infinitely many
free variables not in it, and so it is ready. Therefore it can be extended to
a saturated set v containing ~¢~%s. When S does niot satisfy (rc), W is the
set of all saturated sets, so v € W, and hence v - ~t=s.

ELEMMA. w - Et iff for some term s, a(t) = a(s) and w - Es.

Proof of the E Lemma. For the proof from left to right, assume w
Ez and note that a(¢) = a(¢), so there is a term s (namely r) such that
a(t) = a(s) and w I Es. For the proof from right to left, assume for some
term s, a(t) = a(s) and w - Es. Assume w ¥ Er for reductio. Since w is
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maximal, w = ~Ez. By the Ev Lemma, for some vin W, v - ~¢=ss. Since
a(t) = a(s), we have a,(¢) = ay(s), from which a,(t~s) = T by ().
From the base case for sentences with the shape s=¢, we obtain v - tRss,
and this contradicts the consistency of v.

The case for sentences with the shape Ez follows from (iE), (Iw) and the E
Lemma.

The case for UIA.  Two definitions and some lemmas concerning [J are
needed. The first three are standard results left to the reader and proofs for
others are found in the notes.

V) V={A :wk A}
OV)Ov={TA :AeV)
V-LEMMA. w is an extension of V.
In the next three lemmas, V U {~A} is abbreviated by: V, ~A.
CONSISTENCY LEMMA. Ifw ¥ OA, then V, ~A is consistent.

RLEMMA. Ifv is an extension of V, ~A, then wRyv.
r-Set LEMMA. V, ~A is an r-set.'*

(-0 w OA, iff for all v e W, if wRy, then v - A.I°

The case for sentences with the shape CIA follows from (L), the induc-
tive hypothesis and (—0).

The case for VxA. To show the case for sentences with the shape YxA,
(HY) is proven.

(FY) w VxAiffforallc € C, w - Ec — Ac.

Proof. The proof from left to right, is guaranteed by (YOut). For the
proof from right to left, assume for all ¢ € C, w - Ec — Ac. Since w
is saturated, w is a V-set, and so in the special case where L is empty, it
follows that w - VxAx. .

In light of (), (—) and the inductive hypothesis, the case for ¥xA fol-
lows since (sY) can be shown. (Note that (sV) is the truth clause for the
substitution interpretation.)

(s¥) ay(VxA) = Tiff forall c € C, if a,,(Ec) = T then ay(Ac) = T.1¢
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The Truth Lemma has now been established. All that remains for the
completeness proof is to show that the corresponding conditions for the
principles of S hold of its canonical model. When this is established, we
will have constructed an S-model that satisfies H, because the saturated set
h constructed from H entails all members of H, so by the Truth Lemma,
ap(H) = T. By definition, h is in the ancestry of h, soh € W even when
W is restricted to saturated sets in the ancestry of h. So h qualifies as a
world in W where ap(H) = T as desired.

In the case of G, all that remains is to show that the frame for the
canonical model of G meets the frame conditions for G. We have assumed
that the frame conditions for S shrink, which means that they hold in the
frame (Wp, Rp) of canonical model for the propositional modal logic from
which S is formed, and in all its subframes. Consider the frame (W4, R+),
where W+ is the set of all maximally consistent sets for S, and R+ is
given by (R), the definition for R used in the canonical model. By exactly
the reasoning that established that (Wp, Rp) meets the frame conditions
for S, (W+, R+) meets them also.!” Since the frame conditions shrink,
and (W, R} is a subframe of (W+, R+), they hold for (W, R) as well. It
is also possible to show that Seriality holds for the canonical model if the
axiom A — QA isin S.18

5.4. Completeness for Extensions of G

The completeness of extensions of G is shown by demonstrating that the
canonical model for G obeys the corresponding condition for each rule
added to G. Proofs for some of the cases are given below.

(EI) If wRv, thenIw C Iv  Er — [JE;
The proof is similar to the one for the next case.
(CD If wRv, thenfv C Iw OBt — Er

To show (CI), assume wRv and f € Iv, and then prove f € Iw. We
know by (Iw) and f € Iv that for some term ¢, f =a(t) and v - Ez. By
({JF), the definition of ¢, and the fact that w is maximal, w - OF¢, and so
by the axiom, w I Et. By (Iw), a(t) = f e Iw.

(Ji) Forsomei € Li(w) = ay(z) L+ ~t~c/L+ 1, cnotinL, 7.

To show (31), let # be any term and w any member of W. Since rule
(3 isin S, the ¢ Lemma yields that w - 7~c for some free variable c. By
the Truth Lemma and (=), ay(c) = ay(t). By (c), a(c) € 1, so there is a
member i of I (namely a(c)) such that i (w) = ay(1).

To prepare for the case of (rc), we will prove a lemma.
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rc LEMMA. When (tc) is in S, then for all w, vin W, w  bac iff
v - bec.

Proof of the rc Lemma. We first establish two facts for any world w in
the ancestry of h.

(1) If h - b~c, then w - b=vc.
(2) It h = ~bruc, then w - ~b=ve.

The proof of these facts is by induction on the definition of the ancestry
of h. In the base case we must show that (1) and (2) when w is h, which is
trivial. Next we must show that assuming that (1) and (2) are true and wRv
then (1) and (2) are also true when v is replaced for w. So assume (1) and
(2), and wRv. Assume h - b~sc. By the hypothesis of the induction, w
brvc. Then by (rc), w - brse — (bavc) and so w - Ob~c. Since wRy,
it follows by the definition of R in the canonical model that v - bvc. So if
h - b~2c, then v - basc as desired. Similar reasoning can be used to show
that when h - ~brsc, v - ~basc. Given facts (1) and (2), we are ready
to prove the lemma. Suppose (rc) is in S and let w and v be any worlds
in W. Since (rc) is in S, W is the set of all worlds in the ancestry of h. So
w and v are in the ancestry of h. To show w  bavc iff v - basc from left
to right, suppose w I basc. Then h  basc for otherwise h ¥ b~sc, and by
maximality we would get h - ~b~c, which yields w - ~b~c by fact (2),
which conflicts with the consistency of w. But if h  bas«c, it follows by
fact (1) that v - bac. The proof from right to left is similar.

(rc) a(c) is a constant function (brve — Obvc) & (~b~¢ — [I~b~c)

When (rc) is in S, W is defined as the set of all saturated sets in the
ancestry of h. So we know that w and v are in the ancestry of h, from
which it follows from the rc Lemma that w - cb iff v - caeb. By (t), for
allb € C,b € a,(c)iff b € a,(c). Since (rc) is in S, U = C and so for all
u € U, u € ay(c) iff u € a,(c), which means that the two sets ay(c) and
ay(c) are identical. So we have shown that for arbitrary worlds w, and v,
ay(c) = ay(c) and so a(c) is a constant functjon.

(Ic). Lis the set of all constant  (Ic) = (3i) + (rc)
functions with values in D.

We just showed that when (rc) is in S, it holds that a(c) is a constant
function. By (I), I = {a(c) : c is a constant}, so I contains nothing but
constant functions. What remains is to show that for each d € D, there is
a member i of I such that, i(w) = d. So let d be any member of D. By
(D), there is a term ¢ and world v such that ay(t) = d. By (3i), there is a
constant & such that a,(b) = a,(r) = 4. Since a(b) is a constant function,
we have aw(b) = d. So a(b) is a member i of I such that ;i w) =d.
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(eE) ay(Er) = Tiffa,(t) e Dw  sar — (Es — Ep)

For the proof from left to right, suppose ayw(Et) = T. By (iE), a(z) € Iw.
So there is a f (namely a(z)) such that S € Iwand f(w) = a,(?). So by
(Dw), ay(z) € Dw. For the proof from right to left, suppose a, (f) € Dw.
Then by (Dw) there is an f € Iw such that fw) = a,(?). By (Iw),
S = a(s) and w - Es for some term s. Since S =a(s), fF(w) = a,(s),
and so ay(s) = a,(?). So by (~), aw(s~t) = T, and by the Truth Lemma,
w = s=t, from which it follows by the axiom that w - Ey. By the Truth
Lemma, a,,(Et) = T. .

Next it is shown the rules enforce their corresponding conditions on
canonical models for oG. Note that conditions (Ic) and (eE) hold in this
model by the reasoning already given. .

(0Ec) Dw=D Ec

To show condition (oEc), prove d € Dw iff d € D as follows. To
prove this from left to right, assume d € Dw. By (Dw), there is a function
f €lwand f(w) =d. Since f € Iw, S = a(z) for some term ¢ by (Iw).
So ay(t) = d. By (D), d € D. For the other direction, suppose that d € D.
Then by (Ic), there is a free variable ¢ such that ay(c) = d, and by the
axiom, we have w  Ec, and so by the Truth Lemma, ayw(Ec) = T, and
hence a(c) € Iw by (iE). So there is a function f (namely a(c)) such that
f(w)=dand f € Iw, and so d € Dw, by (Dw).

(0ED) If wRv, then Dw C Dv Ec¢ — B¢
The proof is similar to the next case.
(oCD) If wRv, then Dv € Dw  OEc — Ec

To show (oCD), assume wRy and d € Dy, and then prove d € Dw as
follows. By (Ic), ay(c) = d for some free variable ¢, 80 ay(c) € Dv. By
(eB), ay(Ec) = T, from which v + Ec follows by the Truth Lemma. By
(OF), the definition of ¢, and the fact that w is maximal, w F QEc, and
8o by the axiom, w I Ec. By the Truth Lemma and (eE), ay(c) € Dw. By
(r¢), ay(c) = aw(c), s0 ay(c) = d € Dw, as desired.

6. SUBSTITUTION AND OBJECTUAL INTERPRETATIONS OF THE
QUANTIFIER

In Section 1.3, it was claimed the substitution and objectual interpretations
of the quantifier may be accommodated within G as special cases. The
proof of those claims follows.
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6.1. The Substitution Interpretation

For the substitution interpretation, a sG-model (W, R, D, a) is like a G-
model save that I is missing, and the truth condition for the quantifier reads
as follows.

(sY) aw(¥xA) =Tiff forall ¢ € C, if a,,(Ec) = T then ay(Ac) = T.
The structure I can be defined in sG-models by (I) and (sIw).

I I={a(c) : for c € C).
(sIw) Iw = {a(t) : aw(Et) = T}.

This means that the conditions introduced in Section 3 for extending G-
models may also be added to sG-models to define corresponding concepts
of sS-validity.

It is easy to see that notions of validity using the substitution interpre-
tation match up perfectly with those using the intensional truth clause (V)
instead. It was proven in Section 5.3 that the canonical model for S obeys
(sV). Since that proof appeals to no special property of the canonical model
other than (I), we have the following.

s LEMMA. Any S-model that obeys (1) obeys (sV).

It follows from this that an sS-counterexample can be constructed for every

argument H/C not provable in S; simply remove I from the canonical
model for S to obtain a sS-model that is a counterexample to H/C. This
means that S must be complete for sS-validity, and the reader can verify
that it is also consistent for sS-validity. It follows by the consistency and
completeness of S for S-validity proven in Sections 4 and 5 that the classes
of S-valid and sS-valid arguments are identical.

6.2. The Objectual Interpretation

On the objectual interpretation of the quantifier, an dS-model (W, R, D,
D, a) is defined to be like a S-model except that I is replaced with D, which
consists of subsets Dw of D for each world w. In dS-models the assignment
function a obeys the following clauses for E and the quantifier.

(eB) ay(Et) = Tiff a,,(¢) € Dw, for any term ¢.
(oY) ay(VxA) = Tiff for all d € Dw, ay(Ad) =T.

(The notation ‘ay(Ad) = T” in condition (dY) abbreviates ‘a¥.y(Ac) = T,
where ¢ is chosen foreign to Vx A and al/, is the assignment function exactly
like a save that mm\os (¢) = d.) Here we will show that the objectual inter-
pretation is exactly captured within oS models by proving the following
lemma. (Remember, oS models are S-models that obey (Ic) and (eE).)

UNIFYING QUANTIFIED MODAL LOGIC 641

0 LEMMA. Any oS-model that obeys (I) obeys (o).

Proof. To show (oY), we will appeal to the following lemma for oS
models, which is shown by induction on the form of A.

id LEMMA. Ifi is a constant function with value d, ay(Ai) = ay(Ad).

The proof then proceeds by showing that (or) and (ir) are equivalent in any
0S-model that satisfies (I).!°

(or) For alld € Dw, a,(Ad) = T.
(ir) Foralli e L if i € Iw, then a, (Ai) =T.

The o Lemma immediately establishes completeness for oS with re-
spect to the corresponding dS semantics. Simply define a canonical dS-
model by replacing I in the canonical S-model with a structure ID defined
by (Dw), note (eE) holds, and use the o Lemma to establish that (d¥) holds.
As in the case for the substitution interpretation, this result guarantees that
dS-validity and oS-validity are equivalent.

7. INDEPENDENCE RESULTS

7.1. (3i) is independent in oG

It is natural to wonder whether (3i) and its more complex ancestors in the
literature can be dispensed with in systems that use the objectual interpre-
tation.
. L F~t=c .

(3 L ., where ¢ does not appear in L, or ¢.

When the language contains only free variables, (3i) is admissible, but it is
shown here that (3i) is essential in general, for (3i) is independent within
0G. We remarked in Section 1.3 that (3i) plays a role in the proof of Er <
Jxx~t in 0G.2 So all it will take to show that (3i) is independent in oG is
to show that the system oG- that results from removing (3i) from oG cannot
prove Bt — Jxx~t. To show this, it suffices to show that Br/3xx=t is
G + (eE) + (rc)-invalid, by locating a G-model (W, R, D, I, a) satisfying
conditions (eE) and (rc), where ay(Es) == T and ay, (Ixx=vs) = F, for some
term s. To do this, let (W, R) be any frame with at least one world w,
and Jet D = {1,2}. Let I = {i} where i is the constant function with
value 1. Leta(c) = i for each free variable c, and let a(#) = J, the constant
function with value 2 for terms ¢ that are not free variables. Finally let
Iw = {i, j}. This model clearly satisfies (rc), and it satisfies (eE) by the
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following reasoning. By (iE), a,(Br) = T iff a(z) € Iw. So since Iw =
{i, j}. a(?) € Iw for any term ¢. By (Dw), Dw = {aw(®) : a(®) ¢ Iw}
{1, 2}, so ay(t) € Dw for every term ¢. Hence a(t) € Iw iff a,(r) € Dw,
and (eE) holds: ay(Et) = T iff aw() € Dw. Let s be any term that is
not a free variable. Clearly ay(Es) = T; but by the (intensional) truth
condition (3), ay(Ixx~ss) = F, because there is no object in I whose value
in w is identical to that of a(s) = 2.

Il

7.2. Results for the Barcan Formulas

In this section, we show that the Barcan Formula (BF) is too weak to
capture the intensional contracting domains condition (CI) in G. There are
G-models of (BF) where (CI) fails and so QEc — Ec is invalid.

(CI) If wRv, then Iv C Iw.

As aresult, 0Ec — Ec is not provable in G + (BF). The result holds even
when the underlying propositional modal logic is as strong as S5. It will
follow as a corollary of this result that the converse Barcan Formula (CBF)
is not provable in the system given by Fitting and Mendelsohn (1998,
p. 135).

We begin with a definition. For i and JinIC, ‘j =, i’ means that
J(v) = i(v) for all v in the ancestry of w. Let the system GBF be G plus
(BF), (3E) and the axioms of S5. The following lemma establishes that
QEc — Ecis not provable in GBF, nor in any weaker logic.

BFLEMMA. OEc — Ec is not provable in GBE.

Proof. Let a GBF-model be a G-model that satisfies (GBF), (3E) and
(S5).

(GBF) If i € Iv and wRY then for some J €L j=y iandj e Iw, and
jelv.
(FE) Iw is not empty.
(S5) The frame (W, R) is reflexive, transitive, and symmetric.

It wiil be shown that GBF is consistent for GBF-validity, but that there
is a GBF-model where OEc — Ec fails, because (CI) does not hold. It
is straightforward to show that (JE), and the rules of G and S5 preserve
GBF-validity, so the only hard part is to show that axiom (BF) is GBF-
valid. The proof of that depends on the following lemma, which is shown
by induction on the form of A.

=wLEMMA. If j =y i, j € Iw, and i € Iw, then ay(A}) = ay (A7),

(The condition that both j € Iw and i € Iw is needed to guarantee the
base case where Aj is Ej.)
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To show that (BF) is GBF-valid, assume that ay(VxOA) = T in any
GBF-model. To show that a, (CVxA) = T, assume that wRy and that j is
any member of I such that i € Iv, and show a, (Ai) = T as follows. By
condition (GBF), there is a j e I such that J=wiandj € Iw,and j € Iv.
By aw(Vx[JA) = T, and j € Iw, it follows by (V) that a,,(JAj) = T. So
ay(Aj) = T by (O). Since j =y i, and wRy, J =y i.Both j and i are
members of Iv, so the =, Lemma guarantees ay(Ai) = T as desired.

To show that 0Ec — Ecis GBF-invalid, a GBF-model, (W, R, D, I, a),
is defined where a(QEc) = T and ay(Ec) = F. Let W = {wl, w2, w3},
R = {(wl, wl), (w2, w2), (W3, w3), (wl, w2), (w2, wl}}, and D = {1, 2}.
Let f be the constant function with value 1 and g be the function with value
1 in worlds w1 and w2 but with value 2 in w3. I is defined as follows.
I={f g} Iwl = {g}, Iw2 = {f, g}, w3 = {g}. Finally let a(c) = f.
Note (CI) fails, because wiRw2, f € Iw2, and f ¢ Iwl. Since a(c) ¢
Iwl, ay (Ec) = F. But ay; (OEc) = T, because in world w2, wlRw2 and
a(c) € Iw2 so that ay,(Ec) = T. Note that the frame of the model is an
S5 frame, and each Iw is not empty, so all that remains is to show that this
model satisfies condition (GBF).

Since g is a member of Iw for each w in W, it follows that for some J
(namely g) j =y gand j € Iw and j € Iy, for any w, vin W. So (GBF)
holds for i = g. Since f is only a member of Iw2, all that remains is to
show that there is a j such that j = f and j € Iw and j € Iw2, for win
{w1, w2}. But this holds for j = g.

Now consider the system GBF-, the system like GBF save that the lan-
guage lacks ~, and the rules (*In) (Out) and (IE). Itis a simple exercise
to show that OEc — Ec is provable in GBF- plus (CBF).2! It follows
immediately that (CBF) is independent in GBF-, for were (CBF) provable
there, so would OEc —» Ec be, and 0Ec — Ec is not even provable
in the stronger system GBF by the BF Lemma. So the following lemma
holds.

CBF LEMMA. (CBF) is not provable in GBF-.

Fitting and Mendelsohn’s system BF results from adding the Barcan For-
mula (BF) and the “symmetry” axiom (B) to the “Kripke-style” quanti-
fier system defined by Definition 6.2.1 (1998, p. 135) and discussed in
Hughes and Cresswell (1996, p. 304). The Kripke-style system consists of
tautologies of propositional logic, Necessitation, Modus Ponens, and the
following principles, for a language that allows variables to be both bound
and free.

Vacuous Quantification  VxA < A when x does not occur free in A
Universal Distributivity ~ Vx(A — B) — (VxA — YxB)
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Permutation VxVyA <> VyVxA
Universal Instantiation Vy(VxA — Ay)
Universal Generalization A/YxA

By closing Universal Instantiation one obtains a “classical” axiom, which
is still valid in systems that employ an actualist semantics. Free logic rules
are thereby avoided. Fitting and Mendelsohn (1998, p. 138) point out that
(B) corresponds to the symmetry of the accessibility relation R, and given
symmetry, if one of the following holds, so must the other as well.

(Expanding Domains)  If wRv then Dw € Dv
(Contracting Domains) If wRv then Dv € Dw

They accept the standard assumption that (CBF) corresponds to (Expand-
ing Domains) and (BF) to (Contracting Domains), and so expect to be able
to find a proof of (CBF) in system BF. (The reverse deduction from (B)
and (CBF) to (BF) is easily shown.) They report not being able to find a
proof and request the readers’ help.

However, no such proof is forthcoming. It is a simple matter to verify
that the axioms and rules of BF are all derivable in GBF-, and so everything
provable in BF is provable in GBF-. It follows immediately from the CBF
Lemma that (CBF) is not provable in BF. This reveals a problem with
identity-free Kripke-style systems. The attempt to avoid free logic rules by
adopting closed classical principles results in logics that are too weak.
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NOTES

1 Bven if possibilitists manage to win the day in the case of logics for necessity, there is
no guarantee that their reasoning will transfer to temporal, deontic or alethic modalities.

2 See Fitting (2004) who makes the same point, and who agrees with us in recommend-
ing a more liberal attitude in the construction of quantified modal logic.

3 The reason is that there may be no one possible object that satisfies Ox = ¢ when ¢
picks out different possible objects in two or more possible worlds of a model. Essentially,
this point is made by Garson (2001, p. 278).

4 The reader may wonder at the use of an intensional existence predicate here. Note
first that a more standard extensional treatment follows as a special case when (eE) is
adopted. (See below.) When (eE) is available, the completeness proof can be simplified
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somewhat. There are two reasons that (eE) was not adopted in the basic system. First,
[ do not know how to obtain the independence results of Section 7 within the stronger
logics. Second, there are intuitions that support the need for an intensional existence pred-
icate. For example, consider a temporal logic where members of D are time slices of
objects. The domain I of individual concepts then contains functions that correspond to
temporally enduring objects. Whether an object exists at 7 is intuitively not to be deter-
mined by whether a time slice for that object occurs at £, for that occurrence is (logically)
compatible with no occurrence of any other times slices for that object in prior or later
times. Under these circumstances, we do not want to be forced to grant the existence of an
object.

5 This is reminiscent of the situation in free logic, where correct instantiation principles
for terms referring in an outer domain are derivable from an instantiation rule restricted to
free variables only (Lambert and van Fraassen, 1972, p- 137).

6 See Rules R6 and R7 of Thomason (1970, p. 63) and (G=) of Garson (2001, p. 304).

7Incaserisa complex term containing free variables, it is assumed that bound variables
in Ax are adjusted to leave them free.

8 For example, the following modal sequent rules are adequate.

(Hyp) L, A A
(MP) LA LFA—B/LFB
(CP) LLAFB/LFA—B
(Reit) LA /L BFA

(ON) L+ ~~A/LFA

9 To obtain the completeness result, restrict W in the canonical model to saturated sets
in the ancestry of h. This will guarantee that the frame is Universal. The proof of the Ev
Lemma must be modified as follows. We have w - Os~¢t — (Es —» Er). So given
w F Es and w - ~Et, it follows that w ¥ [(r=ss, since otherwise w is not consistent. By
(@), there must be some world v in W such that wRv and v ¥ r~s. Since v is maximal,
v = ~r=ss. W is restricted to saturated sets in the ancestry of h. So w is in the ancestry
of h. But wRyv, so v is also in the ancestry of h, and we have the desired result.

10 ADDITION LEMMA. If M’ is finite, and M is ready, then so is MU M.

Proof of the Addition Lemma. Suppose M is finite and M is ready. If the reason M is
ready is that there are infinitely many free variables of the language not in M, then since
M’ is finite there will still be infinitely many free variables not in M U M’ and so M U M’
is ready. If the reason M is ready is that it is a r-set, then M U M’ is also a r-set by the
following reasoning. Suppose that MUM' - L = (Bc — Ac) for every free variable ¢ of
the language. It follows by the = Lemma that M - H, L = (Ec — Ac), for every free
variable ¢, where H is a list of the members of M’. Since M is a V-set, it follows then that
M H, L = VxA, from which it follows by the = Lemma that MUM’ - VxA. Therefore
MUM’ is a V-set. That M U M’ is also a A-set is shown using the same strategy.

11 READY LEMMA. If M is ready and consistent for a given language, then M satisfies
both of the following:

@) If~@L = VxA) e M, then M, ~(L = (Bc — Ac)) ¥ L, for some free variable ¢ of
the language.

&) If 3) isin S, and ~(L = ~t=t) € M, then M, ~(L = ~t~5c) ¥ L, for some free
variable c of the language.

Proof of the Ready Lemma. Suppose M is ready and consistent. To show (a), sup-
pose ~(L = VxA) € M. There must be a free variable ¢ of the language such that M,
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~([L = (Bc = Ac)) ¥ L, because otherwise M, ~(L = Ec = Ac)) kL, for every
free variable ¢, which leads to a contradiction as follows. By propositional logic, it follows
that M - L = (Ec — Ac), for every free variable c. If the reason that M is ready
is that M is a r-set, then it follows immediately that M - L = VxA, which conflicts
with ~(L = VxA) € M and M’s consistency. If M is ready because there are infinitely
many free variables of the language not in M, then M - L = VxA also holds for the
following reason. L is finite, so there are infinitely many free variables not in M, L or
VxAx. Let b be one of these free variables. Since M - I, = (Ec — Ac), for any ¢, we
have ML = (Eb — Ab),andsoHF L = (Eb — Ab) for some list H of members
of M. So by the = Lemma, H, L - Eb — Ab. Apply (VIn) to H, L - Eb — Ab to
obtain H, L. I VYxAx. By the = Lemma, it follows that H - L = YxAx, and hence
ML = VxAx. So whichever reason M is ready, it follows that M - L => YxAx. But we
also have ~(L = VxAx) is in M, and this conflicts with the consistency of M. Therefore it
follows that M, ~(L => (Bc — Ac)) ¥ L for some constant c. The proof of (b) is similar.

12 SATURATED SET LEMMA. If M is consistent and ready, then M has a saturated
extension. .

Proof of the Saturated Set Lemma. Order the sentences Aj,...,A;, ... and create a
series of sets: My, My, ..., M;, ... following the main outlines of the recipe used for the
Lindenbaum Lemma, starting with M; = M. (Here again ‘M, A’ abbreviates ‘M U {A}’.)

M1 =M, A; ifM;, A; ¥ L,
M1 =M;, ~A; ifM;, A L.

However, there will be two changes in the definition of the M; 1.

When A; has the form ~(L = VxA) and the addition of this sentence would be
consistent (i.e. if M;, ~(L =3 VxA) ¥ 1) then add both ~(L = VxA) and ~(L = (Eb —
Ab)) to M;, to form M; 41, where b is a free variable chosen so that M; 41 is consistent,
That there is such a b is proven as follows. M is ready and only finitely many sentences
were added to M to form M;, ~(L => VxA), so by the Addition Lemma, M;, ~(L = YxA)
is ready. Since M;, ~(L = VxA) ¥ 1, and ~([L = VxA)isin M;, ~(L = VxA), it
follows by the Ready Lemma that M;, ~(L = VxA), ~(L = (Bc — Ac)) ¥ 1 for some
free variable c.

If (3i) is in S and a sentence of the form ~(@L = ~tmr) is A;, and M;, ~(L =
~t=9t) ¥ 1, then add both ~(L = ~~t), and ~(L = ~t~b) to form M; 1, where b
is chosen so that M, is consistent. That there is such a b is also easily proven from the
Addition and Ready Lemmas.

Let m be the union of M with the set of all sentences added in forming any of the M;.
It is a straightforward matter to show that m is the desired saturated extension of M.

13 - LEMMA. When () is in S, w & r=c for some free variable c.

Proof of the ¢ Lemma. Assume (3i) is in S. Because w is a saturated set, it is an r-set,
and so a ~-set. In the special case where L is empty, this yields (1).

(1) If w = ~r=c for every free variable c, then w - ~z=z.

But w is consistent, so by (=In), it follows that w ¥ ~tst. Therefore the antecedent of (1)
must be false, that is, there is a free variable ¢ such that, w ¥ ~t=cc. By the maximality
of w, it follows that w - r~sc for this c.

14 1Set LEMMA. V, ~A is an r-set.
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Proof of the r-Set Lemma. To show V, ~A is a V-set, assume V, ~A - L = (Ec — Bo)
for all ¢, and show that V, ~A - L = VxB as follows. From the assumption it follows
by propositional logic that V - ~A,L = (Ec — Bc) for all c. By principles of the
modal logic K, OOV + 0O, ~A,L = (BEc — Bc) for all ¢. By the V-Lemuma, w is an
extension of [IV, so it follows that w [, ~A, L = (Bc — Bc) forall c. Butwis a
V-set, and so it follows that w i~ [1, ~A, L. = VxB. By (V), ~A,L = VxB isin V. So
VI ~A,L = ¥xB, and V, ~A I- L = VxB by propositional logic. The proof that V, ~A
is also a ~v-get is similar.

5 (-0) w DA, iff for all v € W, if wRv, then v - A.

Proof of (F0O). For the proof from left to right, suppose w — [JA, and let v be any
member of W such that wRy. By (R), for any sentence B, if w - (OB, then v - B. So
v = A. For the proof from right to left, assume

(1) Forallve W, if wRy, thenvy I~ A.

Suppose w ¥ OA for reductio. Consider the set V defined by (V). The Consistency Lemma
guarantees that V, ~A is consistent. The r-Set Lemma guarantees that V, ~A is ready. So
by the Saturated Set Lemma, we can extend V, ~A to a saturated set v in W. Since v is
an extension of V, ~A it follows by the R-Lemma that wRv. Since v is an extension of V,
~A, it also follows that ~A ¢ v, and hence by the consistency of v, that v ¥ A. In case
W is the set of saturated sets, we know immediately that v € W. If instead W is the set of
saturated sets in the ancestry of h, we know w is in the ancestry of h. Since wRy, v is also
in the ancestry of h, and so v € W. Either way, v is a saturated set in W such that wRy and
v ¥ A. This conflicts with (1), so we conclude that w - CJA.

18 (s¥) aw(VxA) = Tiff for all ¢ € C, if aw(Ec) = T then ay(Ac) = T.

Proof of (sV). In light of the truth clause (V), all that is necessary is to show that the
right-hand sides (sr) and (ir) of (s¥) and (V) (respectively) are equivalent.

(st) forall ¢ € C, if aw(Ec) = T then ayw(Ac) = T.
(ir) foralli € X,if i € Iw, then ayw(Ai) =T.

For the proof from (sr) to (ir), assume (sr) and that i is any member of I such that
i € Iw. By (1), a(b) = i for some choice of » € C. Since a(b) € Iw, it follows by (GE)
that aw(Eb) = T. By (sr), it follows that aw(Ab) = T, and so aw(Ai) = T follows by the
Instance Theorem.

For the proof from (ir) to (sr), assume (ir) and that ¢ is any member of C such that
aw(Ec) = T. By (iE), a(c) € Iw. But a(c) € I and there must be some Jj € I such that
a(c) = j. By (ir), it follows that aw (A j) = T, and s0 aw(Ac) = T follows by the Instance
Theorem.

17 Strictly speaking, the result depends on the fact that frame conditions in the canonical
model are not affected by changing from the language of propositional logic to that of G.
That this is so should be clear from the fact that neither the definition of the frame of the
canonical model nor proofs for the frame conditions depend on the nature of the language.

18 T et w be any member of W. Since w is maximal, it must contain any theorem of S
including ~OL, which is derivable from A — QA. So w + ~[11 and by (Def b) the
canonical model is such that by(~L) = T and by (CJL) = F. By (0O), there must be a
world v in W such that wRv and b(O_L) = F. So for each world w in W, there is a word v
in W such that wRy. ’

Y (or) foralld € Dw, ay(Ad) = T.
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(i) foralli € Lifi  Iw, then aw(Ai) =T.

For the proof from (or) to (ir), assume (or), and that ; is any member of I such that
i € Iw. Then by (Uc), i is the constant function with value e, for some ¢ in D. By (Dw)
andi € Iw, e € Dw. By (or), it follows that aw(Ae) =T, and so aw(Af) = T follows by
the id Lemma.

For the proof from (ir) to (or), assume (ir) and that d is any member of Dw. By (Ic),
there is a constant function J in Isuch that j(w) = 4. By (I), there is a member b of C such
thata(b) = j. mionus@v =d, aw(b) € Dw, and so it follows by (eE) that aw(Eb) = T.
By (iE), it follows that a(b) € Iw, hence j € Iw. By (ir), it follows that aw(Aj) =T, and
80 aw(Ad) = T follows by the id Lemma.

20 In the hard direction, the proof proceeds as follows.

Ezt, ~3xxmt, omot - Vo ~ xaor (Definition of 3 and ~~A A)
Et, ~3xx~t, crot - Be — ~ervt (YOut)

Et, ~3xx=, exr - Be (eE)

Bt, ~3xxrur, cror - ~cRt, Modus Ponens

Ez, ~Axx~t b ~crop Conditional Proof and A — ~AF ~A
Et, ~Ixxmst - L (3i)

Et - Jxxrst Indirect Proof

21 The proof:

Ec — Ec propositional logic
YxEx (YIn)

OvxEx Necessitation
YxOEx (CBF)

Ec — OEc¢ (YOut)
QEc — OEc principles of modal logic K
OBc — Ec (B)
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