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2
ABSTRACT STRUCTURES

We begin with some remarks about category-theoretical definitions. These are
characterizations of properties of objects and arrows in & category solely in terms
of other objects and arrows, that is, just in the language of category theory.
Such definitions may be sald to be abstract, structural, operational, relational,
or perhaps external {as opposed to internal). The idea is that objects and arrows
are determined by the role they play in the category via their relations to other
objects and arrows, that is, by their position in a strueture and not by what
they %are” or “are made of” in some absolute sense. The free monoid or category
construction of the foregoing chapter was an example of one such definition, and
we see many more examples of this kind later; for now, we start with some very
simple ones. Let us call them abstract characterizations. We sce that one of the
basic ways of giving such an abstract characterization is via a Universal Mapping
Property {(UMP).

2.1 Epis and monos

Recall that in Sets, a function f: A — B is called

injective if fla) = f{a’) implies a = &' for all ,a’ € 4,
surjective if for all b & B there is some a € A with fla) =b.

We have the following abstract characterizations of these properties.
Definition 2.1. In any category C, an arrow
F:A- B
is calted (i,
monemorphism, if given any g,h : C — A, fg= fh hnplies g =k,

f

C A B

h

epimorphism, if given any {,7: B — D, if = jf implies 1 = j,

i
a—4 . p——p
J
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We often write f : A »+ B if f is a monomorphism and f: A - B if fis an
epimorphism,.

Proposition 2.2. A fonclion [ : A — B belween sets is monic just in case it
is injective.

Proof. Suppose f: A+ B. Let a,a’ € A such that a # o', and let {2} he any
given one-element set. Consider the functions

a,a: {z} - A
where
a{x) = a, a(z) =

Since & # o, it follows, since f is a monomorphisim, that fa # fa’. Thus,
fla) = (fa)(z)  {fu')(x) = f(a'). Whence f is injective.

Conversely, if f is injective and g,k : € — A are functions such that g # h,
then for some ¢ € C, g(c} # h{e). Since f is injective, it follows that f(g(c)) 7&

fih(e)), whenee fg # fh

Erample 2.3. In many categories of “structured sets” like monoids, the monos
are exactly the “injective homomorphisms.” More precisely, a homomorphism
I+ M — N of monoids is monic just if the underlying function |h| : Jad] —
N1 is monie, that is, injective by the foregoing. To prove this, suppose It is
monic and take two different “elements” x,y : 1 — |M|, where 1 = {s} is
any one-clement set. By the UMP of the free monoid Af(1) there are distinct
corresponding homomorphisms Z, j + M{1) — M, with distinct compesites h o
T hojf s M{1) — M — N, since I is monic. Thus, the corresponding “elements”
ha,hy 1 — N of N are also distinct, again by the UMP of A/(1}.
T h
MU)yr—r M ——— N

]

!
e —

¥
Conversely, if [h] : {M] — |N| is monic and f,g : X — M are any distinct
homemorphisms, then |f},lg] : |X| — [M] are distinet functions, and so [#] o
Il 1hl o tgl £ |X] — [a]| — V| are distinct, since || is monic. Since therefore
lhofl=|k|o|f] # |kl elg] =heoyg|, we also must have ho f# hog.

A completely analogous situation holds, for example, for groups, rings, vector
spaces, and posets. We shall see that this fact follows from the presence, in each
of these categories, of certain objects like the free monoid A(1}).

Erample 2.4. In a poset P, every arrow p < ¢ is both monic and epic. Why?
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Neow, duaily to the foregoing, the epis in Sets are exactly the surjective
functions (exereizel); by contrast, however, in many other familiar categories they
are not just the surjective homomorphisms, as the following example shows.

Erxample 2.5. In the category Mon of monoids and monoid homomorphisms,
there is a monic homomorphisim

N—Z

where N is the additive monoid (N, +, 0} of natural numbers and 7 is the additive
monoid (Z,+,0) of integers. We show that this map, given by the inclusion
N C Z of sets, is also epic in Mon by showing that the following holds:

Given any moneid homomorphisms f,g : (Z,+,0) — (&, *,u}, if the
restrictions to N are equal, f |y=g |x, then f = g.

Note first that

flen) = (=1 +(=Ya+ -+ (1))
= s f{-Lax = f-1)a
and similarly for g. I, therefore, suffices to show that f{—1} = g{(—1). But

S = f(=1)=u
= J(=1) »g(0)
= f(-1)*g(1 - 1)
= f(~1)* g{1) xg(-1)
= f{-1)= f(1) = g(-1)
=J{=1+1)+g(-1)
= f{0)=g{-1)
= u=*g(-1)
=g{-1).

Note that, from an algebrate point of view, a morphism ¢ is epic if and only

if e cancels on the right: we = ye implies @ = y. Dually, m is monic if and only
if m cancels on the left: max = my implies © = y.

Proposition 2.6, Fvery iso is bolh monie and cpic.

Proof. Consider the following diagram:

& m
B

A

¥
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If m is an isomorphism with inverse e, then mz = my implies ¥ = emz =
emy = y. Thus, m is monic. Similarly, e cancels on the right and thus is epic. O

In Sets, the converse of the foregoing also holds: every mono-epi is iso. But this
is not in general true, as shown by the example in moneids above.

2.1.1 Sections and retroctions
We have just noted that any iso is both monic and epic. More generally, if an
arrow
f:A—B
has a left inverse
g:B— A, gf=14
then f must be monic and g epic, by the same argument.

Definition 2.7. A spiit mono (epi) is an arrow with a left (right} inverse. Given
artows ¢ : X — A and s : A — X such that es = 1,4, the arrow s is called a
section or splitting of e, and the arrow e is called a retraction of 5. ‘The object
A is called a retract of X.

Since functors preserve identities, they also preserve split epis and split
monos. Compare example 2.5 above in Mon where the forgetful fmctor

Mon — Set
did not preserve the epi N — Z.
Brxample 2.8. In Sets, every mono splits except those of the forn
#— A

The condition that every epi splils is the categorical version of the axiem of
choice. Indeed, consider an epi

e B X,
We have the family of nonempty sets:
B = Yo}, zeX
A choice function for this family {F)leex is exactly a splitting of e, that is, a
funetion s : X — E such that es = ly, since this means that s(x) € £, for all
ze X,
Conversely, given a family of nonempty sets,
(E:c)a:e.\’

take B = {{=,y) |x € X, y € E;} and define the epie: £ — X by (z,4) — =.
A splitting s of € then determines a choice function for the family.
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The idea that a “family of objects” (E;)zex can be represented by a single
arrow ¢ : B — X by using the “fibers” e~ !(x} has much wider application than
this, and is considered further in Section 7.10.

A notion related to the existence of “choice functions” is that of being
“projective”: an object P is said to be projective if for any epi e 1 B —» X
and arrow f: P — X there is some (not necessarily unique} arrow fir—B
such that eo f = f, as indicated in the following diagram:

E

x

P- X

One says that [ lifts across e. Any epi into a projective object clearly splits.
Projective objects may be thought of as having a more “free” structure, thus
permitting “more arrows.”

The axiom of choice implies that all sets are projective, and it follows that
free objects in many (but not allf) categories of algebras then are alse projective.
The reader should show that, in any category, any retract of a projective object
is also projective.

2.2 Initial and terminal objects

We now consider abstract characterizations of the empty set and the one-
element sets in the category Sets and structurally similar objects in general
categories.

Definition 2.9. In any category C, an object
(} is initial il for any object C there is a unique morphism
00— C,
1 is terninal if for any object C there is & unique morphism
-1

As in the case of monos and epis, note that there iz a kind of “duality” in
these definitions, Precisely, a terminal object in C is exactly an initial object in
C*P, We consider this duality systematically in Chapter 3.

First, observe that since the notions of initial and terminal object are simple
UMPs, such objects are uniquely determined up to isomorphism, just like the
free monoids were.

Proposition 2.10. Initial (ferminal) objects are unique up to isomorphism.
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Proof. In fact, if ¢ and C* are both initial {terminal) in the same category, then
there is a unigue isomorphism C — G, Indeed, suppose that 0 and 0" are both
initial objects in some category C; the following diagram then makes it clear
that 0 and ' are uniquely isomorphic:

For terminal objects, apply the foregoing to CoP. O
Ezample 2.11.

1. In Sets, the empty set iz initial and any singleton set {2} Is terminal.
Observe that Sets has just one initial object but many terminal objects
(answering the question of whether Sets 2 Sets®?).

2. In Cat, the category 0 (no objects and no arrows} is initial and the category
1 (one object and its identity arrow) is terminal.

3. In Groups, the one-element group is both initial and terminal (similarly
for the category of vector spaces and lnear transformations, as well as
the category of monoids and monoid homomorphisms). But in Rings
{commutative with unit}, the ring Z of integers is initial (the one-element
ring with 0 =1 is terminal}.

4. A Booleun algebra is a poset B equipped with distinguished elements 0, 1,
hinary operations a Vb of “join” and a Ab of “meet,” and a unary operation
—b of “complementation.” These are reguired to satisfy the conditions

0<a

a<l
a<e and b<e iff avb<e
ce<a and c<b iff e<aib
a<-b iff aAb=0

- = g

There is also an equivalent, fully equational characterization not involving
the ordering. A typical example of a Boolean algebra is the powerset
P(X} of all subsets A € X of a set X, ordered by inclusion 4 € B,
and with the Boolean operations being the empty set ¢ = @, the whole
set 1 = X, union and intersection of subsets as join and meet, and the
relative complement X — 4 as —A. A familiar special case is the two-element
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Boolean algebra 2 = {0, 1} {which may be taken to be the powerset P(1}),
sometimes also regarded as “truth values” with the logical operations of
disjunction, conjunction, and negation as the Boolean operations. Tt is an
initial object in the category BA of Boolean algebras. BA has as arrows
the Boolean homomorphisms, that is, functors h : B — B’ that preserve
the additional structure, in the sense that £(0) = 0, A{a v b) = h{a)} V k(b),
ete. The one-element Boolean algebra {i.e., P(0)) is terminal.

5. In a poset, an object is plainly initial ilf it is the least element, and terminal
#T it is the grealest element. Thus, for instance, any Boolean algebra has
both. Obviously, a category need not have either an initial object or a
terminal object; for example, the poset {Z, <) has neither.

6. For any category C and any object X € C, the identity atrow 1x : X — X
is a terminal object in the slice category C/X and an initial object in the
coslice eategory X/C.

2.3 QGeneralized elements

Let us consider arrows into and out of initial and terminal ebjects. Clearly only
certain of these will be of interest, but those are often especially significant,

A set A has an arrow into the initial object A — O just if it is itself initial,
and the same is true for posets. In monoids and groups, by contrast, every object
has a unique arrow to the initial object, since it is alse terminal.

In the category BA of Boolean algebras, however, the situation is guite
different. "The maps p : B — 2 into the initial Boolean algebra 2 correspond
uniquely to the so-called ultrafilters U in B. A filter in a Boolean algebra B is a
nonempty subset F C B that Is closed upward and under meets:

ecFanda<b implies bEF
ac Fandbe F implies anbel

A filter F is mazimal if the only strictly larger filter £ < I is the “improper”
filter, narnely all of B, An ultrafilier is a maximal Blter, It is not hard to see that
a filter F is an ultrafilter just if for every clement & € B, either b€ For —b € F,
and not both (exercise!). Now if p: B — 2, let U, = p~1(1) to get an ultrafilter
Up, C B. And given an ultrafilter U C B, define py(b) = 1 iff b € U to get a
Boolean homomorphism py : B — 2. This is easy to check, as is the fact that
these operations are mutually inverse. Boelean homomorphisms B — 2 are also
used in forming the “truth tables” one meets in logic. Indeed, a row of a truth
table corresponds to such a homomorphism on a Boolean algebra of formulas.

Ring homomorphisms A — Z into the initial ring Z play an analogous and
equally important role in algebraic geometry. They correspond to se-called prime
ideals, which are the ring-theoretic generalizations of ulérafitters.
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Now let us consider some arrows from tertninal ebjects. For any set X, for
instance, we have an isomorphism

X = Homges(1, X)

between elements 2 € X and arrows & : 1 — X, determined by (%) = a, from
a terminal object ! = {x}. We have already used this correspondence several
times. A similar situation holds in posets (and in topological spaces), where the
arrows 1 — F? correspond to elements of the underlying set of a poset (or space)
P. In any calegory with a terminal object 1, such arrows 1 — A are often called
global elements, or points, or constants of A. In sets, posets, and spaces, the
general arrows A — B are determined by what they do to the points of 4, in
the sense that two arrows f,g: A — B are equal if for every point @ : 1 — A the
composites are equal, fa = ga.

But be careful; this is not always the casel How many points are there For—
an object M in the category of monoids? That is, how many arrows of the form
1 — M for a given monoid A7 Just onel And how many points does a Boolean
algebra have?

Because, in general, an object is not determined by its points, it is convenient
to introduce the device of generalized elements. These are arbitrary arrows,

z: X — A
(with arbitrary domain X), which can be regarded as generalized or variable
elements of A. Computer scientists and logicians sometimes think of arrows
1 — A as constants or closed terms and general arrows X — A as arbitrary
terms. Summarizing:

Erample 2.12.

1. Consider arrows f,g: P — @ in Pos. Then f =g ififorallaz:1 — P, we
have fx = go. In this sense, posets “have enough points” to separate the
ATTOWS,

2. By contrast, in Mon, for homomorphisms h,i: M — N, we always have
he = g, for all £ : 1 — M, since there is just one such point z. Thus,
monoids do not “have enough points.”

3. But in any category C, and for any arrows f,g : € — D, we always have
f=giffforallz: X — C, it holds that fz = ga {why?). Thus, all objects
have enough generalized elements.

4. In fact, it often happens that it is enough to consider generalized elements
of just & certain form 7" — A, that i, for certain “test” objects T'. We shall
consider this presently.
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Generalized elements are also good for “testing” for various conditions, Consider,
for instance, diagrams of the following shape:

J.\T B

:

ﬂ:f

The arrow f is monic iff x # 2 implies fx # fa for all 2,2/, that is, just if f is
“injective on generalized elements.”
Similarly, in any category C, to test whether a square commutes,

f

A B
9 o
D c
B

we shail have of = g just if afa = Ggz for all generatized elements z: X — A
(just take z = 14 : A — A},

Exzample 2.13. Genoralized elements can be used to “reveal more structure” than
do the constant elements, For example, censider the following posets X and A:

X={x<ye<z}
A={a<b<e}
There is an order-preserving bijection f: X — A defined by

f(.’U):(I, f) =8 fa)=c

It is easy to see that f is both menic and epic in the category Pos; however, it is
clearly not an iso, One would like to say that X and A are “different structures,”
and indeed, their being nonisemorphic says just this, But now, how to prove that
they are nof isomorphic {say, via some other X — A)? In general, this sort of
thing can be quite difficult.

One way to prove that two objects are not isomorphic is to use “invarianis”:
attributes that are preserved by isomorphisms. If two objects differ by an
invariant they cannot be isomorphic. Generalized elements provide an easy way
to define invariants. For instance, the number of global elements of X and A
is the same, namely the three elements of the sets. But consider instead the
“2_gloments” 2 — X, from the poset 2 = {0 < 1} as a “test-object.” Then
X has 5 such clements, and A has 6. Since these numbers are invariants, the
posets cannot be isomorphic. In more detail, we can define for any poset P the
numerical invariant

|Hom{2,P)] = the number of elemonts of Hom(2, P).
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Then if P 22 @, it is easy to see that |Hom(2, P}| = |Hom{2,Q)], since any
isomorphism

P - Q
7
also gives an iso
iy
Hom(2, P} - Hom{2,Q)
T+
defined by composition:
W(fy=if
Jlg) =g

forall f:2 — Pandg:2-» Q. Indeed, this is a special case of the very general
fact that Hom(X, —} is always a functor, and functors always preserve isos.

Example 2.14. As in the foregoing example, it is often the case that generalized
clements £ : T — A “based at” certain objects T" are especially “revealing.” We
can think of such clements geometrically as “figures of shape 7" in A,” just as an
arrow 2 — P in posets is a figure of shape p < p’ in P, TFor instance, as we have
alveady seen, in the category of monoids, the arrows from the lerminal inonoid are
entirely uninformative, but those from the free monoid on one generator M({1)
suffice to distinguish homomorphisms, in the sense that two homomorphisms
fig + M — M’ are equal if their composites with all such arrows are equal.
Since we know that M{1) = N, the monoid of natural numbers, we can think of
generalized elements A(1) — A based at M(1) as “figures of shape N” in M.
In fact, by the UNMP of M (1), the underlying set |Ad| is therefore (isomorphic
to) the collection Hompgon{N, M) of all such figures, since

M| = Homges(1,|3}) 2 Hompjon(N, M).

In this sense, a map from a monoid is determined by its effect on all of the figures
of shape N in the monoid.

2.4 Products

Next, we are going to see the categorical definition of & product of two objects ina
category. This was first given by Mac Lane in 1858, and it is probably the eatliest
example of category theory being used to define a fundamental mathematical
notion.

By “define” here I mean an abstract characterization, in the sense already
used, in terms of objects and arrows in a category. And as belore, we do this by
giving a UMP, which determines the struclure at issue up to isomorphism, as




“02-Awodey-c2” — 2009/12/18 — 17:10 — page 39 — it

ABSTRACT STRUCTURES 39

usual in category theory. Later in this chapter, we have several other examples
of such characterizations.

Let us begin by considering products of sets. Given sets A and B, the cartesian
produect of A and B is the set of ordered pairs

AxB={{e,blac A, be B}
Observe that there are two “ecordinate projections”

Ty g
A

Ax B - I3

with _
mla,b) = a, mafa, by = b.
And indeed, given any element ¢ € A x B, wo have
e = (mye, mec).

The situation is captured concisely in the following diagram:

1
a : b
é{ﬂ,b)
i
A Ax B r B
my e

Replacing elements by gencralized elements, we get the following definition.

Definition 2.15. In any category C, a product dingram for the objects A and
B consists of an ohject P and arrows

n b2

A P ~ B
satisfying the following UMP:
Given any diagram of the form
@ x
A1 x 2 .
there exists a unique u : X — P2, making the diagram
X
%1 f Ty
i
A P ~ B
M ©oP2

commute, that is, such that xy = pyu and zp = pou.
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Remark 2.16. As in other UMPs, there are two parts:

Existence: There is some u : X — U such that z; = pyu and 2o = pau.
Uniqueness: Given any v: X — U, if pyv = 21 and pev = 23, then v = u.

Proposition 2.17. Producis are unique up to isomorphism.
Proof. Suppose

Pi P P2

A

and

A a1 Q 2 _, R

are prociucts of A and B. Then, sinee ¢ is a product, there is a unique{: P — §
such that q; 0§ = p; and g3 0 i = py. Similasly, since P is a product, there is a
unique j: @ — P such that py o j = ¢ and pa o j = ga.

P

Jis! ) P2

a1 42

Pi P2

Composing, pyjojoi = p; and pyejoi = pp. Since also py 0 1p = p; and
P2 0lp = py, it follows from the uniqueness condition that jo{ = 1p. Similarly,
we can show i o j = 1g. Thus, i : P — @ is an isomorphism. O

If A and B have a product, we write

b1 P2

A Ax B B

for one such product. Then given X,z;, 22 as in the definition, we write
{r1,2e) for u: X - AxB.

Note, however, that a pair of objects may have many different products in a
category. For example, given a product 4 X B, p1,p2, and any iso h 1 Ax B — @,
the diagram @, p1 o ki, pz o h Is also a product of A and B.

Now an arrow info a product

X —AxB
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is “the same thing” as a pair of arrows
fi: X — A, fo: X — B,

So we can essentially forget about such arrows, in that they are uniquely
determined by pairs of arrows. But something useful s gained if a category
has products; namely, consider arrows out of the product,

g:AxB-Y.

Such a g is a “function in two variables”; given any two generalized elements
fi 1 X - Aand fo : X — B, we have an element g{f1, fo} : X — Y. Such
arrows g : A x B — Y are not “reducible” to anything more basic, the way
arrows into products were (to be sure, they are related to the notion of an
“exponontial’ YB3, via “curtying” Af : A — ¥ we discuss this further in
Chapter 6).

2.5 Examples of products
1. We have already seen cartesian products of sets. Note that if we choose a
different definition of ordered pairs {a, b}, we get different sets
Ax B and Ax'B

each of which is (part of) a product, and so are isomorphic. For instance,
we cotld set

{a,b) = {{a}.{a,b}}
(ﬁ',b}’ = ((1, (ﬁab»
2. Products of “structured sets” like monoids or groups can often be
constructed as products of the underlying sets with componentwise
operations: If G and & are groups, for instance, G’ x H can be constructed

by taking the underlying set of G x H to be the set {{g.h) |g € G, he H}
and defining the binary operation by

(g, 1) ', Wy ={g-g' . h- 1)
the unit by
u = {ug, g}
and inverses by
{a,B)" = {a "0 ).

The projection homomorphisms G x H — & (or H) are the evident ones
{g:h) > g (or h}.
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3. Similarly, for categories C and D, we aheady defined the category of pairs

of objects and arrows,
CxD.

Together with the evident projection functors, this is indeed a product in
Cat (when C and D are small). {Check this: verify the UMP for the product
category so defined.}

As special cases, we also get products of posets and of monoids as
products of categories. (Check this: the projections and unique paired
function are ahways monotone and so the product of posets, constructed
in Cat, is also a product in Pos, and similarly for Mon.)

. Let P be a poset and consider 2 product of elements p,¢ € P. We must

have projections

PXgsp
pXg=q

and if for any element z,
z<p, and z <Ly
then we need
z<pxq
Do you recognize this operation p x ¢ 7 It is just what is usually called

the greatest lower bound: p x g = p A ¢. Many other order-theoretic notions
are also special cases of categotical ones, as we shall see later.

. (¥or those who know someshing about Topology.) Let us show that the

product of two topelogical spaces X, Y, as usually defined, really is a product
in Top, the category of spaces and continnous functions. Thus, suppose we
have spaces X and Y and the product spaces X x Y with its projections

X xxy -y

Recall that O(X x Y} is generated by basic open sets of the form U x V
where I7 € O(X) and V € O(Y), so every W € O(X x V') is a union of such
hasic opens.

+ Clearly p;y is continuous, since pflU =UxY.
o Given any continuous f; : 7 = X, fo: Z oY, let f:1 2 = X xY be
the function f = {f}, fa}. We just need to see that f is continuous.
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o Given any W = [ J{U; x V) € O(X x V), fF7HW) =, FHU: x Vi),
s0 it suffices to show f—1{I/ x V) is open. But

U VY= HIU xY)N{X x V)
=TT <IN fHX x V)
= [TroprUINf opy (V)
= (fu)"HOYN (f2) (V)

where (f1)"HU) and {f2)7'(V) are open, since f; and fy are
continuous.
The following diagram concisely captures the situation at hand:

ry ——— O{z\"x YY) +— -
J‘\. —_ — }
o) J251 ' Pg o)

6. (For those familiar with type theory.) Let us consider the cafegory of
types of the (simply typed) A-calculus. The A-caleulus is a formalism for
the specification and manipulation of funetions, based on the notions of
“binding of variables” and functional evaluation. For example, given the
real polynomial expression z2 + 2y, in the A-caleulus one writes Ay 2y
for the function y — 2° + 2y (for each fixed value ), and Azhy.z? + 2y for
the function-vatued function  — (y +— = + 2y},

Formally, the A-ealculus consists of

e Types: A x B, A — B,... {generated from some basic types)

o Terms:
T, Y, 7. .. : A (variables for cach type A)
a: A, b:B,... (possibly some typed constants)
{a,by: Ax B {a: A, b:B)
fst(e}: A {c: Ax B)
snd{e}: B {c: A x B)
ea:B {c:A—> B, a: A)
Azb:A—> B {v:4, b:B)
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+« Equations:

fst{{a, b)) = a
snd{{a, b)) = b
{fsi(c),snd(c)) = ¢
(Az.b)a = bla/x]
Az.ex =c¢ (no =z in c)
The relation a ~ b {nsually called An-equivalence) on terms is defined to be

the equivalence relation generated by the equations, and renaming of bound
variables:

Azd = My.bly/z] {(noyinb)
The category of types C(A) is now defined as follows:

+ Ohjects: the types,

o Arrows 4 — B: closed terms ¢: A — B, identified if ¢ ~ ¢/,
o Identities: 14 = Az (where z : A},

» Composition: co b = Az.c{bx).

Let us verify that this is & well-defined category:
Unit laws:

colp = Ax{e{(Ay.y)z)) = d(ex) = ¢
g oc= Ax((Ay.yMex)) = Azlecx)=c¢

Associativity:

cofboa) = Az{c((boa)z))
= Aa{e((Ay.blay))z))
= Az{e(blaz)))
= Aa{Ay(c(by)Haz))
)
={cob)ca

This category has binary products. Indeed, given types A and B, let

p1 = Azdst{z), p2=Azsnd(z) (2:AxB)




402-Awodey-c027 — 2009/12/18 — 17:10 — page 456 — #17

ABSTRACT STRUCTURES 45

And given a and b as in

X
o e\
H
A AxEB B
»m Pz
et
(a,b) = \z.{az, bx).
Then

p1o{a,b) = Ax(p ((My.{ay, by))x))
= Ax{pylaz, b))
= Az(ax)
—a. -
Stmilarly, pp o {q, b} = b.
Finally, if¢: X - A x B also has
prec=a, proc=>h
then
{a,b) = Az.{ax, ba}
= Az {(p: o o)z, (pa o c)}
= Awd(Ay(pr (o)), (Ay(paley)))2)
= Az {(My((Az.55t(2)) ey, (Ap{(Az.snd(z))(ey) })x)
= Az.(\y{fst{cy))m, Ay(snd{cy))z)
= Az.{fst{ca}, snd(ex)}
= Az.{ex)
=e.
Remark 2.18. The Mcalculus had another surprising interpretation, namely as
a system of notation for proofs in propositional caleulus; this is known as the
“Curry—Toward” correspondence. Briefly, the idea is that one interprets types as

propesitions {with A x B being conjunction and A — B implication) and terms
a: A as proofs of the proposition A. The term-forming rules such as

a: A b: B
{e,b)1Ax B
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can then be read as annotated rules of inference, showing how to build
up labels for proofs inductively. So, for imstance, a natural deduction proof
such as

(4 B8]
AxB
B - {4 x B)
A—{B—{AxB))

with square brackets indicating cancellation of premisses, is labeled as
follows:
fz: 4] [y : B
{Z,yy: Ax B
Mgz, ) B — (A x B}
AxAyde, g i A (B — (A x B))

The final “proof term” AxAy.(v, y)/ tims/records the given proof of the
“proposition” 4 — {B — (A x B)), and a different proof of the sarne proposition
would give a different term.

Although one often speaks of a resulting “isomorphism” between logic and
type theory, what we in fact have here is simply a functor from the category of
proofs in the propositional calenlus with conjunction and implication (as defined
in example 19\‘.’), into the category of types of the A-caleulus, The functor will not
generally be’an isomorphism unless we impose some further equations between
proofs,

2.6 Categories with produets

Let C be a category that has a product diagram for every pair of objects. Suppose
we have objects and arrows

AP a2
f F

Bx B B

41 g2

B

with indicated products. Then, we write

fxfiadxA - BxB
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for fx f = (fop1, flopa). Thus, both squares in the following diagram commute:

APl g2,y

/ fx bl
i
B BxB ——§B
il 42
In this way, if we choose a product for each pair of objects, we get a functor
x:O0xC->C

as the reader can easily check, using the UMP of the product. A category which
has a product for every pair of objects is said to have binary products.
We can also define ternary products

.Al X 1’&2 X Ag

with an analogous UMP (there are three projections p; @ As x Az x Az — A,
and for any object X and three arrows @y : X — A;, there is a unique arrow
w: X — Ay x Ay X Ay such that p;u = x; for each of the three ’s). Plainly, such
a condition can be fornulated for any munber of factors.

It is clear, however, that if a category has binary produets, then it has all
finite products with two or more factors; for instance, one could set

AxBxC=(AxB)xC

to satisfy the UMP for ternary products. On the other hand, one could instead
have taken A x (B x C) just as well. This shows that the binary preduct operation
A x B is associative up to isomorphism, for we must have

{(AxByxC2Ax(BxC)

by the UMP of ternary preducts.
Observe also that a terminal object is a “nullary” product, that is, a product
of no ehjects:

Given no objects, there is an ebject 1 with no maps, and given any other
object X and no maps, there is a unique arrow

I G |
making nothing further commute.

Similarly, any object A is the unary product of A with itself one time.

Finally, one can also define the product of a family of objects (Cy)ier mdexed
by any set [, by giving a UMP for “I-ary products” analogous to those for
nullary, unary, binary, and n-ary products. We leave the precise formulation of
this UM as an exercise.
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Definition 2.19. A category C is said to have el finite products, if it has a
terminal object and ajl binary products {(and therewith products of any finite
catdinality). Fhe category C has all (small) products if every set of objects in C
has a product.

2.7 Hom-sets
In this section, we assume that all categories are locally small.
Recall that in any category C, given any objects A and B, we write
Hom(4,B)={feC|f:4— B}

and call such a set of arrows a Hom-set. Note that any arrow g: B — B in C
induces a function

Hom{4, g) : Hom({A, B} — Hom{A, B')
(f: A B)—(gof:iA—B—B)
Thus, Hom(A, g} = g o f; one someti.mes writes g, instead of Hom{4, g}, so
g.(f)=g¢°f.
Let us show that this determines a functor
Hom(A, -} : C — Sets,
called the {covariant) representable functor of A. We need to show that
Hom{A, 1x) = Inom(a.x)
and that
Hom(A, g o f} = Hom{A, g} o Hom(4, f).
Taking an argument x : A -— X, we clearly have
Hom{A,1x)(z) =1x o
=z
= lyom(a.x) ()
and
Hom(A,go f)(x) = (go f)oc
=go(fox)
= Hom({ 4, g){(Hom{4, f}z)).

We will study such representable functors much more carefully later, For now,
we just want 1o see how one can use Hom-sets to give another formulation of the
definition of products.
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For any object P, a pair of arrows py : P — A and py : P — B determine an
elememnt (p1, pa) of the set

Hom(P, A) x Hom({P, B).
Now, given any arrow
z: XN — P

composing with py and pp gives a pair of arrows 23 = pyoz : X — A and
ze =pyox: X — B, as indicated in the following diagram:

A

Iy
In this way, we have a function
2y = (Hom{X,p1), Hom(X, p2}} : Hom{X, P} — Hom(X, 4) x Hom{X, B)
defined by
dx(z) = (z1,22) (2.1}

This function #x can be used to express concisely the condition of being a
product as follows.

Proposition 2.20. 4 diagrem of the form

A~ P B
Pt P2

is a product for A and B iff for every object X, the canonical function ¥y given
in (2.1) is an isomorphism,

dx : Hom({X, P) = Hom{X, 4) x Hom(X, B).

Proof. Iixamine the UMZP of the product: it says exactly that for every element
{21, 22) € Hom(X, A} x Hom(X, B), there is a unique ¥ € Hom({X, P) such that
Ix(x) = (x5, 72}, that is, ¥x is bijective. O

Definition 2.21. Let C, D be categories with binary products. A functor I ;
C — D is said to preserve binary products if it takes every product diagram

A Ax B B inC
PL P2

to a product diagram

FA+~— F{Ax B} —— FB in D,
Fpy Fip
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It follows that F preserves products jusk if
F{AxBYy=FAx FB
“canonically,” that is, ilf the canonical “eomparison arrow”
{Fp1,Fpsy: F{Ax B} —~ FAx FB
in D is an iso.
For example, the forgetful functor U7 : Mon — Sets preserves binary
products.
Corollary 2.22. For any object X in o calegory C with produets, the
{covariant)} representable functor
Homg(X,—): C — Sets
preserves products.

Proof. Tor any A, B € C, the foregeing proposition 2.20 says that there is a
canonical isomorphism:

Homa{X, A x B) = Homg{X, A) x Home{X, B)

2,8 Exercises

1. Show that a function between sets is an epimorphism if and only
if it is surjective. Conclude that the isos in Sets are exactly the
epi-mones.

2. Show that in a posei category, all arrows are both monic and epic.

3. (Inverses are unigue.} If an arrow f: A — B has inverses g,g' : B — A
(i. e, go f =14 and fog = 1, and similatly for g"), then g =g'.
4. With regard to a commutative triangle,

A ! B

in any category C, show

(a) if f and ¢ are isos (resp. monos, resp. epis}, so is I;
{b} if A is monic, so is f;

{c} if h is epic, so is g;
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{d) (by example) if » is monic, g need not be.

. Show that the following are equivalent for an arrow
f:A— B
in any category:

{a) [ is an isomorphism,

(b) f is both a mono and a split epi.

(e} f is both a split mono and an epi.
{d) f is both a split mono and a split epi.

. Show that a homomorphism # : G — I of graphs is monic just if it is
injective on both edges and vertices.

. Show that in any category, any retract of a projective object is also
projective.
. Show that all sets are projective {use the axiom of choice).

. Show that the epis among posets are the surjections (on elements}, and
that the one-element poset 1 is projective.

Show that sets, regarded as discrete posets, are projective in the category
of posets (use the foregoing exercises). Give an example of a poset that is
not projective, Show that every projective poset is discrete, that is, a set.
Conclude that Sets is (isomorphic to) the “full subcategory” of projectives
in Pos, consisting of all projective posets and all monotone maps between
then.

Let A be a set. Define an A-monoid to be a monoid & equipped with
a function m : A — U(M)} (to the underlying set of A). A morphism
ot (M,m) — (N,n) of A-menoids is to be a monoid homomorphism
h i M — N such that U{h) o m = n {a commutative triangle). Together
with the evident identities and composites, this defines a category A-Mon
of A-monoids.

Show that an initial object in A-Mon is the same thing as a free monoid
M(A) on A. {Hint: compare their respective UMPs.}
Show that for any Boolean algebra BB, Boolean homomorphisms it : B — 2
correspond exactly to uwltrafilters in B.

In amy category with binary products, show directly that
Ax(BxCy={AxB)YxC.
. {a) For any index set I, define the product [],.; X7 of an I-indexed family
of objects (X;)icr in a category, by giving a UMP generalizing that
for binary products {the case J = 2}.
{b) Show that in Sets, for any set X theset X7 of all functions f : 7 — X
has this UMP, with respect to the “constant family” where X; = X
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for all { € I, and thus

xte T X
12
Given a category C with objects A and B, define the category Cu p to
have ohjects (X, T1,T2), where z1 : X — A, 29 : X — B, and with arrows
(X, 21, ®e) — {Y, 1, ya) being arrows f: X — ¥V with jy 0 f =2y and
yzo f=ga

Show that Ca,p has a terminal object just in case A and B have a
product in C.
In the eategory of types C(A) of the A-calculus, determine the product
functor 4, B — A x B explicitly, Also show that, for any fixed type A,
there is a functor A — (=) : C(A) — C{\), taking any type X to 4 — X.
In any category C with products, define the graph of an arrow f: A — B
to be the monomorphism

T{f)={la,f): Ars Ax B

{Why is this monic?). Show that for C = Sets this determines a functor
I': Sets — Rel to the category Rel of relations, as defined in the exercises
to Chapter I. (To get an actual relation R(f) G A x B, take the image of
I{f}: Ars Ax B.)

Show that the forgetful functor I : Mon — Sets {rom monoids to sets is
representable. Infer that U preserves all (small) products.
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We have seen a few examples of definitions and statements that exhibit
a kind of “dnality,” lke initial and terminal object and epimorphisms and
monomorphisms. We now want to consider this duality more systematically.
Despite its rather trivial first impression, it is indeed a deep and powerlul aspect
of the categorical approach to mathematical structures.

3.1 The duality principle

Tirst, let us look again at the formal definition of a category: There are two kinds
of things, objects A, B,C and..., arrows f,g,h,...; four operations dom(f),
cod(f), 14, g o f; and these satisfy the following seven axioms:

dom(l) = A cod{ls)=A
Foliomin=7F lewapoef=171 (3.1}
dom{g o f) = dom{f) cod{g o f) = cod(g)
hofgof) = (hog)ef
The operation “g o f” is only defined where

dom(g) = cod{f),

so a suitable form of this should oceur as a condition on each equation containing
o, as in dom(g) = cod{f} = dom(g o f} = dom{f),

Now, given any sentence 3 in the elementary language of category theory, we
can forin the “dual statement” 3* by making the following replacements:

fog for gof
cod for dom

dom for cod.

Tt is easy to see that then X* will also be a well-formed sentence. Next, suppose
we have shown & sentence ¥ to entail one A, that is, 2 = A, without using any
of the category axioms, then elearly L' = A®, since the substituted terms are
treated as mere undefined constants, But now observe that the axioms (3.1) for
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category theory (CT} are themselves “self-dual,” in the sense that we have,
CT* =CT.
We therefore have the following duality principle.

Proposition 3.1 (formal duality). For any sentence ¥ in the language of
category theory, if ¥ follows from the azioms for categovies, then so does its
dual £*:

CT = X% implies CI'=X"

Taking a more conceptual point of view, note that if a statement X involves
some diagram of objects and arrows,

A f B
g

gof
(&

then the dual statement £* involves the diagram obtained from it by reversing
the direction and the order of compositions of arrows.

Recalling the opposite category C°F of a category C, we see that an
interpretation of a statement % in C automaticaily gives an interpretation of
2 in COP.

Now suppose that a statement & holds for all categories C. Then it also
helds in all categories C°P, and so £* holds in all categories (C°P)°P, But since
for every category C,

(CoP)P =, (3.2)

we see that ©* also holds in all categories C. We therefore have the following
conceptual form of the duality principle.

Proposition 3.2 (Conceptual duality). For any statement X about categorics,
if & holds for all categories, then so does the dual statement T*,

It may seem that only very simple or trivial statements, such as “terminal
objects are unique up to isomorphism” are going to be subject to this sort of
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duality, but in fact this is far from being so. Categorical duality turns out to
be a very powerful and a far-reaching phenomenon, as we{see. Like the duality
between points and lines in projective geometry, it effective ;’" doubles ones “bang
for the buck,” yielding two theorems for every proof.

One way this occurs is that, rather than considering statements about all
categories, we can also consider the dual of an abstract definition of a structure
or property of objects and arrows, like “being a product diagran.” The dual
structure or property is arrived at by reversing the order of composition and the
words “domain” and “codomain.” (Equivalentiy, it results from interpreting the
original property in the opposite category.} Section 3.2 provides an example of
this kind.

3.2 Coproducts

Let us consider the example of products and see what the dual notion must be.
First, recall the definition of a product.

Definition 3.3. A diagram A &~ P 5% Bis a product of A and B, if for any
Zand A & Z 2% B there is a unique u : £ — P with p;ou = z;, all as

indicated in
A
21 u\zg\
H
A - P + B
Pt P2

Now what is the dual statement?
4 A
A diagram A 2,0 & Bis a “dual-product” of A and B if for any Z and
AZLH Z &2 B there is a unique u : § — Z with u o g; = z;, all as indicated in

z
i
A r Q- B
q1 42

Actually, theso are called coproducts; the convention is to use the prefix “co” to
indicate the dual notion. We usually write A -%» A+ B <~ B for the coproduct
and {f, g] for the uniquely determined arrow 1 : A+ B — Z. The “coprojections”
i1: A= A+ Band iz : B— A+ B are usually calted infections, even though
they need not be “injective” in any sense.
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A coproduct of two objects is therefore exactly their product in the opposite
category. Of course, this immediately gives lots of examples of coproducts. But
what about some more {amiliar ones?

Erample 3.4. In Scts, the coproduct A -+ B of two sets is their disjoint union,
which can be constructed, for example, as

A+ B={{a,1)]|ac A}U{{b,2)]|be B}
with evident coproduct injections
ir(a) = (a,1), f2(b) = (b, 2}.

Given any functions f and g as in

VA
e
A - A —{— B +— B
iy iy
we define
_Jfle) d=1
[f’g](m: 6) - {g{.l,) 6 =7,

Then, if we have an h with hofy = f and hoiy = g, then for any {z,§) € A+ B,
we must have

h(x,d) = [f,gl{=, )
as can be easily calculated.
Note that in Sets, every finite set A is a coproduct:
AZi4 1441 {n-times)

for n = card(A). This is because a function f: A — Z is uniquely determined
by its values f{a) for ali « € A. So we have

A e+ {an )+ 4 {an}
i 414+ 1 (n-times)
In this spirit, we often write simply 2=1+1,3=141-1, ete.

Erample 3.5. If M{A) and M(B) are free monoids on sets A and B, then in
Mon we can construct their coproduct as

M{A)+ M{B)Y=M{A+B).
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One can see this divectly by considering words over A + B, but it also follows
abstractly by using the diagram

/ N\
M(A) — M(A+ B) ~— M(B)

fia fa+B iz

A A+ D B

in which the #’s are the respective insertions of generators. The universal
mapping properties (UMPs) of M (A), M(B), A+ B, and M(A + B) then imply
that the last of these has the required UMP of M (A) -+ M(B). Note that the
set of elements of the coproduct M{A) + M{B} of M(A) and M(B) is not
the coproduct of the underlying sets, but is only generated by the coproduct of
their generators, A + B. We shall consider copraducts of arbitrary, that is, not
necessarily free, moneids presently.

The foregoing example says that the free monoid functor M : Sets — Mon
preserves coproducts. This is an instance of a much more general phenomenon,
which we consider later, related to the fact we have already seen that the forgetful
functor U : Mon — Sets is representable and so preserves products.

Frample 3.6. In Top, the coproduct of two spaces
X+Y

is thetr disjoint union with the topology O(X + Y) = O(X) x O(Y). Note that
this follows the pattern of discrete spaces, for which O{X) = P(X) = 2%, Thus,
for cdiscrete spaces, we indeed have

O(X +Y) e 2%+ 2 9¥ x oY > O(X) x O(Y).

A related fact is that the product of two powerset Boolean algebras P(A)
and P{B) is also a powerset, namaly of the coproduct of the sets Aand B,

P(AY x P(BY=2 P{A+ B).

We leave the verification as an exercise.

Coproduets of posels are similarly constructed from the coproducts of the
underlying sets, by “putting them side by side.” What about “rooted” posets,
that s, posels with a distinguished initial element 07 In the category Fosg of
such posets and monotons maps that preserve 0, one constructs the coproduct
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of two such posets A and B from the coproduct 4 + B in the category Pos of
posets, by “identifying” the two different Os,

A+P050B = (A +PosB)/“OA = DB”.

We shall soon see how to describe such identifications (quotients of equivalence
relations) as “coequalizers.”

Ezample 3.7. In a fixed poset P, what Is a coproduct of two elements p,g € P 7
We have

p<ptg and g<ptg
and if
p<z and g<z
then
prg<az
So ptg=pVyqis the join, or “least upper bound,” of p and ¢.

Ezxemple 3.8. In the eategory of proofs of a deductive system of logic of example
10, Section 1.4, the usual natural deduction rules of disjunction introduction and
elimination give rise to copraducts. Specifically, the introduction rules,
i ¥
eV pvY

determine arrows I3 : ¢ — @ Vi and iz 1 ¥ — oV P, and the elimination rule,

el ¥

@V 1? &
¥
turns a pair of arrows p 1w — @ and g : 3 — ¥ into an arrow [p,q) iV — 0.
The required equations,

poglois=p Ipgleia=q {3.3)

will evidently not hold, however, since we are taking identity of proofs as identity
of arrows. In order to get coproducts, then, we need to “force” these equations to
hold by passing to equivalence classes of proofs, under the equivalence relation
generated by these equations, together with the complementary one,

[rei,roi=r {3.4)

for any r: A+ B — C. {The intuition behind these identifications is that one
should eguate proofs which become the same when one omits such “detours.”’)
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In the new category with equivalence classes of proofs as arrows, the arrow [p, g
will also be the unigue one satisfying {3.3), so that ¢ V ¥ indeed becomes a
coproduct.

Closely related to this example {via the Curry—Howard correspondence of
remark 2.18) are the sum types in the A-calculus, as usually formulated using
case terms; these are coproducts in the cafegery of types defined in Section 2.5.

Ezample 3.9. Two monoids A, B have a coproduct of the form
A+ B = M{A|+ B} ~
where, as before, the free moneid M {|A[+|B|) is strings (words) over the disjeint
unien |A] + |B] of the underlying sets—that is, the elements of A and B—and
the equivalence relation v ~ w is the least one containing all instances of the
following equations:
G xuay..)={(..zy..)
{...xugy..)={..zy...)
(..ad’..)=(..aad..)
(..BF .. )={..bpb. .}
{If you need a refresher on quotienting a set by an equivalence relation, skip
ahead and read the beginning of Section 3.4 now.} The unit is, of course, the
equivalence class [—] of the empty word (which is the same as {ua] and [up]).
Multiplication of equivalence classes is also as expected, namely
R I A S I e T B
The coproduct injections iq: A — A+ B and ig: B — A+ B are simply
iala)=1lal  in(b)=1ol,

which are now easily seen to be homomorphisms, Given any homomorphisms
f:A— M andg: B — M into a monoid M, the unique homomorphisin

figi: A+ B— M

is defined by frst extending the function [|f], |gl] : |A| + |B| — {M] to one {f, g}
on the free menoid A{|A] + |B]},

M{A] + |BD WM:’ M

A
M+ |B])/~
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and then observing that {f, g]’ “respects the equivalence refation ~.” in the sense

that if v ~ w in M{|Af -+ 1B}, then [f, g)'(v) = [/, 9]/ {w). Thus, the map {f,g]'
extends to the quotient to yield the desired map [f, g] : M (A} -+ | B[}/ ~ — .
(Why is this homomorphism the unigue one h : M{1A| + |B]}f ~ — M with
hia = f and hig = g7) Summarizing, we thus have

A+B = MA|+|B)/~.

‘This construction also works to give coproducts in Groups, where it is
usually called the free product of A and B and written A ® B, as well as many
other categories of “algebras,” that is, sets equipped with operations. Again, as
in the free case, the underlying set of A 4 B is not the coproduct of A and B as
sets (the forgetful functor Mon — Sets does not preserve coproducts).

Ezample 3.10. Yor obelian groups A, B, the free product A @ B need not he
abelian, One conld, of cowrse, take a further quotient of A& B o get a coproduet
in the category Ab of abelian groups, but there is a more convenient (and
important) presentation, which we now consider.

Since the words in the free product A® B must be forced to satisly the further
commutativity conditions

(alblbzag . ) ~ (ﬂlaz . ,b]bg . )
we can shuffle all the ¢'s to the front, and the b's to the back, of the words. But,
furthermore, we already have
(ﬂlﬂg...blbg...)w(ﬂl +€12+"'+b1+b2+---).
Thus, we in effect have pairs of elements {a,b). So we can take the product set
as the underlying set of the coproduct
|[A+ Bl =|Ax Bl
As inclusions, we use the homomorphisms
iala) = (a,05)
in(h) = {(04,b).
Then, given any homomorphisms A Lx & B,welet [fig): A+ B — X be
defined by
(£ g)(a, b} = fla) +x g(b)

which can easily be seen to do the trick {exercisel).

Moreover, not only can the underlying sefs be the same, the product and
coproduect of abelian groups are actually isemorphic as groups.

Proposition 3.11. In the category Ab of abelian groups, there is a canonical
isomorphism between the binary coproduct and product,

A+ B2 AxB,.
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Proof, To define an arrow 9 : A+ B — Ax B, weneed one 4 — A x B (and one
B —+ A x B}, so we need arrows A — Aand A — B {and B — A and B — B).
For these, we take 1,4 : A — A and the zero homomorphism 0p : A — B {(and
0,4: B— Aand lp: B — B). Thus, all together, we get

#=[{14,08),{04,18)]: A+ B— Ax B.
Then given any {a,b) € A + B, we have
#a, b} = [(14,08), (04, 15}(a, b)
= (14, 0pMa) + (04, 15)(H)
= (Lala), 0p(a)) -+ (0a(b), 15(0))
= (a,08) + (04, b}
=(a+04,05+b)
= (a,b).
]

This fact was first observed by Mac Lane, and it was shown to lead to a
binary operation of addition on parallel arrows f,g : A — B between abelian
groups (and related structures like modules and vector spaces). In fact, the group
structure of a particular abelian group A can be recovered from this operation
on arrows into A. More generally, the existence of such an addition eperation
on arrows can be used as the basis of an abstract description of categories
like Ab, called “abelian categories,” which are suitable for axiomatic homology
theory.

Just as with products, one can consider the empty coproduct, which is an
initial object 0, as well as coproducts of several factors, and the coproduct of
LWO ArTows, ’

ftfiA+A B+ 8

which leads to a coproduct functor + : C x C — C on categories C with binary
coproducts. All of these facts follow simply by duality; that s, by considering
the dual notions in the oppoesite category. Similarly, we have the following
proposition.

Proposition 3.12. Ceproducts are unique up to isomerphism.

Proof. Use duality and the fact that the dual of “isomorphism” is “isomorphism.”
0

In just the same way, one also shows that binary coproducts are agssociative up
to isomorphism, {A+ B)+ C = A+ (B +C).

Thus is general, in the future it will suffice to introduce new notions once and
then simply observe that the dual notions have analogous (but dual) properties.
Sections 3.3 and 3.4 give another example of this sort.
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3.3 Equalizers

In ihis section, we consider another abstract characterization; this time a
comnon generalization of the kernel of a homomorphism and an equationally
defined “variety,” like the set of zeros of a real-valued function—as well as set
theory’s axiom of separation.

Definition 3.13. In any category C, given parallel arrows

f
g

A B

an equalizer of | and g consists of an object X and an arrow e : £ — A, universal
such that

fee=goe

That is, given any 2 : £ — A with foz = go z, there is a unique v : 2 — E
with eo u = z, all as in the diagram

f
E—C v 4 B
H g
s

Let us consider some simple examples.

FErample 3.14. Suppose we have the functions f,g: 8?2 =3 R, where
Flay) = +y°
glz,y) =1
and we take the equalizer, say in Top. This is the subspace,
S={{z,y) eB*|* +y* =1} = B,

that is, the unit circle in the plane. For, given any “generalized element” z : 2 —
R2, we get a pair of such “elements” z,2 : Z — R just by composing with the
two projections, z = {1, 22}, and for these we then have
fl)=g() il 2?4+ 2% =1
il “zy,29) =2€ 85",
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where the last line really means that there is a factorization z = Zoi of z through
the inclusion i : § < 182, as indicated in the following diagran:

i 2?4 y?
e s RE—/——=R
: 1
2 /
z

Since the inclusion i is monie, such a factorization, if it exists, is necessarily
unique, and thus § < &? is indeed the equalizer of f and g.

Erample 3.15. Simitarly, in Sets, given any functions f,g : A =3 B, their
equalizer is the inclusion into A of the equationally defined subset

{w € Alf(@) = gla)} = A.

The argument is essentially the same as the one just given.

Let us pause here to note that in fact, every subset U7 C A is of this
tequational” form, that is, every subset is an equalizer for some pair of functions.
Indeed, one can do this in a very canonical way. First, let us put

2= {T,1},

thinking of it as the set of “truth values,” Then consider the characteristic
function

yu:dA—2
defined for x € A by
T xel
Xolw) = {.L LR IR
Thus, we have
U={xecA|lyulz}=T}L

So the following is an equalizer:

U A : 2
Xu
where T! = Tol : U 5152
Moreaver, for every function,
pwiA—2
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we can form the “variety” (i.e., equational subset}

Vy = {v e Alp(z) = T)
as an equalizer, in the same way, {Thinking of v as a “propositional function”
defined on 4, the subset V¥, C A is the “extension” of ¢ provided by the axiom

of separation.)
Now, it is easy Lo see that these operations yp and V, are mutually inverse:

Vi = {o € Alxu(z) =7}
={zec Alzc U}

=U
for any U C A, and given any ¢ : A — 2,
LT zeV,
v, () = {J_ ¢V,
_ T ple)=T
T ey =1
= ().

Thus, we have the familiar isomorphism
Hom{4,2) = P(A),
mediated by taking equalizers.

The fact that equalizers of functions can be taken to be subsets is a special
case of a more general phenomenon. ’

Proposition 3.16. In any calegory, if e : B — A is an equalizer of some pair
of arrows, then e is monic.

Proof. Consider the diagram

A
in which we assume e is the equalizer of f and g. Supposing ex = ey, we want
to show z = y. Put 2z = ex = ey. Then fz = fex = gex = gz, so there is a
untgue u : Z — K such that eu = z. So from ex = z and ey = z i follows that
T =y, 3]

Erample 3.17. Tn many other categories, such as posets and monoids, the
equalizer of a parallel pair of arrows f,g : A =3 B can be constructed by
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taking the equalizer of the underlying functions as above, that is, the subset
A(f = g) € A of elements © € A where f and g agree, f(x) = g(z}, and then
restricting the structure of A to A{f = g). For instance, in posets one takes the
ordering from A restricted to this subset A(f = g), and in topological spaces one
takes the subspace topeology. :

In monoids, the subset A(f = g} is then also a monoid with the operations
from A, and the inclusion is therefore a homomorphisin. This is so because
flua) = up = g(uga), and if fla) = g(e} and fla'} = g(a'), then fla -’} =
Fla) - f(a") = g(a) - g(a’) == g{a - &'). Thus, A{f = g} contains the wit and is
closed under the product operation.

In abelian groups, for instance, one has an allernate descripiion of the
equalizer, using the fact that,

flay=glx) # (f—g)(=)=0.
Thus, the equalizer of f and g is the same as that of the homomorphism (f — g)
and the zere homomorphism 0 : A — B, so it suffices to consider equalizers
of the special form A(h,0) — A for arbitrary homomerphisms £ : A — B.

This subgroup of A is calted the kernel of h, written ker(h}). Thus, we have the
equalizer

f
2O
g
The kernel of a homomorphism is of fundamental importance in the study of
groups, as we consider further in Chapter 4.

ker{f —g) —— A

3.4 Coeqgualizers

A coequalizer is a generalization of a guotient by an equivalence relation, so let
us begin by reviewing that notion, which we have already made use of several
thmes. Recall first that an equivalence relation on a set X is a binary relation
& ~ y, which is

reflexive; z ~ x,
symmetric: @ ~ y implies y ~ =,
transitive; » ~ y and y ~ z imphes 2 ~ 2.
Given such a relation, define the equivalence class {x] of an element x € X by
[l =y eXla~y).

The various different equivalence classes {z] then form a partition of X, in the

sense that every element y is in exactly one of them, namely [y] (prove this!).
One sometimes thinks of an equivalence relation as arising from the equivalent

elements having some property in commeon {like being the same color). One can
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then regard the equivalence classes [x] as the properties and in that sense as
“ahgtract objects” (the colors red, blue, elc., themsclves). This is sometimes
known as “definition by abstraction,” and it describes, for example, the way
that the real numbers can be constructed from Cauchy sequences of rationals or
the finite cardinal numbers from fnite sets.

The set of all equivalence classes

Xfre = {[a]jx € X}

may be called the quatient of X by ~. It is used in place of X when one wants to
“abstract away” the difference between equivalent elements & ~ y, in the sonse
that in X/~ such elements {and only such) are identified, since

= [y) it 2~y
Observe that the quotient mapping,
qg: X — X/~
taking x to [z] has the property that a map f: X — V extends along g,

q

XN —— X/~

i
'1/
just in case f respects the equivalence relation, in the sense that = ~ y iinplies
Flay = f).
Now let us consider the notion dual {o that of equalizer, namely that of a
coequalizer.

Definition 3.18, For any parallel arrows f,g : A — B in a category C, a
coequalizer consists of @ and ¢ : B — @, universal with the property ¢f = gg,
as in

/ 5__4

A

Q
g :

i

7O

That is, given any % and 2 : B — Z, if zf = zg, then there exists a unique
u: Q@ — Z such that ug = 2.

First, observe that by duality, we know that such a coegualizer g in a category
C is an equalizer in C°P, hence monic by proposition 3.16, and se epic in C.




“D3-Awodey-c03” — 2009/12/18 — 17:01 — page 67 — #15

DUALITY 67

Proposition 3.19. /g : B — ( is a coequalizer of some pair of arrows, then
q 5 epic.

We can therefore think of a coequalizer ¢ : B —» @ as a “collapse” of B by
“identifying” all pairs fa) = g(a)} (speaking as if there were such “elements”
a € A). Moreover, we do this in the “minimal” way, that is, distwrbing B as little
as possible, in that one can always map (@ to anything else Z in which all such
identifications hold.

Erample 3.20. Let B C X x X be an equivalence relation on a set X, and consider
the diagram

1

R X

o

where the r's are the two projections of the inclusion R € X x X,

X - AxX » X
n bz

The quotient projection
i X —— X/R
defined by z +—+ [2] is then a coequalizer of r; and rp. For given an f: X' — ¥
as in

3
R X —" v X/R
o ¢
N
§
\f

there exists a function f such that
fr(@) = f(z}

whenever f respects B in the sense that {x,2") € R implies f{z) = f{z'), as
already noted. But this condition just says that for; = forg, since fory{z,a") =
f{a} and fo ra(w,a’) = f(z') for all {,2) € R. Moreover, if it exists, such a
function f, is then necessarily unique, since 7 is an epimorphism,

The coequalizer in Sets of an arbitrary parallel pair of funciions f-g: A3 B
can be constructed by quotienting B by the equivalence relation generated by
the equations f{z) = g{z) for all x € A. We leave the details as an exercise.
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Frample 3.21. In example 3.6, we considered the coproduct of roofed pozets P
and ¢ by first making P -+ Q in posets and then “identifying” the resulting two
different O-elements Op and Og {le., the images of these under the respective
coproduct inclusions. We can now describe this “identification” as a coequalizer,
taken in posets,

Op

1

P4 Q — P+Q/{0p =0g) O
Oq
This ctearly has the right UM to be the coproduct in roofed posets.

In topology one also often makes “identifications” of points {as in making
the eircle out of the interval by identifying the endpoints), of subspaces {making
the torus from a region in the plane, etc.). These and many similar “gluing”
constructions can be described as coequalizers. In Top, the coequalizer of a
paratlel pair of maps f,g: X — Y can be constructed as a quotient space of ¥
(see the exercises).

Exzample 3.22. Preseniations of algebras

Consider any category of “algebras,” that is, sets equipped with operations (of
finite arity}, such as monoids or groups. We shal show later that such a category
has free algebras for all sets and coequalizers for all paralle! pairs of arrows (see
the exercises for a proof that monoids have coequalizers). We can use these to
determine the notion of a presentation of an algebra by generators and relations.
For example, suppose we are given

Generators: x, ¥, %
Relations: wy=24, y° =1 @ (3.5}

To build an algebra on these generators and satisfying these relations, start with
the free algebra,

F(3) = F{x!y’z)'l

and then “force” the relation zy = 2 to hold by taking a coequalizer of the maps

ay q
F(1 I
(N - @) QO

We use the fact that maps F(1) — 4 correspond to clements ¢ € A by v — ¢,
where v is the single generator of F{1). Now similarly, for the equation y? = 1,
take the coequalizer

o(y®)
F1 Q—r Q@
) -0 Q@

These twe steps can actually be done simultancously. Let
F{2)y = F(1) + F(1}
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F(2) 7(3)

where f = [zy,5°] and ¢ = [#,1]. The coequalizer ¢ : F{(3) — @ of f and g then
“forces” bhoth equations fo hold, in the sense that in @, we have

q(x)q(y) = q(z), . aly)* = 1.

Moreover, no other relations among the generators hold in @ except those
required to hold by the stipulated equations. To make the last statement precise,
observe that given any algebra A and any three elements a,b,¢ © A such that
ab = ¢ and b® = 1, by the UMP of @ there is a unique homomorphism v : ¢¢ — A
such that

u{z) = a, u{y} = b, u(z)=e¢

Thus, any other equation that holds among the generators in @ will also hold
in any other algebra in which the stipulated equations (3.5) hold, since the
homomorphism u also preserves equations. In this sense, @ is the “univarsal”
algebra with three generators satisfying the stipulated equations; as may be
written suggestively in the form

Q= Fla,y, z)/(."cy = Z y‘z = 1).
Generally, given a finite presentation

Generators: g1,...,0n
Relations: Iy =711, «ovy b = 'm (3.6)

(where the [; and r; are arbitrary terms built from the generators and the
operations) the algebra determined by that presentation is the coequalizer

{
Flm) —=% F(n) — Q= F(n}/(l =r)
,.
where ! = Jli,....dn] and v = [r1,...,7'm). Moreover, any such coequalizer
between (finite) free algebras can clearly be regarded as a (finite) presentation
hy generators and relations. Algebras that can be given in this way are said to
be finitely presented.

Warning 3.23. Presentations are not. unique. One may well have two different
presentations F(n}/{l = r) and F(r'}/(F' = r'} by generators and relations of
the same algebra,

Fn)j(l=r) = P/ =71}
For instance, given F(n)/({ = r) just add a new generator gny1 and the new
relation g, = gui1. In general, there are many different ways of presenting a
given algebra, just like there are many ways of axiomatizing a logical theory.,
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We did not really make use of the finiteness condition in the foregoing
considerations. Indeed, any sets of generators G and relations R give rise to
an algebra in the same way, by taking the coequalizer

ry
FR) == F(G) — F(G)/(r = r2).
o
In fact, every algebra can be “presented” by generators and relations in this
sense, that is, as a coequalizer of maps between free algebras. Specifically, we
have the following proposition for monoids, an analogous version of which also
helds for groups and other algebras,

Proposition 3.24. For every monoid M there are sets R and G and a
coequalizer diagram,

»
F(R) ::1 G M
I'a

with (R} and F(G) free; thus, M 2 F(G)/(r1 = ra).

Proof. For any monaid N, let us write T'W = M(|N]) for the free monoid on
the set of elements of N {and note that 7' is therefore a functor). There is a
homomorphism,

7: TN - N
Y CP S TR

induced by the identity 1,5 : [¥| — |N] on the generators. (Here we are writing
the elements of TN as tuples (z1, ..., z,} rather than strings 21 ...z, for clarity.}
Applying this construction twice to a monoid M results in the arrows 7 and &
in the following diagram:

T2 TM

1 "

M (3.7)

where T2M = TTM and u = T'w. Explicitly, the elements of 72M are
tuples of tuples of elements of M, say {(z1,...,Zn}s.vey {21400, 2m)), and the

homomorphisms £ and p have the effect |

5((-'1:11---13"1&)5-"1(21\'-‘121?1)):(1:1;---):Env-'-‘zli'-';zm)
[.I({il?],-..,117,;),...,{21,»..,2;“)): (5"51 PeeatEpy ey 2 "“‘Zm)

Briefly, £ uses the multiplication in T'M and p uses that in M.
Now cleatly o = 7o . We claim that (3.7) is a coequalizer of monoids.
To that end, suppose we have a monoid N and a homomerphism h 1 TAf - N
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with he = hypr. Then for any tuple {z,..., 2z}, we have
e, ... z)=he{(m,...,2))
=h{t({$,...,2)) (38)
=h{z- ... -z}

Now define & = ko, where i : |M]| — |TM]| is the insertion of generators, as
indicated in the following:

We then have
hrx,... 2} = hin{z,...,2)
=h{z-... z)
= h{z,..., 2} by (3.8).

We leave it as an easy exercise for the reader to show that A is a homomorphism,
[

3.5 IExercises

1. In any category C, show that

A » B
Cy [55)

is a coproduct diagram just if for every object 7, the map
Hom(C, Z) — Hom{4, Z) x Hom(B, Z)
fr— {foe, foea)

is an isomorphism. Do this by using duality, taking the corresponding fact
about produets as given,
9. Show in detail that the free monoid functor A preserves coproducts: for
any sets A, B,
M{AY+ M{BY= M{A+B)  (canonically).

Do this as indicated in the text by using the UMPs of the coproducts A+ B
and M{A) + M(B) and of [rec monoids.
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3.

10.

11
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Verify that the construction given in the text of the coproduct of monoids
A+ B as a quotient of the free monoid A {|A} + |B]} really is a coproduct
in the category of monoids.

. Show that the product of two powerset Boolean algebras P{A)} and P(5)

is also a powerset, namely of the coproduct of the sets A and B,
P(A) x P(B)=P{A+ B).

(Hint: determine the projections my : P(A + B) — P(A) and 713 : P{A +
B) — P{B), and check that they have the UMP of the product.)

. Consider the category of praofs of a natural deduction system with

disjunction introcduction and elimination rules. Identify proofs under the
equations

{pIQ]Oh:ps [P;Q]O!é:(l
[roiy,roig)=r

forany p: A - C,qg: B — C,and r: A+ B — C, By passing
to equivalence classes of proofs with respect to the equivalence relation
gencrated by these equations (i.e., two proofs are equivalent if you can
get one from the other by removing all such “detours”). Show that the
resulting category does indeed have coproducts.

. Verify that the category of monoids has all equalizers and finite products,

then do the same for abelian groups.

. Show that in any category with copreducts, the coproduct of two

projectives is again projective.

. Dualize the notion of projectivity 1o define an injective object in a category.

Show that a map of posets is monic iff it is injective on elemnents. Give
examples of a poset that is injective and one that is not injective.

. Complete the proof of proposition 3.24 in the text by showing that Iis

indeed & homomorphism.

In the proof of propesition 3.24 in the text it is shown that any monoid
M has a specific presentation 7284 = T'M — M as a coequalizer of free
monotds. Show that coequalizers of this particular form are preserved by
the forgetful functor Mon — Sets.

Prove that Sets has all coequalizers by constructing the coequalizer of a
paraliel pabr of functions,

4 B—— Q=B/(/=g)

)

by quotienting B by a suitable equivalence relation R on B, generated by
the pairs (f{z),g{x)) for all x € A. (Define R to be the intersection of all
equivalence relations en B containing all such pairs.}
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13.
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Verify the coproduct-coequalizer construction mentioned in the text for
coproducts of rooted posets, that is, posets with a least element 0 and
monotone maps preserving 0. Specifically, show that the coproduct P+, Q
of two such posets can be constructed as 2 coequalizer in posets,

1 P+Q— PiqQ.

1Jo]

{You may assume as given the fact that the category of posets has al

coequalizers.)

Show that the category of monoids has all coequalizers as follows.

1. Given any pair of monoid homomerphisms f,g: M — N, show that the
following equivalence relations on N agree:

{a) n ~ n' < for all monotds X and homomorphisms it : N — X, one has
hf = hg implies An = hn',

{b) the intersection of alt equivalence relations ~ on N satisfying fm ~ gm
for all m € A as well as

nenandmem 2 nom~n' om'

2. Taking ~ to be the eguivalence relation defined in (1), show that the
quotient set N/~ is a monoid under [n] - [m} = {n - m], and the projection
N — N/~ is the coequalizer of f and g.

Consider the following category of sets:

{a) Given a function f: A4 -— B, deseribe the equalizer of the functions
fop,fopr: Ax A-» B asa (binary) relation on A and show that
it is an eqguivalence relation (catled the kerne! of f).

(b) Show that the kernel of the quotient A — A/R by an equivalence
relation R is R itself.

(c) Given any binary relation B € A x A, let {R} be the equivalence
relation on A generated by R (the least equivalence relation on A
containing R). Show that the quotient A — A/(R} is the coequalizer
of the two projections R =3 A,

(d) Using the foregoing, show that [or any binary relation 17 on a set A,
one can characterize the equivalence relation (R} generated by R as
the kernel of the coequalizer of the two projections of R.

. Construct coequalizers in Top as follows. Given a parallel pair of maps

fig: X = Y, make a quolient space g : Y — Q by {i) taking the
cocqualizer of |f] and lg| in Sets to get the function |g| : V]| — |@,
then (ii) equip |} with the quotient topology, under which a set V C @
is open iff ¢ YV} C ¥ is open. This is plainly the finest topology on |G}
that makes the projection ig] continuous.
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