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PREFACE

"This book is an introductory text in modal logic, the logic of necessity
and possibility. It is intended for readers with the equivalent of a first
course in formal logic, and it is designed to be used as a basic text in
courses at the advanced undergraduate or beginning graduate level. The
material in the book can easily be covered in a full-year course; with
selectivity most of the material can be covered in a single term.

There are three parts to the book. Part I consists of two chapters,
meant to introduce the reader to the subject of modal logic and to furnish
a sufficient background for the parts that follow. Chapter 1 is a relatively
informal examination of S5, one of the best-known systems of modal
logic. Chapter 2~ ‘Logical preliminaries’ — contains almost everything
needed for an understanding of the rest of the book. Some readers may
prefer to go quickly through this chapter and then reread as necessary
sections required in the context of succeeding chapters.

Part II comprises four chapters on standard models and normal
systems of modal logic. The models, sometimes called ‘ Kripke models’,
are explained in chapter 3. In chapter 4 normal systems are presented
from an axiomatic standpoint. Chapter 5 contains theorems on complete-
ness and decidability, which bring together the model-theoretic and
deductive-theoretic treatments of the preceding chapters. As an iltustra-
tion of normal systems chapter 6 offers z discussion of deontic logic, the
logic of obligation.

Part IIT is patterned like its predecessor, but here the topics are
minimal models and classical modal logics. Thus chapter 7 is about the
models (also known as ‘neighborhood’ or “Scott-Montague’ models),
chapter 8 is an axiomatic account of the logics, and chapter 9 deals with
completeness and decidability. Chapter 10 presents conditionality and
(again) obligation by way of example, .

An important feature of the book is the exercises that follow the
sections of the chapters. These have been constructed both to con-
solidate understanding of the preceding material and to anticipate sub-
sequent developments. They are an integral part of the text, and I have
high hopes that the reader will attempt them as they appear.



xii Preface

I have appended to the text a short bibliography citing most of the
works I found useful in writing this book. Many of these books and
articles will take the reader farther afield to topics and results not
treated here, and several contain good bibliographies.

I have a number of debts to record. First among these is to Lee Bowie,
who several years ago suggested that we author a textbook in modal
logic — I to write the chapters on propositional modal logic, he to write
on quantification, identity, paming, and description. When it later
became apparent that the material on propositional modal logic was
bulky enough to warrant separate publication, Bowic graciously en-
couraged me to proceed alone.

In this connection I also want to express my gratitude to Richard
Jeffrey and David Lewis, for their advice and support, and for recom-
mending my project to Cambridge University Press and its distinguished
editor Jeremy Mynott.

My debts to several of the works cited in the bibliography will
perhaps be obvious to those already acquainted with the subject of modal
logic. In particular I should mention Lemmon and Scott’s Introduction
to modal logic and Segerberg’s Essay in classical model logic.

The contents of chapters 6 and 10 are largely adapted from my papers
‘Imperatives’, ‘Conditional obligation’, and ‘Basic conditional logic’,
cited in the bibliography. I wish to thank Krister Segerberg, editor of
Theoria, Soren Stenlund, editor of Logical theory and semantic analysis,
Richmond Thomason, editor of the Journal of philosophical logic, and
the D. Reidel Publishing Company for permission to use this material.

Steven Kuhn and Audrey McKinney read much of my manuscript at
different stages of its development, and I am grateful to them for criticism
and advice.

Krister Segerberg has been a mainstay of counsel and encouragement
for many years. I have learned a great deal about modal logic from
Segerberg, and I have benefited enormously from conversations with him
in the course of writing this book.

Among many others who have contributed in various ways to this
book I would like to thank Roy Benton, Paul Golden, Deborah Mayo,
and Robert Pelcovits.

Finally, I owe an enduring debt to Dana Scott, who introduced me
to modal logic, who taught me how to think aboutit, and whose conception
of the subject fundamentally influenced my own.

Woodland Valley, New York B.E.C.
July 1978
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INTRODUCTION

In this chapter we introduce the subject of modal logic by surveying
some of the main features of the system of modal logic known as S5.
This system is but one of many we shall study. Because it is one of the
simplest, we choose it to begin with.

The system S5 is determined semantically by an account of necessity
and possibility that dates to the philosopher Leibniz: a proposition is
necessary if it holds at all possible worlds, possible if it holds at some. The
idea is that different things may be true at different possible worlds, but
whatever holds true at every possible world is necessary, while that
which holds at at least one possible world is possible.

In section 1.1 we develop this semantic idea by means of a definition
of truth at a possible world in a model for a language of necessity and
possibility, This leads to a definition of validity, and we set out some valid
sentences and principles governing validity, as well as some examples
of invalidity.

The totality of valid sentences forms the modal logic S5. In terms
of the principles set out in section 1.1 it is possible to deduce all the
valid sentences. Some evidence of this appears in section 1.2, where
we take the principles in section 1.1 as axioms and rules of inference,
formulate S5 as 2 deductive system, and derive a number of further
principles.

Sections 1.1 and 1.2 exemplify in miniature our approach to the
study of modal logic throughout this book: first, semantically in terms
of the notion of truth; second, syntactically by means of deductive
systems. ,

The exposition in this chapter is quite casual, and intentionally so.
The purpose, in part, is to acquaint the reader with many of the notions
and notations used in the rest of the book; but formality is deferred to
subsequent chapters. This leads to occasional wordiness, but not, it is
hoped, to loss of intelligibility.
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We study modal logic in the context of a language of necessity and
possibility. The sentences of the language are of the following forms.

P, Py, Py, ...
T, L, 1A, AAB, AvB, A-B, AeB, [JA, OA

Sentences of the form P, (forz =0, 1, 2, ...) are atomic. T is a constant
for truth; 1 is a constant for falsity. =1, A, v, -, and « are signs of
negation, conjunction, disjunction, conditionality, and biconditionality,
respectively. [ is the necessity sign; ¢ is the possibility sign.

A more detailed account of the syntax of this language appears in
section 2.1, but it is not essential for an understanding of the rest of this
chapter.

1.x. Truth and possible worlds

According to the leibnizian idea, necessity is what is true at every possible
world and possibility is what is true at some. Linguistically: a sentence
of the form {JA ~ necessarily A ~ is true if and only if A itself is true at
every possible world; and a sentence of the form (A — possibly A -is
true just in case A is true at some possible world.

The picture is of a collection of possible worlds — including our own,
the real world — at which sentences of the language are variously true
and false. Qur purpose is to model this, and we do so by means of an
infinite sequence of sets of possible worlds,

B PP, ....

The intuition behind this modeling is that, for each natural number #,
the set I, collects just those possible worlds at which the corresponding
atomic sentence P, is true. In other words, the sequence By, B, B, ...
interprets the atomic sentences by stipulating at which possible worlds
they are true (and, by omission, at which they are false): P, is true at a
possible world a if and only if « is in the set B,.

More precisely, a model is a pair

(W, P)

in which W is a set of possible worlds and P abbreviates an infinite
sequence Fy, B, Py, ... of subsets of . Note that I¥ may contain possible
worlds not in any of the sets F,; indeed, any or all of these sets may be
empty. Moreover, we do not require that the actual world appear in
every model.

L.1. Truth and possible worlds 5

In terms of a possible world in a model we state the truth conditions
for sentences according to their forms. Where A is a sentence and et is a
possible world in a model A = (W, P}, we use the symbolism

FAA
as short for
Alstrue at o in AL
The truth conditions are stated thus:
DegP, iffeech, for =0,1,2,....
@ rET.
(3) Not B 1.
(4 £ A not BF AL
(5) F¥AABiffboth k¥ Aand ¥ B.
(6) B# A v Biff either F¥ A or & B, or both.
(7) ¥ A~ Biffif kYA then k¥ B.
(8) k¥ A~ Biff i Aifand only if E¥ B,
(9) kg AT for every fBin A, B4 A,
(10) F# OAiff for some fin A, k£ A,

Some discussion of this definition may be helpful.

Clause (1) reflects our remarks about the sets Fy, B, P, ... in a model:
an atomic sentence [P, is true at a possible world ¢ just in case o is a
member of the set F,. According to clause (2), the truth constant T is
always true at «. By (3), the falsity constant 1 is always false at &z. Clause
(4) states that a negation 71A is true at o if and only if its negate A is
false at a. The content of (5) is that a conjunction AA B is true at
just in case both its conjuncts, A and B, are. According to (6), a dis-
junction Av B is true at  just when at least one of its disjuncts, A and
B, is, Our intention in clause (7) is that a conditional A+ B is to be
understood as true at & just so long as it fails to be the case that its ante-
cedent, A, is true at & while its consequent, B, is false. And, similarly, in
(8) we intend that a biconditional A «+B be accounted true at & just in
case its members, A and B, are either both true at & or both false. Clause
(9) formulates the leibnizian interpretation of necessity: a necessitation
[TJA is true at « if and only if its necessitate, A, is true at every possible
world § in the model. Finally, according to (10), QA is true at « just
in case there is at least one possible world £ in the model at which A

is true.
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A sentence true at every possible world in every model is said to be
valid. We use the symbol E again - this time dsmyoﬁ subscripts or
superscripts — and write

FA

to mean that the sentence A is valid. More formally, then, the definition
of validity may be expressed:

k A iff for every model .4 and every possible world « in .#,
EF AL

In asking after the logic of necessity and possibility we seek to know
which sentences are valid — true, no matter how interpreted, at every
possible world — and which are not. For example, as we shall see, every
sentence of the form [JA > A is valid, whereas not every sentence of the
form A-> [JA is. In what follows we first set out some valid sentences
and principles governing validity, enough to form an axiomatic basis for
the derivation of all valid sentences. Then we mention some prominent
cases of invalidity.

Let us begin our survey of validity with the principle just mentioned:

T. QA=A

According to T, whatever is necessary is so: ¢f necessarily A, then A. 'To
see that this schema —i.e. every sentence of this form — is valid, it is
sufficient to prove that where e is any possible world in any model .4,
F# [JA— A. And for this it will be enough to show that if 5 [JA then
F#¥ A (compare clause (7) in the definition of truth). So suppose that
F¢ CJA. By clause (9) of the truth definition, this means that k¢ A for
every possible world £ in . In w»nznﬁma then, this holds moH. o, i.e.
EFA.
Next let us consider the schema

5. CA-[]OA.

The import of 5 is that what is possible is necessarily possible: #f possibly
A, then necessarily possibly A. To see that 5 is valid, suppose that kx¢ O A,
for possible world & in model .. By clause (10} of the definition of truth
this means that.# has a possible world £ such that F# A. It follows from
this (again by (10)) that no matter what possible ﬁsnE in the model we
choose, A holds — i.e, ki O A for every possible world £ in .#. But by
clause (9) this means that F #[] O A, which is what we wished to show.
The schemas T and 5 are rather special in that they do not hold in
every system of modal logic we shall study. The next two principles are

1.1. Truth and possible worlds 7

more widely accepted however; it is not until chapter 7 that they are
called into question.

The first of these expresses a principle of distributivity of booomm:%
with respect to the conditional:

K. [I(A->B)-(C1A->[IB)

This means that if a conditional and its antecedent are both necessary,
then so is the consequent. For the validity of K, suppose that o is a
possible world in a model # such that both k¢ [1(A—B) and F# [JA.
Then for every possible world £ in #, both k¥ A->B and E# A, from
which it follows that for every possible world £ in #, F£B. Thus
F# [B.

The second principle corresponds to a rule of inference in the next
section (RN, the rule of necessitation). It states that the necessitation
of a valid sentence is itself always valid. In symbols:

IfEA, then £ (A

For suppose that E A, i.e. that F#¥ A for every possible world « in every
model .. Then for every possible world o in every model ., F# (A,
which is to say that F [JA.

The last specifically modal validity we sﬁ..& to mention holds in every
modal logic we shall discuss in this book.

Df¢. QA«T[0NA

This schema embodies the idea that what is possible is just what is
not-necessarily-not. Its validity means that possibility is always expres-
sible in terms of necessity and negation, and so is theoretically super-
fluous. In this sense { is definable in terms of () and 1. Df{ is valid
because to say that for some possible world £ in a model .#, B A, is’
just to say that it is not the case that for every possible world h in.#
it is not the case that k# A, Reference to clauses (4), (9), and (10) of the
truth definition reveals that the former expression means that £ O A,
while the latter expression means that k¥ 1[]J71A. Hence the bicon-
ditional A« ~1[J71A holds at every possible world in every model.

Let us turn now to the relationship between our modal logic and
ordinary propositional, or truth-functional, logic. The relationship is
simple: the modal logic includes the propositional. In part, this means
that every propositionally valid sentence is modally valid, i.e.:

If A is a tautology, then  A.
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The explanation of this is as follows (there is 2 more careful account
in chapter 2). By a fautology we mean a sentence true in every valuation
of its propositionally atomic constituents. A sentence is propositionally
atomic if it is either atomic in the ordinary sense (P,) or modal ([JA or
OA). A veluation is an assignment of truth values (truth and falsity) to
the propositionally atomic sentences. The truth conditions in a valuation
of the rest of the sentences in the language — those of the forms T, L,
TIA, etc. —are determined just as they are by a possible world in 2
model. Thus T is true in every valuation, | is false in every valuation,
1A is true in a valuation if and only if A is false, and so on; compare
clauses (2)~(8) in the definition of truth above. ,

In short, a valuation analyzes sentences semantically from the point
of view of their truth-functional structure, counting as atomic the modal
structure of sentences of the forms [JA and OA, as well as those of the
form P,. A sentence is a tautology, thus, if it comes out true no matter
how truth values are assigned to its propositional atoms. For example,

- any sentence of the form [JA—[JA is a tautology, since [JA is pro-
positionally atomic and such 2 conditional is true in 2 valuation whether
(1A is assigned truth or falsity.

Now observe that in any model 4 each possible world « is a valuation
in the sense just explained, since & assigns truthor falsity to each sentence
of the form P,, [JA, and O A, ice. to each propositionally atomic sentence.
"The world & assigns truth to a propositionally atomic sentence A when
F# A, and falsity otherwise. ,

To prove, finally, that every tautology is valid, assume that A is a
tautology — that A. is true in every valuation. Then A is true at every
possible world in every model, i.e. k¥ A for every possible world « in
every model . This means that k A, i.e. that A is valid.

To say that all tautologies are valid does not exhaust what is meant
by saying that modal logic includes propositional logic. It means more-
over that validity is preserved by propositionally correct patterns of
inference. For example, the inference from A—B and A to B is pro-
positionally correct; whenever both A—> B and A are true in a valuation,
so is B. Corresponding to this we have the principle that whenever a
conditional and its antecedent are both valid, so is the consequent:

IfFA~>BandF A, then kB,

.H.Em.oaﬂ.mmm as the rule of inference modus ponens, MP, in the next
section. To prove the principle, suppose that both F A->B and k A. This
means that for every possible world « in every model .4, £ A~ B, and

R

L.1. Truth and possible worlds 9

that for every possible world « in every model ., E A. It follows at
once that for every possible world « in every model &, k¥ B,i.e. thatk B,

In terms of this principle and the fact that every tautology is valid we
can prove that validity is preserved by propositionally correct patterns of
inference generally. For suppose that it is propositionally correct to infer
a sentence A from sentences Ay, ..., A, ie. that A is true in every
valuation in which all of A, ..., A_ are. Then the sentence

Apr (e (A= 4)..)

is a tautology. Thus this sentence is valid. Hence if each of Ay, LA,
is valid, then by applying the modus ponens principle  times we arrive
at the result that A is valid.

For example, it is propositionally correct to infer A~ C from A—B
and B C (we leave it for the reader to check that A->C is true in any
valuation that verifies both A-»B and B C). So the sentence
(A—B)~((B—>C)->(A~C)) is a tautology. Hence if F A -1, then by
the principle of modus ponens, k (B—C)— (A~ C). And so k A— G, if
also EB—>C.

This ends our short survey of valid sentences and principles governing
validity. Let us turn now to some examples of invalidity.

To begin, the schema A— [JA ~ the converse of T —is not valid. To
see this, let & and £ be distinct possible worlds, let W = {ex, £}, and let
E, = {a}for every naturalnumbern(i.e.n = 0,1,2, ...). Then A = {W,P)
is a model in which k¥ P, (since P, contains ) and not k# [JP, (since
there is a world in ., viz. 8, not in B,). Thus not k¥ Po— OGP
which proves that the schema A~ [JA is not valid. We say in this case
that J is a countermodel to A~ [JA.

Notice that if A [JA were valid it would mean that whatever is the
case is so necessarily. Indeed, if this schema were valid, then given the
validity of T, the biconditional A« [JA would be valid, so that truth
and necessity would be the same. The reader should contrast the in-
validity of A~ [TJA with the correctness of the principle of necessitation,
that if A is valid so is (JA. This will help in understanding the difference
between theorems and rules of inference in the next section.

Another example of invalidity is the schema [J(Av B)~(TJAv [OB).
The model 4 = (W, P) in which W = {«, §}, P, = {a}, and B, = {§} for
n >0 is a countermodel to this schema. For F# P, and k4 Py, which
means that k¥ Pov Py and B Pyv Py, So & [J(P,V Py), sincethe dis-
junction Py v P, is true at every possible world in .#. On the other hand,
not k' Py and also not Ff Py. So neither k# [JP, nor kg [P, and
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hencenot ¥ [(IP,v [P,. Therefore, not kg [(J(P, v Py)— (P, v TIPy),
i.e. . isa countermodel to the schema.

An even simpler way to see the invalidity of the schema (J(Av B)—
(CJAv [B) is to consider the instance [J(PyV “1P,) > (P, v C111P,).
The disjunction P,V 71, is a tautology, so it is valid — and hence so is
its necessitation, ((P,Vv 71P,). Thus it is sufficient to show that the
disjunction [JP,Vv [31P, is not valid. The mode!l described above in
connection with A-» [JA does the job, as the reader may verify.

We have just shown that the necessity sign does not distribute into a
disjunction; the validity of K, above, means that [7] does distribute into
a conditional. As a final example of invalidity, we describe a counter-
model to O(A->B)—> (A OB), thus showing that the possibility
sign does not distribute into a conditional. The model is A = (W, P),
where W = {, g}, P, = {a}, and P, = @ (the empty set) for » > 0. We~
leave it for the reader to check that k¥ O(Py— P,) and k¥ { Py, but not
£# O P,. This being so, it follows that not kg O(Py— P)— (O Py,
OPy).

This concludes our semantical exposition of the modal logic S5.

EXERCISES

1.1. Prove that the following schemas are valid.

(@) A~ OA (e) A= QA

(3) A—~OA (f) ©OOA~>A
(¢) OA~D0OA (&) OOA>OQA
(d) OT (B OOA~[A

1.2. Prove that the following schemas are valid.

() OT

(3 C(AAB)->(CJAAIB)
(c) (DAAOIB)~>LCI(AAB)
(@) 1oL

(e) (QAV OB)—> O(AvB)
(f) O(AVB)>(OAV OB)

1.3. Prove that the schema [JA + 71 "1 Ais valid.

1.1. Exercises 1

1.4. Prove each of the following.

(a) IfE(AAB)->C, thenk ([JAA [OB)—[IC.
(b) IfFA->B, then k [TA-»[]B.
(¢) IfE A B, then k [JA« B,
(d) IfE A~>B, thenk O A~ OB.
(¢) IfEA~B,thenk OA« OB.

1.5. Prove that forany z > 0, if F(A; A ... AA)~> A, then E([JA A ... A
(JA,)~ [JA. (Whenn = 0 this just means if k A then k [JA.)

.H.m. H.ﬂmmon%m to the model .# defined in connection with showing the
Saﬁ.r&q of O(A->B)->(OA— OB) (see the penultimate paragraph of
section 1.1), verify that k¥ &(Py— P,) and k¥ O Py, but not k¥ &P,

1.7. Prove that the following schemas are invalid (i.e. that each has an
invalid instance). .

(a) CA-A

&) CA-DA

() OCA>A

(d) (OAA OB)~O(AAB)

(¢} (OA>[IB)-[I(A~B)
1.8. For each of the following, decide whether or not it is valid, and
prove it.

(@ OOA-[IA

(3 OCA—~>CA

(©) O(AAB)>(OAA OB)

(4) OOA->O0A

() OCA>ODA

() (1CAAOB)~>O (TAAB)
(g) CA=OOA

(/) OA->ODA

) (CIAV[IB)>[(AvB)

(N 0L

1.9. Suppose that in every model there is just one possible world and
prove that under this assumption the schema A->[JA is valid.
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hencenotky# [P, v [P;. Therefore, not k(P v P ) —>(OP, v OPy),
i.e. .# is a countermodel to the schemna,

An even simpler way to see the invalidity of the schema [J(Av B)—
(1A vV [OB) is to consider the instance [J(PaV “1Pg)-> (P, v [171P).
The disjunction Pyv 1P, is a tautology, so it is valid — and hence so is
its necessitation, [[J(Pyv T1P,). Thus it is sufficient to show that the
disjunction [JP,v [P, is not valid. The model described above in
connection with A-> [JA does the job, as the reader may verify.

We have just shown that the necessity sign does not distribute into a
disjunction; the validity of K, above, means that {] does distribute into
a conditional. As a final example of invalidity, we describe a counter-
model to $(A—+B)>{(OA-> OB), thus showing that the possibility
sign does not distribute into a conditional. The model is A = (W, P},

where W = {a, 8}, P, = {a}, and P, = & (the empty set) for n > 0. We~

leave it for the reader to check that B $(Py— Py) and B O P, but not
E# {P,. This being so, it follows that not kg O(Py—> Py)-> (O Py—
O Py).

This concludes our semantical exposition of the modal logic S5.

EXERCISES
1.1. Prove that the following schemas are valid.

(@) OA—-> QA (e) A> QA

b)) A>T10A () COA—A

(©) CA~DO0A (e) OOA>OA

(d) T (7)) OA->OA
1.2. Prove that the following schemas are valid.

(@) OT

(5) O(AAB)>(DAADIB)
(¢) (OAAIB)=>T(AAB)
(d) 1oL

() (OAV OB)> O(AVE)
() C(AvB)=>(OAV OB)

1.3. Prove that the schema [JA ~ Q0 T Ais valid.

1.1. Exercises 11

1.4. Prove each of the following.

(a) IF(AAB)->C, thenk ((JA A [IB)~[IC.
(3) IfFA->B, thenk [JA->[1B.
(¢) If£ A+ B, then F [JA <> []B.
(d) Ifk A>B, thenk OA - OB.
() Ifk A= B, thenk $A o OB.

L.5. Prove that forany # > 0, if F (Ay A ... AA,) > A, then F([IA, A ... A
A~ [JA. (Whenz = 0 this just means if k A then k [JA.)

1.6. Referring to the model .# defined in connection with showing the
invalidity of O(A->B)-> (O A~ OB) (see the penultimate paragraph of
section 1.1), verify that ki O(Pg~ P,) and k¥ O Py, but not bz G P,

1.7. Prove that the following schemas are invalid (i.e. ﬂrmn each has an
invalid instance).

() CA-A

(®) OA>DIA

(c) OO0A—>A

(d) (OAA OB)~> G(AAB)

(9 (OA~B)—>[I(A~B)
1.8. For each of the following, decide whether or not it is valid, and
prove it.

(o) OOA~[DA

(5) COA~OA

© O(AAB)>(GAAOB)

(d) OOA->OCA

(6 OOA>OA

(N COAAOB)>O (TAAB)

(&) OA->GOA

(B DA-OGOA

() (DAvOB)->D(AvVB)

() OL
1.9. Suppose that in every model there is just one possible world and
prove that under this assumption the schema A > [JA is valid.
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1.10. Consider a structure .# = {I¥, R, P} in which W and P are as they
are in a model, and R is an equivalence relation on W. That is, Wis a set
‘of possible worlds, P is an infinite sequence Py, B, B, ... of subsets of W,
and R is a binary relation on W that is reflexive (for every « in 4, aRo)
and euclidean (for every a, 8, and y in .#, if xRS and aRy, then gRy).
Structures of this sort are models for S5, where the truth conditions for
non-modal sentences are given as usual (i.e. (1)~(8) in the fourth para-
graph of section 1.1) and those for sentences of the forms [(JA and QA
are given by:

(%) k¥ CJA iff for every fin A such thataRg, ki A.
(10" k€ O A for some fin . such thataR, B A

Intuitively, R is a relation that relates a world to those that are possible
with respect to it; RS means that the world # is possible with respect
to the world a. Thus according to (9") [(JA is true at & just in case A is
true at all worlds possible with respect to &; and according to (10") OA
is true at & just in case A is true at some world possible with respect to 2.
Obviously, these models represent a generalization of the analysis of
necessity and possibility in section 1.1: it is no longer assumed that every
world is possible with respect to every other world.

As before, validity means truth at every possible world in every model.

Show that these models dre adequate for an analysis of the system S5
by proving that the schemas T, 5, K, and Df{ are all valid, that any
tautology is valid, that [JA is valid if A is, and that if A—B and A are
validsois B.

Hint; The validity of T depends upon the reflexivity of R, and the
validity of 5 depends on the cuclideanness of R. Nothing special is
needed for the others.

1.11. (This exercise presupposes an acquaintance with elementary
quantificational logic.) The reader may have noticed an analogy between
the signs of necessity and possibility, [J and {, on the one hand, and
the universal and existential quantifiers, ¥ and 3, on the other. [JA is
true at a possible world just in case A holds at every world; QA is true
at a world if and only if A holds at some world.

Let us specify a language of elementary quantificational logic by .

stipulating that its formulas are of the following forms:
=u3ﬁn«vn. T, L, JrP.. >>wv Av wv »P..lv.wu
AeB, Ved, JazA,
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where [P, is one of denumerably many one-place predicates and « is a
variable, so that P,(e) is an atomic formula,
We define the mapping 7, from the language of modal logic to the

quantificational language, as follows.
() r(P,) = P,(a), for n=0,1,2,....
@rr)=T.
() 7(L) = 1.
4 r(0A) = 1r(A).
(5) (AAB) = 7(A)A7(B).
(6) 7(Av B) = 7(A) v 7(B).
(7) 1(A—>B) = 7(A)->1(B).
(8) (A +» B) = 7(A) »7(B).
(9) 7([JA) = Veer(A).
(10) 7{( O A) = Jar(A).
Thus 7 associates with each sentence A in the modal language a unique
formula 7(A) in the quantificational language by replacing each atomic
sentence P, by P.() and putting Yo and 3« respectively for occurrences
of [J and ¢. For example, let us calculate the results of applying 7 to
[IPy=> Py and to OPy—> 1O P,
T(OPs~> Po) = 7(C1Pg) > 1(Py)
= Yar(Py)—>1(Pg)
= YoPy(e) - Pyax)

T(OPy=> [0 Pg) = 7(QPe) (0O Py)
=T7(OPg) > Yor( O Py)
= Jar(Py)-> Yadar(P,)
= JaPy(a)—+ YadaPy(x)

It should be apparent that 7 is in effect a specification of the truth
conditions of modal sentences at a possible world « in a model. The
transformation shows that [1P,— P, holds at « just in case VaP (o}~
Po(e) is true, and that {Py— [JO P, holds at « just in case JaPy(er)->
YadaPy(e) is true. Generally, we can see that a modal sentence A is valid
just when 7{A) is; i.e. ‘

EA iff 7(A) is a valid formula of elementary quantificational
logic.
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For example, the instances of T and 5 above are valid, and so are their
transformations. So 7 provides a way of investigating questions of
validity in the modal language.

(@) Apply 7 to K, D, and selected tautologies, to see that their
transformations are valid quantificational formulas,

(5) Show that if (A} is a valid formula of elementary quantifi-
cational logic so is 7([JA), and that if 7(A— B) and 7(A) are
quantificationally valid se is 7(B).

(¢} Use 7 onthe schemas in exercises 1.1-1.3, 1.7, and 1.8.

(d) Show that the principles in exercises 1.4 and 1.5 hold with
respect to quantificational validity and transformations of the
schemas.

(¢) Explain how models 4 = {J¥, P) for the modal language
serve equally well for the quantificational language.

1.2. The system S5

In this section we examine necessity and possibility in S5 from an
axiomatic point of view. We begin with an axiomatization based on the
principles in the preceding section. That is, we adopt as axioms, or basic
theorems, all sentences of the following forms.

T. A~ A

5. CA->JOA

K. ((A~B)—([JA~[1B)

DES. OQA«e-ITIA

PL. A, where A is a tautology

And we assume the following rules of inference.

A

DA

A>B,A

-3 -

By a theorem, generally, we mean any sentence that can be proved on the

basis of the axioms and rules of inference. (Axioms are automatically
theorems.) Where A is a sentence, we also write

FA

RN.

MP.

to mean that A is a theorem.,
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-~ Note that a rule of inference is properly understood as meaning that its

conclusion is 2 theorem if each of its hypotheses is. For example, the rule

RN means that F[JA whenever F A,

i Before moving to proofs of genuinely modal theorems and further

“rules of inference, let us see again that S5, now formulated as a deductive
- system, includes propositional logic. Here this means that we can derive

" within the system the rule of inference

RPL. “22ofe ),

where the inference from A;,...,A, to A is pro-
positionally correct.

The proof that the rule RPL holds is like that for the analogous result
in section 1.1. We show that if the inference from A,,..., A, to A is
propositionally correct and each of A,, ..., A, is 2 theorem, then A is a
theorem, too. The supposition that the inference is propositionally
correct means that A is true in every valuation in which each of A,, ..., A
is, which in turn means that the sentence

Ay (o (A A).0)

is a tautology (PL), which means that it is a theorem. If each of A,, ..., A,,
is a theorem, then by # applications of the rule MP, so is A,

‘We may illustrate RPL, as in section 1.1, with the rule of inference
sometimes called hypothetical syllogism:

A—-B, B-»C
A->C

Because A->C is true in every valuation in which both A->B and
B> C are, the sentence (A > B)—((B— C)~> (A—C)) is a tautology and
hence a theorem, Thus if both FA->Band kB> C, successive applica-
i tions of MP yield first that  (B-> C)— (A — C) and then that FA—C. So
i this rule is covered by RPL.

| The rule MP is obviously also a special case of RPL, but it should be
noted that RPL covers the axioms PL as well. For when n = 0, RPL is
zﬁﬂ% .

n

}P. ?
where the inference to A is propositionally correct.

And this simply means that A is a theorem whenever A is true in every
valuation, i.e. whenever A is a tautology. Thus it is a matter of indifference
whether we adopt PL and MP, on the one hand, or simply RPL, on the
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other, in our axiomatization of S5. We choose PL and MP here because
this is closer to the traditional approach; in the rest of the book we use
RPL.
In any case, we shall hereinafter freely make use of tautologies and

propositionally correct patterns of inference in deducing theorems and
"deriving rules of inference. Wherever we do, we signal this by PL (for
‘propositional logic’).

_ Turning now to specifically modal principles, let us begin by proving
that the schema

TO. A>OA

— whatever is so is possibly so — is a theorem of $5. First we note that as
a special case of the axiom T we have that F[(JMA->"1A. By PL, it
follows from this that FA—"1[]71A. In view of the axiom Df{, ie.
that F A« 1[171A, we may infer by PL that FA-> QA.

We can put this discursive proof that T { is a theorem more no»mw as
an annotated sequence of theorems:

i.O1A-»>"A L F

2. A--J7A 1, PL
3. QA=A DIiO

4. A-> QA 2,3, PL

"The annotations are meant to indicate the reasoning involved as the
proof proceeds. ‘Thus line 1 is justified as an instance of T, line 2 comes
from line 1 by PL (i.e. RPL), line 3 is a statement of Df{, and line 4 is
inferred from lines 2 and 3 by PL (again, RPL). This way of setting out
proofs is perspicuous and often useful, especially where the discursive
. mode is lengthy or tortuous. (But notice that line 2 might have been
omitted, since line 4 follows from lines 1 and 3 by PL. We prefer the
longer proof here for the sake of perspicnity.)

Next let us show that whatever is necessary is possible, ie. that the
schema

D. QA+ CA

is a theorem of S5. The proof is simple: Since both [JA—A and
A-> OA are theorems, by PL (in fact, hypothetical syllogism) so is
OA-> QA

Likewise, using T {, we may show that the schema

B. A-[]0A

1.2, The system S5 17

— whatever is so is necessarily possibly so — is a theorem of S5.
1. CA->[JOA 5
2.A-> QA TO
.A-O0A 1,2, PL

Before going on to prove more theorems of §5, it will be convenient
to derive two further rules of inference.

A->B
M AT
AoB
RE. FAC D

The rule RM may be understood as asserting that a proposition is
necessary if it is implied by a necessary proposition. T'o show that S5

has this rule we argue that its conclusion is a theorem if its hypothesis is,
as follows.

1.A->B hypothesis
2. [(A~B) 1, RN -
3. O(A-B)—~([JA~[B) K

4. A~ [OB 2,3, PL

Given RM, it is easy to derive the rule RE (which says in effect that

equivalent propositions are equally amnnmmmﬁv We leave the derivation
as an exercise for the reader.

Now let us prove that S5 has the theorem
DiTl. TJA«T1OMA,

Le. that necessity is definable in terms of possibility mnn_. negation. Qur
proof uses just PL, RE, and the definability of possibility in terms of
necessity and negation, Df¢.

L OTA«T107A DO

2.01MA«M0A 1, PL

3.A-TMA PL

A JA«MA 3, RE
5. JA-10TA 2,4, PL

(Notice that line 2 might have been omitted, since line 5 follows from
lines 1 and 4 by PL.)
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Dual to the theorem B, S5 has the theorem.
BO. OA—A,

which means that whatever is possibly necessary is simply so. By way of
proof, note first that in virtue of B, F1A—~>[J{ ™A, and so by PL,
FAC3 O 1A > AL Thus it is sufficient to show that FO[JA«-1JO AL
Our proof of this demonstrates the usefulness of being able to call upon
Di] and RE, aswell as Df$:

1. 0A«"10A DI
2. 10A«ONA 1, PL
3. O0M0A-CIOMA 2, RE
4. DA 0NA 3, PL
5. OA-ITIN0A DIO
6. QLA 10 ™MA 4,5, PL

Here again our proof is spelled out in more detail than is necessary;

line 6 follows by PL from lines 3 and 5.
By a similar argument we can also show that S5 contains the following
dual of the axiom 5,
3. QOA->[A

For as a special case of 5, F OT1A— 1O TA, and hence FOGT1A
"1{ A, by PL. Then 5 follows by PL, using Df[] and the theorem
on line 6 above. The import of 5 is, of course, that a proposition is
necessary if it is at least possibly necessary.

We come now to the schema

4, JA-[JOA.

According to 4, whatever is necessary is necessarily necessary. We may
prove that 4 is a theorem of S5 as follows.

1. OJA~>[JA 50

2. (1GOA->ICA 1, RM
3. 0A>I0OA B

4 CA~>TIOA 2,3, PL

Corresponding to the theorem 4 is the dual schema

40, OOA->OA,
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according to which whatever is possibly possible is possible simply. To
show that 4¢ is a theorem of S5 we would argue that because of 4 and
PL, FCIO1A—->"10714, and then prove that + O OA« ICIMA.
For 4 follows from these by PL. We leave the actual proof, however,

- g an exercise for the reader.

The system 55 has the following noteworthy rule of inference.

(AgA .. AA > A
(A A .. ADA)~>TIA

RK. (> 0)

. "RK expresses a general rule of modal consequence: a proposition is

necessary if it is a consequence of a collection of propositions each of

7" which is necessary. The condition that » > 0 is intentional, for we make

the convention that in the absence of antecedents — when # = 0 ~ the
conditionals are identified with their consequents, A and [JA. Thus

* when 7 =0 we have the rule RN as a special case of RK. Moreover,

when# = 1 the rule RK becomes RM.

A proper proof that S5 has the rule RK proceeds by induction on the
number # of conjuncts in the antecedents. The basis of the induction,
where 2 = 0, is trivial, since in this case RK is RN, a basic rule in the
axiomatization of S5. For the inductive part of the proof we suppose — as
an inductive hypothesis — that the rule holds for any number of conjuncts
in the antecedents up to (but not including) some number # > 0, and
show from this that it holds when the number of conjuncts is exactly .
The argument for this is as follows. Suppose that

(AzA . AA)—>A
is 2 theorem. By PL this is equivalent to
(AjA . AA, ) (A, A)

By the inductive hypothesis the rule RK applies to this theorem, since
the number of conjuncts in the antecedent is less than 7. Thus we have
the theorem

(CIAA - ATIA ) > (A, A).
Now from this and the axiom K, in the form

C(A,~A)~> (DA~ [JA),
we infer by PL the theorem .

(OAA .. ATA, ) (OA,~> [3A),
which is equivalent by PL to

(QA A ADA)~ A
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"This completes the inductive part of the proof. It follows now that the
rule RK holds for any number 7 > 0 of conjuncts in the antecedents,
since it holds for z = 0 and also for any # > 0 whenever it holds up to#.

Notice that only PL, RN, and K are used in the derivation of the rule
RK. Moreover, using only PL and RK we can prove RN (trivially) and
K (by RK on the tautology ((A—B)AA)—+B we get the theorem
(CI(A->B) A [1A)-> (B, which is equivalent to K by PL). The moral of
this is that we could equally well have chosen RK instead of RN and K.
in our axiomatization of S5. .

Another special case of RK, when z = 2, is the rule of inference

(AAB)>C

RR. EAAOB- 0

which expresses a limited principle of consequence (a proposition. is

necessary if it follows from a pair of propesitions each of which is
necessary). A direct proof of RR ~ using PL, RM, and K ~ can also be
had, and it may illuminate the inductive part of the proof above for RK;
we leave it as an exercise.

Three further theorems are worth mention.

N. O
M. [HAAB)~(CJAAIB)
C. (JAAOB)~[(AAB)

Proofs of N, M, and C — using RN, RM, and RR, respectively —are not .

hard to find, so we leave them as exercises. _

Tt is clear from our results in section 1.1 that every theorem is valid:

all the axioms, T, 5, X, Df {, and PL, are valid, and the rules of inference
RN and MP preserve validity. In short, the axiomatization is sound. It is

moreover complete: every valid sentence is a theorem. This may not be
so obvious, however, and it is not until chapter 5 that we are in a position
to prove it.

We thus have two ways of characterizing the modal logic S5~ one
semantic, the other deductive. It bears emphasis, moreover, that the set
of principles T, 5, K, Df{, PL, RN, and MP is not the only selection
that provides an axiomatization —a deductive characterization — of .S5.
We have seen already, for example, that the rule RPL would do just as
well as MP plus PL, and that RK could take the place of RN plus K.
Such alterations result in equivalent, alternative axiomatizations of S5 —
equivalent since the axioms and rules of inference of each are derivable
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%.85 the others, so that any sentence provable in one axiomatization
is provable in the others.

Let us conclude this section with yet another axiomatization of S5, one
of the best known. It is formulated on the basis of propositional logic by
means of the rule RN together with the schemas T, B,4, K, and Df¢>
as axioms. In other words, this axiomatization differs from the one with
which we began only by having B and 4 as axioms in place of 5. For the
sake of exposition we dub the set of theorems axiomatized in this way S§'.

Clearly, every theorem of S5 is alsoa theorem of S5, since every axiom
and rule of S5’ can be (and has been) proved in S5, Showing the reverse,
that 55" includes S5, boils down to proving that the schema 5 is 2 theorem
of S5’ i.e. that 5 can be derived on the basis of T, B, 4, K, Df$, PL,
RN, and MP. To this end, observe that §5' has the rule RPL (because of
PL and MP), that S5’ has the rule RM (because of RPL, RN, and K),
and that S5 has the theorem 4 (exercise). So we may argue as follows,

1L OOA-OA 10

2.00CA-1CA 1LLRM

3. 0A-JOOA B

4. CA-[ICA 2,3,PL
According to the last line the schema 5 is indeed a theorem of S5'.
Therefore, the two axiomatizations are equivalent.

EXERCISES

Except where otherwise noted use any theorem or rule of inference

omﬁ_m:mw& in section 1.2, and any theorems and rules established in
previous exercises.

1.12, Derive the rule of inference RE in S5.
1.13. Derive the following rules of inference in S5.
A->B -

@ siso @ owf,,wvw
1.14. Derive the rule of inference RR in S5 using only PL, RM, and K.
1.15. Prove that N, M, and C are theorems of .S5.
1.16. Prove that the following schemas are theorems of S5.

(a) 1OL

() (OAV OB)— O(AVB)

(c) O(AVB)>(GAV OB)
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1.17. Prove that the following schemas are theorems of S5.
(@) (CIAv OOB)> 1AV B)
(3) O(AAB)»(OAAOB)
(¢) (I(Av B)->(OAvV[B)
(@) (OAA OB)> G(AAB)
1.18. Derive the mozoﬂgm rules of inference in S5.

@5x Oz
1.19. Prove that the sentence { T is a theorem of S5.
1.20. Prove that the schema 4< is.a theorem of S5.
1.21. Prove that the following schemas are theorems of S5.

(@) DA-O0OA
() CA-OOA
(€) OA=OA
(d) A~ ODA
1.22. Prove that the schema {[JA- [J{A is a theorem of .wm
1.23. Derive mﬁ following rules of inference in S5.
@R3ZE O %A
1.24. Prove that the schema 4 { is a theorem of S5’ (see the last paragraph
of section 1.2).

1.25. Prove that S5 is equivalently axiomatized if in the original axio-
matization the axiom 5 is deleted in favor of the schema A~ QA.

1.26. Prove that S5 is equivalently axiomatized if in the original axio-
matization the axiom K is replaced by the schemas N, M, and C, and the
rule of inference RN is replaced by RE.

1.27. We say that a system of modal logic is consistent when it does not
contain L as a theorem. It is clear that the system S5 is consistent: the
axiomatization is sound —i.e. every theorem is valid — and 1 is not valid.
Below we argue the consistency of S5 in another way.

Let the mapping ¢ on the set of sentences be defined by the following

clauses. W e(P,) =P, for n=01,2, ...
@) e(T) = T.
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(3)e(L)= 1.
(4) e(MA) = e(A).
(5) e{A A B) = e(A) A e(B).
(6) e(Av B) = ¢(A}v &(B).
(7) e{A—>B) = e{A)->¢(B).
(8) 6(A ++ B) = e(A) <+¢(B).
(9) {[IA) = &(A).
(10) e(OA) = e(A).
Thus € is an “erasure’ transformation. It erases all occurrences of the
modal operators [J and ¢ in a sentence A, butleaves A otherwise intact.
Now let us see that ¢ transforms axioms of S into tautologies, and

rules of inference of S5 into rules of propositional logic. Clearly the
erasure of a tautology (PL) is always a tautology. Moreover:

T. e([JA~>A) = e(A)—>6(A).
5. QA [JOA) = e(A)—>e(A).
K. (C(A~>B)>(JA—->{B)) =
(e(A)->(B)) > (¢(A) > €(B))-
DEO. e(QOA-T1I1TA) = e(A)— T17e(A).
The schemas on the right-hand side of these identities are all tautologies;

so the erasure of any non-propositional axiom is a tautology. Finally,
under erasure the rules of inference RN and MP become

€(A) e(A)—>¢(B), e(A)
mlew& and —am - )

The first of these is merely a rule of repetition, and the second is just
MP again.

It follows that under the mapping e every theorem of S5 is transformed
into a tautology. Therefore, since ¢( L} —i.e. I ~ is not a tautology, L is
not a theorem of S5. So we have proved the consistency of 85 once again.

(a) Apply eto T, 5, K, Df{, and selected instances of PL to see
that their erasures are tautologies.

() Show that if ¢(A) is a tautology so is ¢([(JA), and that if
e(A~> B) and ¢(A) are tautologies so is ¢(B).

(c) Use ¢ on the schemas in exercises 1.15-1.17, 1.19-1.22, and
1.25.
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(2) Show that the rules of inference in exercises 1.12-1.14, 1.18,
and 1.23 hold under erasure.

(e) Consider the system that results when the schema A—>[JAis -

added as an axiom to .S5. This system is not sound, since
A-[1A is not valid (see section 1.1), but it is consistent. Use
the erasure transformation to prove this.

(f) Prove the consistency of the system that results when the
schema [JOA-> O[JA is added as an axiom to S5. (Is this
system sound?) :

(g) Referring to exercise 1.11, observe that the transformation 7
can be employed like € to prove the consistency of S5, since
L is not quantificationally valid. How do the schemas A->[JA
and (1O A~ O[JA fare under r?

1.28. Sometimes there is confusion about the meaning of rules - of
inference. For example, because of RN it might be thought that
‘A->[JA is a theorem. Similarly the rules RM and RE might mistakenly
be regarded as evidence for the theoremhood of the schemas

(A->B)>(JA—»[IB) and (A«B)->(JA«[]B).
Dispel this illusion by showing that neither schema is valid.

1.29. Show that A [JA is a theorem of the system that results when the
schema (A— B)—({JA~[OB) is added as an axiom to S5. Is this true
if (A« B)—> (A« [1B) is added to S5? What about the consistency of
these systems?

1.30. Prove that A []A is a theorem of the system that results when the
schema [JOA— $[JA is added as an axiom to S5.

2

LOGICAL PRELIMINARIES

This chapter is an introduction to most of the concepts we shall use in
studying modal logic.

In section 2.1 we set out most of the syntactic concepts. Section 2.2
introduces semantic concepts: the general idea of a model, truth con-
ditions for non-modal sentences, and definitions of truth in a model and
validity in a class of models. Filtrations of models are described in section
2.3. In section 2.4 the idea of a system of modal logic is explained, along
with such relevant notions as theoremhood, deducibility, and con-
sistency. Axiomatizability is discussed in section 2.5. Maximal sets of.
sentences and Lindenbaum’s lemma occupy section 2.6. In section 2.7
we define determination and explain our approach, using canonical
models, to proofs of determination. Finally in section 2.8 we outline our
method of proving the decidability of systems of modal logic.

As the need arises the reader may wish to return to various sections of
this chapter, for important definitions and theorems.

2.1. Syntax

This section is devoted to a recital of the basic syntactic concepts for the
language of modal logic, many of which the reader has likely gleaned from
chapter 1. The ideas are very simple. The few formal definitions we offer
may be helpful, but they are not essential; we state them mainly for the
sake of completeness and future reference.

Sentences. The language is founded on a denumerable set of atomic
sentences: ‘
P Py, Py, ...
These are the simplest sentences.
The non-atomic molecular sentences are formed by means of nine
syntactic operations, or operators: .

lhlv !_a.v -I_u >v <v |W-u A.....Vu Dw o
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(1) reflexive transitive
(m) reflexive euclidean . - .
Except for (a), the proofs use theorems M.Ho and 3.20, in addition to the
results in section 3.5. For (), note exercise 3.31. .
375. Give an example of a non-incestual filtration of an incestual
standard model.

4

NORMAL SYSTEMS OF MODAL
LOGIC

This chapter is devoted to studying, from a purely deductive standpoint,
a class of systems of modal logic we call normal.

In section 4.1 we first define the class of normal systems. Then we
derive a number of theorems and rules of inference common to all
normal modal logics and use some of them to formulate alternative
deductive characterizations of such systems. Theorerms on replacement,
negation, and duality are proved in section 4.2 for normal modal logics
{they hold more generally for all classical systems, as we discover in

-

chapter 8). These results provide rules and theorems that serve to
facilitate derivations.

The smallest normal system of modal logic we call K. Thus every

normal system of modal logic is a K-system. (The converse is false; not

" all K-systems are normal.) To simplify naming normal systems we write

KS,...S,

to denote the normal modal logic obtained by taking the schemas
8y, ..., S, as theorems. In other words:

K8 ... 8, = the smallest normal system of modal logic con-
taining (every instance of) the schemas Siseeer S,
J

8o, for example, K T4 is the smallest normal system produced by treating
- the schemas T and 4 as theorems in a normal modal logic. (It is also
" denoted by K4T; the order of the schema names is irrelevant.) As the
*limiting case, where there are no schemas, the definition yields X as the
smallest normal system,

In section 4.3 we begin a survey of the normal extensions of K con-
”._.Ewasm various combinations of the schemas D, T, B, 4, and 5. This
.continues in section 4.4 with an account of the numbers of distinct
modalities present in certain of these systems.

The chapter concludes with section 4.5, which contains some theorems
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i i esults
bout maximal sets of sentences In normal BE.E logics. M,rnma T
igure importantly with regard to some theorems in chapter 3.

|.X. Normal systems

As we learned in chapter 2, a system of modal logic is w HM Omo Mwwﬁwﬂﬂm
sontaining all tautologies and closed under mpm rule o ; Ha sk
ma‘o characterize normal systems of modal logic in terms 0

DEG. QAeTINA

and the rule of inference

(AjA..-AA)>A
(CAA . ADA)~DA

DEFINITION 4.1. A system of modal logic is normal iff it contains DO
and is closed under RK.

(n = 0).

RK.

nnin inui ith theorem 4.4 we
inning with theorem 4.2 and continuing Wi :
.nwhma moHMn of the more important rules and ﬁwoo.mwam w_,.nm,wn MHM:
HSMB& systems of modal logic. Many of these are familiar mnoms ¢ “WH Eﬁw
In theorems 4.3 and 4.5 we record some alternative ways of charac

normal modal logics.

TreoREM 4.2. Every normal system of modal logic has the following rules

of inference and theorems.
A
RN. A
A-B
RM. A8
(AAB)—>C
RR. (DAATB)-1C
: A«B
RE. OA«[]B
N. Ot
M. [(AAB)->(OAALB)
C. (AAOB-=[C(AAB)
R. CI(AA B)«~ (JAAIB)
K. [(A->B)~(0A~[IB)
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Proof. Let £ be a normal system of modal logic. By theorem 2.13

propositional logic is a part of %, a fact we take advantage of frequently
and casually.

For RN, RM, and RR. These rules of inference are simply RK for
n =0, 1, and 2, respectively.

For RE. Suppose that Fy A< B. Then by PL both rx A->B and
FeB~A. By RM in each case, Fe [(JA-[IB and k5 [JB~>[JA. Hence
by PL again, . [CJA+ [JB. ‘

For N. By PL, t5T. Hence by RN, k- I7T.

For M. By PL, Fg(AAB)~>A and Fs(AAB)—>B. So by RM, +[]
(AAB)>[A and F;[)(AAB)—[TIB. By PL again, hy[J(AAB)—
(CJA A OIB). _

For C. By PL, Fy(An B)—>(A A B). Hence by RR, F(OAA OB)~
‘CI(AAB).

For R. This is just the biconditional of M and C.

For K. By PL, h((A->B) A A)—B. So by RR, Fg(O(A->B) A OA)—
CIB. Therefore by PL, b5 [ (A~ B)~->(JA~[]B).

As in chapter 1, proofs like these for theorem 4.2 can often be stated

more perspicuously as annotated sequences of theorems. For example,
the proof above for K can be presented thus:

L ((A-=B)AA)->B PL
2. ([I(A~B)ACJA)»[IB 1, RR
3. ((A~>B)~>(CJA~[IB) 2, PL

- On top of propositional logic, the schema Df ¢ and the rule RK
provide an axiomatic basis for normal systems of modal logic. Together
with Df the rules and theorems listed in theorem 4.2 provide a number
of alternative bases for — i.e. alternative ways of characterizing ~ normal

- systems. We select just four for attention in the next theorem; some
. others appear in the exercises.

THEOREM 4.3. Let £ be o system of modal logic containing DECG. Then:

(1) Z %5 normal iff it contains K and is closed under RN.
(2) % is normal iff it contains N and #s closed under RR.
(3) Z is normal iff it contains N and C and is closed under RM.

Q.VMN..,S%S&&&%:EN&%Z,O.na&gaamw&&m&%&%
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Proof. Let X be a system containing Df . Theorem 4.2 takes care of

ight i ight-to-left.
left-to-right in each case, so we show only umm.ﬁ 10 .
For ﬁ%. We need to show that if  contains K and is closed under

RN, then = is closed under RK; i.e. thatfornz > 0,

wm TMA}P.H\/ e N ?Vulv.?

then Fe([JA A ... A JA,) DA,
The proof is by induction on z and is like that for 9335 3.3(2) (recall
lemmas 1 and 2 there). With this hint we leave the details to the reader.

For (2). Suppose = contains N and is &om&. under RR. In view of
(1) it is enough to show that = contains K and is closed under RN. As

to K, see the proof of theorem 4.2. For RN:

1A hypothesis
2.(TAT)>A 1, PL
L.@raOm—-0A 2, RR
40T . N

5. A 3,4, PL

i i licable at line 2.
Note that line 1 means that kg A, so that Ww.._w app .
For (3). Suppose Z contains N and C and is closed under RM. Given
(2), we need only show that 2 is closed under RR. Thus:

L. (AAB)—»C hypothesis
2. (AAB)~»>[C 1, RM

3. (DAA[OB)~[J(AAB) C

4. (OAAOB)—~OC 2,3, PL

i is closed under RE, it is
For (4). If = contains N, C, and M and is ¢ .
m:mwomnaw given (3), to show that = is closed under RM. We leave this

as an exercise.

With the exception of Df¢, the rules and theorems so far wMﬁ
featured the necessity operator. The next theorem catalogues some rules

and theorems of normal systems in which the possibility operator -

predominates.

THEOREM 4.4. Every normal system of modal logic has the following rules

of inference and theorems.

As>(AV...VA) >0
RO SE>(0hv.vohy 20
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-A
KO- =%
A-»>B
RMO. QA OB
A->(BvC)
RO OA>(OBV GO
AwB
REQ-. OAe OB
Df]. [DA«"1omA
No. 1041

Mo, (OAVOB)»O(AV B)
CO. OAVB)=(OAV OB)
RO, O(AVB)=(OAV OB)
Ko, (00AAOB)> O(AAB)

Proof. Let T be a normal system.

For RK.¢. Suppose that FsA—>(Ayv...VA,). Then by PL, ke(1A,
A ATIA,)>TA. By applying RK, F(CIMAL A - A DA, > (A,
Hence by PL again, F, TONA>(IONA V.Y T107A,). There-
fore by Df ) and PL, |, CA>(CA V...V OA).

For RN, RM <, and RR $. These are the rule RKO forn=0,1,
and 2, respectively. (For RN (), recall that when 7 = 0 the conditionals
in RK ¢ are identified with the negations of their antecedents. )

For RE$. The proof uses RM.$ and is like that for RE in theorem
4.3. Exercise.

For Df{]. Compare the proof of this in section 1.2, and note that it
uses only PL, DfO, and RE.

For N¢. By PL, k111, So by RNO, Fx 110 L.

ForM¢. By PL, b A>(Av B)and Fz B->(A v B). Hence byRM ¢,
bz OA—> O(AVB) and by OB-> O(AVB). By PL, Fy(OAV OB)>
O(AvVB).

For C{. The proof uses RR¢ and the tautology (A v B}-(A v B),
Exercise.

For R¢. This is the biconditional of M Gand Co.

ForK¢o: .

L B>(Av(TAAB) PL
2. OB->(QAV O(TAAB)) 1, RRO

3-(T0AAOB)> O(TAAB) 2, PL
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The reader should appreciate the parallels between the proofs above
and those for the corresponding rules and theorems in theorem 4.2. We
have developed this analogy intentionally, for the sake of simplicity and
also to enhance the reader’s ability to create such proofs on his own.
There are of course other ways of doing this. As an example, let us
prove again that R is a theorem of all normal modal logics, as follows.

1. O(AATB) = (T1AATTB) R

2. (TAATB)~"{AVB) PL
3. O(AATB)~ O (AVEB) 2,RE
4. CT(AVB)=(O1AAOTB) 1,3, PL

5. (A VB) - (ONAVTIOTB) 4 PL
6. G(AVvB)~(QAV $B) 5,DfQ and PL

Other alternative proofs of rules and theorems are suggested in the

exercises.
The characterization of normal systems of modal logic in terms of

DfO and RK and in theorem 4.3 may be said to be necessity-based,
inasmuch as [ is treated as though it were primitiveand { 1s introduced

only definitionally, through Df$. In the next theorem we turn this

around by using rules and theorems from theorem 4.4 to give five

characterizations of normal systems that are possibility-based and intro-

duce necessity definitionally via D[].

THEOREM 4.5. Let 5. be a system of modal logic containing Df[]- Then:

(1) = is normal iff it is closed under RK.O..

(2) = is normal iff it contains K& and is closed under RN §.

(3) = is normal iff it contains NO and is closed under RR .

(4) = is normal iff it contains N§ and C& and is closed under
RM .

(5) = is normal iff it contains N, CO, and MO and is closed
under REO. !

Proof. Let T be a system containing Df[]. The left-to-right cases are
covered by theorem 4.4, so we need show only the converses.

For (1). Suppose that £ is closed under RK.$. We wish to prove first
that = is closed under RK. The argument is analogous to that given for

RK ¢, using RK, in theorem 4.4. Thus:
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1. A>~> ...>>.=VIY»P w..mﬁomnommw
2. TA>(MA V.Y TA,) 1. PL
3. OTA> (04 V..V ONIA,) m..wmo
4 (1OTAA L ATOTAY>10MA 3, PL
5.(0A1A .. ADA)>IA 4, DfC and PL

Next we must show that 3 i
contains Df Q. The argument f is is li

HH Ms.mmnwﬂ& for Df[J in theorem 44, if as a HMMBM Mn mM Mﬂﬂﬁqﬂwmﬁn
hat® Hwow MMM _WMAWH %va.ow‘wmm is left to the reader as an oxoaommo.nm
s % co 1s closed under RK, then by definition 4.1 it

Th

I M %Nwoﬂm.m for parts (2)-(5) parallel those for (1)-(4) in theorern 4.3

- Suppose that X contains K¢ and is closed under WZAw .Hn

view of (1), just proved, it i .
i.c. that for 1. > 0, » 1t 1s enough to show that 3 is closed under RK O,

fhyA>(A V... VA,), then by GA->(OA, V... v OAL).

The proof is by induction on 7. Where # =
_”.m TIA, m.ﬁp Fx 1QA. This is just RN ¢. §
ypothesis that the rule holds for & < 7,

0, we need to show that if

0 suppose as an inductive
Then we reason as follows.

LA>(Av..vA)
hypothesi
2. (MAAA) (A, v ... VA,) WWM =
.m. O(ALAA) > (OA, V... v CA,) 2, inductive
hypothesi
4. (10AA OA)» O(MA A A) K¢ o
5. (T0AA QA)»(OA, v ... v OA,) 3,4 PL
6. CA>(OA V...V OAL) 5, PL

For (3). Suppose % contains N ¢ and is elosed under RR$. Given (2)

we need only show that ¥ contains K i
: ¢ and is closed und
proof of K.{) appears in the proof of theorem 4.4, For Mm Awn O The

LA hypothesis
2.A->(Lv]) 1, PL
3.0A>(OLVOL) 2, RRO
47101 NG

5. T10A 3,4, PL
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i d is closed under RM .
For (4). Suppose T contains N{ and ﬂO an <
O.EMM muuv. it Mmamm&aﬁ to prove that T is closed under RR ¢ Exercise

ompare the proof of theorem 4.3 (3)). )
¢ m.ow ﬁ.mv. mcwvomo that = contains N¢, C{, and go and is n_owom
under RE O. In view of (4), it will do just to show that T is closed under

RM. Thus:

2.(AvB)-B 1, PL
3. O(AVB)o OB. 2, REG

4, (OAV OB)>O(AVB) MO

inci alized modally. For
M. rinciples of normal systems can be genera
QBEMN. m..c.. QWH% 2 > 0 every normal modal logic is closed under the
rule of inference
. RICE (AjA...AA)>A i
© O (CFALA - ALTRA) > LTFA

This should be evident, for the conclusion of the rule will mﬂwoﬁnmaowﬂ
the hypothesis by & applications of the rule RK., More moﬁﬂumr%. uﬁrnwm W
be proved quite simply by induction on k. When k=0 e wwo s
and the conclusion of the rule are the same, so of course the in. nﬂmﬂo ‘!

good in this case. And from an inductive hypothesis ﬂ.ﬁﬂ the Mc_m e M_ g M
whenever it has fewer than & [Js, it follows by RK »r.»ﬂ it ?.uEm o M "

the number is k. That is to say, we may argue the inductive part of the

proof as follows.

(n=0).

1 (AjA . AAL)—A W%.woﬁ”rom.mm
- -1 1A , inductive
2 @A A= hypothesis

3. (P87 - A OO*8,)> O0FA 2RE
4. (CFALA .. A (A ) > TIFA 3, definition 2.3

i mal system, for every k > 0.
Therefore, the rule RK¥ holds in any nor yster, for every k
%w.w schema Df O likewise generalizes along the modal dimension. For

every k 2 0 the schema
DEQ*.  OF¥A+1[TFIA

is a theorem of any normal modal logic. Here, too, 2 simple F&aomg
argument suffices. For the basis, note that DfQ¥ is a tautology when
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k =0. For the inductive part, assume that the schema is a2 theorem

whenever the number of [Js and {s is less than k. Then we argue as
follows.

1. O 1A 1A inductive hypothesis
2. OOF A OTIF1TA 1, RE¢

3. O A OmI1A DI

4. & OF Ao 1A 2,3, PL

5. OFA -~ A 4, definition 2.3

It should be apparent, given RK* and Df OF, that similar generaliza-
tions of all the principles in theorems 4.2 and 4.4 are part of any normal
system of modal logic. More precisely, the results of putting (1% and %

for [J and ¢ throughout these principles yield theorems and rules of -

inference that belong to every normal system, for every & > 0. Because
we will need some of these principles later on (especially in chapter 5),
we record this formally.

THEOREM 4.6. Every normal system of modal logic has the principles RK¥,
DfOF, RN, RM¥, RR¥, RE, N¥, M¥, C, Rk, KE RK O,
RN Q% RMOE, RRO¥, REQY, DICF, NOX, MOk, COF,
RO*, and K O, for every k > 0.

Given the proofs above for RK* and DfOF, the reader can easily
construct proofs for the remaining principles by attending to the proofs
of theorems 4.2 and 4.4. Separate inductive proofs are also possible in
each case.

EXERCISES

Where appropriate, freely make use of theorems and rules of inference

established in section 4.1 and, farther along, the results of previous
exercises. .

4.1. Complete the proof of theorem 4.3 (parts (1) and (4)). (For (4), note
that A—B is PL-equivalent to A « (AAB).)

4.2. Complete the proof of theorem 4.4 by showing that every normal
system has the rule RE O and the theorem Co.

4.3. Complete the proof of theorem 4.5 (parts (1) and ).

4.4. Prove some of the parts of theorem 4.6,
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4.5. Let = be a system of modal logic containing Di$. Prove: (7) (A vB)->(OAv [IB)

(2) = is normal iff it is closed under RR and RN.

(5) I is normal iff it contains C and is closed under RM and RN.
(c) £ isnormal iff it contains N and K and is closed under RM.
(d) T is normal iff it contains C and M and is closed under RE

and RN.
(¢) = is normal iff it contains N and Rand is closed under RE.

(f) £ is normal iff it contains R and is closed under RE and RN.
(g) = is normal iff it contains N and K and is closed under RE.

4£6. Let T be a system of modal logic containing Df[]. Prove:

(@) T isnormal iff it is closed under RR ¢ and RN §.
(6) T is normal iff it contains C¢ and is closed under RMO

and RN O.
(¢) T is normal iff it contains N& and KO and is closed under
RMO.
(d) T is normal iff it contains CO and M ¢ and is closed under
RE$ and RN . .
(¢) T is normal iff it contains N& and R¢$ and is closed under
REO. .
(f) £ is normal iff it contains RO and is closed under RE{ and:
RN .
(g) Z is normal iff it contains N ¢ and K ¢ and is closed under
RE$. .

4.7. Prove that the following schemas are theorems of any normal system.

(a) TIA—>(B~>A)

(%) O A->(A~>3B)

(¢) OT«L

(@ (A->B)—>(OA>OB)
(¢) O(A~B)~(0A+~[B)
(f) O(A+B)>(OA~ OB)
(¢) (DA vV [IB)~>[(AVBE)
(F) O(AAB)>{QAA OB)
() (A OB)> O(AAB)

*) O(A—B)v[J(B~A)

() O(A->B)e (A~ OB)
(m) OT=(0A—OA)

(7} (OA—[IB)~> (A —B)
(0) (OA~[IB)~(JA~(B)
() (OA~>[IB)>(OA-> OB)

4.8. Prove that the following schemas are theorems of any normal

system (for any = > 2).

(@) [D(ALA e  AAY S (CIALA ... A JA,)

B) OBV .. VAo (OA V...V OA,)

(0 (DA v...v[OA)~»> Ci(Ayv...vA,)

(@) O(B1A - AA)>(OA A ... A OA,)

(@) (CIALA oA TTAL A QA > O(ALA ... AA )
. (f) DA, v... VA)>(OA; V...V OA, v DML
w%%n”ﬂ”n““ MM Mow.oﬁsw sentences are theorems of any normal

(@ O*T=>OmT () OmL—>1mL

~ 4.10. Let T be any system of modal logic containing Df ¢ and satisfying

the conditions that, for every # > 0
(@) O™AeXif bp A,
(8) O(C(A~B)~>(TJA~>[OB)) €,
(c) Zis closed under the rule MP.

Prove that X is normal. (This boi
. 1 . .
that = is closed under _&M _.,EM www down to a proof, by Smcoa.ou onn,

4.11. Prove that eve .
forany b mm s 0 ry normal system has the following rule of inference,

(A A AALA OFBIA .. A OFB,)-> 1
(OAA .  ADIA) > (B A .. A B,}

4.12. i
Use the erasure transformation e from exercise 1.27 to prove the

consistency of the system K. (Alternati . .
exercises 1.11 and %.m 6 (Alternatively, consider the mappings 7 in
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4.13. Consider the following rules of inference.

@B o
- B
0P 0 %sg

Piw >Iw
() D22l () 0202

"These rules hold for some normal systems, but not for all. To prove that
they hold for the system K we first define the mapping &, as follows.

(1) o(B,) = P, forn =0,1,2,....
@D e(T)="T.
(3) (L) = L.
4) o(MA) = "0(A).
(5) o(AAB) = o(A)A o(B).
(6) (A v B) = o(A) v ¢(B).
(7) o(A->B) = o(A)—> o(B).
(8) o(A = B) = o(A)« o(B).
(%) o((C3A)=A.
(10) o(OA) = Al
So to speak, o searches through a sentence —~ or schema — for its first, or
outermost, occurrences of [ and ¢, and “erases’ them. Thus o({JA—+
OA)is A—A. Note that o is not the same as ¢ in exercises 1.27 and 4.12:
o does not delete all occurrences of ] and . For example, o(CA—
OOA)is A-»[JA, not A>A.
Now consider K as axiomatized by Df0, RK, and RPL. Prove by

induction on the length (number of lines) of a proof, relative to this
axiomatization, the following lemma.

If Fx A, then Fx o(A).

That is, prove that if A appears on the first line of a proof, then o(A)
is also a K-theorem (this is the basis of the induction), and that, assuming
that the result holds for all lines 2 < =, it holds as well for line # (this is
the inductive step). (Tzke it for granted that the result holds with respect
to RPL, i.e. that if A is a tautological consequence of Ay, ..., A,, then
o(A) is a tautological consequence of o(A,), ..., 0(A,).)

It follows from this lemma that X has rules (2)~(f). For example, for
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(2) we argue as follows. If Fx [JA, then by the lemma b5 o(JA), and
$0 — by the definition of o - Fx A.
Give the arguments for cases (5)~(f).

4.2. Replacement and duality

In this section we pause to state and prove some simple theorems about
replacement and duality in normal modal logics. These principles
function as theorems and rules of inference in every normal system, and
where possible we present them as such. Their usefulness is illustrated
by means of several examples.

THEOREM 4.7. Every normal system of modal logic has the rule of replace-
ment:

REP.

BB
A+« A[B/B’]

(Recall from section 2.1 that A[B/B'] is any sentence that results from A
by replacing zero or more occurrences of B, in A, by B'.)

Proof. Let T be a normal system, and suppose (throughout the proof)
that by B s B'. Then what we wish to prove is that ;A s A[B/B'].

We consider first the possibility that A and B are the same sentence.
Then A[B/B'] is either A (when there is no replacement) or B’ (when A,
ie. B, is replaced by B'). In either case, by A« A[B/B’]. For in the first
case this is just by A «» A, which is trivial ;and in the second it is Fy B> B,
which is the assumption.

Thus we may assume henceforth that A and B are distinct.

The proof proceeds now by induction on the complexity of A. We
give it for the cases in which A is (@) atomic, P, (5) the falsum, 1, (c)
a conditional, C—D, and (d) a necessitation, [JC; the rest are left for
the reader. .

For (a). Given that P, and B are distinct, P,[B/B’] = P,. So, F4P,
«P,[B/B7], trivially. So the theorem holds when A is atomic,

For (). The argumént is the same as for (a).

For the inductive cases (¢) and (d) we make the hypothesis that the
result holds for all sentences shorter than A.

For (c). By the inductive hypothesis, FzC«C[B/B'] and FgD o>
D{B/B']. It follows (by PL; the proof is left to the reader) that +(C D)
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_ Proof. We assume throughout that Z js a normal modal logic.

. For (1). The proof here is by induction on the complexity of A. Let
us treat the cases in which A is (@) atomic, P, () the falsum, 1, (c)a
onjunction, BA C, and (d) a necessitation, []B.

- For (a):

«(C[B/B]-D[B/B"]). But note that (C—D)[B/B]= C[B/B7]S
D[B/B"]. Therefore, F5(C—+ D)« (C—-D) [B/B']. So the theorem hold
when A is a conditional.

For (d). By the inductive hypothesis, Fy C«C[B/B’]. By the
rule RE it follows that kg SC« (C[B/BT). However, (CIC)
[B/B] = {1(C[B{B"]). Therefore, Fx []C «([JC) [B/B']. So the theorem
holds when A is a necessitation.

This ends the proof of theorem 4.7.

1. P,«+7P, PL
2. = P¥ 1, definition 2.4 (1)
. mo the theorem holds when A is atomic.,
~ For (b):
1. LT PL

The use of the rule REP is illustrated in the following proof that the
schema

O(A~B)= (A~ OB) 2. o"IL* 1, definition 2.4(3)
is a theorem in any normal system of modal logic. So the theorem holds when A is the falsum.
1. O(A->B)e O(TAV B) PL and REP For the inductive cases () and (d), we make the hypothesis that the
9 ~(O-AY OB) 1, R and REP theorem holds for sentences shorter than A. Thus, kB« -IB* and
) ’ . FgCeTIC*,
3. e(71¢"A>OB) 2, PLand REP For (9):
4. «(0A~ OB) 3, Df[] and REP 1. (BAC)=(TB*AIC* inductive hypothesis and REP
"T'his highly abbreviated proof needs some explanation. The justification 2. ~(B*vC* 1, PLand REP
mm line 1 indicates a tacit use of REP in iw.mow, since (A—>B)«< (A v B) 3. o (BAC)* 2, definition 2.4 (5)
is a tautology, “JAv B replaces A->B in the tautology {O(A-—>B)« ) o
$(A—B). In line 2, $T1A vV OB replaces ¢(TAVB) in line 1, in So the theorem holds when A is a conjunction.
virtue of the theorem R¢. Then in line 3, 7O 1A— B replaces the For (d):

tautologically equivalent ¢JAv OB in line 2. Finally, in line 4 the
theorem Df[] is used in replacing 1¢ 1A by [JA in line 3.

Use of the rule REP is further illustrated in the proofs of theorems
4.8 and 4.10 below.

Let us turn now to the subject of duality (recall definition 2.4).

1. B [)(1B% inductive hypothesis and REP
2. «70(B*% 1,DfO and REP
3. o (OB)* 2, definition 2.4(9)

So the theorem holds when A is a necessitation. ,

This concludes the proof of (1). Parts (2)-(4) are corollaries.

For (2). It follows at once from (1) that if F- A, then k1A% So T
is closed under the first rule DUAL in (2). For the second, it is enough
to note that (1) means that 1A « A*is always a theorem of Z.

TrEOREM 4.8. Every normal .@a% of modal logic has the following
theorems and rules of inference, all referred to as DUAL.

(1) AeA* For (3). If ky A->B, then Fz TIA*->—1B*, by (1) and REP. Hence by
@ A TA PL, kg B*— A*. So Z is closed under the rule DUAL in (3).
T1A*  Ax For (4). We leave this as an exercise.
) A->B This concludes the proof of theorem 4.8.
B*-»A* As an example of the use of DUAL, let us see that O T+ 1[JLisa
A~B theorem of every normal system. For by DUAL(1), O T U T)* is,
O

and by definition 2.4, (O T)Y* = [JL.
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Similarly, using DUAL(2) one can show that every normal system 3 iff Fgy* 1A~ %A, for every A

has (CJAA[3DA) as a theorem if it has QAv OTA. (Note that - PL;
neither schema is a theorem of every normal system, however.) For if Fg Y *A— ¢*A, for every A
suppose that Fx OGA v O A, Then also, bz AV O171A. Hence by - ~ PL and REP.

DUAL(2), k(O T1A YV $171A)*. But by definition 2.4 this means
that kg (CJ(CIAM)ALI(T1AY). So by DUAL(L) and REP, kg
(A A TIMA). .
Finally, let us show that since ([JA v [1B)->[J(Av B) is always a-
theorem of a normal system, sois O(AAB)—>(OAA OB). The proof
uses DUAL(3): .
1. (O7Av OB)- (1A v 11B) theorem

2. (OA vV IB)*>(O1A vV OB)* 1, DUALG) -
3. O(TIA*A 1B¥)>(O(TAMA O(TB¥)) 2, definition 24

4. O(AAB)—>(OAA OB) 3, DUAL(1)

and REP
In our last theorems of this section we state some simple principles
concerning duals of modalities. Recall that a modality ¢ is a finite (possibly.
null) sequence of the operators 7, [J, and ¢, and that the dual of 2 .

For (4). This follows from (3). Exercise.

As an application of theorem 4.9 we see that 2 normal modal logic
"contains the schema 4, [JA - [JJA, as a theorem just in case it contains
the dual schema 4O, O QA OA. Similarly, the schema B, A+ OCA,
is a theorem of 2 normal system if and only if its dual B, O [JA— A, is.
.(Of course not everynormalsystem contains these schemas as theorems.)
* Our final theorem is a rather obvious consequence of the preceding
~one. We set it out primarily in order to simplify the discussion in the
next few sections. Recall that an affirmative modality contains an even
‘number of occurrences of 1.

TreoREM 4.10. Let T be a normal system of modal logic, and let ¢ and yr
be affirmative modalities. Then T has the schema

. S. gA->YA
modality ¢ — written ¢* ~is the result of interchanging (J and O PA>Y . .
throughout ¢ (see section 2.1). : as a theorem iff X has any one of the following theorem and rules
) . of inference.
Tueorem 4.9. Let T be a normal system of modal logic. Then: So. YA A
(1) FgpA = 1* AL o ALE
(2) Fe PA S Fg g% AL © GASYB
(3) kg PA->YA, for every A, iff be Y*A > @¥A, for every A. RSO A-B
(4) b dA YA, for every A, iff bs $*A o Y*A, for every A. " JFA> ¢¥B > %8

Proof. Let T be a normal system. The result is a corollary to theorem -
4.8.
For (1):
1. gA=(gA* DUAL(D)

2. ¢*A% 1, definition of *
3.  ©T¢g*IA 2, DUAL(1) and REP
For (2). This follows easily from (1). Exercise.

Proof. Let Z be a normal modal logic, and let ¢ and i be affirmative
modalities. For the sake of simplicity we assume that ¢ and ¢ are in fact
composed solely of the operators [] and ¢, so that 7 does not appear.
For 5¢. This follows from theorem 4.9 (3).

For RS. Suppose that k; A->B. Then by repeated applications of the
rules RM and RMQ, FoPA—>yB. So if FygA->1A, then by PL,
g A~ yB. Thus T has RS if it has S. Conversely, suppose T is closed

For (3): under RS. Then F; §A—>1A, by RS on the tautology A—A. So = has
or (3): 5 S ifit has RS.
b pA—>PA, for every A, iff by T¢*1A>TY* A, for For RS ¢. Exercise.
every A
—(1) and REP; Theorem 4.10 is illustrated by the fact that a normal system of modal




130 Normal systems of modal logic 4.3. The schemas D, T, B, 4, and 5 131
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logic has the schema 5, &GA->[JOA, as a theorem if and only if it has .
s dual . The smallest normal system of modal logic, K, contains as theorems just

its dual 50, O [JJA->[JA, or either of these rules of inference:

what comes from DfQ, RK, and propositional logic, nothing more.
RS5. _A=>B Thus we have canvassed the principal rules and theorems of the system,
CA>[IOB K already in the preceding sections.
RS0, 5 DJMV wa In this and the next section we are interested in the normal extensions
3

of K obtained by adding as theorems the following schemas.

The theorems in this section afford the reader a handy means mm D. [JA->OA
recognizing theorems of normal systems. It is not so important, at this T. CA>A
point, that the details of the several proofs be mastered and absorbed. It B, AsLloA
is worth remarking, however, that the proofs of theorems 4.7, 4.8, and . . .
4.9 (but not 4.10) all depend ultimately only on PL and the presence ﬁ.vm . DA--O0O
RE and Df (or RE¢ and Df[]) in normal systems of modal logic. This - 5. QA»[]OA

becomes important in chapter 8, where we return to these results. Including K itself there are just fifteen distinct nosmal cystems produced

by taking these schemas as theorems in all possible combinations. These
systems appear on the diagram in figure 4.1,

The inclusions among the systems on the diagram are marked by lines:
extensions of 2 system are reached by going in a rightward direction
along the lines (for example, KT is shown to be an extension of KDy.
Most of the inclusions are obvious; some of those that are not we shall
establish, and others are given as exercises. Likewise it is possible to
show that each of the seventeen systems apparently not registered on the
diagram is jdentical with one that is. Indeed, many of these identities
are obvious from the diagram ~ for example, that KDT is the same as
KT. The distinctness of the systems listed — and so the properness of
the inclusions ~ is proved in chapter 5.

Historically the most important of these systems are XD, X7, KTB,
KT4, and KT5. The first two are widely regarded as basic deontic and
alethic modal logics, respectively, and are sometimes referred to simply as.
D and T. The other three systems — KTB, KT4, and KT5 - are the
well-known Brouwersche system (sometimes called B) and the Lewis
systems 54 and S5. Nevertheless, we approach these logics more
analytically, by focusing on the systems KD, KT, KB, K4, K5, and
their normal extensions. We begin with the following theorem about
some alternative characterizations of these systems.

EXERCISES

4.14. Complete the proof of theorem 4.7 (for the cases in which A =T,
SC, CAD,CvD,CaD, $C).

4.15. Complete the proof of theorem 4.8 (part (1)~ for the cases in
which A =T, 1B, BvC, B=C, B«C, {B-and part (4)).

4.16. Complete the proof of theorem 4.9 (parts (2) and (4)).

4.17. Give the proof of theorem 4.10 for RS .

4.18. Prove that if £ is a system of modal logic closed under the rule
REP, then = contains Df ¢ if and only if = contains Df[C].

4.19. Prove that a system of modal logic is normal if it contains Df$,
N, K, and is closed under REP.

4.20. Prove that A« A** is a theorem of any normal modal logic.

4.21. Use REP and DUAL (and perhaps the result in the preceding
exercise) to prove that NO, MO, CO, RO, and K are theorems of
every normal system given that N, M, C, R, and K are. Then prove the
reverse of this, i.e. that N etc. are theorems of every normal system given

that N etc. are. THEOREM 4.11. Let T be anormal system of modal logic. Then:
: (1) Z is @ KD-system iff it has RD.

(2) Zis a KT-system iff it has any of T, RT, and RT O.
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In what follows we freely make use of these theorems and rules of
 inference wherever appropriate. The reader should consult theorem
4.10 to ascertain their identities.

Now let us examine in turn each of the systems KD, KT, KB, K4, and
K35, and their normal extensions.

(3) T is @ KB-system iff it has any of BO, RB, and RBO.
(4) 3 is @ K4-system iff it has any of 4O, R4, and R4 .
(5) Z4s a K5-system iff it has any of 50, RS, and R5$.

Proof. The theorem is an immediate consequence of theorem M.Ho mMm
the fact that the modalities in the schemas D, T, B, 4, and 5 are

affirmative.

Normal KD-systems. These come in many guises, as theorems 4.12
and 4.13 reveal.

THEOREM 4.12. 4 normal system of modal logic is @ KD-system iff it has
any of the following theorems and rules of inference.

Figure 4.1

A

RP. A

P, OT

0. CAvV OTA
TA

RPO. =5z

PO oL

O ~(JAA[INA)

Proof. Suppose that X is a normal system.

For RP:
LA hypothesis
2. DA 1, RN
3.0JA->CA D
4. A 2,3, PL

Thus X is closed under RP if it is a KD-system. For the reverse, suppose

that ¥ has RP. Then by O(A—A), by RP on the tautology A->A. To

see from this that by, [JA-> OA, itis enough to recall that the schema
C(A~> B}« ([JA~ OB)

is a theorem of every normal system (see following the proof of theorem
4.7). So X is a KD-system if it has the rule RP.
For P. Every normal modal logic has the theorem
OT~(0A~ OA)

(exercise 4.7(m)). So P is a theorem of = if and only if D is, which means
that X is 2 KD-system just in case it contains P.
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O OT 2, definition 2.3
For O: 4. OFr PE
A QA 1O 1A> OA
FOA— O |M§D and REP: 50T 3,4, PL
i b OAV OTIA - Therefore, a normal modal logic is a KD-system whenever it containg
- PL.

P% forany k > 0.

- These proofs should be enough to convince the reader of the correct-
ness of these alternative ways of characterizing normal KD-systems of

modal logic. We state this formally as a theorem and leave the remaining
proofs as exercises.

So I is a KD-system if and only if it contains O. More generally, this -
follows from the fact that every normal system has the theorem
»>14).
(OA->OB)~(CBV O
For RP[T, P[7, and O[7. These principles are dual to RP, P, wb&mOm .
and we leave the proofs as exercises. (See the examples after the proof o |
theorem 4.8.)
This completes our proof of theorern 4.12. . .
The theorem D admits of generalization along the modal dimension.
To wit, for every k > 0 the schema
Dk [JEA- OFA n,
kis D itself when & = 1. An
is a theorem of a normal KD-system. um,ou.. D¥is D )
if we suppose (as an inductive hypothesis) that the schema is W Mw.now.oa
when it has fewer than k [Js and s, then we can argue that D* is, too.
Thus:

. TrEoREM 4.13. A normal system of modal logic is a KD-system iff it has |
- any of the theorems and rules of inference D%, RD¥, RP*, Pk .
OF, RP[ %, P, and O, for eny k > 0.

Normal KT-systems. The schema D is a theorem of any modal logic _7
containing T and T ¢ (CJA— OA follows by PL from [JA->A and i
A-> OA). Therefore:

THEOREM 4.14. Every normal K T-system is a KD-system.

. ive hypotbesis Thus all the principles mentioned in theorems 4.11 (1), 4.12, and 4.13
1. [F-1A - O*IA inductive hyp are present in any normal X T-system of modal logic. (This is not true
2. OO*1A—- O O*A 1L,RD - the other way around, as we shall prove.)
3. %A~ OFA 2, definition 2.3

: The theorem T can be generalized modally; i.e. the schema

Therefore, D* is a theorem of every normal KD-system, for md.o_..%.w > OW T [asa
From ﬁmwm result one can readily perceive analogous generalizations o&

the theorems and rules of normal KD-systems in %nonﬂgm 4.11(1) %50

4.12. That is to say, the results of putting (¥ and .hS.. O mbm

throughout RD, RP, P, O, RP(], P[], and O[] are 2l principles of any
rmal KD-system, for every & > (. :

=o§one.o<mu. %ﬁwm reverse is true. If a normal system rﬂm D or mmw omﬁ

of these generalizations — RD¥, RP¥, P%, O, Wm.v_ua_ P, mba OM ~ for

any k > 0, then it is a KD-system. We may illustrate this by showing

that if pr, OkT
is a theorem of a normal modal logic, for 2 > 0, then so is P, OT, and
so the modal logic is a KD-system. The proof:
L OFIT—>T PL
2. OO T OT 1, RMO

is a theorem of every normal K T-system, for every & > 0. The inductive

proof of this is left to the reader as an exercise. Thus, in virtue of theorem
4.10: .

THEOREM 4.15. Every normal KT: ~system has the theorems and rules of
inference T%, T (%, RT¥, and RT O*, Jorevery k > 0,

The name T for the logic KT derives from the designation logique ¢ 7._
of Feys. The system is also called M, following von Wright. :

Normal KB-systems. We begin by noting some recondite ways of ;
<characterizing systems of this kind.
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THEOREM 4.16. 4 normal system of modal logic is a KB-system tff it has
_ any of the following theorems and rules of inference.

X. 0(¢A—B)-(A~>([1B)
X&.,  OA-OB)->(OA->B)

OA—->B
RX. ASLIB
A--{]B
RXO. SA-~B
Proof
For X:

1. (OA-~B)»([O0A~[JB) K
2. A->T10A : B
3. C(OA—+B)-(A~>[1B) i,2, PL

S0 2 normal KB-system contains X. For the reverse, note that D?vh.w!v
OA)—> (A1 OA) is a special case of X and that the antecedent is 2

theorem by RN on the tautology QA OA.By PL, then, Bisatheorem.

So a normal logic is a KB-system if X is a theorem.
For X . Exercise.
For RX:
1. OA->B hypothesis
2. O00CA-[B 1,RM
3.A>JO0A B
4. A—~(1B 2,3,PL

So a normal KB-system has the rule RX. (Alternatively, if OA->Bisa
theorem so is (J(QA->B) (by RN) — whence A~>[1B is a theorem by
MP on X.) Conversely, a normal system closed under RX has the
theorem A-[JOA, by RX on the tautology OA-> OA. Soa normal
modal logic is a KB-system if it has the rule RX.

For RX &. Exercise.

The theorem B can be generalized modally in two ways. In the first,
the operators [} and ¢ are each iterated k times, for & > 0:

Bt A-[JFOFA

To prove that every normal KB-system has B* for every k > 0, aommn
first that B® = B, for k = 1, and then suppose as an inductive hypothesis
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- that the schema is a theorem whenever it has fewer than (s and Os.
Then:

1 QA 10*10A  inductive hypothesis
2. A OO 101 0A 1, RX
LA [JFORA 2, definition 2.3 and exercise 2.6

In the second way of generalizing B, the modality (] itself is iterated
"ktimes, fork > 0;

B():. A-~([J0O)FA
We leave it to the reader to prove, inductively, that every normal KB-

system contains B( )* for every & > 0.

. w.% means of theorem 4.10 the principles in theorem 4.11(3) can
similarly be generalized, and so can the rules RX and RX¢$ in theorem
4.26. We record all these generalizations formally.

: Hmmow,mg.krwq. Every normal KB-system has the theorems and rules of
inference B¥, BOY, RBE, RBO¥, RXk RX OOF, B(), BO( ),
RB( ), and RBO( W, for every B > 0. .

According to the next theorem the schema 4 is a theorem of 2 normal
KB-system just in case the schema 5 is.

THEOREM 4.18. 4 normal modal logic is a KBd4-system iff it is a KB5-
system.

Proof. 'To show that 5 is a KB4-theorem we may argue as follows,
L OCA>OA 40
2. CA->[J0A 1,RX
And to show that 4is a K BS-theorem we may argue as follows.

L. O[JA~JA 50
2.0A->0JDA 1L,RX

In particular, then, the systems KB4 and KBS are identical. {Our

choice of the designation KB4 in the diagram in figure 4.1 is thus some-
what arbitrary.)

The schema B is called the Brougersche axiom for the curious reason
that when it is stated equivalently as

A->T10710A
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and the modality ¢ is replaced by the intuitionistic negation sign, ~.,
the result is

A~~~ A |
the intuitionistically valid version of the law of double .:mmmmop.
Brouwer was a leading exponent of intuitionism. So far as is known, .

however, Brouwer had no concern with the modal schema u.ww the MG.Bn .U
Brouwersche was given by Becker, The Brouwersche system, it should be

noted, is KTB, not KB.

Normal K4-systems. Theimportant modal generalization of the schema
41is

4 [OA->[FOA
"This is a theorem of Qaa_w normal K4-system, for any k > 0. The proof
is left as an exercise. Hence by theorem 4.10: .

THEOREM 4.19. Every normal Kd-system has the theorems and rules of -

inference 4%, 4 %, RA¥, and R4 O, for every k>0.

An interesting feature of normal w&.&ﬁﬁﬂﬁ is that in them »w _Hm
inconsistent to hold that every proposition is at least possibly possible,

i.e. that the schema
OOA

is 2 theorem. For in conjunction with 4 this would lead to
OA,

and so in particular to
oL,

hich conflicts with NO, 1O L. o
" m.ra schema 4 is often called the characteristic theorem of the system

S4. But note that S4 is K74, which is stronger than K4.

Normal K5-systems. These all contain, for every & > 0, the mnwﬂ.,m
5k, QA->[T*OA.

(Again we leave the proof to the reader.} Hence:

TuroreM 4.20. Every normal K5-system has the theorems and rules of

inference 5%, 5O, RS¥, and RS OF, for every k > 0.
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- As the diagram in figure 4.1 shows, the strongest normal system that
‘can be formed using the schemas D, T, B, 4, and 5 is KT5 — better
known as the Lewis system .55 — which we discussed in chapter 1. (Thus
‘the schema 5 or 5¢ is often referred to as the characteristic theorem of
°S5.) There are many ways of axiomatizing S5. The next theorem givesthe
principal axiomatizations of S5 using D, T, B, 4, and 5; of course duality
(for example, putting T for T) provides many more possibilities,

TreOREM 4.21. A normalmodal logic is a K T5-system iff it has as theorems
(1) T, B,and4,(2) D, B, and 4, or (3)D, B, and 5. In particular,
then, KT5 = KTB4 = KDB4 = KDB5.

Proof. Part (1) was established in chapter 1. In light of this and

. .theorems 4.14 and 4.18 it is then sufficient to show that T is 2 theorem of
~ every normal KDB4-system. We leave the details of the reasoning as an
exercise.

This is a good place to affirm the correctness of figure 4.1 with respect

- - to the inclusions advertised there. For the most part this is a matter of

definition - for example, KT'B is obviously an extension of K7 For the
rest, note that KD < KT, and so KDB < KTB and KD4 < KT4, by
theorem 4.15; that K45 = KB4 by theorem 4.18; and that by theorem

. 421 KT5 is an extension of KTB, KT4, KD45, and KB4. Several of the

seventeen systems apparently missing from figure 4.1 have already been
mentioned, for example, in the alternative axiomatizations of S5 in
theorem 4.21. We leave it as an exercise for the reader to identify all the
missing systems and locate them in figure 4.1.

We might also remark here that although the system KD results
from the addition to K of D* (or any other of the principles listed in
theorem 4.13) for any & > 0, there is no analogous result with respect to
the modal generalizations of T, B, 4, and 5, for 2 > 1. We shall be in a
position to prove this in chapter 5.

The point of our analytical approach in this section may by now be
apparent. It enables us to see better the individual contributions of the
schemas D, T, B, 4, and 5 to more familiar modal logics such as KTR,
KT4, and KT5. Two examples will make this clear. First, it is often
pointed out that the rules of inference RX and RX ¢ are present in the
Brouwersche system, KTB. But as we have seen, these rules are already
in the modal logic KB (and hence in any normal KB-system); the
theorem T has no bearing on the matter. Second, the result that the
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schema O GA is inconsistent as an addition to the Lewis system 54
(KT4) is frequently mentioned. But our analytical exposition shows this
to be so with respect to K4 and normal K4-systems generally. Here
again the presence of the theorem T is of no consequence.

EXERCISES
4.22. Use theorem 4.10 to ascertain the identities of mpo schemas and
rules of inference mentioned in theorem 4.11.

4.23. Complete the proof of theorem 4.12 (for RP(J, P[], and o).
4.24. Complete the proof of theorem 4.13.

4.25. Prove by induction that, for any & > 0, the schema T# is a theorem
of every normal K7T-system (for theorem 4.15).

4.26. Complete the proof of theorem 4.16 (for X{ and RX.O).

4.27. Prove by induction that, for any k& > 0, the schema B( Yeis a theorem
of every normal KB-system (for theorem 4.17).

4.28. Prove by induction that, for any k > 0, the schema 4*isa theorem
of every normal K4-system (for theorem 4.19).

4.29. Prove by induction that, for any & > ,P the schema 5% is a theorem
- of every normal K5-system (for theorem 4.20).

4.30. Complete the proof of theorem 4.21 by proving that the schema T
is a theorem of any normal KDB4-system.

4.31, Identify and locate on the diagram in figure 4.1 the seventeen
systems not already listed there.

4.32. Prove that a normal modal logic is a KD-system if and only if it has
theorems of the form CA.

4.33. Consider the following schemas.

U. (CA-A) Uo. OA>OA)
4. OOA-~[DA 40. OA->OOA
5. CJOA->OQA 50 A O[IA

Prove:
(2) U is a theorem of 2 normal system if and only if U is.

(b) 4c(and hence 4<.) is a theorem of any normal KU-system.
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(¢) U (and hence 4,) and 5. (and hence 5¢).) are theorems of any
normal KT-systemn.

(d) D is a theorem of any normal K5-system.

4.34. Prove that the schema G, O[JA—~ A
normal KB-system. [10A, is a theorem of any

krum.wnoswgna»n%uo_.aﬁﬁw..mwmﬁamm&cwnmcbmonﬂvomomoiu
rules of inference. s

CIA OT—A
OT>A [JA

+.um..wwo<o that a normal system of modal logic is a Ké-system if and
only if it has any of the following theorems.

(a) O(A-B)~DO(0OA~IB)
(®) (DA v OB~ (DA v IB)
(c) O(O(A~B)->C)~> (A B)~>[IC)
4.37. Prove that a normal system of modal Jogic is a K5- -
only if it has either om the following zﬁonan.o%n s a system if and
{a) (A Y B)-([JA v [IB)

(6) (OAA OB)y—> O(OAAB)
4.38. Prove;

() U (and hence 4;) is a theorem of any normal K5-system (see
exercise 4.33).

(%) G is a theorem of any normal K5-system,

4.39. Mnoqo that every normal K'5-system contains the following theorems.
(2) O(OA - [JOA) (2} [(OA= G OA)
() (DA OIA) (@) O(CA=[0A)

4.40. Referring to the preceding exercise, prove that every normal
Kj-system contains the following theorems.

(@ 0OA«~DOO0A (&) OOAOOOA
) OOA-OOA () OCA-OOCA
() OLIA- OTIDA (8) IOA-DOOOA
(@) O0A~06ODA (®) OOA-ONCA

4.41. Notice that the interiors of the four necessitations listed in exercise
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4.39 are all theorems of any normal KT5-system. This suggests the
following result (which leads at once to a solution for exercise 4.39).
Where X is any normal K5-system:

Fz [JA, whenever A is a theorem of KT5.

Prove this by induction on (the set of theorems of) KT'5. For the basis,
show that the necessitations of the axioms Df{, T, and 5 are theorems
of Z; for the inductive part, show that the set {A.: 5 [[JA}is closed under
the rules RPL and RK.

4.42. Prove that every normal K5-system contains the following theorems.

(@) OLA>OA (¢) DA->0O0A
() OOA>COA (@) OO0A->[I0A
4.43. Prove:
(@) 5c and 5O (see exercise 4.33) are theorems of any normal
KD4-systemn.

(3) The schemas O[JA« OL1O0A and [JOA-OCD0A
are theorems of any normal KD4-system.

4.44. Prove that every normal KD5-system contains the following
theorems.
(e) OOA« ODA @) ¢QA=[]0A

445, Prove that every normal K45-system contains the following
theorems.

4!, DMA-O0A 401 CA-OOA
446, Consider the following schemas,
5. SA«[IOA 56 OA<«OOA

Prove that 4! and 4! (see the preceding exercise) are theorems of any
normal K5!- or normal K5 /-system.

4.47. Prove that 4, 4!, 5, and 5O ! are theorems of any normal KD45-
system (see exercises 4.43(a), 4.45, and 4.46).

4.48. Let us say that a sentence A is fully modalized just in case every
atomic sentence in A is within the scope of an occurrence of [J or O
Show that where X is any normal KD45-system and A is fully modalized:

FzAo A and FgAer OA.
"The proof is by induction on the complexity of A.
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4.49. Consider the following rules of inference.

RFM. .mvllv&wmw. where A is fully modalized

RFMG. %H.%@ where A is fully modalized

Using thé results in the preceding exercise, prove:
(@) A normal system is closed under RFM if and only if it is
closed under RFM ¢.
(b) Everynormal KD45-system isclosed under REM and RFM .
(¢) The schemas 4 and 5 are theorems of any normal KD-system
closed under RFM or RFM.¢.

h_..mo.m.nogﬁrm:rmmnrmB»DmObxv EID?P@DE%»ESEE&
any normal KB4-system. :

4.51. Prove that if any of the schemas B, QOA-> O[1OA, and

(JOOA—>JA is a theorem of a normal KT-system, then so are the
others,

4.52. Consider the following schemas.
Te. A=[JA TOe. OAA
D.. ¢A—-QA

F. DAVBE~(CAVIB) FO. (OAAOB)-

AAB
Prove: O(AAB)

(@) Teis atheorem of a normal system if and only if T is.

(8) If any one of D¢, [JA v [J14, {OAA OTA), F, and FO
is a theorem of a normal system, then so are all the others,

(¢) De (and hence the rest in (5)) is a theorem of any normal
KT -system.

(d) B, 4,5, and G are theorems of any normal X7 -system.
(¢) T isatheorem of any normal KDT,-system.

(f) Teisatheorem of any normal KD, T-system.

(&) 4and 4care theorems of any normal KD, 5 -system.

4.53. Consider the following schemas.

TL JA~A TOL OAwmA
DL DA~ 0A
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e (@) T!is a theorem of a normal system if and only if Tl is.
(8) D!is a theorem of any normal KT/-system.
(¢) If any of 4, 4, 5, and 5.is a theorem of 2 normal KD/-system,
then so are the others.
4.54. Consider the sentences P (15 T) and P ([1.1). Prove:

(a) P is a theorem of a normal system if and only if P[] is.
(8) T¢ (and hence Dy, etc., B, 4, 5, and G) is a theorem of any
normal KP-system. :

4,55, Prove that a normal system of modal logic is a KG-system if and
only if it has either of the following theorems.

() OCAVIOOTA

(&) (OTAA OONA) .
The system KT4G is known as S4.2, This system @8@2.5 contains
S4 (KT4) and is (properly) contained in 85 (KT5); see exercise 4.38.
4.56. Consider the following schemas.

H+.  O(OAA OB)-O(OAV OB)

HH+¢$. O (OAAOB)-»DO(QAVIIB)

H+. (O(OA v BYA KAV OBY)—~(OA vV [IB)

HO.  (OAA OB)>(O(OAAB)V O(AA OB))

H. ({AVBYAHOAVBYA (A <|_m_ﬁwmw> v OB)
ArB

HO.  (CAAOBY->(O(AAB)V OO ; OAW_; oB)

L+, {(A-(OB) v (OB~ 14)

Lo, O(QA~> OBV (OB~ OA)

L+, [(OA~B)v [((JB—A)

L+*¢.  [(A- OB)v (B> OA)

L. OA-(OB->C) v OA v{((IC~+B))

Lo. AV (B+0C)vO(A~(C> OB))

Taken as theorems these schemas are all equivalent additions to any

normal KT4-system; that is, any one of them is a theorem of a uQ.B._MH
KT4-system if and only if all the others are. Thus the systems KT4H++,
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-ooy KT4L $ are identical. This system is known as $4.3: it is (properly)
contained in S5 (KT5), and it (properly) contains S4 (K T4). Indeed,
S54.3 is a (proper) extension of the system 54.2 (KT4G) mentioned in
exercise 4.55. Except for properness, these facts are all consequences of
the following results (which are for the reader to Pprove) in conjunction,
with exercises 4.33 and 4.38.
(@) Inany normal system H++ is a theorem if and only if H++¢ is,
(6) In any normal system H+is a theorem if and only if H+¢ is.
(c) In any normal system H is a theorem if and only if H¢ is.
(2) Inany normal system L++isa theorem if and only if Lo s,
(¢) Inany normal system L+ is a theorem if and only if L*¢ is,
(£} In any normal system L is a theorem if and only if L& is.
(&) Inany normal system H+*is a theorem if and only if L++is,
(#) In any normal system H*+ is a theorem if and only if L+ is,
(! In any normal system H is a theorem if and only if L is,
(/) Uis a theorem of any normal KH*-system.
(k) His a theorem of any normal KH*-system.
({) H* is a theorem of any normal KUH-system.
(m) Htis a theorem of any normal KUH+-system.
(n) H+*is a theorem of any normal K4H-system.

In proving (j)-(n) it may help to restate some of them using (a)-(7). In

any case, the foregoing yield the identity of KT4H*, .. KT4LS — e,
54.3 — as the reader should confirm.

(0) Ht*is a theorem of any normal K5-system.

This is enough, given the preceding results, to show that S5 (KT5) is

an extension of 54.3. See also exercise 4.37 with respect to H+ (and hence
the rest).

(2) Gisa theorem of any normal KHt-gystem.

Hrmmmwgoam?m?gnro preceding results, to show that S£.3 is an
extension of 4.2, But also: ‘

() G is a theorem of any normal KDH-gystem.

4.57. Consider the following schemas.

><AO>IYDO>V A->(ODA~ [IA)
(OA>B)V(GA>I08) (A~>DIA)v(OLIA—TIA)
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"The two on the left we indifferently dub 5~, the two on the right, 5-¢
Prove: o
(@) In any normal system 5~ is a theorem if and only if 5-¢ is.
(b) 5 is a theorem of any normal K5-system. .
(c) The schema [(OJ(A—~CA)>A)—> (QOA—>A) is a
theorem of any normal K5--system.

5- produces a system
Added as a theorem to S£ (KT4) the schema 5>~ ces
called S4.4. By (b) S4.4 is contained in S5 (KT5) (in fact it is properly

contained). S4.4 does not, however, contain S54.3 or S4.2 (in exercises

4.55 and 4.56). Added as a theorem to S the schema mem.omn& in (¢)
v.no&anmw asystem that Hughes and Cresswell call S£.1, which is therefore
contained (in fact properly) in S4.4 But S4.1is not extended wM m&.w”
or S4.3. N.B. this S4.1 is not the same as that described by McKinsey;
see the following exercise.

4.58. Consider the following mnr@Bw.
Ge. [O0A->OOA

Prove:

(@) Inany normal system the schema (A > [JA)is a theorem

if and only if the schema Geis.
(b) D isatheorem of any normal KG-system.

(¢) Inany normal system the schema O(JA« $A)is a theorem

if and only if the schema Geis.

K T4G, is the system called S4.1 by z&ﬁbm&.ﬁ It is clearly an nﬁMESM
of S¢ (KT4)—in fact a proper one ?ﬂwoﬁapmm OOAw ODO& nHmm
O OA« 0O A would be theorems of 54, which they are not). Bu :
S$4.1'is not included in S5 (KT5) (if it were, De ﬂuozE bea &._885 %m
S5, which it is not). S4.7 is equivalently axiomatized by adding to

any of the following schemas.

o0B-10A) O(OA~>A)
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(@) 4is a theorem of any normal KGr-system.

(8} Every normal KGr-system is closed under RGr.

(¢) Gr is a theorem of any norma! K4-system that has the rule
RGr.

Is the system KGr an extension of S4 (K 74)? Is it included in S5 (KT5)?

4.60, Use the erasure transformation e from exercise 1.27 to prove the
consistency of the fourteen systems beyond K on the diagram ir'figure’
4.1. Identify some consistent normal modal logics for which € cannot be
deployed to prove consistency. Prove the consistency of these examples,

4.61. Amplify the proof of the lemma in exercise 4.13 to show that the
systems KD, KD,, and KD/ have the rules (a)(f) listed there.
4.62. Consider the rule (a) from exercise 4.13:

oA
A

Of the fifteen systems in figure 4.1 only K, KD, KT, K4, KDB, KD4,
KTB, KT4, and KT5 have this rule. Exercise 4.13 and 4.61 cover the

first two cases, and it is obvious that any K T-system has the rule (if DA
is a theorem of a system containing [JA—> A, then A is a theorem of the
system). The cases of K4 and KD4 must await the developments in
chapter 5. Prove that every normal K DB-system has the rule.

4.4. Modalities

A modality, once again, is any sequence of the operators 1, [, and O,
including the empty sequence -. Within a system of modal logic two
modalities ¢ and yr are equivalent if and only if for every A the sentence

PA YA

is a theorem; otherwise ¢ and ¥ are said to be distinct. For example,

in the system .S4 we have the theorem CJA« A, so in SZ the
modalities [] and [J[7] are equivalent,

Theorems like [JA <« [J[A are often called reduction lazos, since in
virtue of them one modality is reducible to another.

In some systems of modal logic it happens that every modality is
equivalent to one or another in a finite class. For example, in the system
55 every modality is equivalent to one of > L1, O, or their negations, 7,

D(AVE)>(COAV OOB)  (OOAADOB)>O(AAE)
This is for the reader to prove.

4.59. Consider the following schema and rule of inference.

A—>A
Gr. [(JA~A)»~[A  RGr. m.w|
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=11, T10. Thus S5 is said to have at most six distinct modalities (three
affirmative, three negative). To see this it is sufficient to note that S5
contains the following reduction laws.

(1) JA-D0OA

@ CAeOOA

() 0A~0DA

4 CA-[OCA .
Because of these every modality in S5 reduces to one of the specified six.

An example may help to make this clear. Suppose we have the sentence
000 00A

First we put the modality 1[J[J<¢ 1[]¢ in a standard form by ,,wmmum
Df¢, Df[], and REP to bring the negation signs all to the outside -
successively,

0070004, 10100004, 1T100000A

— and then reducing the number of occurrences of 1 to zero {as in this
case) or one by PL:

¢O00O0A

According to reduction law (2) the modality ¢ ¢ can be replaced by &
alone, yielding :

¢O0OoA

By (3), ¢ becomes [1:
OO¢A

By (1), O] becomes []:
aoa

And 1§ reduces to & by (4):
QA

Thus the modality I[J]T] ¢ [ < is shown to be equivalent to $. In 2
similar way one can show the modality “ICJO~10¢ [0 to be equi-
valent to 71[J; details of the reduction are left to the reader.

Of course the presence of reduction laws can only put an upper bound
on the number of distinct modalities in a system. T'o show that S5 has at
least —and hence exactly - six distinct modalities it is necessary to
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establish that there are no further reduction laws in the system (for
example, that [JA « QA is not also a theorem). In general other means
are required to fix a lower bound (possibly infinite) for the number of
distinct modalities in 2 modal logic. We return to this point in chapter 3.

Systems of modal logic can have the same distinct modalities but differ
with respect to the pattern of implications among them. S5 and the
system KD45 provide an example of this; each has » [, <, and their
negations, but the S5-theorems [JA— A and A— A are absent from
KD45. The diagrams in figures 4.7 and 4.8 chart the differences {amongthe
affirmative modalities; for their negations, reverse the arrows). The
systems K D5, K45, and KB4 provide another example; compare figures
4.4, 4.5, and 4.6. Moreover, systems may be different even though they.
have the same distinct modalities and the same patterns of implications
among them. Some examples of this situation will be found in the
exercises at the end of the section.

It turns out that of the normal systems that can be formed using D, -
T, B, 4, and 5, only seven have a finite number of distinct modalities:
KT4, K5, KD5, K45, KB4, KD45, and KT5. The following theorems
give the details.

THEOREM 4.22. Every normal K Td-system has at most Jourteen distinct
modalities, viz. -, [, O, 00, OO, 10O, OO0, and their

negations, with tmplications among the affirmative seven us
diagramed in figure 4.2,
Proof. To show that a normal K74-system has at most the specified
Figure 4.2. Modalities in normal K T4-systems.
a

o
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fourteen distinct modalities it is sufficient to show the following reduction
. Iaws to be theorems of the system,

DA-OOA CA=OOA

OOA- OOOMOA O0A-TONCA
For then every modality will be reducible to oe of those specified (as
the reader should confirm). The laws on the right are dual to those on
the left, and [JA +» [J[JA is obvious in view of T and 4. So it suffices to
establish GIA« O[1ODA. For left-to-right: .

1. DA- OOA TO
2. 00A-OO00A  1L,RM
3. OJA->[OA 4

4. DA-OC0OA 2,3, PL
5. 00A->0000A 4,RMO
And for right-to-left:

L O00A>ODA T
2.0000A+000A LRMO
3. OO0A>ODA 40

4. 0000A>ODA 2,3, PL

For the eight implications diagramed in figure 4.2 we need consider
only the top four; the others are duals. Of these four, two are T and one
appears on line 4 of the first proof above. The remaining theorem,
¢ OA~> CIOA, follows from T by RM O and RM.

Thus the system S4 — i.e. K74 itself — has at most fourteen distinct
modalities. In chapter 5 we prove it has exactly that many.

THEOREM 4.23. Every normal Kb-system has at most fourteen &..an.amu
modalities, viz. -, U1, ¢, O, ¢, 00 O_M_u and their
negations, with implications among the affirmative seven as
diagramed in figure 4.3, .

Proof. For this result we require the following reduction laws.

DDA-OOOA  O00A=QO0A
DOA«OOOA  ©CA-QOOA
O0A-OOOA OCA-OCOA

O0A-DOCA

O0A=OOOA
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"These laws might be summed up by the motto Drop the middle modality.
"The conditional halves of those on the left appear below on lines 2, 3,
and 9-14; those on the right follow by duality. The last six lines below
make implicit appeal to ($A->[1B)->([JA->(IB) and (CA~[IB)
~>{OA- OB). Because both are theorems of any normal system
(exercise 4.7 (o, p)) we mark these steps K.

1. OA-»A 50

2.000A-00A L,RM
3. 0ODA>OOA 1, RMO
4 OOA-[J0OA 5

5. OD_HE@DD». 50

6. OOA-ODA 2,4, PL
7. 0¢0A-~-0OO0A 6, RM
8. o0A-DO0A 4,7, PL
9. 0DA->DIOMA 4K
10. O0A->OOA 4, K
. O0O0A-3A 5K

12. oO0A-¢DOA 5K
13.00A-O00A  8,K
4. OOA->OQMNA 8, K

As to the six implications pictured in figure 4.3, first note that those
on the right are duals of those on the left. Of the latter, O [JJA~> 1A

Figure 4.3, Modalities in normal K35-systems.

DD\OD/O

D/Do\oo
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appears on line 6 above, and the remaining two follow from the theorems
5 and 5¢ by the K-theorems mentioned in the last paragraph.

THEOREM 4.24. Every normal KD&-system has at most ten distinct
modalities, viz. -, [, &, one from each of the pairs []0], ¢L1
and O O, [0, and their negations, with implications among
the affirmative five as diagramed in figure 4.4.

Proof. By theorern 4.23 2 normal KD5-system has at most the distinct
modalities, and at least the implications among them, pictured in figure
4.3. But in addition to the reduction laws in the proof above,
every normal KDj§-systern contains the laws [I[JA« OMA and
O OA - [TJOA; each is the theorem D in one direction, and the con-
verses belong to any normal K5-system (as in figure 4.3). Finally, D
gives the implication from [Jto . Hence the modalities and implications
in figure 4.4.

THEOREM 4.25. Every normal K45-system has at most ten distinct modal-
ities, viz. -, (1, O, (00, OO, and their negations, with
implications among the affirmative five as diagramed in figure
4.5.

Proof. By theorem 4.23 it is sufficient to point out that a normal
Kd5-system contains the reduction laws [JA~ [J[JAand QA= O OA,
so that we may delete (][] and ¢ ¢ from the diagram infigure 4.3. The
result is figure 4.5. :

Figure 4.4. Modalities in normal KD5-systems.
oo/en
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THEOREM 4.26. Every normal KBd-system has at most ten distinct

».__Smwm%wr viz. », [, ¢, ¢, O, and their negations, with
implications among the affirmative five as diagramed in figure 4.6,

Proof. Recall (theorem 4.18) that 5 is 2 theorem of any normal KB4-
system, so that every such system is an extension of K45. By theorem
4.25, then, a normal KB¢-system has at most the distinct modalities -
.D. A.v, _H_ ¢, ¢ [, and their negations. The only new elements are nﬂm
implications involving the modalities - and 1. Thus figure 4.6,

Figure 4.5. Modalities in normal E45-systetns.

Figure 4.6. Modalities in normal K B4-systems.
o0
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THEOREM 4.27. Every normal KD45-system has at most .na wmmwa”:&
modalities, viz. -, [}, O, and their negations, with implications
ameng the affirmative three as diagramed in figure 4.7.

Proof. By the proofs for theorems 4.24 and 4.25 every normal KD45-
system has the reduction laws

OA«OO0A QA-OOA
OA«OOA OA=[IOA
as well as the implication [JA - {A. Thus a system of this kind has at

most the distinct modalities and at least the implication laid out in
figure 4.7.

TueoreM 4.28. Every normal KT5-system has at most .U,H..a ﬁ.w.&mz&
modalities, viz. +, [, <, and their negations, with implications
among the affirmative three as diagramed n figure 4.8.

Proof. By theorem 4.21 every normal KT5-system contains D mna 4.
So by theorem 4.27 every such system contains at most the Qmﬂ_.znﬁ
modalities -, [, <, and their negations. In virtue of T and T< we may
add arrows to and from - in figure 4.7. The result is figure 4.8. Alter-
natively, we may note that a normal KT5-system omsﬂmﬁm w and 4
(theorem 4.21) and so has all the reduction laws and uﬁmromsobm had
jointly by normal KT4- and normal KB4-systems. >ﬁ@€5m. theorems
4.22 and 4.26 - or, combining figures 4.2 and 4.6 — we arrive at the
desired result.

Thus, as we said at the beginning of the section, both KD45 and KT ]
(S5) have at most the six modalities -, [J, ¢ ™% I_D_ mbg .JO. .Hrw
moral about modalities in systems of this sort is that iteration is vacuous:
any sequence of (s and {s can always be reduced to its innermost
term.

Figure 4.7. Modalities in normal KD45-systems.
O — ~$

Figure 4.8. Modalities in normal KT5-systems.
d O

L.
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KXERCISES

63. Show that the modalities ¢ 1[G -10J and T[] are equi-
alent in S5 (KT5).

4.64. Using the reduction laws mentioned in the proof of theorem 4.22,
show that every modality in 2 normal KT4-system is reducible to one of
- [, <, [0, 00, OO, OO, or the negation of one of these.

4.65. Prove that normal KD4/- and normal KD4U-systems have at most -
- fourteen distinct modalities, viz. -, [, ¢, [J¢, OO, OO, ©0C,
and their negations, with implications among the affirmative seven as
diagramed in figure 4.9. (See exercises 4.33(B) and 4.43(3)).

4.66. Prove that normal KT4G- and normal KT4H+-systems have at

most ten distinet modalities, viz. -, [, ©, 116, O[O, and their negations,
with implications among the affirmative five as diagramed in figure 4.10,
(See exercises 4.43, 4.55, and 4.56.)

4.67. Prove that normal KD4H+*-systems have at most ten distinct

modalities, viz. -, [J, ¢, [, O[], and their negations, with implica-

tions among the affirmative five as diagramed in figure 4.11. (See exercises
4.43 and 4.56.) ‘

4.68. Prove that normal KT4G systems have at most ten distinct
modalities, viz. -, [, O, [10, O, and their negations, with implica-
tions among the affirmative five as diagramed in figure 4.12. (See exercises
4.43 and 4.58.) Note that the modalities (O[] and G[J¢ are equi-

Figure 4.9. Modalities in normal KD4!- and normal KXD4 U-systems.
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Figure 4.10. Modalities in normal KT4G- and normal KT4H*-
systems.
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Figure 4.11. Modalities in normal KD4H*-systems.
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Figure 4.12. Modalities in normal KT4G ~systems.
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valent, respectively, to [1¢ and O] in normal KT4G,-systems,
whereas in normal KT4G- and normal KT4H*-systems it is the other
way around.

4.69. Prove that normal K4G -systems have at most ten distinet modal-
ities, viz. -, [, ¢, [1¢, O, and their negations, with implications
among the affirmative five as diagramed in figure 4.13. (See exercises 4.43
and 4.58.) Cornpare the reduction laws here for [T and (G[1¢ with
those in normal KD4H"*-systems.

4.70. Prove that normal K§/-systems have at most six distinct modalities,
viz. , [1, ¢, and their negations, with implications among the affirmative
three as in the diagram in figure 4.7 for normal KD45-systems. (See
exercise 4.47.)

4.71. Prove that normal extensions of KD/B, KDIB, KD!4, KD!4,,

KD!5, and KD, 5, have at most four distinct modalities, viz. -, one of
[ and ¢ and their negations. {See exercises 4.33(d), 4.38, 4.52, and 4.53.)

4.72. Prove that normal extensions of KT/ (and hence KDT,and KD, T)
have at most two distinct modalities, viz. - and 1. (See exercises 4.52
and 4.53.) : :

4.73. Describe a normal modal logic that has just one (distinct!) modality.

4.5. Maximal sets in normal systems

We bring this chapter to a close by stating and proving a few theorems
about maximal sets of sentences (section 2.6) in normal systems of modal

Figure 4.13. Modalities in normal K4G -systems.
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Hommo..H.row_ﬁvoaﬁboao?rnwnﬂrnouoﬁmém_voooﬁmp@@mnobnmboruﬁﬁn
5, where they are useful in several proofs. : .

THEOREM 4.29. Let ' and A be maximal sets of sentences in a normal
system 2. Then:

M {A: DAeT}c Aif{OA: AeAicT;
and more generally, for any k = 0,
(@) {A: O*A el c Aff {Q*A: AeA} e I

Proof. Let " and A be Z-maxirmal sets of sentences, and suppose that -
% is normal. We prove (1) only; (2) is a simple generalization. For
left-to-right, assume that {A: [JA &I’} < A and that A is in A. We wish
to show that I" contains (A, By theorem 2.18(5), “1A is not in A. So
[J1A is not in T, which means that ~1[]71A is a member of I'. Because
T is normal, T' contains Df¢, and so—by theorem 2.18(9)— QA is
also in T, For right-to-left, assume that {GA: AeA} < I and that (JA
is in . Since I" contains DF[J, 1O™A is in T, and so A is not.
Hence T1A is not a member of A, which means that A is, which is what
we wished to show.

Note that when & = { the preceding theorem means that for Z-maximal
sets [ and A, I'< A if and only if Ac T, and so I' = A just in case
I's A

The next theorem may be regarded as an extension, for normal modal
logics, of theorem 2.18 (particularly parts (3)(9)).

THEOREM 4.30. Let T be a maximal set of sentences in a normal system
Z. Then:

(1) A eT iff for every Maxgz A such that {A: DAeTl} <4,
AeA.

(2) CAeT iff for some Maxy A such that {GA: AeA}c T,
AeA.

Proof. Suppose I is a normal system and that I" is a Z-maximal set of
sentences.
For (1). From left to right the theorem is trivial, for if [JA €l and
{A:[JAel} = A then AeA.
The reverse is thus the interesting direction. Suppose that A €A, for
every E-maximal set A such that {A: [JAeT'} € 4, i.e. that A belongs
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to every Z-maximal extension of the set {A: [JA &I} By a corollary to

H.mnag_.umﬁb.w lemma, theorem 2.20 (1), this means that A is E-deducible
_from this set of sentences; i.e.

{A: JAeT} FA.

This in turn means that there are sentences A,, ..., A, (# > 0) in the set
{A: [JA eIt that are such that

Fe(AlA . AA)—>A,
Because Z is normal, we may infer by RK that
Fe{[1AL A ... A [JA,)—>[IA.
But I' contains each of [JA,, ..., [JA,, so [JA is E-deducible from I';

ie.

kDA
By theorem 2.18(1) this means that
CAeT,

which was to be proved.
For (2):
QAeTif1[J1Ael
- DI and theorem 2.18(9);
iff [JA¢T
~ thieorem 2,18 (5);
iff for some MaxzA such that {A: [JAel} <A,
TAEA
~ part (1); .
iff for some MaxzA such that {GA: AeA}<T,
A ¢A
—theorem 4.29;

iff for some Max; A such that {QA: AeA} T,
AcA

- theorem 2.18(5).
THEOREM 4.31. Let I' and A be maximal sets of sentences in a normal
system 2., Then for every k > 0:

{A: (1A eI} < A iff for some Max E,
{A: AeT} < Eand {A: (*A€E} < A.

Proof. We assume that I' and A are maximal sets of sentences in a
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normal modal logic . From right to left the proof is straightforward,
and we leave it as an exercise. For left-to-right we suppose that {A:
[Pe+A €T} = A, to show that there exists 2 Z-maximal set E such that

{A:OAeTicEand {A: [JFAcE} = A,
i.e. by theorem 4.29, such. that
{A:JAelt cEand {¢*A: AcA} < E.

In other words, we wish to show that there is a Z-maximal set of sentences
E that includes the set

{A: DA U {O*A: AecA}

By Lindenbaum’s lemima (theorem 2.19) this is equivalent to showing
that this union is E-consistent.

Let us suppose otherwise, and argue to a contradiction. If the set is
-inconsistent, then | is E-deducible from it, and this in turn means
that for some m, # > 0 there are sentences By, ..., B,, in {A : [JA €T} and
sentences OFC,, ..., OFC,, in {O¥A : A e A} such that

Fe(BiA ... ABLA OFCy A oo A OFC)—> L.

By a rule of inference present in every normal modal logic (see exercise
4.11) we infer that

Fe(CIBLA ... A OB) = [ CiA ... AC,).

Because each of [1B,, ..., (1B, is in T, the consequent [J¥*17(C,A
...AC,) is T-deducible from T, and so belongs to I'. By our orginal
assumption, then, A contains 7(Cy A... A C,). ButAcontains CyA ... AC,
too, since this is the consequent of the theorem (CyA ... A )= (CyA
... AC,), for which A contains each conjunct of the antecedent. So A is
T-inconsistent, which is a contradiction, and we may consider the proof
complete, _

EXERCISES

4.74. Prove part (2) of theorem 4.29.
4.75. Give the proof for right-to-left in theorem 4.31.

4.76. Prove the following generalizations of theorem 4.30, for any & > 0,
where I is 2 maximal set of sentences in a normal system .

4.5. Exercises 161
(a) (*A €T iff for every Maxy A such that {A: [TAel} < A
AgA. _

() O*AeT iff for some Maxz A such that {Q*A: AeA} e T,
AeA.

4.77. Let Z be a normal system, and define the relation R on the set of
T-maximal sets of sentences by:

TRAfF{A: (JA€l} € A,

(Thus, by theorem 4.29, I'RA if and only if {OA : A €A} € I') Prove:

(a) Ris serial if ¥ contains D.

(6) R is reflexive if & contains T.
(¢) Ris symmetric if Z contains B.
(d) R is transitive if T contains 4.
() Ris euclidean if Z contains 5.

(See section 3.2 for these properties of R.)




