LIMITS AND COLIMITS

In this chapter, we first briefly discuss some topics-namely, subobjects and pullbacks-relating to the definitions that we already have. This is partly in order to see how these are used, but also because we need this material soon. Then we approach things more systematically, defining the general notion of a limit, which subsumes many of the particular abstract characterizations we have met so far. Of course, there is a dual notion of colimit, which also has many interesting applications. After a brief look at one more elementary notion in Chapter 6, we go on to what may be called "higher category theory."

5.1 Subobjects

We have seen that every subset $U \subseteq X$ of a set X occurs as an equalizer and that equalizers are always monomorphisms. Therefore, it is natural to regard monos as generalized subsets. That is, a mono in Groups can be regarded as a subgroup, a mono in Top as a subspace, and so on.

The rough idea is this: given a monomorphism,

$$
m: M \mapsto X
$$

in a category \mathbf{G} of structured sets of some sort-call them "gadgets"-the image subset

$$
\{m(y) \mid y \in M\} \subseteq X
$$

which may be written as $m(M)$, is often a sub-gadget of X to which M is isomorphic through m.

$$
m: M \xrightarrow[\rightarrow]{\sim} m(M) \subseteq X
$$

More generally, we can think of the mono $m: M \rightharpoondown X$ itself as determining a "part" of X, even in categories that do not have underlying functions to take images of.

Definition 5.1. A subobject of an object X in a category \mathbf{C} is a monomorphism:

$$
m: M \mapsto X
$$

Given subobjects m and m^{\prime} of X, a morphism $f: m \rightarrow m^{\prime}$ is an arrow in \mathbf{C} / X, as in

Thus, we have a category,

$$
\operatorname{Sub}_{\mathbf{C}}(X)
$$

of subobjects of X in \mathbf{C}.
In this definition, since m^{\prime} is monic, there is at most one f as in the diagram above, so that $\operatorname{Sub}_{\mathbf{C}}(X)$ is a preorder category. We define the relation of inclusion of subobjects by
$m \subseteq m^{\prime} \quad$ iff there exists some $f: m \rightarrow m^{\prime}$
Finally, we say that m and m^{\prime} are equivalent, written $m \equiv m^{\prime}$, if and only if they are isomorphic as subobjects, that is, $m \subseteq m^{\prime}$ and $m^{\prime} \subseteq m$. This holds just if there are f and f^{\prime} making both triangles below commute:

Observe that, in the above diagram, $m=m^{\prime} f=m f^{\prime} f$, and since m is monic, $f^{\prime} f=1_{M}$ and similarly $f f^{\prime}=1_{M^{\prime}}$. So, $M \cong M^{\prime}$ via f. Thus, we see that equivalent subobjects have isomorphic domains. We sometimes abuse notation and language by calling M the subobject when the mono $m: M \mapsto X$ is clear.
Remark 5.2. It is often convenient to pass from the preorder

$$
\operatorname{Sub}_{\mathbf{C}}(X)
$$

to the poset given by factoring out the equivalence relation " \equiv ". Then a subobject is an equivalence class of monos under mutual inclusion.

In Sets, under this notion of subobject, one then has an isomorphism,

$$
\operatorname{Sub}_{\text {Sets }}(X) \cong P(X)
$$

that is, every subobject is represented by a unique subset. We shall use both notions of subobject, making clear when monos are intended, and when equivalence classes thereof are intended.

Note that if $M^{\prime} \subseteq M$, then the arrow f which makes this so in

is also monic, so also M^{\prime} is a subobject of M. Thus we have a functor

$$
\operatorname{Sub}\left(M^{\prime}\right) \rightarrow \operatorname{Sub}(X)
$$

defined by composition with f (since the composite of monos is monic).
In terms of generalized elements of an object X,

$$
z: Z \rightarrow X
$$

one can define a local membership relation,

$$
z \in_{X} M
$$

between such elements and subobjects $m: M \mapsto X$ by

$$
z \in_{X} M \text { iff there exists } f: Z \rightarrow M \text { such that } z=m f .
$$

Since m is monic, if z factors through it then it does so uniquely.
Example 5.3. An equalizer

$$
E \longrightarrow A \xrightarrow[g]{\Longrightarrow} B
$$

is a subobject of A with the property

$$
z \in_{A} E \quad \text { iff } f(z)=g(z)
$$

Thus, we can regard E as the subobject of generalized elements $z: Z \rightarrow A$ such that $f(z)=g(z)$, suggestively,

$$
E=\{z \in Z \mid f(z)=g(z)\} \subseteq A
$$

In categorical logic, one develops a way of making this intuition even more precise by giving a calculus of such subobjects.

5.2 Pullbacks

The notion of a pullback, like that of a product, is one that comes up very often in mathematics and logic. It is a generalization of both intersection and inverse image.

We begin with the definition. "05-Awodey-c05" - 2009/12/18 - 17:01 - page 92 - \#4

Definition 5.4. In any category \mathbf{C}, given arrows f, g with $\operatorname{cod}(f)=\operatorname{cod}(g)$,

the pullback of f and g consists of arrows

such that $f p_{1}=g p_{2}$ and universal with this property. That is, given any z_{1} : $Z \rightarrow A$ and $z_{2}: Z \rightarrow B$ with $f z_{1}=g z_{2}$, there exists a unique $u: Z \rightarrow P$ with $z_{1}=p_{1} u$ and $z_{2}=p_{2} u$. The situation is indicated in the following diagram:

One sometimes uses product-style notation for pullbacks.

Pullbacks are clearly unique up to isomorphism since they are given by a universal mapping property (UMP). Here, this means that given two pullbacks of a given pair of arrows, the uniquely determined maps between the pullbacks are mutually inverse.

In terms of generalized elements, any $z \in A \times_{C} B$, can be written uniquely as $z=\left\langle z_{1}, z_{2}\right\rangle$ with $f z_{1}=g z_{2}$. This makes

$$
A \times_{C} B=\left\{\left\langle z_{1}, z_{2}\right\rangle \in A \times B \mid f z_{1}=g z_{2}\right\}
$$

look like a subobject of $A \times B$, determined as an equalizer of $f \circ \pi_{1}$ and $g \circ \pi_{2}$. In fact, this is so.

Proposition 5.5. In a category with products and equalizers, given a corner of arrows

Consider the diagram

in which e is an equalizer of $f \pi_{1}$ and $g \pi_{2}$ and $p_{1}=\pi_{1} e, p_{2}=\pi_{2} e$. Then, E, p_{1}, p_{2} is a pullback of f and g. Conversely, if E, p_{1}, p_{2} are given as such a pullback, then the arrow

$$
e=\left\langle p_{1}, p_{2}\right\rangle: E \rightarrow A \times B
$$

is an equalizer of $f \pi_{1}$ and $g \pi_{2}$.

Proof. Take

with $f z_{1}=g z_{2}$. We have $\left\langle z_{1}, z_{2}\right\rangle: Z \rightarrow A \times B$, so

$$
f \pi_{1}\left\langle z_{1}, z_{2}\right\rangle=g \pi_{2}\left\langle z_{1}, z_{2}\right\rangle .
$$

Thus, there is a $u: Z \rightarrow E$ to the equalizer with $e u=\left\langle z_{1}, z_{2}\right\rangle$. Then,

$$
p_{1} u=\pi_{1} e u=\pi_{1}\left\langle z_{1}, z_{2}\right\rangle=z_{1}
$$

and

$$
p_{2} u=\pi_{2} e u=\pi_{2}\left\langle z_{1}, z_{2}\right\rangle=z_{2} .
$$

If also $u^{\prime}: Z \rightarrow E$ has $p_{i} u^{\prime}=z_{i}, i=1,2$, then $\pi_{i} e u^{\prime}=z_{i}$ so $e u^{\prime}=\left\langle z_{1}, z_{2}\right\rangle=e u$ whence $u^{\prime}=u$ since e in monic. The converse is similar.

Corollary 5.6. If a category \mathbf{C} has binary products and equalizers, then it has pullbacks.

The foregoing gives an explicit construction of a pullback in Sets as a subset of the product:

$$
\{\langle a, b\rangle \mid f a=g b\}=A \times{ }_{C} B \hookrightarrow A \times B
$$

Example 5.7. In Sets, take a function $f: A \rightarrow B$ and a subset $V \subseteq B$. Let, as usual,

$$
f^{-1}(V)=\{a \in A \mid f(a) \in V\} \subseteq A
$$

and consider

where i and j are the canonical inclusions and \bar{f} is the evident factorization of the restriction of f to $f^{-1}(V)$ (since $\left.a \in f^{-1}(V) \Rightarrow f(a) \in V\right)$.

This diagram is a pullback (observe that $z \in f^{-1}(V) \Leftrightarrow f z \in V$ for all $z: Z \rightarrow A)$. Thus, the inverse image

$$
f^{-1}(V) \subseteq A
$$

is determined uniquely up to isomorphism as a pullback.
As suggested by the previous example, we can use pullbacks to define inverse images in categories other than Sets. Indeed, given a pullback in any category

if m is monic, then m^{\prime} is monic. (Exercise!)
Thus, we see that, for fixed $f: A \rightarrow B$, taking pullbacks induces a map

$$
\begin{aligned}
f^{-1}: \operatorname{Sub}(B) & \rightarrow \operatorname{Sub}(A) \\
m & \mapsto m^{\prime}
\end{aligned}
$$

We show that f^{-1} also respects equivalence of subobjects,

$$
M \equiv N \Rightarrow f^{-1}(M) \equiv f^{-1}(N)
$$

by showing that f^{-1} is a functor, which is our next goal.

5.3 Properties of pullbacks

We start with the following simple lemma, which seems to come up all the time.
Lemma 5.8. (Two-pullbacks) Consider the commutative diagram below in a category with pullbacks:

1. If the two squares are pullbacks, so is the outer rectangle. Thus,

$$
A \times_{B}\left(B \times_{C} D\right) \cong A \times_{C} D .
$$

2. If the right square and the outer rectangle are pullbacks, so is the left square.

Proof. Diagram chase.

Corollary 5.9. The pullback of a commutative triangle is a commutative triangle. Specifically, given a commutative triangle as on the right end of the following "prism diagram":

for any $h: C^{\prime} \rightarrow C$, if one can form the pullbacks α^{\prime} and β^{\prime} as on the left end, then there exists a unique γ^{\prime} as indicated, making the left end a commutative triangle, and the upper face a commutative rectangle, and indeed a pullback.

Proof. Apply the two-pullbacks lemma.

Proposition 5.10. Pullback is a functor. That is, for fixed $h: C^{\prime} \rightarrow C$ in a category \mathbf{C} with pullbacks, there is a functor

$$
h^{*}: \mathbf{C} / C \rightarrow \mathbf{C} / C^{\prime}
$$

defined by

$$
(A \xrightarrow{\alpha} C) \mapsto\left(C^{\prime} \times_{C} A \xrightarrow{\alpha^{\prime}} C^{\prime}\right)
$$

where α^{\prime} is the pullback of α along h, and the effect on an arrow $\gamma: \alpha \rightarrow \beta$ is given by the foregoing corollary.

Proof. One must check that

$$
h^{*}\left(1_{X}\right)=1_{h^{*} X}
$$

and

$$
h^{*}(g \circ f)=h^{*}(g) \circ h^{*}(f) .
$$

These can easily be verified by repeated applications of the two-pullbacks lemma. For example, for the first condition, consider

If the lower square is a pullback, then plainly so is the outer rectangle, whence the upper square is, too, and we have

$$
h^{*} 1_{X}=1_{X^{\prime}}=1_{h^{*} X} .
$$

Corollary 5.11. Let \mathbf{C} be a category with pullbacks. For any arrow $f: A \rightarrow B$ in \mathbf{C}, we have the following diagram of categories and functors:

This commutes simply because f^{-1} is defined to be the restriction of f^{*} to the subcategory $\operatorname{Sub}(B)$. Thus, in particular, f^{-1} is functorial:

$$
M \subseteq N \Rightarrow f^{-1}(M) \subseteq f^{-1}(N)
$$

It follows that $M \equiv N$ implies $f^{-1}(M) \equiv f^{-1}(N)$, so that f^{-1} is also defined on equivalence classes.

$$
f^{-1} / \equiv: \operatorname{Sub}(B) / \equiv \longrightarrow \operatorname{Sub}(A) / \equiv
$$ "05-Awodey-c05" - 2009/12/18 - 17:01 - page 98 - \#10

Example 5.12. Consider a pullback in Sets:

We saw that

$$
E=\{\langle a, b\rangle \mid f(a)=g(b)\}
$$

can be constructed as an equalizer

$$
E \xrightarrow{\left\langle f^{\prime}, g^{\prime}\right\rangle} A \times B \xrightarrow[g \pi_{2}]{\stackrel{f \pi_{1}}{\longrightarrow}} C
$$

Now let $B=1, C=2=\{\top, \perp\}$, and $g=\top: 1 \rightarrow 2$. Then, the equalizer

$$
E \longrightarrow A \times 1 \xrightarrow[\top \pi_{2}]{f \pi_{1}} 2
$$

is how we already described the "extension" of the "propositional function" $f: A \rightarrow 2$. Therefore, we can rephrase the correspondence between subsets $U \subseteq A$ and their characteristic functions $\chi_{U}: A \rightarrow 2$ in terms of pullbacks:

Precisely, the isomorphism,

$$
2^{A} \cong P(A)
$$

given by taking a function $\varphi: A \rightarrow 2$ to its "extension"

$$
V_{\varphi}=\{x \in A \mid \varphi(x)=\top\}
$$

can be described as a pullback.

$$
V_{\varphi}=\{x \in A \mid \varphi(x)=\top\}=\varphi^{-1}(\top)
$$

Now suppose we have any function

$$
f: B \rightarrow A
$$

and consider the induced inverse image operation

$$
f^{-1}: P(A) \rightarrow P(B)
$$

given by pullback, as in example 5.9 above. Taking the extension $V_{\varphi} \subseteq A$, consider the two-pullbacks diagram:

We therefore have (by the two-pullbacks lemma)

$$
f^{-1}\left(V_{\varphi}\right)=f^{-1}\left(\varphi^{-1}(\top)\right)=(\varphi f)^{-1}(\top)=V_{\varphi f}
$$

which from a logical point of view expresses the fact that the substitution of a term f for the variable x in the propositional function φ is modeled by taking the pullback along f of the corresponding extension

$$
f^{-1}(\{x \in A \mid \varphi(x)=\top\})=\{y \in B \mid \varphi(f(y))=\top\} .
$$

Note that we have shown that for any function $f: B \rightarrow A$ the following square commutes:

where $2^{f}: 2^{A} \rightarrow 2^{B}$ is precomposition $2^{f}(g)=g \circ f$. In a situation like this, one says that the isomorphism

$$
2^{A} \cong P(A)
$$

is natural in A, which is obviously a much stronger condition than just having isomorphisms at each object A. We will consider such "naturality" systematically later. It was in fact one of the phenomena that originally gave rise to category theory.

Example 5.13. Let I be an index set, and consider an I-indexed family of sets:

$$
\left(A_{i}\right)_{i \in I}
$$

$$
" 05 \text {-Awodey-c05" - 2009/12/18 - 17:01 - page } 100-\# 12
$$

Given any function $\alpha: J \rightarrow I$, there is a J-indexed family

$$
\left(A_{\alpha(j)}\right)_{j \in J}
$$

obtained by "reindexing along α." This reindexing can also be described as a pullback. Specifically, for each set A_{i} take the constant, i-valued function p_{i} : $A_{i} \rightarrow I$ and consider the induced map on the coproduct

$$
p=\left[p_{i}\right]: \coprod_{i \in I} A_{i} \rightarrow I
$$

The reindexed family $\left(A_{\alpha(j)}\right)_{j \in J}$ can be obtained by taking a pullback along α, as indicated in the following diagram:

where q is the indexing projection for $\left(A_{\alpha(j)}\right)_{j \in J}$ analogous to p. In other words, we have

$$
J \times_{I}\left(\coprod_{i \in I} A_{i}\right) \cong \coprod_{j \in J} A_{\alpha(j)}
$$

The reader should work out the details as an instructive exercise.

5.4 Limits

We have already seen that the notions of product, equalizer, and pullback are not independent; the precise relation between them is this.

Proposition 5.14. A category has finite products and equalizers iff it has pullbacks and a terminal object.
Proof. The "only if" direction has already been done. For the other direction, suppose \mathbf{C} has pullbacks and a terminal object 1 .

- For any objects A, B we clearly have $A \times B \cong A \times_{1} B$, as indicated in the following:

- For any arrows $f, g: A \rightarrow B$, the equalizer $e: E \rightarrow A$ is constructed as the following pullback:

In terms of generalized elements,

$$
E=\{(a, b) \mid\langle f, g\rangle(a)=\Delta b\}
$$

where $\langle f, g\rangle(a)=\langle f a, g a\rangle$ and $\Delta(b)=\langle b, b\rangle$. So,

$$
\begin{aligned}
E & =\{\langle a, b\rangle \mid f(a)=b=g(a)\} \\
& \cong\{a \mid f(a)=g(a)\}
\end{aligned}
$$

which is just what we want. An easy diagram chase shows that

is indeed an equalizer.
Product, terminal object, pullback, and equalizer, are all special cases of the general notion of a limit, which we consider now. First, we need some preliminary definitions.

Definition 5.15. Let \mathbf{J} and \mathbf{C} be categories. A diagram of type \mathbf{J} in \mathbf{C} is a functor.

$$
D: \mathbf{J} \rightarrow \mathbf{C} .
$$

We write the objects in the "index category" J lower case, i, j, \ldots and the values of the functor $D: \mathbf{J} \rightarrow \mathbf{C}$ in the form D_{i}, D_{j}, etc.

A cone to a diagram D consists of an object C in \mathbf{C} and a family of arrows in \mathbf{C},

$$
c_{j}: C \rightarrow D_{j}
$$

one for each object $j \in J$, such that for each arrow $\alpha: i \rightarrow j$ in \mathbf{J}, the following triangle commutes:

A morphism of cones

$$
\vartheta:\left(C, c_{j}\right) \rightarrow\left(C^{\prime}, c_{j}^{\prime}\right)
$$

is an arrow ϑ in \mathbf{C} making each triangle,

commute. That is, such that $c_{j}=c_{j}^{\prime} \circ \vartheta$ for all $j \in \mathbf{J}$. Thus, we have an evident category

Cone (D)

of cones to D.
We are here thinking of the diagram D as a "picture of \mathbf{J} in \mathbf{C}." A cone to such a diagram D is then imagined as a many-sided pyramid over the "base" D and a morphism of cones is an arrow between the apexes of such pyramids. (The reader should draw some pictures at this point!)

Definition 5.16. A limit for a diagram $D: \mathbf{J} \rightarrow \mathbf{C}$ is a terminal object in Cone (D). A finite limit is a limit for a diagram on a finite index category \mathbf{J}.

We often denote a limit in the form

$$
p_{i}:{\underset{\zeta}{\leftrightarrows}}_{\lim _{j}} D_{j} \rightarrow D_{i} .
$$

Spelling out the definition, the limit of a diagram D has the following UMP: given any cone $\left(C, c_{j}\right)$ to D, there is a unique arrow $u: C \rightarrow \lim _{j} D_{j}$ such that for all j,

$$
p_{j} \circ u=c_{j} .
$$

Thus, the limiting cone $\left(\lim _{\leftrightarrows} D_{j}, p_{j}\right)$ can be thought of as the "closest" cone to the diagram D, and indeed any other cone $\left(C, c_{j}\right)$ comes from it just by composing with an arrow at the vertex, namely $u: C \rightarrow \varlimsup_{\lim _{j}} D_{j}$.

Example 5.17. Take $\mathbf{J}=\{1,2\}$ the discrete category with two objects and no nonidentity arrows. A diagram $D: \mathbf{J} \rightarrow \mathbf{C}$ is a pair of objects $D_{1}, D_{2} \in \mathbf{C}$. A cone on D is an object of \mathbf{C} equipped with arrows

$$
D_{1} \stackrel{c_{1}}{\longleftrightarrow} C \xrightarrow{c_{2}} D_{2} .
$$

And a limit of D is a terminal such cone, that is, a product in \mathbf{C} of D_{1} and D_{2},

Thus, in this case,

$$
\lim _{\leftrightarrows} D_{j} \cong D_{1} \times D_{2}
$$

Example 5.18. Take \mathbf{J} to be the following category:

$$
\cdot \underset{\beta}{\stackrel{\alpha}{\longrightarrow}}
$$

A diagram of type \mathbf{J} looks like

$$
D_{1} \xrightarrow[D_{\beta}]{\stackrel{D_{\alpha}}{\Longrightarrow}} D_{2}
$$

and a cone is a pair of arrows

such that $D_{\alpha} c_{1}=c_{2}$ and $D_{\beta} c_{1}=c_{2}$; thus, $D_{\alpha} c_{1}=D_{\beta} c_{1}$. A limit for D is therefore an equalizer for D_{α}, D_{β}.

Example 5.19. If \mathbf{J} is empty, there is just one diagram $D: \mathbf{J} \rightarrow \mathbf{C}$, and a limit for it is thus a terminal object in \mathbf{C},

$$
\lim _{\overleftarrow{j \in 0}} D_{j} \cong 1
$$

Example 5.20. If \mathbf{J} is the finite category

we see that a limit for a diagram of the form

is just a pullback of f and g,

$$
{\underset{j}{\lim _{~}} D_{j} \cong A \times_{C} B . ~ . ~ . ~}_{\text {. }}
$$

Thus, we have shown half of the following.
Proposition 5.21. A category has all finite limits iff it has finite products and equalizers (resp. pullbacks and a terminal object by the last proposition).
Here, a category \mathbf{C} is said to have all finite limits if every finite diagram D : $\mathbf{J} \rightarrow \mathbf{C}$ has a limit in \mathbf{C}.

Proof. We need to show that any finite limit can be constructed from finite products and equalizers. Take a finite diagram

$$
D: \mathbf{J} \rightarrow \mathbf{C} .
$$

As a first approximation, the product

$$
\begin{equation*}
\prod_{i \in \mathbf{J}_{0}} D_{i} \tag{5.1}
\end{equation*}
$$

over the set \mathbf{J}_{0} of objects at least has projections $p_{j}: \prod_{i \in \mathbf{J}_{0}} D_{i} \rightarrow D_{j}$ of the right sort. But these cannot be expected to commute with the arrows $D_{\alpha}: D_{i} \rightarrow D_{j}$ in the diagram D, as they must. So, as in making a pullback from a product and an equalizer, we consider also the product $\prod_{(\alpha: i \rightarrow j) \in \mathbf{J}_{1}} D_{j}$ over all the arrows (the set \mathbf{J}_{1}), and two special maps,

$$
\prod_{i} D_{i} \stackrel{\phi}{\stackrel{\phi}{\Longrightarrow}} \prod_{\alpha: i \rightarrow j} D_{j}
$$

which record the effect of the arrows in the diagram on the product of the objects. Specifically, we define ϕ and ψ by taking their composites with the projections π_{α} from the second product to be, respectively,

$$
\left.\begin{array}{rl}
\pi_{\alpha} \circ \phi & =\phi_{\alpha}
\end{array}=\pi_{\operatorname{cod}(\alpha)}\right)
$$

where $\pi_{\operatorname{cod}(\alpha)}$ and $\pi_{\mathrm{dom}(\alpha)}$ are projections from the first product.

Now, in order to get the subobject of the product 5.1 on which the arrows in the diagram D commute, we take the equalizer:

$$
E \xrightarrow{e} \prod_{i} D_{i} \stackrel{\phi}{\vec{\psi}} \prod_{\alpha: i \rightarrow j} D_{j}
$$

We show that $\left(E, e_{i}\right)$ is a limit for D, where $e_{i}=\pi_{i} \circ e$. To that end, take any arrow $c: C \rightarrow \prod_{i} D_{i}$, and write $c=\left\langle c_{i}\right\rangle$ for $c_{i}=\pi_{i} \circ c$. Observe that the family of arrows $\left(c_{i}: C \rightarrow D_{i}\right)$ is a cone to D if and only if $\phi c=\psi c$. Indeed,

$$
\phi\left\langle c_{i}\right\rangle=\psi\left\langle c_{i}\right\rangle
$$

iff for all α,

$$
\pi_{\alpha} \phi\left\langle c_{i}\right\rangle=\pi_{\alpha} \psi\left\langle c_{i}\right\rangle .
$$

But,

$$
\pi_{\alpha} \phi\left\langle c_{i}\right\rangle=\phi_{\alpha}\left\langle c_{i}\right\rangle=\pi_{\operatorname{cod}(\alpha)}\left\langle c_{i}\right\rangle=c_{j}
$$

and

$$
\pi_{\alpha} \psi\left\langle c_{i}\right\rangle=\psi_{\alpha}\left\langle c_{i}\right\rangle=D_{\alpha} \circ \pi_{\operatorname{dom}(\alpha)}\left\langle c_{i}\right\rangle=D_{\alpha} \circ c_{i}
$$

Whence $\phi c=\psi c$ iff for all $\alpha: i \rightarrow j$ we have $c_{j}=D_{\alpha} \circ c_{i}$ thus, iff $\left(c_{i}: C \rightarrow D_{i}\right)$ is a cone, as claimed. It follows that $\left(E, e_{i}\right)$ is a cone, and that any cone $\left(c_{i}\right.$: $C \rightarrow D_{i}$) gives an arrow $\left\langle c_{i}\right\rangle: C \rightarrow \prod_{i} D_{i}$ with $\phi\left\langle c_{i}\right\rangle=\psi\left\langle c_{i}\right\rangle$, thus there is a unique factorization $u: C \rightarrow E$ of $\left\langle c_{i}\right\rangle$ through E, which is clearly a morphism of cones.

Since we made no real use of the finiteness of the index category apart from the existence of certain products, essentially the same proof yields the following.

Corollary 5.22. A category has all limits of some cardinality iff it has all equalizers and products of that cardinality, where \mathbf{C} is said to have limits (resp. products) of cardinality κ iff \mathbf{C} has a limit for every diagram $D: \mathbf{J} \rightarrow \mathbf{C}$, where $\operatorname{card}\left(\mathbf{J}_{1}\right) \leq \kappa$ (resp. \mathbf{C} has all products of κ many objects $)$.

The notions of cones and limits of course dualize to give those of cocones and colimits. One then has the following dual theorem.

Theorem 5.23. A category \mathbf{C} has finite colimits iff it has finite coproducts and coequalizers (resp. iff it has pushouts and an initial object). \mathbf{C} has all colimits of size κ iff it has coequalizers and coproducts of size κ.

5.5 Preservation of limits

Here is an application of the construction of limits by products and equalizers.

Definition 5.24. A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is said to preserve limits of type \mathbf{J} if, whenever $p_{j}: L \rightarrow D_{j}$ is a limit for a diagram $D: \mathbf{J} \rightarrow \mathbf{C}$; the cone $F p_{j}: F L \rightarrow$ $F D_{j}$ is then a limit for the diagram $F D: \mathbf{J} \rightarrow \mathbf{D}$. Briefly,

$$
F\left(\lim _{\leftrightarrows} D_{j}\right) \cong \lim _{\leftrightarrows} F\left(D_{j}\right) .
$$

A functor that preserves all limits is said to be continuous.
For example, let \mathbf{C} be a locally small category with all small limits, such as posets or monoids. Recall the representable functor

$$
\operatorname{Hom}(C,-): \mathbf{C} \rightarrow \mathbf{S e t s}
$$

for any object $C \in \mathbf{C}$, taking $f: X \rightarrow Y$ to

$$
f_{*}: \operatorname{Hom}(C, X) \rightarrow \operatorname{Hom}(C, Y)
$$

where $f_{*}(g: C \rightarrow X)=f \circ g$.
Proposition 5.25. The representable functors $\operatorname{Hom}(C,-)$ preserve all limits.
Since limits in \mathbf{C} can be constructed from products and equalizers, it suffices to show that $\operatorname{Hom}(C,-)$ preserves products and equalizers. (Actually, even if \mathbf{C} does not have all limits, the representable functors will preserve those limits that do exist; we leave that as an exercise.)

Proof. - C has a terminal object 1, for which,

$$
\operatorname{Hom}(C, 1)=\left\{!_{C}\right\} \cong 1
$$

- Consider a binary product $X \times Y$ in \mathbf{C}. Then, we already know that

$$
\operatorname{Hom}(C, X \times Y) \cong \operatorname{Hom}(C, X) \times \operatorname{Hom}(C, Y)
$$

by composing any $f: C \rightarrow X \times Y$ with the two product projections p_{1} : $X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$.

- For arbitrary products $\prod_{i \in I} X_{i}$, one has analogously

$$
\operatorname{Hom}\left(C, \prod_{i} X_{i}\right) \cong \prod_{i} \operatorname{Hom}\left(C, X_{i}\right)
$$

- Given an equalizer in \mathbf{C},

consider the resulting diagram:

$$
\operatorname{Hom}(C, E) \underset{e_{*}}{\rightarrow} \operatorname{Hom}(C, X) \underset{g_{*}}{\stackrel{f_{*}}{\longrightarrow}} \operatorname{Hom}(C, Y)
$$

To show this is an equalizer in Sets, let $h: C \rightarrow X \in \operatorname{Hom}(C, X)$ with $f_{*} h=g_{*} h$. Then $f h=g h$, so there is a unique $u: C \rightarrow E$ such that $e u=h$. Thus, we have a unique $u \in \operatorname{Hom}(C, E)$ with $e_{*} u=e u=h$. So, $e_{*}: \operatorname{Hom}(C, E) \rightarrow \operatorname{Hom}(C, X)$ is indeed the equalizer of f_{*} and g_{*}.

Definition 5.26. A functor of the form $F: \mathbf{C}^{\mathrm{op}} \rightarrow \mathbf{D}$ is called a contravariant functor on C. Explicitly, such a functor takes $f: A \rightarrow B$ to $F(f): F(B) \rightarrow F(A)$ and $F(g \circ f)=F(f) \circ F(g)$.

A typical example of a contravariant functor is a representable functor of the form,

$$
\operatorname{Hom}_{\mathbf{C}}(-, C): \mathbf{C}^{\mathrm{op}} \rightarrow \text { Sets }
$$

for any $C \in \mathbf{C}$ (where \mathbf{C} is any locally small category). Such a contravariant representable functor takes $f: X \rightarrow Y$ to

$$
f^{*}: \operatorname{Hom}(Y, C) \rightarrow \operatorname{Hom}(X, C)
$$

by $f^{*}(g: X \rightarrow C)=g \circ f$.
Then, the following is the dual version of the foregoing proposition.
Corollary 5.27. Contravariant representable functors map all colimits to limits.

For example, given a coproduct $X+Y$ in any locally small category \mathbf{C}, there is a canonical isomorphism,

$$
\begin{equation*}
\operatorname{Hom}(X+Y, C) \cong \operatorname{Hom}(X, C) \times \operatorname{Hom}(Y, C) \tag{5.2}
\end{equation*}
$$

given by precomposing with the two coproduct inclusions.
From an example in Section 2.3, we can therefore conclude that the ultrafilters in a coproduct $A+B$ of Boolean algebras correspond exactly to pairs of ultrafilters (U, V), with U in A and V in B. This follows because we showed there that the ultrafilter functor Ult : $\mathbf{B A}^{\mathrm{op}} \rightarrow$ Sets is representable:

$$
\operatorname{Ult}(B) \cong \operatorname{Hom}_{\mathbf{B A}}(B, 2)
$$

Another case of the above iso (5.2) is the familiar law of exponents for sets:

$$
C^{X+Y} \cong C^{X} \times C^{Y}
$$

The arithmetical law of exponents $k^{m+n}=k^{n} \cdot k^{m}$ is actually a special case of this.

$$
" 05 \text {-Awodey-c05" - 2009/12/18 - 17:01 - page } 108-\# 20
$$

5.6 Colimits

Let us briefly discuss some special colimits, since we did not really say much about them Section 5.5.

First, we consider pushouts in Sets. Suppose we have two functions

We can construct the pushout of f and g like this. Start with the coproduct (disjoint sum):

$$
B \longrightarrow C \longleftarrow C \longleftarrow C
$$

Now identify those elements $b \in B$ and $c \in C$ such that, for some $a \in A$,

$$
f(a)=b \quad \text { and } \quad g(a)=c
$$

That is, we take the equivalence relation \sim on $B+C$ generated by the conditions $f(a) \sim g(a)$ for all $a \in A$.

Finally, we take the quotient by \sim to get the pushout

$$
(B+C) / \sim \cong B+{ }_{A} C,
$$

which can be imagined as B placed next to C, with the respective parts that are images of A "pasted together" or overlapping. This construction follows simply by dualizing the one for pullbacks by products and equalizers.

Example 5.28. Pushouts in Top are similarly formed from coproducts and coequalizers, which can be made first in Sets and then topologized as sum and quotient spaces. Pushouts are used, for example, to construct spheres from disks. Indeed, let D^{2} be the (two-dimensional) disk and S^{1} the one-dimensional sphere (i.e., the circle), with its inclusion $i: S^{1} \rightarrow D^{2}$ as the boundary of the disk. Then, the two-sphere S^{2} is the pushout,

Can you see the analogous construction of S^{1} at the next lower dimension?
In general, a colimit for a diagram $D: \mathbf{J} \rightarrow \mathbf{C}$ is, of course, an initial object in the category of cocones. Explicitly, a cocone from the base D consists of an
object C (the vertex) and arrows $c_{j}: D_{j} \rightarrow C$ for each $j \in \mathbf{J}$, such that for all $\alpha: i \rightarrow j$ in \mathbf{J},

$$
c_{j} \circ D(\alpha)=c_{i}
$$

A morphism of cocones $f:\left(C,\left(c_{j}\right)\right) \rightarrow\left(C^{\prime},\left(c_{j}^{\prime}\right)\right)$ is an arrow $f: C \rightarrow C^{\prime}$ in \mathbf{C} such that $f \circ c_{j}=c_{j}{ }^{\prime}$ for all $j \in \mathbf{J}$. An initial cocone is the expected thing: one that maps uniquely to any other cocone from D. We write such a colimit in the form

$$
\underset{j \in \mathbf{J}}{\lim _{\vec{J}}} D_{j}
$$

Now let us consider some examples of a particular kind of colimit that comes up quite often, namely over a linearly ordered index category. Our first example is what is sometimes called a direct limit of a sequence of algebraic objects, say groups. A similar construction works for any sort of algebras (but non-equational conditions are not always preserved by direct limits).

Example 5.29. Direct limit of groups. Suppose we are given a sequence,

$$
G_{0} \underset{g_{0}}{\longrightarrow} G_{1} \underset{g_{1}}{\longrightarrow} G_{2} \underset{g_{2}}{\longrightarrow} \cdots
$$

of groups and homomorphisms, and we want a "colimiting" group G_{∞} with homomorphisms

$$
u_{n}: G_{n} \rightarrow G_{\infty}
$$

satisfying $u_{n+1} \circ g_{n}=u_{n}$. Moreover, G_{∞} should be "universal" with this property. I think you can see the colimit setup here:

- the index category is the ordinal number $\omega=(\mathbb{N}, \leq)$, regarded as a poset category,
- the sequence

$$
G_{0} \underset{g_{0}}{\longrightarrow} G_{1} \underset{g_{1}}{\longrightarrow} G_{2} \underset{g_{2}}{\longrightarrow} \cdots
$$

is a diagram of type ω in the category Groups,

- the colimiting group is the colimit of the sequence

$$
G_{\infty} \cong \lim _{n \in \omega} G_{n}
$$

This group always exists, and can be constructed as follows. Begin with the coproduct (disjoint sum) of sets

$$
\underset{N \in \omega}{\amalg_{m}}
$$

Then make identifications $x_{n} \sim y_{m}$, where $x_{n} \in G_{n}$ and $y_{m} \in G_{m}$, to ensure in particular that

$$
x_{n} \sim g_{n}\left(x_{n}\right)
$$

for all $x_{n} \in G_{n}$ and $g_{n}: G_{n} \rightarrow G_{n+1}$.
This means, specifically, that the elements of G_{∞} are equivalence classes of the form

$$
\left[x_{n}\right], \quad x_{n} \in G_{n}
$$

for any n, and $\left[x_{n}\right]=\left[y_{m}\right]$ iff for some $k \geq m, n$,

$$
g_{n, k}\left(x_{n}\right)=g_{m, k}\left(y_{m}\right)
$$

where, generally, if $i \leq j$, we define

$$
g_{i, j}: G_{i} \rightarrow \cdots \rightarrow G_{j}
$$

by composing consecutive g 's as in $g_{i, j}=g_{j-1} \circ \ldots \circ g_{i}$. The reader can easily check that this is indeed the equivalence relation generated by all the conditions $x_{n} \sim g_{n}\left(x_{n}\right)$.

The operations on G_{∞} are now defined by

$$
[x] \cdot[y]=\left[x^{\prime} \cdot y^{\prime}\right]
$$

where $x \sim x^{\prime}, y \sim y^{\prime}$, and $x^{\prime}, y^{\prime} \in G_{n}$ for n sufficiently large. The unit is just [u_{0}], and we take,

$$
[x]^{-1}=\left[x^{-1}\right]
$$

One can easily check that these operations are well defined, and determine a group structure on G_{∞}, which moreover makes all the evident functions

$$
u_{n}: G_{n} \rightarrow G_{\infty}, \quad u_{n}(x)=[x]
$$

into homomorphisms.
The universality of G_{∞} and the u_{n} results from the fact that the construction is essentially a colimit in Sets, equipped with an induced group structure. Indeed, given any group H and homomorphisms $h_{n}: G_{n} \rightarrow H$ with $h_{n+1} \circ g_{n}=h_{n}$ define $h_{\infty}: G_{\infty} \rightarrow H$ by $h_{\infty}\left(\left[x_{n}\right]\right)=h_{n}\left(x_{n}\right)$. This is easily seen to be well defined and indeed a homomorphism. Moreover, it is the unique function that commutes with all the u_{n}.

The fact that the ω-colimit G_{∞} of groups can be constructed as the colimit of the underlying sets is a case of a general phenomenon, expressed by saying that the forgetful functor U : Groups \rightarrow Sets "creates ω-colimits."

Definition 5.30. A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is said to create limits of type \mathbf{J} if for every diagram $C: \mathbf{J} \rightarrow \mathbf{C}$ and limit $p_{j}: L \rightarrow F C_{j}$ in \mathbf{D} there is a unique cone $\overline{p_{j}}: \bar{L} \rightarrow C_{j}$ in \mathbf{C} with $F(\bar{L})=L$ and $F\left(\overline{p_{j}}\right)=p_{j}$, which, furthermore, is a limit
for C. Briefly, every limit in \mathbf{D} is the image of a unique cone in \mathbf{C}, which is a limit there. The notion of creating colimits is defined analogously.

In these terms, then, we have the following proposition, the remaining details of which have in effect already been shown.
Proposition 5.31. The forgetful functor U : Groups \rightarrow Sets creates ω colimits. It also creates all limits.

The same fact holds quite generally for other categories of algebraic objects, that is, sets equipped with operations satisfying some equations. Observe that not all colimits are created in this way. For instance, we have already seen (in example) that the coproduct of two abelian groups has their product as underlying set.
Example 5.32. Cumulative hierarchy. Another example of an ω-colimit is the "cumulative hierarchy" construction encountered in set theory. Let us set

$$
\begin{gathered}
V_{0}=\emptyset \\
V_{1}=\mathcal{P}(\emptyset) \\
\vdots \\
V_{n+1}=\mathcal{P}\left(V_{n}\right)
\end{gathered}
$$

Then there is a sequence of subset inclusions,

$$
\emptyset=V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots
$$

since, generally, $A \subseteq B$ implies $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ for any sets A and B. The colimit of the sequence

$$
V_{\omega}=\underset{n}{\lim } V_{n}
$$

is called the cumulative hierarchy of rank ω. One can, of course, continue this construction through higher ordinals $\omega+1, \omega+2, \ldots$.

More generally, let us start with some set A (of "atoms"), and let

$$
V_{0}(A)=A
$$

and then put

$$
V_{n+1}(A)=A+\mathcal{P}\left(V_{n}(A)\right),
$$

that is, the set of all elements and subsets of A. There is a sequence $V_{0}(A) \rightarrow$ $V_{1}(A) \rightarrow V_{2}(A) \rightarrow \ldots$ as follows. Let

$$
v_{0}: V_{0}(A)=A \rightarrow A+\mathcal{P}(A)=V_{1}(A)
$$

be the left coproduct inclusion. Given $v_{n-1}: V_{n-1}(A) \rightarrow V_{n}(A)$, let $v_{n}: V_{n}(A) \rightarrow$ $V_{n+1}(A)$ be defined by

$$
v_{n}=1_{A}+\mathcal{P}_{!}\left(v_{n-1}\right): A+\mathcal{P}\left(V_{n-1}(A)\right) \rightarrow A+\mathcal{P}\left(V_{n}(A)\right)
$$

Au: Please
specify
"example" if appropriate.

$$
5+2
$$

where \mathcal{P} ! denotes the covariant powerset functor, taking a function $f: X \rightarrow Y$ to the "image under f " operation $\mathcal{P}_{!}(f): \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$, defined by taking $U \subseteq X$ to

$$
\mathcal{P}_{!}(f)(U)=\{f(u) \mid u \in U\} \subseteq Y
$$

The idea behind the sequence is that we start with A, add all the subsets of A, then add all the new subsets that can be formed from all of those elements, and so on. The colimit of the sequence

$$
V_{\omega}(A)=\underset{n}{\lim _{\longrightarrow}} V_{n}(A)
$$

is called the cumulative hierarchy (of rank ω) over A. Of course, $V_{\omega}=V_{\omega}(\emptyset)$.
Now suppose we have some function

$$
f: A \rightarrow B
$$

Then, there is a map

$$
V_{\omega}(f): V_{\omega}(A) \rightarrow V_{\omega}(B),
$$

determined by the colimit description of V_{ω}, as indicated in the following diagram:

Here, the f_{n} are defined by

$$
\begin{aligned}
& f_{0}=f: A \rightarrow B \\
& f_{1}=f+\mathcal{P}_{!}(f): A+\mathcal{P}(A) \rightarrow B+\mathcal{P}(B)
\end{aligned}
$$

$$
f_{n+1}=f+\mathcal{P}_{!}\left(f_{n}\right): A+\mathcal{P}\left(V_{n}(A)\right) \rightarrow B+\mathcal{P}\left(V_{n}(B)\right) .
$$

Since all the squares clearly commute, we have a cocone on the diagram of $V_{n}(A)$'s with vertex $V_{\omega}(B)$, and there is thus a unique $f_{\omega}: V_{\omega}(A) \rightarrow V_{\omega}(B)$ that completes the diagram.

Thus, we see that the cumulative hierarchy is functorial.
Example 5.33. $\omega C P O$ s. An $\omega C P O$ is a poset that is " ω-cocomplete," meaning it has all colimits of type $\omega=(\mathbb{N}, \leq)$. Specifically, a poset D is an $\omega \mathrm{CPO}$ if for every diagram $d: \omega \rightarrow D$, that is, every chain of elements of D,

$$
d_{0} \leq d_{1} \leq d_{2} \leq \cdots
$$

we have a colimit $d_{\omega}=\underline{\longrightarrow} d_{n}$. This is an element of D such that

1. $d_{n} \leq d_{\omega}$ for all $n \in \omega$,
2. for all $x \in D$, if $d_{n} \leq x$ for all $n \in \omega$, then also $d_{\omega} \leq x$.

A monotone map of ω CPOs

$$
h: D \rightarrow E
$$

is called continuous if it preserves colimits of type ω, that is,

$$
h\left(\xrightarrow[\longrightarrow]{\lim } d_{n}\right)=\xrightarrow{\lim } h\left(d_{n}\right) .
$$

An application of these notions is the following.
Proposition 5.34. If D is an $\omega C P O$ with initial element 0 and

$$
h: D \rightarrow D
$$

is continuous, then h has a fixed point

$$
h(x)=x
$$

which, moreover, is least among all fixed points.
Proof. We use "Newton's method," which can be used, for example, to find fixed points of monotone, continuous functions $f:[0,1] \rightarrow[0,1]$. Consider the sequence $d: \omega \rightarrow D$, defined by

$$
\begin{aligned}
d_{0} & =0 \\
d_{n+1} & =h\left(d_{n}\right)
\end{aligned}
$$

Since $0 \leq d_{0}$, repeated application of h gives $d_{n} \leq d_{n+1}$. Now take the colimit $d_{\omega}=\underline{\lim }_{n \in \omega} d_{n}$. Then

$$
\begin{aligned}
h\left(d_{\omega}\right) & =h\left(\underset{n \in \omega}{\lim } d_{n}\right) \\
& =\underset{n \in \omega}{\lim } h\left(d_{n}\right) \\
& =\underset{n \in \omega}{\lim } d_{n+1} \\
& =d_{\omega} .
\end{aligned}
$$

The last step follows because the first term $d_{0}=0$ of the sequence is trivial.
Moreover, if x is also a fixed point, $h(x)=x$, then we have

$$
\begin{aligned}
& d_{0}=0 \leq x \\
& d_{1}=h(0) \leq h(x)=x \\
& \vdots \\
& d_{n+1}=h\left(d_{n}\right) \leq h(x)=x .
\end{aligned}
$$

So also $d_{\omega} \leq x$, since d_{ω} is the colimit.
Finally, here is an example of how (co)limits depend on the ambient category. We consider colimits of posets and $\omega \mathrm{CPOs}$, rather than in them.

Let us define the finite ω CPOs

$$
\omega_{n}=\{k \leq n \mid k \in \omega\}
$$

then we have continuous inclusion maps:

$$
\omega_{0} \rightarrow \omega_{1} \rightarrow \omega_{2} \rightarrow \cdots
$$

In Pos, the colimit exists, and is ω, as can be easily checked. But ω itself is not ω-complete. Indeed, the sequence

$$
0 \leq 1 \leq 2 \leq \cdots
$$

has no colimit. Therefore, the colimit of the ω_{n} in the category of ω CPOs, if it exists, must be something else. In fact, it is $\omega+1$.

$$
0 \leq 1 \leq 2 \leq \cdots \leq \omega
$$

For then any bounded sequence has a colimit in the bounded part, and any unbounded one has ω as colimit. The moral is that even ω-colimits are not always created in Sets, and indeed the colimit is sensitive to the ambient category in which it is taken.

5.7 Exercises

1. Show that a pullback of arrows

in a category \mathbf{C} is the same thing as their product in the slice category C / X.
2. Let \mathbf{C} be a category with pullbacks.
(a) Show that an arrow $m: M \rightarrow X$ in \mathbf{C} is monic if and only if the diagram below is a pullback.
"05-Awodey-c05" - 2009/12/18 - 17:01 — page 115 — \#27

Thus, as an object in $\mathbf{C} / X, m$ is monic iff $m \times m \cong m$.
(b) Show that the pullback along an arrow $f: Y \rightarrow X$ of a pullback square over X,

is again a pullback square over Y. (Hint: draw a cube and use the twopullbacks lemma.) Conclude that the pullback functor f^{*} preserves products.
(c) Conclude from the foregoing that in a pullback square

if m is monic, then so is m^{\prime}.
3. Show directly that in any category, given a pullback square

if m is monic, then so is m^{\prime}.
4. For any object A in a category \mathbf{C} and any subobjects $M, N \in \operatorname{Sub}_{\mathbf{C}}(A)$, show $M \subseteq N$ iff for every generalized element $z: Z \rightarrow A$ (arbitrary arrow with codomain A):

$$
z \in_{A} M \text { implies } z \in_{A} N \text {. }
$$

"05-Awodey-c05" - 2009/12/18 - 17:01 - page 116 - \#28
5. For any object A in a category \mathbf{C} and any subobjects $M, N \in \operatorname{Sub}_{\mathbf{C}}(A)$, show $M \subseteq N$ iff for every generalized element $z: Z \rightarrow A$ (arbitrary arrow with codomain A):

$$
z \in_{A} M \text { implies } z \in_{A} N .
$$

6. (Equalizers by pullbacks and products) Show that a category with pullbacks and products has equalizers as follows: given arrows $f, g: A \rightarrow$ B, take the pullback indicated below, where $\Delta=\left\langle 1_{B}, 1_{B}\right\rangle$:

Show that $e: E \rightarrow A$ is the equalizer of f and g.
7. Let \mathbf{C} be a locally small category with all small limits, and $D: \mathbf{J} \rightarrow \mathbf{C}$ any diagram in \mathbf{C}. Show that for any object $C \in \mathbf{C}$, the representable functor

$$
\operatorname{Hom}_{\mathbf{C}}(C,-): \mathbf{C} \rightarrow \text { Sets }
$$

preserves the limit of D.
8. (Partial maps) For any category \mathbf{C} with pullbacks, define the category $\operatorname{Par}(\mathbf{C})$ of partial maps in \mathbf{C} as follows: the objects are the same as those of \mathbf{C}, but an arrow $f: A \rightarrow B$ is a pair $\left(|f|, U_{f}\right)$, where $U_{f} \longrightarrow A$ is a subobject and $|f|: U_{f} \rightarrow B$ is a suitable equivalence class of arrows, as indicated in the diagram:

Composition of $\left(|f|, U_{f}\right): A \rightarrow B$ and $\left(|g|, U_{g}\right): B \rightarrow C$ is given by taking a pullback and then composing to get $\left(|g \circ f|,|f|^{*}\left(U_{g}\right)\right)$, as suggested by the following diagram:

Verify that this really does define a category, and show that there is a functor,

$$
\mathbf{C} \rightarrow \mathbf{P a r}(\mathbf{C})
$$

which is the identity on objects.
9. Suppose the category \mathbf{C} has limits of type \mathbf{J}, for some index category \mathbf{J}. For diagrams F and G of type \mathbf{J} in \mathbf{C}, a morphism of diagrams $\theta: F \rightarrow G$ consists of arrows $\theta_{i}: F i \rightarrow G i$ for each $i \in \mathbf{J}$ such that for each α : $i \rightarrow j$ in \mathbf{J}, one has $\theta_{j} F(\alpha)=G(\alpha) \theta_{i}$ (a commutative square). This makes Diagrams(J, C) into a category (check this).
Show that taking the vertex-objects of limiting cones determines a functor:

$$
{\underset{\dddot{J}}{\mathbf{J}}}: \operatorname{Diagrams}(J, \mathbf{C}) \rightarrow \mathbf{C}
$$

Infer that for any set I, there is a product functor,

$$
\prod_{i \in I}: \operatorname{Sets}^{I} \rightarrow \text { Sets }
$$

for I-indexed families of sets $\left(A_{i}\right)_{i \in I}$.
10. (Pushouts)
(a) Dualize the definition of a pullback to define the "copullback" (usually called the "pushout") of two arrows with common domain.
(b) Indicate how to construct pushouts using coproducts and coequalizers (proof "by duality").
11. Let $R \subseteq X \times X$ be an equivalence relation on a set X, with quotient $q: X \rightarrow Q$. Show that the following is an equalizer:

$$
\mathcal{P} Q \xrightarrow{\mathcal{P} q} \mathcal{P} X \underset{\mathcal{P} r_{2}}{\stackrel{\mathcal{P} r_{1}}{\Longrightarrow}} \mathcal{P} R,
$$

where $r_{1}, r_{2}: R \rightrightarrows X$ are the two projections of $R \subseteq X$, and \mathcal{P} is the (contravariant) powerset functor. (Hint: $\mathcal{P} X \cong 2^{X}$.)
"05-Awodey-c05" - 2009/12/18 — 17:01 — page 118 — \#30
12. Consider the sequence of posets $[0] \rightarrow[1] \rightarrow[2] \rightarrow \ldots$, where

$$
[n]=\{0 \leq \cdots \leq n\},
$$

and the arrows $[n] \rightarrow[n+1]$ are the evident inclusions. Determine the limit and colimit posets of this sequence.
13. Consider sequences of monoids,

$$
\begin{aligned}
& M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \ldots \\
& N_{0} \leftarrow N_{1} \leftarrow N_{2} \leftarrow \ldots
\end{aligned}
$$

and the following limits and colimits, constructed in the category of monoids:

$$
\underset{n}{\lim } M_{n}, \underset{n}{\underset{\sim}{l}} M_{n}, \underset{n}{\underset{\longrightarrow}{\lim }} N_{n}, \underset{n}{\underset{\leftrightarrows}{\lim }} N_{n} .
$$

(a) Suppose all M_{n} and N_{n} are abelian groups. Determine whether each of the four (co)limits $\lim _{\longrightarrow} M_{n}$ etc. is also an abelian group.
(b) Suppose all M_{n} and N_{n} are finite groups. Determine whether each of the four (co)limits $\lim _{\longrightarrow} M_{n}$ etc. has the following property: for every element x, there is a number k such that $x^{k}=1$ (the least such k is called the order of x).

