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LIMITS AND COLIMITS

In this chapter, we first briefly discuss some topics—namely, subobjects and
pullbacks—relating to the definitions that we already have. This is partly in
order to see how these are used, but also because we need this material soon.
Then we approach things more systematically, defining the general notion of a
limit, which subsumes many of the particular abstract characterizations we have
met so far. Of course, there is a dual notion of colimit, which also has many
interesting applications. After a brief look at one more elementary notion in
Chapter 6, we go on to what may be called “higher category theory.”

5.1 Subobjects

We have seen that every subset U ⊆ X of a set X occurs as an equalizer and
that equalizers are always monomorphisms. Therefore, it is natural to regard
monos as generalized subsets. That is, a mono in Groups can be regarded as a
subgroup, a mono in Top as a subspace, and so on.

The rough idea is this: given a monomorphism,

m : M � X

in a category G of structured sets of some sort—call them “gadgets”—the image
subset

{m(y) | y ∈ M} ⊆ X

which may be written as m(M), is often a sub-gadget of X to which M is
isomorphic through m.

m : M
∼→ m(M) ⊆ X

More generally, we can think of the mono m : M � X itself as determining a
“part” of X, even in categories that do not have underlying functions to take
images of.

Definition 5.1. A subobject of an object X in a category C is a monomorphism:

m : M � X.
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90 CATEGORY THEORY

Given subobjects m and m′ of X, a morphism f : m → m′ is an arrow in C/X,
as in

M
f � M ′

X

m′

�
m

�

Thus, we have a category,

SubC(X)

of subobjects of X in C.
In this definition, since m′ is monic, there is at most one f as in the diagram

above, so that SubC(X) is a preorder category. We define the relation of inclusion
of subobjects by

m ⊆ m′ iff there exists some f : m → m′

Finally, we say that m and m′ are equivalent, written m ≡ m′, if and only if
they are isomorphic as subobjects, that is, m ⊆ m′ and m′ ⊆ m. This holds just
if there are f and f ′ making both triangles below commute:

M � f ′

f
� M ′

X

m′

�
m

�

Observe that, in the above diagram, m = m′f = mf ′f , and since m is
monic, f ′f = 1M and similarly ff ′ = 1M ′ . So, M ∼= M ′ via f . Thus, we see that
equivalent subobjects have isomorphic domains. We sometimes abuse notation
and language by calling M the subobject when the mono m : M � X is clear.

Remark 5.2. It is often convenient to pass from the preorder

SubC(X)

to the poset given by factoring out the equivalence relation “≡”. Then a
subobject is an equivalence class of monos under mutual inclusion.

In Sets, under this notion of subobject, one then has an isomorphism,

SubSets(X) ∼= P (X)

that is, every subobject is represented by a unique subset. We shall use
both notions of subobject, making clear when monos are intended, and when
equivalence classes thereof are intended.
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Note that if M ′ ⊆ M , then the arrow f which makes this so in

M
f � M ′

X
�

�

is also monic, so also M ′ is a subobject of M . Thus we have a functor

Sub(M ′) → Sub(X)

defined by composition with f (since the composite of monos is monic).
In terms of generalized elements of an object X,

z : Z → X

one can define a local membership relation,

z ∈X M

between such elements and subobjects m : M � X by

z ∈X M iff there exists f : Z → M such that z = mf.

Since m is monic, if z factors through it then it does so uniquely.

Example 5.3. An equalizer

E � A
f �

g
� B

is a subobject of A with the property

z ∈A E iff f(z) = g(z)

Thus, we can regard E as the subobject of generalized elements z : Z → A such
that f(z) = g(z), suggestively,

E = {z ∈ Z | f(z) = g(z)} ⊆ A

In categorical logic, one develops a way of making this intuition even more precise
by giving a calculus of such subobjects.

5.2 Pullbacks

The notion of a pullback, like that of a product, is one that comes up very often
in mathematics and logic. It is a generalization of both intersection and inverse
image.

We begin with the definition.
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92 CATEGORY THEORY

Definition 5.4. In any category C, given arrows f, g with cod(f) = cod(g),

B

A
f

� C

g

�

the pullback of f and g consists of arrows

P
p2

� B

A

p1

�

such that fp1 = gp2 and universal with this property. That is, given any z1 :
Z → A and z2 : Z → B with fz1 = gz2, there exists a unique u : Z → P with
z1 = p1u and z2 = p2u. The situation is indicated in the following diagram:

Z

P
p2

B

z2

A

p1

f

z1

C

g

u

One sometimes uses product-style notation for pullbacks.

Z

A ´ C B p2

〈z1, z2〉

B

z2

A

p1

f

z1

C

g
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Pullbacks are clearly unique up to isomorphism since they are given by a
universal mapping property (UMP). Here, this means that given two pullbacks
of a given pair of arrows, the uniquely determined maps between the pullbacks
are mutually inverse.

In terms of generalized elements, any z ∈ A ×C B, can be written uniquely
as z = 〈z1, z2〉 with fz1 = gz2. This makes

A ×C B = {〈z1, z2〉 ∈ A × B | fz1 = gz2}

look like a subobject of A × B, determined as an equalizer of f ◦ π1 and g ◦ π2.
In fact, this is so.

Proposition 5.5. In a category with products and equalizers, given a corner of
arrows

B

A
f

� C

g

�

Consider the diagram

E

A × B
π2

�

e

�

B

p2

�

A

π1

�

f
�

p1

�

C

g

�

in which e is an equalizer of fπ1 and gπ2 and p1 = π1e, p2 = π2e. Then, E, p1, p2

is a pullback of f and g. Conversely, if E, p1, p2 are given as such a pullback, then
the arrow

e = 〈p1, p2〉 : E → A × B

is an equalizer of fπ1 and gπ2.
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94 CATEGORY THEORY

Proof. Take

Z
z2 � B

A

z1

�

with fz1 = gz2. We have 〈z1, z2〉 : Z → A × B, so

fπ1〈z1, z2〉 = gπ2〈z1, z2〉.

Thus, there is a u : Z → E to the equalizer with eu = 〈z1, z2〉. Then,

p1u = π1eu = π1〈z1, z2〉 = z1

and

p2u = π2eu = π2〈z1, z2〉 = z2.

If also u′ : Z → E has piu
′ = zi, i = 1, 2, then πieu

′ = zi so eu′ = 〈z1, z2〉 = eu
whence u′ = u since e in monic. The converse is similar.

Corollary 5.6. If a category C has binary products and equalizers, then it has
pullbacks.

The foregoing gives an explicit construction of a pullback in Sets as a subset of
the product:

{〈a, b〉 | fa = gb} = A ×C B ↪→ A × B

Example 5.7. In Sets, take a function f : A → B and a subset V ⊆ B. Let, as
usual,

f−1(V ) = {a ∈ A | f(a) ∈ V } ⊆ A

and consider

f−1(V )
f̄ � V

A

j

�

f
� B

i

�

where i and j are the canonical inclusions and f̄ is the evident factorization of
the restriction of f to f−1(V ) (since a ∈ f−1(V ) ⇒ f(a) ∈ V ).
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This diagram is a pullback (observe that z ∈ f−1(V ) ⇔ fz ∈ V for all
z : Z → A). Thus, the inverse image

f−1(V ) ⊆ A

is determined uniquely up to isomorphism as a pullback.

As suggested by the previous example, we can use pullbacks to define inverse
images in categories other than Sets. Indeed, given a pullback in any category

A ×B M � M

A

m′

�

f
� B

m

�

if m is monic, then m′ is monic. (Exercise!)
Thus, we see that, for fixed f : A → B, taking pullbacks induces a map

f−1 : Sub(B) → Sub(A)

m �→ m′

We show that f−1 also respects equivalence of subobjects,

M ≡ N ⇒ f−1(M) ≡ f−1(N)

by showing that f−1 is a functor, which is our next goal.

5.3 Properties of pullbacks

We start with the following simple lemma, which seems to come up all the time.

Lemma 5.8. (Two-pullbacks) Consider the commutative diagram below in a
category with pullbacks:

F
f ′

� E
g′ � D

A

h′′

�

f
� B

h′

�

g
� C

h

�

1. If the two squares are pullbacks, so is the outer rectangle. Thus,

A ×B (B ×C D) ∼= A ×C D.

2. If the right square and the outer rectangle are pullbacks, so is the left square.



�

�

“05-Awodey-c05” — 2009/12/18 — 17:01 — page 96 — #8
�

�

�

�

�

�
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Proof. Diagram chase.

Corollary 5.9. The pullback of a commutative triangle is a commutative
triangle. Specifically, given a commutative triangle as on the right end of the
following “prism diagram”:

A′
hα

� A

B′
hβ

�

γ′

...............................�

B

γ

�

C’

α′

�

h
�

β′

�

C

α

�

β

�

for any h : C ′ → C, if one can form the pullbacks α′ and β′ as on the left end,
then there exists a unique γ′ as indicated, making the left end a commutative
triangle, and the upper face a commutative rectangle, and indeed a pullback.

Proof. Apply the two-pullbacks lemma.

Proposition 5.10. Pullback is a functor. That is, for fixed h : C ′ → C in a
category C with pullbacks, there is a functor

h∗ : C/C → C/C ′

defined by

(A α→ C) �→ (C ′ ×C A
α′
→ C ′)

where α′ is the pullback of α along h, and the effect on an arrow γ : α → β is
given by the foregoing corollary.

Proof. One must check that

h∗(1X) = 1h∗X

and

h∗(g ◦ f) = h∗(g) ◦ h∗(f).
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These can easily be verified by repeated applications of the two-pullbacks lemma.
For example, for the first condition, consider

A′
h′

� A

A′

1A′

�

h′
� A

1A

�

C ′

α′

�

h
� C

α

�

If the lower square is a pullback, then plainly so is the outer rectangle, whence
the upper square is, too, and we have

h∗1X = 1X′ = 1h∗X .

Corollary 5.11. Let C be a category with pullbacks. For any arrow f : A → B
in C, we have the following diagram of categories and functors:

Sub(A) � f−1

Sub(B)

C/A
�

�
f∗ C/B

�

This commutes simply because f−1 is defined to be the restriction of f∗ to the
subcategory Sub(B). Thus, in particular, f−1 is functorial:

M ⊆ N ⇒ f−1(M) ⊆ f−1(N)

It follows that M ≡ N implies f−1(M) ≡ f−1(N), so that f−1 is also defined
on equivalence classes.

f−1/≡ : Sub(B)/≡ −→ Sub(A)/≡
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Example 5.12. Consider a pullback in Sets:

E
f ′

� B

A

g′

�

f
� C

g

�

We saw that

E = {〈a, b〉 | f(a) = g(b)}
can be constructed as an equalizer

E
〈f ′, g′〉� A × B

fπ1�

gπ2

� C

Now let B = 1, C = 2 = {,⊥}, and g =  : 1 → 2. Then, the equalizer

E � A × 1
fπ1�

π2

� 2

is how we already described the “extension” of the “propositional function”
f : A → 2. Therefore, we can rephrase the correspondence between subsets
U ⊆ A and their characteristic functions χU : A → 2 in terms of pullbacks:

U
! � 1

A
�

χU

� 2



�

Precisely, the isomorphism,

2A ∼= P (A)

given by taking a function ϕ : A → 2 to its “extension”

Vϕ = {x ∈ A | ϕ(x) = }
can be described as a pullback.

Vϕ = {x ∈ A | ϕ(x) = } = ϕ−1()

Now suppose we have any function

f : B → A
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and consider the induced inverse image operation

f−1 : P (A) → P (B)

given by pullback, as in example 5.9 above. Taking the extension Vϕ ⊆ A,
consider the two-pullbacks diagram:

f−1(Vϕ) � Vϕ
� 1

B
�

f
� A

�

ϕ
� 2



�

We therefore have (by the two-pullbacks lemma)

f−1(Vϕ) = f−1(ϕ−1()) = (ϕf)−1() = Vϕf

which from a logical point of view expresses the fact that the substitution of a
term f for the variable x in the propositional function ϕ is modeled by taking
the pullback along f of the corresponding extension

f−1({x ∈ A | ϕ(x) = }) = {y ∈ B | ϕ(f(y)) = }.

Note that we have shown that for any function f : B → A the following
square commutes:

2A
∼= � P (A)

2B

2f

�

∼=
� P (B)

f−1

�

where 2f : 2A → 2B is precomposition 2f (g) = g ◦ f . In a situation like this, one
says that the isomorphism

2A ∼= P (A)

is natural in A, which is obviously a much stronger condition than just having
isomorphisms at each object A. We will consider such “naturality” systematically
later. It was in fact one of the phenomena that originally gave rise to category
theory.

Example 5.13. Let I be an index set, and consider an I-indexed family of sets:

(Ai)i∈I
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100 CATEGORY THEORY

Given any function α : J → I, there is a J-indexed family

(Aα(j))j∈J ,

obtained by “reindexing along α.” This reindexing can also be described as a
pullback. Specifically, for each set Ai take the constant, i-valued function pi :
Ai → I and consider the induced map on the coproduct

p = [pi] :
∐

i∈I

Ai → I

The reindexed family (Aα(j))j∈J can be obtained by taking a pullback along α,
as indicated in the following diagram:

∐

j∈J

Aα(j)
�

∐

i∈I

Ai

J

q

�

α
� I

p

�

where q is the indexing projection for (Aα(j))j∈J analogous to p. In other words,
we have

J ×I (
∐

i∈I

Ai) ∼=
∐

j∈J

Aα(j)

The reader should work out the details as an instructive exercise.

5.4 Limits

We have already seen that the notions of product, equalizer, and pullback are
not independent; the precise relation between them is this.

Proposition 5.14. A category has finite products and equalizers iff it has
pullbacks and a terminal object.

Proof. The “only if” direction has already been done. For the other direction,
suppose C has pullbacks and a terminal object 1.

• For any objects A,B we clearly have A × B ∼= A ×1 B, as indicated in the
following:

A × B � B

A
�

� 1
�
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• For any arrows f, g : A → B, the equalizer e : E → A is constructed as the
following pullback:

E
h � B

A

e

�

〈f, g〉
� B × B

Δ = 〈1B , 1B〉

�

In terms of generalized elements,

E = {(a, b) | 〈f, g〉(a) = Δb}
where 〈f, g〉(a) = 〈fa, ga〉 and Δ(b) = 〈b, b〉. So,

E = {〈a, b〉 | f(a) = b = g(a)}
∼= {a | f(a) = g(a)}

which is just what we want. An easy diagram chase shows that

E
e � A

f �

g
� B

is indeed an equalizer.

Product, terminal object, pullback, and equalizer, are all special cases of the
general notion of a limit, which we consider now. First, we need some preliminary
definitions.

Definition 5.15. Let J and C be categories. A diagram of type J in C is a
functor.

D : J → C.

We write the objects in the “index category” J lower case, i, j, . . . and the values
of the functor D : J → C in the form Di,Dj , etc.

A cone to a diagram D consists of an object C in C and a family of arrows
in C,

cj : C → Dj

one for each object j ∈ J , such that for each arrow α : i → j in J, the following
triangle commutes:

C
cj � Dj

Di

ci

�
Dα

�
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A morphism of cones

ϑ : (C, cj) → (C ′, c′j)

is an arrow ϑ in C making each triangle,

C
ϑ � C ′

Dj

c′j

�

cj

�

commute. That is, such that cj = c′j ◦ ϑ for all j ∈ J. Thus, we have an evident
category

Cone(D)

of cones to D.

We are here thinking of the diagram D as a “picture of J in C.” A cone to
such a diagram D is then imagined as a many-sided pyramid over the “base” D
and a morphism of cones is an arrow between the apexes of such pyramids. (The
reader should draw some pictures at this point!)

Definition 5.16. A limit for a diagram D : J → C is a terminal object in
Cone(D). A finite limit is a limit for a diagram on a finite index category J.

We often denote a limit in the form

pi : lim←−
j

Dj → Di.

Spelling out the definition, the limit of a diagram D has the following UMP:
given any cone (C, cj) to D, there is a unique arrow u : C → lim←−j

Dj such that
for all j,

pj ◦ u = cj .

Thus, the limiting cone (lim←−j
Dj , pj) can be thought of as the “closest” cone

to the diagram D, and indeed any other cone (C, cj) comes from it just by
composing with an arrow at the vertex, namely u : C → lim←−j

Dj .

C .............................................
u

� lim←−
j

Dj

Di
Dα

�

�

ci
�

Dj

pj

�
�
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Example 5.17. Take J = {1, 2} the discrete category with two objects and no
nonidentity arrows. A diagram D : J → C is a pair of objects D1,D2 ∈ C. A
cone on D is an object of C equipped with arrows

D1
� c1

C
c2 � D2.

And a limit of D is a terminal such cone, that is, a product in C of D1 and D2,

D1
�p1

D1 × D2
p2� D2.

Thus, in this case,

lim←−
j

Dj
∼= D1 × D2.

Example 5.18. Take J to be the following category:

·
α �

β
� ·

A diagram of type J looks like

D1

Dα �

Dβ

� D2

and a cone is a pair of arrows

D1

Dα �

Dβ

� D2

C

c1

�

c2

�

such that Dαc1 = c2 and Dβc1 = c2; thus, Dαc1 = Dβc1. A limit for D is
therefore an equalizer for Dα, Dβ .

Example 5.19. If J is empty, there is just one diagram D : J → C, and a limit
for it is thus a terminal object in C,

lim←−
j∈0

Dj
∼= 1.

Example 5.20. If J is the finite category
·

· � ·
�
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we see that a limit for a diagram of the form

B

A
f

� C

g

�

is just a pullback of f and g,

lim←−
j

Dj
∼= A ×C B.

Thus, we have shown half of the following.

Proposition 5.21. A category has all finite limits iff it has finite products and
equalizers (resp. pullbacks and a terminal object by the last proposition).

Here, a category C is said to have all finite limits if every finite diagram D :
J → C has a limit in C.

Proof. We need to show that any finite limit can be constructed from finite
products and equalizers. Take a finite diagram

D : J → C.

As a first approximation, the product
∏

i∈J0

Di (5.1)

over the set J0 of objects at least has projections pj :
∏

i∈J0
Di → Dj of the right

sort. But these cannot be expected to commute with the arrows Dα : Di → Dj

in the diagram D, as they must. So, as in making a pullback from a product and
an equalizer, we consider also the product

∏
(α:i→j)∈J1

Dj over all the arrows
(the set J1), and two special maps,

∏

i

Di

φ�

ψ
�

∏

α:i→j

Dj

which record the effect of the arrows in the diagram on the product of the objects.
Specifically, we define φ and ψ by taking their composites with the projections
πα from the second product to be, respectively,

πα ◦ φ = φα = πcod(α)

πα ◦ ψ = ψα = Dα ◦ πdom(α)

where πcod(α) and πdom(α) are projections from the first product.
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Now, in order to get the subobject of the product 5.1 on which the arrows in
the diagram D commute, we take the equalizer:

E
e �

∏

i

Di

φ�

ψ
�

∏

α:i→j

Dj

We show that (E, ei) is a limit for D, where ei = πi ◦ e. To that end, take any
arrow c : C →

∏
i Di, and write c = 〈ci〉 for ci = πi ◦ c. Observe that the family

of arrows (ci : C → Di) is a cone to D if and only if φc = ψc. Indeed,

φ〈ci〉 = ψ〈ci〉

iff for all α,

παφ〈ci〉 = παψ〈ci〉.

But,

παφ〈ci〉 = φα〈ci〉 = πcod(α)〈ci〉 = cj

and

παψ〈ci〉 = ψα〈ci〉 = Dα ◦ πdom(α)〈ci〉 = Dα ◦ ci.

Whence φc = ψc iff for all α : i → j we have cj = Dα ◦ ci thus, iff (ci : C → Di)
is a cone, as claimed. It follows that (E, ei) is a cone, and that any cone (ci :
C → Di) gives an arrow 〈ci〉 : C →

∏
i Di with φ〈ci〉 = ψ〈ci〉, thus there is a

unique factorization u : C → E of 〈ci〉 through E, which is clearly a morphism
of cones.

Since we made no real use of the finiteness of the index category apart from
the existence of certain products, essentially the same proof yields the following.

Corollary 5.22. A category has all limits of some cardinality iff it has all
equalizers and products of that cardinality, where C is said to have limits (resp.
products) of cardinality κ iff C has a limit for every diagram D : J → C, where
card(J1) ≤ κ (resp. C has all products of κ many objects).

The notions of cones and limits of course dualize to give those of cocones and
colimits. One then has the following dual theorem.

Theorem 5.23. A category C has finite colimits iff it has finite coproducts and
coequalizers (resp. iff it has pushouts and an initial object). C has all colimits of
size κ iff it has coequalizers and coproducts of size κ.

5.5 Preservation of limits

Here is an application of the construction of limits by products and equalizers.
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Definition 5.24. A functor F : C → D is said to preserve limits of type J if,
whenever pj : L → Dj is a limit for a diagram D : J → C; the cone Fpj : FL →
FDj is then a limit for the diagram FD : J → D. Briefly,

F (lim←−Dj) ∼= lim←−F (Dj).

A functor that preserves all limits is said to be continuous.

For example, let C be a locally small category with all small limits, such as
posets or monoids. Recall the representable functor

Hom(C,−) : C → Sets

for any object C ∈ C, taking f : X → Y to

f∗ : Hom(C,X) → Hom(C, Y )

where f∗(g : C → X) = f ◦ g.

Proposition 5.25. The representable functors Hom(C,−) preserve all limits.

Since limits in C can be constructed from products and equalizers, it suffices
to show that Hom(C,−) preserves products and equalizers. (Actually, even if C
does not have all limits, the representable functors will preserve those limits that
do exist; we leave that as an exercise.)

Proof. • C has a terminal object 1, for which,

Hom(C, 1) = {!C} ∼= 1.

• Consider a binary product X × Y in C. Then, we already know that

Hom(C,X × Y ) ∼= Hom(C,X) × Hom(C, Y )

by composing any f : C → X × Y with the two product projections p1 :
X × Y → X and p2 : X × Y → Y .

• For arbitrary products
∏

i∈I Xi, one has analogously

Hom(C,
∏

i

Xi) ∼=
∏

i

Hom(C,Xi)

• Given an equalizer in C,

E
e

� X
f �

g
� Y

consider the resulting diagram:

Hom(C,E)
e∗
� Hom(C,X)

f∗�

g∗
� Hom(C, Y ).
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To show this is an equalizer in Sets, let h : C → X ∈ Hom(C,X) with
f∗h = g∗h. Then fh = gh, so there is a unique u : C → E such that
eu = h. Thus, we have a unique u ∈ Hom(C,E) with e∗u = eu = h. So,
e∗ : Hom(C,E) → Hom(C,X) is indeed the equalizer of f∗ and g∗.

Definition 5.26. A functor of the form F : Cop → D is called a contravariant
functor on C. Explicitly, such a functor takes f : A → B to F (f) : F (B) → F (A)
and F (g ◦ f) = F (f) ◦ F (g).

A typical example of a contravariant functor is a representable functor of the
form,

HomC(−, C) : Cop → Sets

for any C ∈ C (where C is any locally small category). Such a contravariant
representable functor takes f : X → Y to

f∗ : Hom(Y,C) → Hom(X,C)

by f∗(g : X → C) = g ◦ f .
Then, the following is the dual version of the foregoing proposition.

Corollary 5.27. Contravariant representable functors map all colimits to
limits.

For example, given a coproduct X + Y in any locally small category C, there is
a canonical isomorphism,

Hom(X + Y,C) ∼= Hom(X,C) × Hom(Y,C) (5.2)

given by precomposing with the two coproduct inclusions.
From an example in Section 2.3, we can therefore conclude that the ultrafilters

in a coproduct A + B of Boolean algebras correspond exactly to pairs of
ultrafilters (U, V ), with U in A and V in B. This follows because we showed
there that the ultrafilter functor Ult : BAop → Sets is representable:

Ult(B) ∼= HomBA(B, 2).

Another case of the above iso (5.2) is the familiar law of exponents for sets:

CX+Y ∼= CX × CY

The arithmetical law of exponents km+n = kn · km is actually a special case of
this.
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5.6 Colimits

Let us briefly discuss some special colimits, since we did not really say much
about them Section 5.5.

First, we consider pushouts in Sets. Suppose we have two functions

A
g � C

B

f

�

We can construct the pushout of f and g like this. Start with the coproduct
(disjoint sum):

B � B + C � C

Now identify those elements b ∈ B and c ∈ C such that, for some a ∈ A,

f(a) = b and g(a) = c

That is, we take the equivalence relation ∼ on B+C generated by the conditions
f(a) ∼ g(a) for all a ∈ A.

Finally, we take the quotient by ∼ to get the pushout

(B + C)/∼ ∼= B +A C,

which can be imagined as B placed next to C, with the respective parts that are
images of A “pasted together” or overlapping. This construction follows simply
by dualizing the one for pullbacks by products and equalizers.

Example 5.28. Pushouts in Top are similarly formed from coproducts and
coequalizers, which can be made first in Sets and then topologized as sum and
quotient spaces. Pushouts are used, for example, to construct spheres from disks.
Indeed, let D2 be the (two-dimensional) disk and S1 the one-dimensional sphere
(i.e., the circle), with its inclusion i : S1 → D2 as the boundary of the disk.
Then, the two-sphere S2 is the pushout,

S1 i � D2

D2

i

�
� S2.

�

Can you see the analogous construction of S1 at the next lower dimension?

In general, a colimit for a diagram D : J → C is, of course, an initial object
in the category of cocones. Explicitly, a cocone from the base D consists of an
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object C (the vertex) and arrows cj : Dj → C for each j ∈ J, such that for all
α : i → j in J,

cj ◦ D(α) = ci

A morphism of cocones f : (C, (cj)) → (C ′, (cj
′)) is an arrow f : C → C ′ in C

such that f ◦ cj = cj
′ for all j ∈ J. An initial cocone is the expected thing: one

that maps uniquely to any other cocone from D. We write such a colimit in the
form

lim−→
j∈J

Dj

Now let us consider some examples of a particular kind of colimit that comes
up quite often, namely over a linearly ordered index category. Our first example
is what is sometimes called a direct limit of a sequence of algebraic objects, say
groups. A similar construction works for any sort of algebras (but non-equational
conditions are not always preserved by direct limits).

Example 5.29. Direct limit of groups. Suppose we are given a sequence,

G0 −→
g0

G1 −→
g1

G2 −→
g2

· · ·

of groups and homomorphisms, and we want a “colimiting” group G∞ with
homomorphisms

un : Gn → G∞

satisfying un+1◦gn = un. Moreover, G∞ should be “universal” with this property.
I think you can see the colimit setup here:

• the index category is the ordinal number ω = (N,≤), regarded as a poset
category,

• the sequence

G0 −→
g0

G1 −→
g1

G2 −→
g2

· · ·

is a diagram of type ω in the category Groups,

• the colimiting group is the colimit of the sequence

G∞ ∼= lim−→
n∈ω

Gn

This group always exists, and can be constructed as follows. Begin with the
coproduct (disjoint sum) of sets

∐

n∈ω

Gn.
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Then make identifications xn ∼ ym, where xn ∈ Gn and ym ∈ Gm, to ensure in
particular that

xn ∼ gn(xn)

for all xn ∈ Gn and gn : Gn → Gn+1.
This means, specifically, that the elements of G∞ are equivalence classes of

the form

[xn], xn ∈ Gn

for any n, and [xn] = [ym] iff for some k ≥ m,n,

gn,k(xn) = gm,k(ym)

where, generally, if i ≤ j, we define

gi,j : Gi → · · · → Gj

by composing consecutive g’s as in gi,j = gj−1 ◦ . . . ◦ gi. The reader can easily
check that this is indeed the equivalence relation generated by all the conditions
xn ∼ gn(xn).

The operations on G∞ are now defined by

[x] · [y] = [x′ · y′]

where x ∼ x′, y ∼ y′, and x′, y′ ∈ Gn for n sufficiently large. The unit is just
[u0], and we take,

[x]−1 = [x−1].

One can easily check that these operations are well defined, and determine a
group structure on G∞, which moreover makes all the evident functions

un : Gn → G∞ , un(x) = [x]

into homomorphisms.
The universality of G∞ and the un results from the fact that the construction

is essentially a colimit in Sets, equipped with an induced group structure. Indeed,
given any group H and homomorphisms hn : Gn → H with hn+1◦gn = hn define
h∞ : G∞ → H by h∞([xn]) = hn(xn). This is easily seen to be well defined and
indeed a homomorphism. Moreover, it is the unique function that commutes
with all the un.

The fact that the ω-colimit G∞ of groups can be constructed as the colimit of
the underlying sets is a case of a general phenomenon, expressed by saying that
the forgetful functor U : Groups → Sets “creates ω-colimits.”

Definition 5.30. A functor F : C → D is said to create limits of type J if for
every diagram C : J → C and limit pj : L → FCj in D there is a unique cone
pj : L → Cj in C with F (L) = L and F (pj) = pj , which, furthermore, is a limit
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for C. Briefly, every limit in D is the image of a unique cone in C, which is a
limit there. The notion of creating colimits is defined analogously.

In these terms, then, we have the following proposition, the remaining details of
which have in effect already been shown.

Proposition 5.31. The forgetful functor U : Groups → Sets creates ω-
colimits. It also creates all limits.

The same fact holds quite generally for other categories of algebraic objects, that
is, sets equipped with operations satisfying some equations. Observe that not all
colimits are created in this way. For instance, we have already seen (in example) Au: Please

specify
“example” if
appropriate.

that the coproduct of two abelian groups has their product as underlying set.

Example 5.32. Cumulative hierarchy. Another example of an ω-colimit is the
“cumulative hierarchy” construction encountered in set theory. Let us set

V0 = ∅
V1 =P(∅)

...

Vn+1 =P(Vn)

Then there is a sequence of subset inclusions,

∅ = V0 ⊆ V1 ⊆ V2 ⊆ · · ·
since, generally, A ⊆ B implies P(A) ⊆ P(B) for any sets A and B. The colimit
of the sequence

Vω = lim−→
n

Vn

is called the cumulative hierarchy of rank ω. One can, of course, continue this
construction through higher ordinals ω + 1, ω + 2, . . ..

More generally, let us start with some set A (of “atoms”), and let

V0(A) = A

and then put

Vn+1(A) = A + P(Vn(A)),

that is, the set of all elements and subsets of A. There is a sequence V0(A) →
V1(A) → V2(A) → . . . as follows. Let

v0 : V0(A) = A → A + P(A) = V1(A)

be the left coproduct inclusion. Given vn−1 : Vn−1(A) → Vn(A), let vn : Vn(A) →
Vn+1(A) be defined by

vn = 1A + P!(vn−1) : A + P(Vn−1(A)) → A + P(Vn(A))
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where P! denotes the covariant powerset functor, taking a function f : X → Y
to the “image under f” operation P!(f) : P(X) → P(Y ), defined by taking
U ⊆ X to

P!(f)(U) = {f(u) | u ∈ U} ⊆ Y.

The idea behind the sequence is that we start with A, add all the subsets of A,
then add all the new subsets that can be formed from all of those elements, and
so on. The colimit of the sequence

Vω(A) = lim−→
n

Vn(A)

is called the cumulative hierarchy (of rank ω) over A. Of course, Vω = Vω(∅).
Now suppose we have some function

f : A → B.

Then, there is a map

Vω(f) : Vω(A) → Vω(B),

determined by the colimit description of Vω, as indicated in the following
diagram:

V0(A) � V1(A) � V2(A) � . . . � Vω(A)

. . .

V0(B)

f0

�
� V1(B)

f1

�
� V2(B)

f2

�
� . . . � Vω(B)

fω

�

Here, the fn are defined by

f0 = f : A → B,

f1 = f + P!(f) : A + P(A) → B + P(B),

...

fn+1 = f + P!(fn) : A + P(Vn(A)) → B + P(Vn(B)).

Since all the squares clearly commute, we have a cocone on the diagram of
Vn(A)’s with vertex Vω(B), and there is thus a unique fω : Vω(A) → Vω(B) that
completes the diagram.

Thus, we see that the cumulative hierarchy is functorial.

Example 5.33. ωCPOs. An ωCPO is a poset that is “ω-cocomplete,” meaning
it has all colimits of type ω = (N,≤). Specifically, a poset D is an ωCPO if for
every diagram d : ω → D, that is, every chain of elements of D,

d0 ≤ d1 ≤ d2 ≤ · · ·
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we have a colimit dω = lim−→ dn. This is an element of D such that

1. dn ≤ dω for all n ∈ ω,
2. for all x ∈ D, if dn ≤ x for all n ∈ ω, then also dω ≤ x.

A monotone map of ωCPOs

h : D → E

is called continuous if it preserves colimits of type ω, that is,

h(lim−→ dn) = lim−→h(dn).

An application of these notions is the following.

Proposition 5.34. If D is an ωCPO with initial element 0 and

h : D → D

is continuous, then h has a fixed point

h(x) = x

which, moreover, is least among all fixed points.

Proof. We use “Newton’s method,” which can be used, for example, to find
fixed points of monotone, continuous functions f : [0, 1] → [0, 1]. Consider the
sequence d : ω → D, defined by

d0 = 0

dn+1 = h(dn)

Since 0 ≤ d0, repeated application of h gives dn ≤ dn+1. Now take the colimit
dω = lim−→n∈ω

dn. Then

h(dω) = h(lim−→
n∈ω

dn)

= lim−→
n∈ω

h(dn)

= lim−→
n∈ω

dn+1

= dω.

The last step follows because the first term d0 = 0 of the sequence is trivial.
Moreover, if x is also a fixed point, h(x) = x, then we have

d0 = 0 ≤ x

d1 = h(0) ≤ h(x) = x

...

dn+1 = h(dn) ≤ h(x) = x.
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So also dω ≤ x, since dω is the colimit.

Finally, here is an example of how (co)limits depend on the ambient category.
We consider colimits of posets and ωCPOs, rather than in them.

Let us define the finite ωCPOs

ωn = {k ≤ n | k ∈ ω}

then we have continuous inclusion maps:

ω0 → ω1 → ω2 → · · ·

In Pos, the colimit exists, and is ω, as can be easily checked. But ω itself is
not ω-complete. Indeed, the sequence

0 ≤ 1 ≤ 2 ≤ · · ·

has no colimit. Therefore, the colimit of the ωn in the category of ωCPOs, if it
exists, must be something else. In fact, it is ω + 1.

0 ≤ 1 ≤ 2 ≤ · · · ≤ ω

For then any bounded sequence has a colimit in the bounded part, and any
unbounded one has ω as colimit. The moral is that even ω-colimits are not always
created in Sets, and indeed the colimit is sensitive to the ambient category in
which it is taken.

5.7 Exercises

1. Show that a pullback of arrows

A ×X B
p2� B

A

p1

�

f
� X

g

�

in a category C is the same thing as their product in the slice category
C/X.

2. Let C be a category with pullbacks.

(a) Show that an arrow m : M → X in C is monic if and only if the
diagram below is a pullback.
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M
1M � M

M

1M

�

m
� X

m

�

Thus, as an object in C/X, m is monic iff m × m ∼= m.
(b) Show that the pullback along an arrow f : Y → X of a pullback square

over X,
A ×X B � B

A
�

� X
�

is again a pullback square over Y . (Hint: draw a cube and use the two-
pullbacks lemma.) Conclude that the pullback functor f∗ preserves
products.

(c) Conclude from the foregoing that in a pullback square

M ′ � M

A′

m′

�

f
� A

m

�

if m is monic, then so is m′.

3. Show directly that in any category, given a pullback square

M ′ � M

A′

m′

�

f
� A

m

�

if m is monic, then so is m′.
4. For any object A in a category C and any subobjects M,N ∈ SubC(A),

show M ⊆ N iff for every generalized element z : Z → A (arbitrary arrow
with codomain A):

z ∈A M implies z ∈A N.
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5. For any object A in a category C and any subobjects M,N ∈ SubC(A),
show M ⊆ N iff for every generalized element z : Z → A (arbitrary arrow
with codomain A):

z ∈A M implies z ∈A N.

6. (Equalizers by pullbacks and products) Show that a category with
pullbacks and products has equalizers as follows: given arrows f, g : A →
B, take the pullback indicated below, where Δ = 〈1B , 1B〉:

E � B

A

e

�

〈f, g〉
� B × B

Δ

�

Show that e : E → A is the equalizer of f and g.
7. Let C be a locally small category with all small limits, and D : J → C

any diagram in C. Show that for any object C ∈ C, the representable
functor

HomC(C,−) : C → Sets

preserves the limit of D.
8. (Partial maps) For any category C with pullbacks, define the category

Par(C) of partial maps in C as follows: the objects are the same as those
of C, but an arrow f : A → B is a pair (|f |, Uf ), where Uf � A is a
subobject and |f | : Uf → B is a suitable equivalence class of arrows, as
indicated in the diagram:

Uf
|f | � B

A
�

�

Composition of (|f |, Uf ) : A → B and (|g|, Ug) : B → C is given by taking
a pullback and then composing to get (|g ◦ f |, |f |∗(Ug)), as suggested by
the following diagram:
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|f |∗(Ug) � Ug |g|
� C

Uf

�

�

|f |
� B

�

�

A
�

�

Verify that this really does define a category, and show that there is a
functor,

C → Par(C)

which is the identity on objects.
9. Suppose the category C has limits of type J, for some index category J.

For diagrams F and G of type J in C, a morphism of diagrams θ : F → G
consists of arrows θi : Fi → Gi for each i ∈ J such that for each α :
i → j in J, one has θjF (α) = G(α)θi (a commutative square). This makes
Diagrams(J,C) into a category (check this).
Show that taking the vertex-objects of limiting cones determines a functor:

lim←−
J

: Diagrams(J,C) → C

Infer that for any set I, there is a product functor,
∏

i∈I

: SetsI → Sets

for I-indexed families of sets (Ai)i∈I .
10. (Pushouts)

(a) Dualize the definition of a pullback to define the “copullback” (usually
called the “pushout”) of two arrows with common domain.

(b) Indicate how to construct pushouts using coproducts and coequalizers
(proof “by duality”).

11. Let R ⊆ X × X be an equivalence relation on a set X, with quotient
q : X � Q. Show that the following is an equalizer:

PQ
Pq � PX

Pr1�

Pr2

� PR,

where r1, r2 : R ⇒ X are the two projections of R ⊆ X, and P is the
(contravariant) powerset functor. (Hint: PX ∼= 2X .)
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12. Consider the sequence of posets [0] → [1] → [2] → . . . , where

[n] = {0 ≤ · · · ≤ n},

and the arrows [n] → [n + 1] are the evident inclusions. Determine the
limit and colimit posets of this sequence.

13. Consider sequences of monoids,

M0 → M1 → M2 → . . .

N0 ← N1 ← N2 ← . . .

and the following limits and colimits, constructed in the category of
monoids:

lim−→
n

Mn, lim←−
n

Mn, lim−→
n

Nn, lim←−
n

Nn.

(a) Suppose all Mn and Nn are abelian groups. Determine whether each
of the four (co)limits lim−→n

Mn etc. is also an abelian group.

(b) Suppose all Mn and Nn are finite groups. Determine whether each of
the four (co)limits lim−→n

Mn etc. has the following property: for every
element x, there is a number k such that xk = 1 (the least such k is
called the order of x).


