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Chapter 1

1. (a) Identity arrows behave correctly, for if f ⊂ A × B, then

f ◦ 1A = {〈a, b〉 | ∃a′ ∈ A : 〈a, a′〉 ∈ 1A ∧ 〈a′, b〉 ∈ f}
= {〈a, b〉 | ∃a′ ∈ A : a = a′ ∧ 〈a′, b〉 ∈ f}
= {〈a, b〉 | 〈a, b〉 ∈ f} = f

and symmetrically 1B ◦ f = f . Composition is associative; if f ⊆ A × B,
g ⊆ B × C, and h ⊆ C × D, then

(h ◦ g) ◦ f = {〈a, d〉 | ∃b : 〈a, b〉 ∈ f ∧ 〈b, d〉 ∈ h ◦ g}
= {〈a, d〉 | ∃b : 〈a, b〉 ∈ f ∧ 〈b, d〉 ∈ {〈b, d〉 | ∃c : 〈b, c〉 ∈ g ∧ 〈c, d〉 ∈ h}}
= {〈a, d〉 | ∃b : 〈a, b〉 ∈ f ∧ ∃c : 〈b, c〉 ∈ g ∧ 〈c, d〉 ∈ h}
= {〈a, d〉 | ∃b∃c : 〈a, b〉 ∈ f ∧ 〈b, c〉 ∈ g ∧ 〈c, d〉 ∈ h}
= {〈a, d〉 | ∃c : (∃b : 〈a, b〉 ∈ f ∧ 〈b, c〉 ∈ g) ∧ 〈c, d〉 ∈ h}
= {〈a, d〉 | ∃c : 〈a, b〉 ∈ g ◦ f ∧ 〈c, d〉 ∈ h}
= h ◦ (g ◦ f).

2. (a) Rel ∼= Relop. The isomorphism functor (in both directions) takes an
object A to itself, and takes a relation f ⊆ A×B to the opposite relation
fop ⊆ B × A defined by fop := {〈b, a〉 | 〈a, b〉 ∈ f}. It is straightforward
to check that this is a functor Rel → Relop and Relop → Rel, and it is
its own inverse.

(b) Sets �∼= Setsop. Consider maps into the empty set ∅; there is exactly one.
If Sets ∼= Setsop held, there would have to be a corresponding set ∅′ with
exactly one arrow out of it.

(c) P (X) ∼= P (X)op. The isomorphism takes each element U of the powerset
to its complement X −U . Functoriality amounts to the fact that U ⊆ V
implies X − V ⊆ X − U .

3. (a) A bijection f from a set A to a set B, and its inverse f−1, comprise an
isomorphism; f(f−1(b)) = b and f−1(f(a)) = a, and so f ◦f−1 = 1B and
f−1 ◦ f = 1A, by definition of the inverse. If an arrow f : A → B in Sets
is an isomorphism, then there is an arrow g : B → A such that f ◦g = 1B

and g ◦ f = 1A. The arrow f is an injection because f(a) = f(a′) implies
a = g(f(a)) = g(f(a′)) = a′, and f is surjective because every b ∈ B has
a preimage, namely g(b), since f(g(b)) = b.
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(b) Monoid homomorphisms that are isomorphisms are also isomorphisms in
Sets, so by the previous solution they are bijective homomorphisms. It
remains to show that bijective homomorphisms are isomorphisms. It is
sufficient to show that the inverse mapping of a bijective homomorphism
f : M → N is a homomorphism. But we have

f−1(b �N b′) = f−1(f(f−1(b)) �N f(f−1(b′)))

= f−1(f(f−1(b) �M f−1(b′)))

= f−1(b) �M f−1(b′)

and f−1(eN ) = f−1(f(eM )) = eM .
(c) Consider the posets A = (U,≤A) and B = (U,≤B) given by U = {0, 1},

≤A= {〈0, 0〉, 〈1, 1〉}, and ≤B= {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}. The identity function
i : U → U is an arrow A → B in Posets, and it is a bijection, but the
only arrows B → A in Posets are the two constant functions U → U ,
because arrows in Posets must be monotone. Neither is an inverse to i,
which is therefore not an isomorphism.Au: Please

confirm the
sequence of
number is
OK.

6. The coslice category C/C, the category whose objects are arrows f : C → A
for A ∈ C and whose arrows f → f ′ are arrows h completing commutative
triangles

A

C
f ′

�

f

�

B

h

�

can equivalently be described as (Cop/C)op. For example, in the above
diagram f, f ′ are arrows into C in the opposite category Cop, so they are
objects in the slice Cop/C. The arrow h is B → A in Cop and h ◦ f = f ′ so
it is an arrow B → A in Cop/C, hence an arrow A → B in (Cop/C)op.

9. The free category on the graph

•

•
h

�

f

�

•

g

�
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is
•

•
h �

gf
�

f

�

•

g

�

plus three identity arrows, one for each object. The free category on the graph

•
f ��
g

•

has infinitely many arrows, all possible finite sequence of alternating fs and
gs—there are two empty sequences (i.e., identity arrows), one for each object.

10. The graphs whose free categories have exactly six arrows are the discrete
graph with six nodes, and the following 10 graphs:
• • • • •

•
����

•
���

•

��

•
��

•
�

• •
�

•

�

•
�

• • • • • •
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�
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11. (a) The functor M : Sets → Mon that takes a set X to the free monoid on
X (i.e., strings over X and concatenation) and takes a function f : X → Y
to the function M(f) defined by M(f)(a1 . . . ak) = f(a1) . . . f(ak) is a
functor; M(f) is a monoid homomorphism MX → MY since it preserves the
monoid identity (the empty string) and the monoid operation (composition).
It can be checked that M preserves identity functions and composition:
M(1X)(a1 . . . ak) = 1X(a1) . . . 1X(ak) = a1 . . . ak and

M(g ◦ f)(a1 . . . ak) = (g ◦ f)(a1) . . . (g ◦ f)(ak)

= g(f(a1)) . . . g(f(ak)) = M(g)(M(f)(a1 . . . ak))

= (M(g) ◦ M(f))(a1 . . . ak).

12. Let D be a category and h : G → U(D) be a graph homomorphism. Suppose
h̄ is a functor C(G) → D such that

U(h̄) ◦ i = h (∗).

From this equation, we see that U(h̄)(i(x)) = h(x) for all vertices and
edges x ∈ G. So the behavior of h̄ on objects and paths of length one
(i.e., arrows in the image of i) in C(G) is completely determined by the
requirement (∗). But since h̄ is assumed to be a functor, and so must
preserve composition, its behavior on arrows in C(G) that correspond to
longer paths in G is also determined, by a simple induction. Now it must be
that h̄(f1 · · · fk) = h(f1)◦· · ·h(fk) if h̄ is a functor, and similarly h̄(εA) = 1A,
where εA is the empty path at A. So uniqueness of h̄ is established, and it
is easily checked that this definition is indeed a functor, so the universal
mapping property (UMP) is satisfied.

Chapter 2

1. Suppose f : A → B is epi and not surjective. Choose b ∈ B not in the range
of f . Define g1, g2 : B → {0, 1} as follows: g1(x) = 0 for all x ∈ B, and
g2(x) = 1 if x = b, and 0 otherwise. Note that g1 ◦ f = g2 ◦ f by choice
of b, a contradiction. In the other direction, suppose f is surjective, and
suppose g1, g2 : B → C are such that g1 �= g2. Then there is b ∈ B such
that g1(b) �= g2(b). By assumption, b has a preimage a such that f(a) = b.
So g1(f(a)) �= g2(f(a)) and g1 ◦ f �= g2 ◦ f .

4. (a) Iso: the inverse of h is f−1 ◦g−1. Monic: If h◦k1 = h◦k2, then g◦ f◦k1 =
g ◦ f ◦ k2. Since g is monic, f ◦ k1 = f ◦ k2. Since f is monic, k1 = k2. Epi:
dual argument.

(b) If f ◦ k1 = f ◦ k2, then g ◦ f ◦ k1 = g ◦ f ◦ k2. Since h is monic, k1 = k2.
(c) Dual argument to (b).
(d) In Sets, put A = C = {0}, B = {0, 1}, and all arrows constantly 0. h is

monic but g is not.
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5. Suppose f : A → B is an isomorphism. Then f is mono because f ◦k1 = f ◦k2

implies k1 = f−1 ◦ f ◦ k1 = f−1 ◦ f ◦ k2 = k2, and dually f is mono also.
Trivially, f is split mono and split epi because f ◦f−1 = 1B and f−1◦f = 1A.
So we know (a)⇒(b), (c), (d). If f is mono and split epi, then there is g such
that f◦g = 1B . But since f is mono, (f◦g)◦f = f◦(g◦f) = f = f◦1A implies
g ◦ f = 1A and so g is in fact the inverse of f , and we have (b)⇒(a). Dually,
(c)⇒(a). The fact that (d)⇒(b), (c) needs only that split mono implies mono
(or dually that split epi implies epi). If there is g such that g ◦ f = 1A, then
f ◦ k1 = f ◦ k2 implies k1 = g ◦ f ◦ k1 = g ◦ f ◦ k2 = k2.

6. If h : G → H is injective on edges and vertices, and h ◦ f = h ◦ g in Graphs,
then the underlying set functions on edges and vertices are mono arrows in
Sets, so the edge and vertex parts of f and g are equal, and so f = g. If
h : G → H is mono in Graphs, and it is not injective on vertices, then
there are two vertices v, w such that h(v) = h(w). Let 1 be the graph with
one vertex, and f, g be graph homomorphisms 1 → G taking that vertex
to v, w, respectively. Then, h ◦ f = h ◦ g. A similar argument holds for
edges.

9. First, in the category Pos, an arrow is epi iff it is surjective: suppose that
f : A → B is surjective and let g, h : B → C with gf = hf . In Pos, this
means that g and h agree on the image of f , which by surjectivity is all of B.
Hence g = h and f is epi. On the other hand, suppose f is not epi and that
g, h : B → C witness this. Since g �= h, there is some b ∈ B with g(b) �= h(b).
But from this b �∈ f(A), and so A is not surjective.
Next, the singleton set 1, regarded as a poset, is projective: suppose f : 1 →
Y and e : X � Y are arrows in Pos, with e epi. Then e is surjective, so there
is some x ∈ X with e(x) = f(∗). Any map ∗ �→ x witnesses the projectivity
of 1.

10. Any set A is projective in Pos: suppose that f : A → Y and e : X � Y are
arrows in Pos. Choose for each y ∈ Y an element xy ∈ X with f(xy) = y; this
is possible since e is epi and hence surjective. Now define a map f̄ : A → X
by a �→ xf(a). Since A is discrete this is necessarily monotonic, and we have
ef̄ = f , so A is projective.
For contrast, the two element poset P = {0 ≤ 1} is not projective. Indeed,
we may take f to be the identity and X to be the discrete two-element set
{a, b}. Then the surjective map e : a �→ 0, b �→ 1 is an epi, since it is surjective.
However, any monotone map g : P → {a, b} must identify 0 and 1, since the
only arrows in the second category are identities. But then e ◦ g �= 1P . Thus,
there is no function g lifting the identity map on P across e, so P is not
projective.
Moreover, every projective object in Pos is discrete: For suppose Q is
projective. We can always consider the discretation |Q| of Q, which has the
same objects as Q and only identity arrows. We clearly get a map |Q| → Q
which is surjective and hence epi. This means that we can complete the
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diagram
|Q|

Q
1Q

�

f

�

Q

|1Q|

�

But the only object function that could possibly commute in this situation
is the object identity. Then,

x ≤ x′ ⇐⇒ f(x) ≤ f(x′) ⇐⇒ f(x) = f(x′) ⇐⇒ x = x′.

But then the only arrows of Q are identity arrows, so Q is discrete, as claimed.
Thus, the projective posets are exactly the discrete sets. Clearly, composition
of maps and identity arrows of discrete posets are exactly those of Set, so
Set is a subcategory of Pos. Moreover, every function between discrete sets
is monotone, so this is a full subcategory.

11. The UMP of a free monoid states that for any f : A → UB, there is a unique
f̄ : MA → B such that

UMA
Uf̄� UB

(∗)

A

η

�

f

�

commutes. For η : A → UM to be an initial object in A-Mon, it must be
that for object f : A → UB, there is a unique arrow f̄ in A-Mon from η
to f . But the definition of arrow in A-Mon is such that this arrow must
complete exactly the commutative triangle (∗) above. Therefore, the two
characterizations of the free monoid coincide.

13. Let P be the iterated product A×(B×C) with the obvious maps p1 : P → A,
p2 : P → B×C → B, and p3 : P → B×C → C. Define Q = (A×B)×C and
qi similarly. By the UMP, we get a unique map f1 = p1 × p2 : P → A × B.
Applying it again, we get a unique map f = (p1 × p2) × p3 : P → Q with
qif = pi. We can run a similar argument to get a map g in the other direction.
Composing, we get gf : P → P which respects the pi. By the UMP, such a
map is unique, but the identity is another such map. Thus they must be the
same, so gf = 1P . Similarly fg = 1Q, so f and g are inverse and P ∼= Q.

17. The pairing of any arrow with the identity is in fact split mono: π1◦〈1A, f〉 =
1A. There is a functor G : Sets → Rel which is constant on objects and
takes f : A → B to (im 〈1A, f〉) ⊆ A × B. It preserves identities since
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G(1A) im 〈1A, 1A〉 = {〈a, a〉 | a ∈ A} = 1A ∈ Rel. It preserves composition
because for g : B → C, we have

G(g ◦ f) = im 〈1A, g ◦ f〉 = {〈a, g(f(a))〉 | a ∈ A}

= {〈a, c〉 | ∃b ∈ B.b = f(a) ∧ c = g(b)}

= {〈b, g(b)〉 | b ∈ B} ◦ {〈a, f(a)〉 | a ∈ A}

= G(g) ◦ G(f).

Chapter 3

1. In any category C, the diagram

A �
c1

C
c2

� B

is a product diagram iff the mapping

hom(Z,C) −→ hom(Z,A) × hom(Z,B)

given by f �→ 〈c1 ◦ f, c2 ◦ f〉 is an isomorphism. Applying this fact to Cop,
the claim follows.

2. Say iMA, iMB are the injections into the coproduct MA+MB, and ηA, ηB are
the injections into the free monoids on A,B. Put e = [U(iMA)◦ηA, U(iMB)◦
ηB ]. Let an object Z and an arrow f : A + B → UZ be given. Suppose
h : MA + MB → Z has the property that

Uh ◦ e = f (∗)

Because of the UMP of the coproduct, we have generally that a ◦ [b, c] =
[a ◦ b, a ◦ c], and in particular

Uh ◦ e = [Uh ◦ U(iMA) ◦ ηA, Uh ◦ U(iMB) ◦ ηB ]

Because this is equal to f , which is an arrow out of A+B, and since functors
preserve composition, we have

U(h ◦ iMA) ◦ ηA = f ◦ iA

U(h ◦ iMB) ◦ ηB = f ◦ iB

where iA, iB are the injections into A + B. But the UMP of the free monoid
implies that h ◦ iMA must coincide with the unique f ◦ iA that makes the
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triangle

MA ....................
f ◦ iA� Z

UMA ................
Uf ◦ iA� UZ

A

ηA

�

f ◦ iA

�

commute. Similarly, h ◦ iMB = f ◦ iB . Since its behavior is known on
both injections, h is uniquely determined by the condition (∗); in fact,
h = [f ◦ iA, f ◦ iB ]. That is, the UMP of the free monoid on A+B is satisfied
by MA+MB. Objects characterized by UMPs are unique up to isomorphism,
so M(A + B) ∼= MA + MB.

5. In the category of proofs, we want to see that (modulo some identifications)
the coproduct of formulas ϕ and ψ is given by ϕ ∨ ψ. The intro and elim
rules automatically give us maps (proofs) of the coproduct from either of
its disjuncts, and from pairs of proofs that begin with each of the disjuncts
into a single proof beginning with the disjunction. To see that this object
really is a coproduct, we must verify that this is the unique commuting
arrow.

ϕ
i � ϕ ∨ ψ � j

ψ

θ

[p, q]

�
q

�

p
�

But this is simple since composition is simply concatenation of proofs.
Suppose we have another proof r : ϕ ∨ ψ → θ with r ◦ i = p. Then by
disjunction elimination, r necessarily has the form

ϕ ∨ ψ

[ϕ]....
θ

[ψ]....
θ

θ .

Applying i on the right simply has the effect of bringing down part of the

proof above, so that the quotienting equation now reads r◦i =

[ϕ]....
θ = p. Hence,

up to the presence of more detours, we know that the proof appearing as part
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of r is exactly p. Similarly, we know that the second part of the proof

[ψ]....
θ

must be q. Thus r is uniquely defined (up to detours) by p and q, ϕ ∨ ψ is
indeed a coproduct.

6. (Equalizers in Ab). Suppose we have a diagram

(A,+A, 0A)
f�

g
� (B,+B , 0B)

in Ab. Put A′ := {a ∈ A | f(a) = g(a)}. It is easy to check that A′ is in fact
a subgroup of A, so it remains to be shown that

(A′,+A, 0A) ⊂� (A,+A, 0A)
f�

g
� (B,+B , 0B)

is an equalizer diagram.

(X,+X , 0X)

(A′,+A, 0A)

h

�
⊂� (A,+A, 0A)

f�

g
�

z

�

(B,+B , 0B)

If the triangle is to commute, h(x) = z(x) for all x ∈ X, so h is uniquely
determined. It is easily checked that h is a homomorphism, implying that
Ab indeed has all equalizers.

14. (a) The equalizer of f ◦ π1 and f ◦ π2 is the relation ker(f) = {〈a, a′〉 ∈
A × A | f(a) = f(a′)}. Symmetry, transitivity, and reflexivity of ker(f)
follow immediately from the same properties of equality.

(b) We need to show that a pair a, a′ of elements are in the kernel of the
projection q : A �� A/R iff they are related by R. But this amounts
to saying that q(a) = q(a′) iff aRa′, where q(x) = {x | xRa} is the
equivalence class. But this is true since R is an equivalence relation.

(c) Take any function f : A → B with f(a) = f(a′) for all aRa′. The kernel
ker(f) of f is therefore an equivalence relation that contains R, so 〈R〉 ⊆
ker(f). It follows that f factors through the projection q : A �� A/〈R〉
(necessarily uniquely, since q is epic).

(d) The coequalizer of the projections from R is the projection q :
A �� A/〈R〉, which has 〈R〉 as its kernel.
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Chapter 4

1. Given a categorical congruence ∼ on a group G, the corresponding normal
subgroup is N∼ := {g | g ∼ e}. N is a subgroup; it contains the identity
by reflexivity of ∼. It is closed under inverse by symmetry and the fact that
e ∼ g implies g−1 = g−1e ∼ g−1g = e. It is closed under product because if
g ∼ e and h ∼ e then gh ∼ ge = g ∼ e, and by transitivity gh ∈ N∼. It is
normal because

x{g | g ∼ e} = {xg | g ∼ e} = {x(x−1h) | x−1h ∼ e} = {h | h ∼ x}
and

{g | g ∼ e}x = {gx | g ∼ e} = {(hx−1)x | hx−1 ∼ e} = {h | h ∼ x}.
In the other direction, the categorical congruence ∼N corresponding to a
normal subgroup N is g ∼N h : ⇐⇒ gh−1 ∈ N . The fact that ∼N is an
equivalence follows easily from the fact that N is a subgroup. If f ∼N g, then
also hfk ∼N hgk, since fg−1 ∈ N implies hfkk−1g−1h−1 = hfg−1h−1 ∈ N ,
because N was assumed normal, and so N = hNh−1.
Since two elements g, h of a group are in the same coset of N precisely when
gh−1 = e, the quotient G/N and the quotient G/∼ coincide when N and ∼
are in the correspondence described above.

6. (a)

1 � 2 � 3

No equations. (i.e., 3 is free)
(b)

1
f �

g
� 2 � 3

Equations: f = g

(c)

1
f �

g
� 2

h �

k
� 3

Equations: f = g, h = k

(d)

1
f � 2

2

h

�

g
�
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Equations: f = h ◦ g

7. By definition of congruence, f ∼ f ′ implies gf ∼ gf ′ and g ∼ g′ implies
gf ′ ∼ g′f ′. By transitivity of ∼, we conclude gf ∼ g′f ′.

8. ∼ is an equivalence because equality is. For instance, if f ∼ g, then for all
E and H : D → E we have HF = HG ⇒ H(f) = H(g). But under the
same conditions, we have H(g) = H(f), so g ∼ f . Since H is assumed to
be a functor, it preserves composition, and so H(hfk) = H(h)H(f)H(k) =
H(h)H(g)H(k) = H(hgk) for any H such that HF = HG and any h, k,
hence ∼ is a congruence.
Let q be the functor assigning all the arrows in D to their ∼-equivalence
classes in the quotient D/∼. We know q is indeed a well-defined functor by
a previous exercise. Suppose we have H coequalizing F,G. By definition
of ∼ any arrows that H identifies are ∼-equivalent, and therefore
identified also by q. There can be at most one K making the triangle
in

C
F �

G
� D

q � D/∼

E

H

�
K

�

commute, (for any [f ]∼ ∈ D/∼ it must be that K([f ]∼) =
H(f)) and the fact that q identifies at least as many arrows as H
implies the existence of such a K. So q is indeed the coequalizer of
F,G.

Chapter 5

1. Their UMPs coincide. A product in C/X of f and g is an object h : A ×X

B → X and projections π1 : h → f and π2 : h → g which is terminal
among such structures. The pullback of f, g requires an object A ×X B and
projections π1 : A ×X B → A and π2 : A ×X B → B such that f ◦ π1 =
g ◦ π2, terminal among such structures. The commutativity requirements of
the pullback are exactly those imposed by the definition of arrow in the slice
category.

2. (a) If m is monic, then the diagram is a pullback; if m ◦ f = m ◦ g, then
f = g, the unique mediating map being equivalently f or g. If the diagram
is a pullback, suppose m ◦ f = m ◦ g. The definition of pullback implies the
unique existence of h such that 1M ◦ h = f and 1M ◦ h = g, but this implies
f = g.
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3.

Z
h �

k
� M ′ f ′

� M

A′

m′

�

f
� A

m

�

Let h, k : Z → M ′ be given. Suppose m′h = m′k. Then, fm′h = fm′k and
so mf ′h = mf ′k. Since m is assumed mono, f ′h = f ′k. The definition of
pullback applied to the pair of arrows m′k, f ′k implies, there is exactly one
arrow q : Z → M ′ such that m′ ◦ q = m′k and f ′ ◦ q = f ′k. But both h, k
can be substituted for q and satisfy this equation, so h = k.

4. Suppose m : M → A and n : N → A are subobjects of A. If M ⊆ N , then
there is an arrow s : M → N such that n ◦ s = m. If z ∈A M , then there is
an arrow f : Z → M such that m◦f = z. Then s◦f witnesses z ∈A N , since
n ◦ s ◦ f = m ◦ f = z. If for all z : Z → A we have z ∈A M⇒z ∈A N , then
in particular this holds for z = m, and in fact m ∈A M (via setting f = 1A)
so m ∈A N , in other words M ⊆ N .

7. We show that the representable functor HomC(C,−) : C → Sets preserves
all small products and equalizers; it follows that it preserves all small limits,
since the latter can be constructed from the former. For products, we need
to show that for any set I and family (Di)i∈I of objects of C, there is a
(canonical) isomorphism,

Hom(C,
∏

i∈I

Di) ∼=
∏

i∈I

Hom(C,Di).

But this follows immediately from the definition of the product
∏

i∈I Di.
For equalizers, consider an equalizer in C,

E
e � A

f �

g
� B.

Applying Hom(C,−) results in the following diagram in Sets:

Hom(C,E)
e∗ � Hom(C,A)

f∗ �

g∗
� Hom(C,B),

which is clearly an equalizer: for, given h : C → A with f∗(h) = g∗(h), we
therefore have fh = f∗(h) = g∗(h) = gh, whence there is a unique u : C → E
with h = eu = e∗(u).

8. We have a putative category of partial maps. We need to verify identity and
associativity. The first is easy. Any object is a subobject of itself, so we may
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set 1A in the category of partial maps to be the pair (1A, A). It is trivial to
check that this acts as an identity.
For associativity, suppose U , V , and W are subobjects of A, B, and C,
respectively, and that we have maps as in the diagram:

U ×B V V ×C W

U
�

⊃

V

�

⊃
�

W

�

A

�

⊃

B
�

⊃f�

C

�

⊃g�

D

h�

Now let P be the pullback of U×BV and V ×C W over E and k the associated
partial map. Since we can compose pullback squares, that means that P is
also the pullback of U and V ×C W over B. Since the latter is the composition
of g and h, this means k = (h ◦ g) ◦ f . Similarly, k = h ◦ (g ◦ f). Hence the
composition of partial maps is associative, and this setup does describe a
category.

12. If we let the numeral n denote the initial segment of the natural number
sequence {0 ≤ 1 ≤ . . . ≤ n}, we have a chain of inclusions in Pos:

0 → 1 → 2 → . . . → n → . . . .

We would like to determine the limit and colimit of the diagram.
For the limit, suppose we have a cone ζn : Z → n. Since 0 is the initial object,
ζ0 is constant, and each map ζn has ζ0 as a factor (this is the cone condition).
But each such map simply takes 0 to itself, regarded as an element of n, so
that ζn is also the constant zero map. So the limit of the diagram can be
(anything isomorphic to) the object 0 together with the inclusions 0 → n.
Now suppose we have a co-cone ψn : n → Y . The co-cone condition implies
that ψn is simply the restriction of ψm+n to the subset n ⊆ n+m. If m < n,
then

ψ(m) = ψm(m) = ψn(m) < ψn(n)

so this is a monotone function. For any other ϕ : N → Y , there is some n
with ϕ(n) �= ψ(n) = ψn(n). Thus, ψ is the unique map factoring the co-cone
on Y . Thus, ω = {0 ≤ 1 ≤ 2 ≤ . . .} together with the evident injections
n → ω is the colimit of the diagram.

Chapter 6

Notation: If f : A → BC , then ev ◦ f × C = f : A × C → B. If f : A × C → B,
then λf : A → BC .

2. These isomorphism are witnessed by the following pairs: f : (A × B)C →
AC × BC defined by f = 〈λ(π1 ◦ 1(A×B)C ), λ(π2 ◦ 1(A×B)C )〉 and f−1 :
AC × BC → (A × B)C defined by f−1 = λ〈π1, π2〉; and g : (AB)C → AB×C
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defined by g = λ(ev ◦ α(AB)C ) and g−1 : AB×C → (AB)C defined by
g−1 = λλ(ev ◦ α−1

AB×C ), where αZ is the evident isomorphism from
associativity and commutativity of the product, up to isomorphism, Z ×
(B × C) → (Z × C) × B.

3. The exponential transpose of ev is 1BA . The exponential transpose of 1A×B

is the “partial pairing function” A → (A×B)B defined by a �→ λb : B.〈a, b〉.
The exponential transpose of ev ◦ τ is the “partial application function”
A → BBA

defined by a �→ λf : BA.f(a).
6. Here we consider the category Sub, whose objects are pairs (A,P ⊆ A), and

whose arrows f : (A,P ) → (B,Q) are set functions A → B such that a ∈ P
iff f(a) ∈ Q. This means that an arrow in this category is essentially a pair
of arrows f1 : P → Q and f2 : A \ P → B \ Q; thus, this is (isomorphic to)
the category Sets/2.
Now, Sets/2 is equivalent to the product category Sets×Sets, by a previous
exercise. This latter category is cartesian closed, by the equational definition
of CCCs, which clearly holds in the two factors. But equivalence of categories
preserves cartesian closure, so Sub is also cartesian closed.

10. For products, check that the set of pairs of elements of ωCPOs A and B
ordered pointwise, constitutes an ωCPO (with ω-limits computed pointwise)
and satisfies the UMP of a product. Similarly, the exponential is the set
of continuous monotone functions between A and B ordered pointwise, with
limits computed pointwise. In strict ωCPOs, by contrast, there is exactly one
map {⊥} → A, for any object A. Since {⊥} = 1 is also a terminal object,
however, given an exponential BA there can be only one map A → B, since
Hom(A,B) ∼= Hom(1 × A,B) ∼= Hom(1, BA).

11. (a) The identity
((p ∨ q) ⇒ r) ⇒ ((p ⇒ r) ∧ (q ⇒ r))

“holds” in any CC poset with joins, that is, this object is equal to the
top element 1. Equivalently, from the definition of ⇒, we have

((p ∨ q) ⇒ r) ≤ ((p ⇒ r) ∧ (q ⇒ r)),

as follows immediately from part (b), which shows the existence of such
an arrow in any CCC.

(b) In any category where the constructions make sense, there is an arrow

C(A+B) → CA × CB .

Indeed, by the definition of the coproduct, we have arrows A → A + B
and B → A + B, to which we apply the contravariant functor C(−) to
obtain maps C(A+B) → AC and C(A+B) → CB . By the UMP of the
product, this gives a map C(A+B) → CA × CB , as desired.

13. This can be done directly by comparing UMPs. For a different proof
(anticipating the Yoneda Lemma), consider, for an arbitrary object X, the
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bijective correspondence of arrows,

(A × C) + (B × C) → X

(A + B) × C → X
.

This is arrived at via the canonical isos:

Hom((A × C) + (B × C),X) ∼= Hom(A × C,X) × Hom(B × C,X)

∼= Hom(A,XC) × Hom(B,XC)

∼= Hom(A + B,XC)
∼= Hom((A + B) × C,X).

Now let X = (A × C) + (B × C), respectively X = (A + B) × C, and trace
the respective identity arrows through the displayed isomorphisms to arrive
at the desired isomorphism

(A × C) + (B × C) ∼= (A + B) × C.

14. If D = ∅ then DD ∼= 1, so there can be no interpretation of s : DD → D. If
D ∼= 1 then also DD ∼= 1, so there are unique interpretations of s : DD → D
and t : D → DD. If |D| ≥ 2 (in cardinality), then |DD| ≥ |2D| ≥ |P(D)|, so
there can be no such (split) mono s : DD → D, by Cantor’s theorem on the
cardinality of powersets. Thus, the only models can be D ∼= 1, and in these,
clearly all equations hold, since all terms are interpreted as maps into 1.

Chapter 7

1. Take any element a ∈ A and compute

(F(h) ◦ φA)(a) = F(h)(φA(a))

= F(h)({U ∈ Ult(A) | a ∈ U})
= P(Ult(h))({U ∈ Ult(A) | a ∈ U})

= (Ult(h))−1({U ∈ Ult(A) | a ∈ U})
= {V ∈ Ult(B) | a ∈ Ult(h)(V)}
= {V ∈ Ult(B) | h(a) ∈ V}
= φB(h(a))

= (φB ◦ h)(a).

4. Both functors are faithful. U is full because every monoid homomorphism
between groups is a group homomorphism: if h(ab) = h(a)h(b) then
e = h(a−1a) = h(a−1)h(a) and symmetrically e = h(a)h(a−1) and so
h(a−1) is the inverse of h(a). V is not full; there are set functions between
monoids that are not homomorphisms. Only V is surjective on objects (there
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are, for example cyclic groups of every cardinality). Only U is injective
on objects, since monoid structure uniquely determines inverses, if they
exist.

5. It is easy to check that upward-closed sets are closed under unions and finite
intersections. The arrow part of the functor A simply takes a monotone
function f : P → Q to itself, construed as a function f : A(P ) → A(Q).
Preservation of identities and composition is therefore trivial, but we must
check that f is in fact an arrow in Top. Let U be an open (that is, upward-
closed) subset of A(Q). We must show that f−1(U) is upward-closed. Let
x ∈ f−1(U) and y ∈ P be given, and suppose x ≤ y. We know that f(x) ∈ U
and f(x) ≤ f(y) since f is monotone. Because U is upward-closed, we have
f(y) ∈ U , so y ∈ f−1(U) and so f is continuous.
A is trivially faithful. A is also full: Let f be a continuous function P → Q.
Put D := {q ∈ Q | f(x) ≤ q}. Since f is continuous and D is upward-closed,
f−1(D) is upward-closed. If x ≤ y then the fact that x ∈ f−1(D) implies
y ∈ f−1(D) and so f(y) ∈ D. That is, f(x) ≤ f(y). Hence every continuous
function A(P ) → A(Q) is a monotone function P → Q.

6. (a) Let the objects of E be those of C, and identify arrows in C if they
are identified by F , that is, let E be the quotient category of C by the
congruence induced by F . The functor D is the canonical factorization
of F through the quotient.

(b) Let E be the subcategory of D whose objects are those in the image of
F , and whose arrows are all the D-arrows among those objects. Let D
be the inclusion of E in D and E the evident factorization of F through
E.

These factorizations agree iff F itself is injective on objects and full.
7. Suppose α is a natural isomoprhism F → G : C → D. Then it has an inverse

α−1. Since α−1◦α = 1F and α◦α−1 = 1G, it must be that αC◦α−1
C = 1GC and

α−1
C ◦ αC = 1FC . So the components of α are isomorphisms. If conversely

all α’s components are isomorphisms, then defining α−1
C = (αC)−1 for all

C ∈ C makes α−1 a natural transformation which is α’s inverse. For f :
A → B, knowing Gf ◦ αA = αB ◦ Ff , we compose on the left with α−1

B

and on the right with α−1
A to obtain Ff ◦ α−1

A = α−1
B ◦Gf , the naturality of

α−1.
The same does not hold for monomorphisms. Let C be the two-element poset
{0 ≤ 1} and D the category

A
x �

y
� B

f � C

such that fx = fy. Let F be the functor taking 0 ≤ 1 to x : A → B and
G the functor taking it to f : B → C. There is a natural transformation
α : F → G such that α0 = x : A → B and α1 = f : B → C. The
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component f of α is not mono, but α itself is; there are no nontrivial natural
transformations into F : any β : H → F would have to satisfy a naturality
square

H0
H ≤� H1

A

β0

�

x
� B

β1

�

But H0 must be A and β0 = 1A. Then H1 must be either A or B, forcing
β to either be the unique natural transformation to F from the functor
taking 0 ≤ 1 to 1A : A → A, or else the identity natural transformation
on F .

8. Put (F × G)(C) = FC × GC, and (F × G)(f) = Ff × Gf . Define (π1)C =
πFC×GC

1 : FC × GC → FC and (π2)C = πFC×GC
2 : FC × GC → GC.

It is easy to check that π1, and π2 are natural. Let a functor Z : C → D
and natural transformations α : Z → F and β → F be given. By the UMP
of the product, there are unique arrows hC : ZC → FC × GC such that
(π1)C ◦ hC = αC and (π2)C ◦ hC = βC . We need to verify that

ZC
hC� FC × GC

ZD

Zf

�

hD

� FD × GD

Ff × Gf

�

But
πFD×GD

1 ◦ Ff × Gf ◦ hC = Ff ◦ πFC×GC
1 ◦ hC

= Ff ◦ αC = αD ◦ Zf = πFD×GD
1 ◦ hD ◦ Zf.

And similarly with the second projection, using the naturality of β.
10. To satisfy the bifunctor lemma, we need to show that for any f : C → C ′ ∈

Cop and g : D → D′ ∈ C the following commutes:

hom(C,D)
hom(f,D)� hom(C ′,D)

hom(C,D′)

hom(C, g)

�

hom(f,D′)
� hom(C ′,D′)

hom(C ′, g)

�
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But either path around the square takes an arrow h : C → D and turns it
into g ◦ h ◦ f : C ′ → D′; thus the associativity of composition implies that
the square commutes.

12. If C � D, then there are functors F : C � D : G and natural isomorphisms
α : 1D → FG and β : GF → 1C. Suppose C has products, and let D,D′ ∈ D
be given. We claim that F (GD × GD′) is a product object of D and D′,
with projections α−1

D ◦ FπGD×GD′

1 and α−1
D′ ◦ FπGD×GD′

2 . For suppose we
have an object Z and arrows a : Z → D and a′ : Z → D′ in D. There
is a unique h : GZ → GD × GD′ ∈ C such that πGD×GD′

1 ◦ h = Ga and
πGD×GD′

2 ◦ h = Ga′. Then the mediating map in D is Fh ◦ αZ . We can
calculate

α−1
D ◦ FπGD×GD′

1 ◦ Fh ◦ αZ = α−1
D ◦ F (πGD×GD′

1 h) ◦ αZ

= α−1
D ◦ FGa ◦ αZ

= α−1
D ◦ αD ◦ a

= a

and similarly for the second projection.
Uniqueness of the map Fh ◦ αZ follows from that of h.

16. Let C be given. Choose one object D[C]∼= from each isomorphism class [C]∼=
of objects in C and call the resulting full subcategory D. For every object
C of C choose an isomorphism iC : C → D[C]∼= . Then, C is equivalent
to D via the inclusion functor I : D → C and the functor F defined by
FC = D[C]∼= and F (f : A → B) = iB ◦ f ◦ i−1

A (F is a functor because the
iCs are isomorphisms) and i construed as a natural isomorphism 1D → FI
and 1C → IF . Naturality is easy to check:

A
iA � IFA

B

f

�

iB
� IFB

iBfi−1
A

�

So C is equivalent to the skeletal category D.

Chapter 8

1. Let f : C � C ′ : g be an iso. Then, clearly, Ff : FC � FC ′ : Fg is
also one. Conversely, if p : FC � FC ′ : q is an iso, then since F is full
there are f : C � C ′ : g with Ff = p and Fg = q. Then g ◦ f = 1C

since F (g ◦ f) = Fg ◦ Ff = 1FC = F (1C), and F is faithful. Similarly,
f ◦ g = 1C′ .
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2. Given two natural transformations ϕ,ψ : P → Q, where P,Q ∈ SetsC
op

,
assume that for each C ∈ C and θ : yC → P , we have ϕ ◦ θ = ψ ◦ θ. In other
words,

ϕC∗ = ψC∗ : hom(yC, P ) → hom(yC,Q).

The Yoneda Lemma gives us a bijection hom(yC, P ) ∼= PC for each C, and
these bijections are natural in P , so the following diagram commutes:

hom(yC, P )
∼=� PC

hom(yC,Q)

ϕC∗ = ψC∗

�

∼=
� QC

ϕC

�

ψC

�

But then both ϕC and ψC must be given by the single composition through
the left side of the square, so that ϕ = ψ.

3. The following isos are natural in Z:

homC(Z,AB × AC) ∼= homC(Z,AB) × homC(Z,AC)
∼= homC(Z × B,A) × homC(Z × C,A)
∼= homC((Z × B) + (Z × C), A)
∼= homC(Z × (B + C), A)

∼= homC(Z,AB+C).

Hence AB × AC ∼= AB+C , since the Yoneda embedding is full and faithful.
The case of (A × B)C ∼= AC × BC is similar.

6. Limits in functor categories DC can be computed “pointwise”: given F : J →
DC set

(lim←−
j∈J

Fj)(C) = lim←−
j∈J

(Fj(C)).

Thus, it suffices to have limits in D in order to have limits in DC. Colimits
in DC are limits in (DC)op = (Dop)C

op
.

7. The following are natural in C:

y(A × B)(C) ∼= hom(C,A × B)
∼= hom(C,A) × hom(C,B)
∼= y(A)(C) × y(B)(C)
∼= (y(A) × y(B))(C),
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so y(A×B) ∼= y(A)×y(B). For exponentials, take any A,B,C and compute:

y(B)y(A)(C) ∼= hom(yC, yByA)
∼= hom(yC × yA, yB)
∼= hom(y(C × A), yB)
∼= hom(C × A,B)

∼= hom(C,BA)

∼= y(BA)(C).

11. (a) For any poset P, the subobject classifier Ω in SetsP is the functor:

Ω(p) = {F ⊆ P | (x ∈ F ⇒ p ≤ x) ∧ (x ∈ F ∧ x ≤ y ⇒ y ∈ F )},
that is, Ω(p) is the set of all upper sets above p. The action of Ω on p ≤ q
is by “restriction”: F �→ F |q = {x ∈ F | q ≤ x}. The point t : 1 → Ω is
given by selecting the maximal upper set above p,

tp(∗) = {x | p ≤ x}.
In Sets2, the subobject classifier is therefore the functor Ω : 2 → Sets
defined by

Ω(0) = {{0, 1}, {1}}
Ω(1) = {{1}},

together with the natural transformation t : 1 → Ω with

t0(∗) = {0, 1}
t1(∗) = {1}.

In Setsω, the subobject classifier is the functor Ω : ω → Sets defined by

Ω(0) = {{0, 1, 2, . . . }, {1, 2, 3, . . . }, {2, 3, 4, . . . }, . . . }
Ω(1) = {{1, 2, 3, . . . }, {2, 3, 4, . . . }, {3, 4, 5, . . . }, . . . }

... =
...

Ω(n) = {{n, n + 1, n + 2, . . . }, {n + 1, n + 2, n + 3, . . . }, . . . },
with the transition maps Ω(n) → Ω(n+1) defined by taking {n, n+1, n+
2, . . . } to {n + 1, n + 2, n + 3, . . . } and like sets to themselves, together
with the natural transformation t : 1 → Ω with

t0(∗) = {0, 1, 2, . . . }
t1(∗) = {1, 2, 3, . . . }
tn(∗) = {n, n + 1, n + 2, . . . }.
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(b) One can check directly that all of the topos operations—pullbacks,
exponentials, subobject classifier—construct only finite set-valued
functors when applied to finite set-valued functors.

Chapter 9

3. ηA takes an element a ∈ A and returns the function (c �→ 〈a, c〉) ∈ (A×C)C .

(A × C)C f̄C
� BC

A

ηA

�

f

�

4. For any small index category J, the left adjoint of Δ : C → CJ is the functor
taking a diagram in CJ to its colimit (if it exists), and the right adjoint to
its limit. Indeed, suppose D : J → C is a functor.

Δ lim
−→

D
Δθ̄� ΔE

D

ηD

�

θ

�

Define the natural transformation ηD to take an object J ∈ J to the injection
iJ : DJ → lim

−→
D. The commutativity condition on the colimit guarantees

that ηD is natural. Suppose E and θ : D → ΔE are given. That is, suppose θ
is a co-cone from the diagram D to the object E. Then there exists a unique
arrow out of θ̄ : lim

−→
D → E making the above diagram commute. Therefore,

lim
−→

� Δ. Dually, Δ � lim
←−

.
It follows that for J = 2, the left adjoint is binary coproduct and the right
adjoint is binary product.

5. Right adjoints preserve limits, and left adjoints preserve colimits.
8. The first adjunction is equivalent to the statement:

im(f)(X) ⊆ Y ⇐⇒ X ⊆ f−1(Y ),

for all X ⊆ A, Y ⊆ B. Here,

im(f)(X) = {b | b = f(x) for some x ∈ X}

f−1(Y ) = {a | f(a) ∈ Y }
If im(f)(X) ⊆ Y then for any x ∈ X, we have f(x) ∈ Y , and so X ⊆ f−1(Y ).
Conversely, take b ∈ im(f)(X), so there is some x ∈ X with f(x) = b. If
X ⊆ f−1(Y ) then b = f(x) ∈ Y .
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For the right adjoint, set

f∗(X) = {b | f−1({b}) ⊆ X}.

We need to show
f−1(Y ) ⊆ X ⇐⇒ Y ⊆ f∗(X).

Suppose f−1(Y ) ⊆ X and take any y ∈ Y , then f−1({y}) ⊆ f−1(Y ) ⊆ X.
Conversely, given Y ⊆ f∗(X), we have f−1(Y ) ⊆ f−1(f∗(X)) ⊆ X, since
b ∈ f∗(X) implies f−1({b}) ⊆ X.

9. We show that P : Setsop → Sets has itself, regarded as a functor Pop :
Sets → Setsop, as a (left) adjoint:

HomSets(A,P(B)) ∼= HomSets(A, 2B) ∼= HomSets(B, 2A)
∼= HomSets(B,P(A)) ∼= HomSetsop(Pop(A), B).

10. A right adjoint to U : C/C → C is given by products with C,

A �→ (π2 : A × C → C),

so U has a right adjoint iff every object A has such a product.
To have a left adjoint, U would have to preserve limits, and in particular
the terminal object 1C : C → C. But U(1C) = C, so C would need to be
terminal, in which case C/C ∼= C.

11. (a) In a Heyting algebra, we have an operation b ⇒ c such that

a ≤ b ⇒ c ⇐⇒ a ∧ b ≤ c.

We define a coHeyting algebra by duality, as a bounded lattice with an
operation a/b satisfying

a/b ≤ c ⇐⇒ a ≤ b ∨ c

In a Boolean algebra, we know that b ⇒ c = ¬b ∨ c. By duality, we can
set a/b = a ∨ ¬b.

(b) In intuitionistic logic, we have two inference rules regarding negation:

ϕ ∧ ¬ϕ � ⊥

ϕ � ¬¬ϕ

We get inference rules for the conegation ∼ p = 1/p by duality

� � ϕ∨ ∼ ϕ

∼∼ ϕ � ϕ

For the boundary ∂p = p∧ ∼ p, we have the inference rules derived from
the rules for ∧:

q � ∂p iff q � p and q �∼ p
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(c) We seek a biHeyting algebra P which is not Boolean. The underlying
lattice of P will be the three-element set {0, p, 1}, ordered 0 ≤ p ≤ 1.
Now let

x ⇒ y =

{
1 x ≤ y

y o.w.

This is easily checked to satisfy the required condition for x ⇒ y, thus
P is a Heyting algebra. But since P is self-dual, it is also a coHeyting
algebra, and co-implication must be given by

x/y =

{
0 x ≥ y

y o.w.

To see that P is not Boolean, observe that ¬x = x ⇒ 0 = 0, so ¬¬x =
1 �= x.
Note that P is the lattice of lower sets in the poset 2. In general, such
a lattice is always a Heyting algebra, since it is completely distributive,
as is easily seen. It follows that such a lattice is also coHeyting, since its
opposite is isomorphic to the lower sets in the opposite of the poset.

19. The right adjoint Rel → Sets is the powerset functor, A �→ P(A), with
action on a relation R ⊆ A × B given by

P(R) : P(A) → P(B)

X �→ {b | xRb for some x ∈ X}.
The unit ηA : A → P(A) is the singleton mapping a �→ {a}, and the counit
is the (converse) membership relation �A ⊆ P(A) × A.

Chapter 10

2. Let C be a category with terminal object 1 and binary coproducts, and define
T : C → C by TC = 1+C. Let T be the equational theory of a set equipped
with a unary operation and a distinguished constant (no equations). We want
to show that the following categories are equivalent: Au: Please

confirm if the
italicization
to certains
elements in
the text is ok.

T -algebras Objects : (A ∈ C, a : 1 + A → A)
Arrows : h : (A, a) → (B, b) s.t. h ◦ a = b ◦ T(h)

T-algebras Objects : (X ∈ Sets, cX ∈ X, sX : X → X)
Arrows : f : X → Y s.t fcX = cY and f ◦ sX = sY ◦ f

We have the functor F : T -Alg → T-Alg sending

(A, a) �→ (A, a1 : 1 → A, a2 : A → A)

where a = [a1, a2] as a map from the coproduct 1 + A.
Conversely, given (X, c ∈ X, s : X → X), we can set f = [c, s] : 1 + X → X
to get a T -algebra. The effect on morphisms is easily seen, as is the fact that
these are pseudo-inverse functors.
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Since free T-algebras exist in Sets and such existence is preserved by
equivalence functors, it follows that Sets has free T -algebras. In particular,
an initial T -algebra in Sets is the initial T-algebra N, which is an NNO.

3. Let i : TI → I be an initial T -algebra. By initiality, we can (uniquely) fill in
the dotted arrows of the following diagram:

TI .................
Tu

� T 2I
T i � TI

I

i

�
...................

u
� TI

T i

�

i
� I

i

�

Composing the squares, we have a map of T -algebras I → I, which by
uniqueness must be the identity. But then i ◦ u = 1I , and u ◦ i = Ti ◦ Tu =
T (i ◦u) = 1TI , so i is an isomorphism. A natural numbers object N is initial
for the endofunctor TC = 1 + C, so it follows that N ∼= 1 + N for any NNO.


