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DUALITY

We have seen a few examples of definitions and statements that exhibit
a kind of “duality,” like initial and terminal object and epimorphisms and
monomorphisms. We now want to consider this duality more systematically.
Despite its rather trivial first impression, it is indeed a deep and powerful aspect
of the categorical approach to mathematical structures.

3.1 The duality principle

First, let us look again at the formal definition of a category: There are two kinds
of things, objects A,B,C and . . . , arrows f, g, h, . . . ; four operations dom(f),
cod(f), 1A, g ◦ f ; and these satisfy the following seven axioms:

dom(1A) = A cod(1A) = A

f ◦ 1dom(f) = f 1cod(f) ◦ f = f (3.1)

dom(g ◦ f) = dom(f) cod(g ◦ f) = cod(g)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

The operation “g ◦ f” is only defined where

dom(g) = cod(f),

so a suitable form of this should occur as a condition on each equation containing
◦, as in dom(g) = cod(f) ⇒ dom(g ◦ f) = dom(f).

Now, given any sentence Σ in the elementary language of category theory, we
can form the “dual statement” Σ∗ by making the following replacements:

f ◦ g for g ◦ f

cod for dom

dom for cod.

It is easy to see that then Σ∗ will also be a well-formed sentence. Next, suppose
we have shown a sentence Σ to entail one Δ, that is, Σ ⇒ Δ, without using any
of the category axioms, then clearly Σ∗ ⇒ Δ∗, since the substituted terms are
treated as mere undefined constants. But now observe that the axioms (3.1) for
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54 CATEGORY THEORY

category theory (CT) are themselves “self-dual,” in the sense that we have,

CT∗ = CT.

We therefore have the following duality principle.

Proposition 3.1 (formal duality). For any sentence Σ in the language of
category theory, if Σ follows from the axioms for categories, then so does its
dual Σ∗:

CT ⇒ Σ implies CT ⇒ Σ∗

Taking a more conceptual point of view, note that if a statement Σ involves
some diagram of objects and arrows,

A
f � B

C

g

�
g ◦ f �

then the dual statement Σ∗ involves the diagram obtained from it by reversing
the direction and the order of compositions of arrows.

A � f
B

C

g

�

f ◦ g

�

Recalling the opposite category Cop of a category C, we see that an
interpretation of a statement Σ in C automatically gives an interpretation of
Σ∗ in Cop.

Now suppose that a statement Σ holds for all categories C. Then it also
holds in all categories Cop, and so Σ∗ holds in all categories (Cop)op. But since
for every category C,

(Cop)op = C, (3.2)

we see that Σ∗ also holds in all categories C. We therefore have the following
conceptual form of the duality principle.

Proposition 3.2 (Conceptual duality). For any statement Σ about categories,
if Σ holds for all categories, then so does the dual statement Σ∗.

It may seem that only very simple or trivial statements, such as “terminal
objects are unique up to isomorphism” are going to be subject to this sort of
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duality, but in fact this is far from being so. Categorical duality turns out to
be a very powerful and a far-reaching phenomenon, as we see. Like the duality
between points and lines in projective geometry, it effectively doubles ones “bang
for the buck,” yielding two theorems for every proof.

One way this occurs is that, rather than considering statements about all
categories, we can also consider the dual of an abstract definition of a structure
or property of objects and arrows, like “being a product diagram.” The dual
structure or property is arrived at by reversing the order of composition and the
words “domain” and “codomain.” (Equivalently, it results from interpreting the
original property in the opposite category.) Section 3.2 provides an example of
this kind.

3.2 Coproducts

Let us consider the example of products and see what the dual notion must be.
First, recall the definition of a product.

Definition 3.3. A diagram A
p1←− P

p2−→ B is a product of A and B, if for any
Z and A

z1←− Z
z2−→ B there is a unique u : Z → P with pi ◦ u = zi, all as

indicated in

Z

A �
p1

z1

�

P

u

�

.................

p2

� B

z2

�

Now what is the dual statement?
A diagram A

q1−→ Q
q2←− B is a “dual-product” of A and B if for any Z and

A
z1−→ Z

z2←− B there is a unique u : Q → Z with u ◦ qi = zi, all as indicated in

Z

A
q1

�

z1

�

Q

u

�
.................

�
q2

B

z2

�

Actually, these are called coproducts; the convention is to use the prefix “co-” to
indicate the dual notion. We usually write A

i1−→ A+B
i2←− B for the coproduct

and [f, g] for the uniquely determined arrow u : A+ B → Z. The “coprojections”
i1 : A → A + B and i2 : B → A + B are usually called injections, even though
they need not be “injective” in any sense.
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56 CATEGORY THEORY

A coproduct of two objects is therefore exactly their product in the opposite
category. Of course, this immediately gives lots of examples of coproducts. But
what about some more familiar ones?

Example 3.4. In Sets, the coproduct A + B of two sets is their disjoint union,
which can be constructed, for example, as

A + B = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}

with evident coproduct injections

i1(a) = (a, 1), i2(b) = (b, 2).

Given any functions f and g as in

Z

A
i1

�

f

�

A + B

[f, g]

�
.................

�
i2

B

g

�

we define

[f, g](x, δ) =

{
f(x) δ = 1
g(x) δ = 2.

Then, if we have an h with h ◦ i1 = f and h ◦ i2 = g, then for any (x, δ) ∈ A+B,
we must have

h(x, δ) = [f, g](x, δ)

as can be easily calculated.

Note that in Sets, every finite set A is a coproduct:

A ∼= 1 + 1 + · · · + 1 (n-times)

for n = card(A). This is because a function f : A → Z is uniquely determined
by its values f(a) for all a ∈ A. So we have

A ∼= {a1} + {an} + · · · + {an}
∼= 1 + 1 + · · · + 1 (n-times).

In this spirit, we often write simply 2 = 1 + 1, 3 = 1 + 1 + 1, etc.

Example 3.5. If M(A) and M(B) are free monoids on sets A and B, then in
Mon we can construct their coproduct as

M(A) + M(B) ∼= M(A + B).
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One can see this directly by considering words over A + B, but it also follows
abstractly by using the diagram

N

M(A) �

�

M(A + B)

�
.................

� M(B)

�

A

ηA

�

� A + B

ηA+B

�

� B

ηB

�

in which the η’s are the respective insertions of generators. The universal
mapping properties (UMPs) of M(A), M(B), A+B, and M(A+B) then imply
that the last of these has the required UMP of M(A) + M(B). Note that the
set of elements of the coproduct M(A) + M(B) of M(A) and M(B) is not
the coproduct of the underlying sets, but is only generated by the coproduct of
their generators, A + B. We shall consider coproducts of arbitrary, that is, not
necessarily free, monoids presently.

The foregoing example says that the free monoid functor M : Sets → Mon
preserves coproducts. This is an instance of a much more general phenomenon,
which we consider later, related to the fact we have already seen that the forgetful
functor U : Mon → Sets is representable and so preserves products.

Example 3.6. In Top, the coproduct of two spaces

X + Y

is their disjoint union with the topology O(X + Y ) ∼= O(X) × O(Y ). Note that
this follows the pattern of discrete spaces, for which O(X) = P (X) ∼= 2X . Thus,
for discrete spaces, we indeed have

O(X + Y ) ∼= 2X+Y ∼= 2X × 2Y ∼= O(X) × O(Y ).

A related fact is that the product of two powerset Boolean algebras P(A)
and P(B) is also a powerset, namely of the coproduct of the sets A and B,

P(A) × P(B) ∼= P(A + B).

We leave the verification as an exercise.
Coproducts of posets are similarly constructed from the coproducts of the

underlying sets, by “putting them side by side.” What about “rooted” posets,
that is, posets with a distinguished initial element 0? In the category Pos0 of
such posets and monotone maps that preserve 0, one constructs the coproduct
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58 CATEGORY THEORY

of two such posets A and B from the coproduct A + B in the category Pos of
posets, by “identifying” the two different 0s,

A+ Pos0B = (A+ PosB)/“0A = 0B”.

We shall soon see how to describe such identifications (quotients of equivalence
relations) as “coequalizers.”

Example 3.7. In a fixed poset P , what is a coproduct of two elements p, q ∈ P ?
We have

p ≤ p + q and q ≤ p + q

and if

p ≤ z and q ≤ z

then

p + q ≤ z.

So p + q = p ∨ q is the join, or “least upper bound,” of p and q.

Example 3.8. In the category of proofs of a deductive system of logic of example
10, Section 1.4, the usual natural deduction rules of disjunction introduction and
elimination give rise to coproducts. Specifically, the introduction rules,

ϕ

ϕ ∨ ψ

ψ

ϕ ∨ ψ

determine arrows i1 : ϕ → ϕ ∨ ψ and i2 : ψ → ϕ ∨ ψ, and the elimination rule,

ϕ ∨ ψ

[ϕ]
...
ϑ

[ψ]
...
ϑ

ϑ

turns a pair of arrows p : ϕ → ϑ and q : ψ → ϑ into an arrow [p, q] : ϕ ∨ ψ → ϑ.
The required equations,

[p, q] ◦ i1 = p [p, q] ◦ i2 = q (3.3)

will evidently not hold, however, since we are taking identity of proofs as identity
of arrows. In order to get coproducts, then, we need to “force” these equations to
hold by passing to equivalence classes of proofs, under the equivalence relation
generated by these equations, together with the complementary one,

[r ◦ i1, r ◦ i2] = r (3.4)

for any r : A + B → C. (The intuition behind these identifications is that one
should equate proofs which become the same when one omits such “detours.”)
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In the new category with equivalence classes of proofs as arrows, the arrow [p, q]
will also be the unique one satisfying (3.3), so that ϕ ∨ ψ indeed becomes a
coproduct.

Closely related to this example (via the Curry–Howard correspondence of
remark 2.18) are the sum types in the λ-calculus, as usually formulated using
case terms; these are coproducts in the category of types defined in Section 2.5.

Example 3.9. Two monoids A,B have a coproduct of the form

A + B = M(|A| + |B|)/ ∼
where, as before, the free monoid M(|A|+|B|) is strings (words) over the disjoint
union |A| + |B| of the underlying sets—that is, the elements of A and B—and
the equivalence relation v ∼ w is the least one containing all instances of the
following equations:

(. . . x uA y . . .) = (. . . x y . . .)

(. . . x uB y . . .) = (. . . x y . . .)

(. . . a a′ . . .) = (. . . a ·A a′ . . .)

(. . . b b′ . . .) = (. . . b ·B b′ . . .).

(If you need a refresher on quotienting a set by an equivalence relation, skip
ahead and read the beginning of Section 3.4 now.) The unit is, of course, the
equivalence class [−] of the empty word (which is the same as [uA] and [uB ]).
Multiplication of equivalence classes is also as expected, namely

[x . . . y] · [x′ . . . y′] = [x . . . yx′ . . . y′].

The coproduct injections iA : A → A + B and iB : B → A + B are simply

iA(a) = [a], iB(b) = [b],

which are now easily seen to be homomorphisms. Given any homomorphisms
f : A → M and g : B → M into a monoid M , the unique homomorphism

[f, g] : A + B −→ M

is defined by first extending the function [|f |, |g|] : |A|+ |B| → |M | to one [f, g]′

on the free monoid M(|A| + |B|),

|A| + |B| [|f |, |g|]� |M |

M(|A| + |B|) [f, g]′ � M

M(|A| + |B|)/∼
��

[f, g]
......

......
......

......
......

......
.....�
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and then observing that [f, g]′ “respects the equivalence relation ∼,” in the sense
that if v ∼ w in M(|A| + |B|), then [f, g]′(v) = [f, g]′(w). Thus, the map [f, g]′

extends to the quotient to yield the desired map [f, g] : M(|A|+ |B|)/∼ −→ M .
(Why is this homomorphism the unique one h : M(|A| + |B|)/ ∼ −→ M with
hiA = f and hiB = g ?) Summarizing, we thus have

A + B ∼= M(|A| + |B|)/∼ .

This construction also works to give coproducts in Groups, where it is
usually called the free product of A and B and written A ⊕ B, as well as many
other categories of “algebras,” that is, sets equipped with operations. Again, as
in the free case, the underlying set of A + B is not the coproduct of A and B as
sets (the forgetful functor Mon → Sets does not preserve coproducts).

Example 3.10. For abelian groups A,B, the free product A ⊕ B need not be
abelian. One could, of course, take a further quotient of A⊕B to get a coproduct
in the category Ab of abelian groups, but there is a more convenient (and
important) presentation, which we now consider.

Since the words in the free product A⊕B must be forced to satisfy the further
commutativity conditions

(a1b1b2a2 . . .) ∼ (a1a2 . . . b1b2 . . .)

we can shuffle all the a’s to the front, and the b’s to the back, of the words. But,
furthermore, we already have

(a1a2 . . . b1b2 . . .) ∼ (a1 + a2 + · · · + b1 + b2 + · · · ).
Thus, we in effect have pairs of elements (a, b). So we can take the product set
as the underlying set of the coproduct

|A + B| = |A × B|.
As inclusions, we use the homomorphisms

iA(a) = (a, 0B)

iB(b) = (0A, b).

Then, given any homomorphisms A
f→ X

g← B, we let [f, g] : A + B → X be
defined by

[f, g](a, b) = f(a) +X g(b)

which can easily be seen to do the trick (exercise!).

Moreover, not only can the underlying sets be the same, the product and
coproduct of abelian groups are actually isomorphic as groups.

Proposition 3.11. In the category Ab of abelian groups, there is a canonical
isomorphism between the binary coproduct and product,

A + B ∼= A × B.
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Proof. To define an arrow ϑ : A+ B → A×B, we need one A → A×B (and one
B → A × B), so we need arrows A → A and A → B (and B → A and B → B).
For these, we take 1A : A → A and the zero homomorphism 0B : A → B (and
0A : B → A and 1B : B → B). Thus, all together, we get

ϑ = [〈1A, 0B〉, 〈0A, 1B〉] : A + B → A × B.

Then given any (a, b) ∈ A + B, we have

ϑ(a, b) = [〈1A, 0B〉, 〈0A, 1B〉](a, b)

= 〈1A, 0B〉(a) + 〈0A, 1B〉(b)
= (1A(a), 0B(a)) + (0A(b), 1B(b))

= (a, 0B) + (0A, b)

= (a + 0A, 0B + b)

= (a, b).

This fact was first observed by Mac Lane, and it was shown to lead to a
binary operation of addition on parallel arrows f, g : A → B between abelian
groups (and related structures like modules and vector spaces). In fact, the group
structure of a particular abelian group A can be recovered from this operation
on arrows into A. More generally, the existence of such an addition operation
on arrows can be used as the basis of an abstract description of categories
like Ab, called “abelian categories,” which are suitable for axiomatic homology
theory.

Just as with products, one can consider the empty coproduct, which is an
initial object 0, as well as coproducts of several factors, and the coproduct of
two arrows,

f + f ′ : A + A′ → B + B′

which leads to a coproduct functor + : C×C → C on categories C with binary
coproducts. All of these facts follow simply by duality; that is, by considering
the dual notions in the opposite category. Similarly, we have the following
proposition.

Proposition 3.12. Coproducts are unique up to isomorphism.

Proof. Use duality and the fact that the dual of “isomorphism” is “isomorphism.”

In just the same way, one also shows that binary coproducts are associative up
to isomorphism, (A + B) + C ∼= A + (B + C).

Thus is general, in the future it will suffice to introduce new notions once and
then simply observe that the dual notions have analogous (but dual) properties.
Sections 3.3 and 3.4 give another example of this sort.
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3.3 Equalizers

In this section, we consider another abstract characterization; this time a
common generalization of the kernel of a homomorphism and an equationally
defined “variety,” like the set of zeros of a real-valued function—as well as set
theory’s axiom of separation.

Definition 3.13. In any category C, given parallel arrows

A
f �

g
� B

an equalizer of f and g consists of an object E and an arrow e : E → A, universal
such that

f ◦ e = g ◦ e.

That is, given any z : Z → A with f ◦ z = g ◦ z, there is a unique u : Z → E
with e ◦ u = z, all as in the diagram

E
e � A

f �

g
� B

Z

u

�
.................

z

�

Let us consider some simple examples.

Example 3.14. Suppose we have the functions f, g : R
2 ⇒ R, where

f(x, y) = x2 + y2

g(x, y) = 1

and we take the equalizer, say in Top. This is the subspace,

S = {(x, y) ∈ R
2 |x2 + y2 = 1} ↪→ R

2,

that is, the unit circle in the plane. For, given any “generalized element” z : Z →
R

2, we get a pair of such “elements” z1, z2 : Z → R just by composing with the
two projections, z = 〈z1, z2〉, and for these we then have

f(z) = g(z) iff z1
2 + z2

2 = 1

iff “〈z1, z2〉 = z ∈ S”,
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where the last line really means that there is a factorization z = z̄◦i of z through
the inclusion i : S ↪→ R

2, as indicated in the following diagram:

S ⊂
i � R

2
x2 + y2

�

1
� R

Z

z̄

�
.................

z

�
Since the inclusion i is monic, such a factorization, if it exists, is necessarily
unique, and thus S ↪→ R

2 is indeed the equalizer of f and g.

Example 3.15. Similarly, in Sets, given any functions f, g : A ⇒ B, their
equalizer is the inclusion into A of the equationally defined subset

{x ∈ A | f(x) = g(x)} ↪→ A.

The argument is essentially the same as the one just given.
Let us pause here to note that in fact, every subset U ⊆ A is of this

“equational” form, that is, every subset is an equalizer for some pair of functions.
Indeed, one can do this in a very canonical way. First, let us put

2 = {�,⊥},

thinking of it as the set of “truth values.” Then consider the characteristic
function

χU : A → 2,

defined for x ∈ A by

χU (x) =

{
� x ∈ U

⊥ x /∈ U.

Thus, we have

U = {x ∈ A |χU (x) = �}.

So the following is an equalizer:

U � A
�! �

χU

� 2

where �! = �◦! : U
!→ 1 �→ 2.

Moreover, for every function,

ϕ : A → 2
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we can form the “variety” (i.e., equational subset)

Vϕ = {x ∈ A |ϕ(x) = �}
as an equalizer, in the same way. (Thinking of ϕ as a “propositional function”
defined on A, the subset Vϕ ⊆ A is the “extension” of ϕ provided by the axiom
of separation.)

Now, it is easy to see that these operations χU and Vϕ are mutually inverse:

VχU
= {x ∈ A |χU (x) = �}
= {x ∈ A |x ∈ U}
= U

for any U ⊆ A, and given any ϕ : A → 2,

χVϕ
(x) =

{
� x ∈ Vϕ

⊥ x /∈ Vϕ

=
{
� ϕ(x) = �
⊥ ϕ(x) = ⊥

= ϕ(x).

Thus, we have the familiar isomorphism

Hom(A, 2) ∼= P (A),

mediated by taking equalizers.

The fact that equalizers of functions can be taken to be subsets is a special
case of a more general phenomenon.

Proposition 3.16. In any category, if e : E → A is an equalizer of some pair
of arrows, then e is monic.

Proof. Consider the diagram

E
e � A

f �

g
� B

Z

x

�

y

�

z

�

in which we assume e is the equalizer of f and g. Supposing ex = ey, we want
to show x = y. Put z = ex = ey. Then fz = fex = gex = gz, so there is a
unique u : Z → E such that eu = z. So from ex = z and ey = z it follows that
x = u = y.

Example 3.17. In many other categories, such as posets and monoids, the
equalizer of a parallel pair of arrows f, g : A ⇒ B can be constructed by
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taking the equalizer of the underlying functions as above, that is, the subset
A(f = g) ⊆ A of elements x ∈ A where f and g agree, f(x) = g(x), and then
restricting the structure of A to A(f = g). For instance, in posets one takes the
ordering from A restricted to this subset A(f = g), and in topological spaces one
takes the subspace topology.

In monoids, the subset A(f = g) is then also a monoid with the operations
from A, and the inclusion is therefore a homomorphism. This is so because
f(uA) = uB = g(uA), and if f(a) = g(a) and f(a′) = g(a′), then f(a · a′) =
f(a) · f(a′) = g(a) · g(a′) = g(a · a′). Thus, A(f = g) contains the unit and is
closed under the product operation.

In abelian groups, for instance, one has an alternate description of the
equalizer, using the fact that,

f(x) = g(x) iff (f − g)(x) = 0.

Thus, the equalizer of f and g is the same as that of the homomorphism (f − g)
and the zero homomorphism 0 : A → B, so it suffices to consider equalizers
of the special form A(h, 0) � A for arbitrary homomorphisms h : A → B.
This subgroup of A is called the kernel of h, written ker(h). Thus, we have the
equalizer

ker(f − g) ⊂ � A
f �

g
� B

The kernel of a homomorphism is of fundamental importance in the study of
groups, as we consider further in Chapter 4.

3.4 Coequalizers

A coequalizer is a generalization of a quotient by an equivalence relation, so let
us begin by reviewing that notion, which we have already made use of several
times. Recall first that an equivalence relation on a set X is a binary relation
x ∼ y, which is

reflexive: x ∼ x,
symmetric: x ∼ y implies y ∼ x,
transitive: x ∼ y and y ∼ z implies x ∼ z.

Given such a relation, define the equivalence class [x] of an element x ∈ X by

[x] = {y ∈ X |x ∼ y}.

The various different equivalence classes [x] then form a partition of X, in the
sense that every element y is in exactly one of them, namely [y] (prove this!).

One sometimes thinks of an equivalence relation as arising from the equivalent
elements having some property in common (like being the same color). One can
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then regard the equivalence classes [x] as the properties and in that sense as
“abstract objects” (the colors red, blue, etc., themselves). This is sometimes
known as “definition by abstraction,” and it describes, for example, the way
that the real numbers can be constructed from Cauchy sequences of rationals or
the finite cardinal numbers from finite sets.

The set of all equivalence classes

X/∼ = {[x] |x ∈ X}

may be called the quotient of X by ∼. It is used in place of X when one wants to
“abstract away” the difference between equivalent elements x ∼ y, in the sense
that in X/∼ such elements (and only such) are identified, since

[x] = [y] iff x ∼ y.

Observe that the quotient mapping,

q : X −→ X/∼

taking x to [x] has the property that a map f : X → Y extends along q,

X
q � X/∼

Y
�

................
f

�

just in case f respects the equivalence relation, in the sense that x ∼ y implies
f(x) = f(y).

Now let us consider the notion dual to that of equalizer, namely that of a
coequalizer.

Definition 3.18. For any parallel arrows f, g : A → B in a category C, a
coequalizer consists of Q and q : B → Q, universal with the property qf = qg,
as in

A
f �

g
� B

q � Q

Z

u

�

................
z

�

That is, given any Z and z : B → Z, if zf = zg, then there exists a unique
u : Q → Z such that uq = z.

First, observe that by duality, we know that such a coequalizer q in a category
C is an equalizer in Cop, hence monic by proposition 3.16, and so epic in C.



�

�

“03-Awodey-c03” — 2009/12/18 — 17:01 — page 67 — #15
�

�

�

�

�

�

DUALITY 67

Proposition 3.19. If q : B → Q is a coequalizer of some pair of arrows, then
q is epic.

We can therefore think of a coequalizer q : B � Q as a “collapse” of B by
“identifying” all pairs f(a) = g(a) (speaking as if there were such “elements”
a ∈ A). Moreover, we do this in the “minimal” way, that is, disturbing B as little
as possible, in that one can always map Q to anything else Z in which all such
identifications hold.

Example 3.20. Let R ⊆ X×X be an equivalence relation on a set X, and consider
the diagram

R
r1 �

r2

� X

where the r’s are the two projections of the inclusion R ⊆ X × X,

R

X �
p1

r1

�

X × X
�

∩

p2

� X

r2

�

The quotient projection
π : X −→ X/R

defined by x �→ [x] is then a coequalizer of r1 and r2. For given an f : X → Y
as in

R
r1 �

r2

� X
π � X/R

Y

f̄

�

..................

f
�

there exists a function f̄ such that

f̄π(x) = f(x)

whenever f respects R in the sense that (x, x′) ∈ R implies f(x) = f(x′), as
already noted. But this condition just says that f ◦r1 = f ◦r2, since f ◦r1(x, x′) =
f(x) and f ◦ r2(x, x′) = f(x′) for all (x, x′) ∈ R. Moreover, if it exists, such a
function f̄ , is then necessarily unique, since π is an epimorphism.

The coequalizer in Sets of an arbitrary parallel pair of functions f ·g : A ⇒ B
can be constructed by quotienting B by the equivalence relation generated by
the equations f(x) = g(x) for all x ∈ A. We leave the details as an exercise.
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Example 3.21. In example 3.6, we considered the coproduct of rooted posets P
and Q by first making P + Q in posets and then “identifying” the resulting two
different 0-elements 0P and 0Q (i.e., the images of these under the respective
coproduct inclusions. We can now describe this “identification” as a coequalizer,
taken in posets,

1
0P �

0Q

� P + Q � P + Q/(0P = 0Q)

This clearly has the right UMP to be the coproduct in rooted posets.
In topology one also often makes “identifications” of points (as in making

the circle out of the interval by identifying the endpoints), of subspaces (making
the torus from a region in the plane, etc.). These and many similar “gluing”
constructions can be described as coequalizers. In Top, the coequalizer of a
parallel pair of maps f, g : X → Y can be constructed as a quotient space of Y
(see the exercises).

Example 3.22. Presentations of algebras
Consider any category of “algebras,” that is, sets equipped with operations (of
finite arity), such as monoids or groups. We shall show later that such a category
has free algebras for all sets and coequalizers for all parallel pairs of arrows (see
the exercises for a proof that monoids have coequalizers). We can use these to
determine the notion of a presentation of an algebra by generators and relations.
For example, suppose we are given

Generators: x, y, z

Relations: xy = z, y2 = 1 (3.5)

To build an algebra on these generators and satisfying these relations, start with
the free algebra,

F (3) = F (x, y, z),

and then “force” the relation xy = z to hold by taking a coequalizer of the maps

F (1)
xy�

z
� F (3)

q � Q

We use the fact that maps F (1) → A correspond to elements a ∈ A by v �→ a,
where v is the single generator of F (1). Now similarly, for the equation y2 = 1,
take the coequalizer

F (1)
q(y2)�
q(1)

� Q � Q′

These two steps can actually be done simultaneously. Let

F (2) = F (1) + F (1)
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F (2)
f �

g
� F (3)

where f = [xy, y2] and g = [z, 1]. The coequalizer q : F (3) → Q of f and g then
“forces” both equations to hold, in the sense that in Q, we have

q(x)q(y) = q(z), q(y)2 = 1.

Moreover, no other relations among the generators hold in Q except those
required to hold by the stipulated equations. To make the last statement precise,
observe that given any algebra A and any three elements a, b, c ∈ A such that
ab = c and b2 = 1, by the UMP of Q there is a unique homomorphism u : Q → A
such that

u(x) = a, u(y) = b, u(z) = c.

Thus, any other equation that holds among the generators in Q will also hold
in any other algebra in which the stipulated equations (3.5) hold, since the
homomorphism u also preserves equations. In this sense, Q is the “universal”
algebra with three generators satisfying the stipulated equations; as may be
written suggestively in the form

Q ∼= F (x, y, z)/(xy = z, y2 = 1).

Generally, given a finite presentation

Generators: g1, . . . , gn

Relations: l1 = r1, . . . , lm = rm (3.6)

(where the li and ri are arbitrary terms built from the generators and the
operations) the algebra determined by that presentation is the coequalizer

F (m)
l �

r
� F (n) � Q = F (n)/(l = r)

where l = [l1, . . . , lm] and r = [r1, . . . , rm]. Moreover, any such coequalizer
between (finite) free algebras can clearly be regarded as a (finite) presentation
by generators and relations. Algebras that can be given in this way are said to
be finitely presented.

Warning 3.23. Presentations are not unique. One may well have two different
presentations F (n)/(l = r) and F (n′)/(l′ = r′) by generators and relations of
the same algebra,

F (n)/(l = r) ∼= F (n′)/(l′ = r′).

For instance, given F (n)/(l = r) just add a new generator gn+1 and the new
relation gn = gn+1. In general, there are many different ways of presenting a
given algebra, just like there are many ways of axiomatizing a logical theory.
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We did not really make use of the finiteness condition in the foregoing
considerations. Indeed, any sets of generators G and relations R give rise to
an algebra in the same way, by taking the coequalizer

F (R)
r1�

r2

� F (G) � F (G)/(r1 = r2).

In fact, every algebra can be “presented” by generators and relations in this
sense, that is, as a coequalizer of maps between free algebras. Specifically, we
have the following proposition for monoids, an analogous version of which also
holds for groups and other algebras.

Proposition 3.24. For every monoid M there are sets R and G and a
coequalizer diagram,

F (R)
r1�

r2

� F (G) � M

with F (R) and F (G) free; thus, M ∼= F (G)/(r1 = r2).

Proof. For any monoid N , let us write TN = M(|N |) for the free monoid on
the set of elements of N (and note that T is therefore a functor). There is a
homomorphism,

π : TN → N

π(x1, . . . , xn) = x1 · . . . · xn

induced by the identity 1|N | : |N | → |N | on the generators. (Here we are writing
the elements of TN as tuples (x1, . . . , xn) rather than strings x1 . . . xn for clarity.)Au: Please

confirm if the
change from
“x1 . . . xn” to
“x1 · . . . · xn”
is OK as per
the above
equation.

Applying this construction twice to a monoid M results in the arrows π and ε
in the following diagram:

T 2M
ε �

μ
� TM

π
� M (3.7)

where T 2M = TTM and μ = Tπ. Explicitly, the elements of T 2M are
tuples of tuples of elements of M , say ((x1, . . . , xn), . . . , (z1, . . . , zm)), and the
homomorphisms ε and μ have the effect

ε((x1, . . . , xn), . . . , (z1, . . . , zm)) = (x1, . . . , xn, . . . , z1, . . . , zm)

μ((x1, . . . , xn), . . . , (z1, . . . , zm)) = (x1 · . . . · xn, . . . , z1 · . . . · zm)

Briefly, ε uses the multiplication in TM and μ uses that in M .
Now clearly π ◦ ε = π ◦ μ. We claim that (3.7) is a coequalizer of monoids.

To that end, suppose we have a monoid N and a homomorphism h : TM → N
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with hε = hμ. Then for any tuple (x, . . . , z), we have

h(x, . . . , z) = hε((x, . . . , z))

= hμ((x, . . . , z))

= h(x · . . . · z).

(3.8)

Now define h̄ = h ◦ i, where i : |M | → |TM | is the insertion of generators, as
indicated in the following:

T 2
ε �

μ
� TM

π �
�.......

i
......... M

N

h ◦ i

�

h
�

We then have

h̄π(x, . . . , z) = hiπ(x, . . . , z)

= h(x · . . . · z)

= h(x, . . . , z) by (3.8).

We leave it as an easy exercise for the reader to show that h̄ is a homomorphism.

3.5 Exercises

1. In any category C, show that

A
c1

� C �
c2

B

is a coproduct diagram just if for every object Z, the map

Hom(C,Z) −→ Hom(A,Z) × Hom(B,Z)

f �−→ 〈f ◦ c1, f ◦ c2〉

is an isomorphism. Do this by using duality, taking the corresponding fact
about products as given.

2. Show in detail that the free monoid functor M preserves coproducts: for
any sets A,B,

M(A) + M(B) ∼= M(A + B) (canonically).

Do this as indicated in the text by using the UMPs of the coproducts A+B
and M(A) + M(B) and of free monoids.
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3. Verify that the construction given in the text of the coproduct of monoids
A + B as a quotient of the free monoid M(|A|+ |B|) really is a coproduct
in the category of monoids.

4. Show that the product of two powerset Boolean algebras P(A) and P(B)
is also a powerset, namely of the coproduct of the sets A and B,

P(A) × P(B) ∼= P(A + B).

(Hint: determine the projections π1 : P(A + B) → P(A) and π2 : P(A +
B) → P(B), and check that they have the UMP of the product.)

5. Consider the category of proofs of a natural deduction system with
disjunction introduction and elimination rules. Identify proofs under the
equations

[p, q] ◦ i1 = p, [p, q] ◦ i2 = q

[r ◦ i1, r ◦ i2] = r

for any p : A → C, q : B → C, and r : A + B → C. By passing
to equivalence classes of proofs with respect to the equivalence relation
generated by these equations (i.e., two proofs are equivalent if you can
get one from the other by removing all such “detours”). Show that the
resulting category does indeed have coproducts.

6. Verify that the category of monoids has all equalizers and finite products,
then do the same for abelian groups.

7. Show that in any category with coproducts, the coproduct of two
projectives is again projective.

8. Dualize the notion of projectivity to define an injective object in a category.
Show that a map of posets is monic iff it is injective on elements. Give
examples of a poset that is injective and one that is not injective.

9. Complete the proof of proposition 3.24 in the text by showing that h̄ is
indeed a homomorphism.

10. In the proof of proposition 3.24 in the text it is shown that any monoid
M has a specific presentation T 2M ⇒ TM → M as a coequalizer of free
monoids. Show that coequalizers of this particular form are preserved by
the forgetful functor Mon → Sets.

11. Prove that Sets has all coequalizers by constructing the coequalizer of a
parallel pair of functions,

A
f �

g
� B � Q = B/(f = g)

by quotienting B by a suitable equivalence relation R on B, generated by
the pairs (f(x), g(x)) for all x ∈ A. (Define R to be the intersection of all
equivalence relations on B containing all such pairs.)
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12. Verify the coproduct–coequalizer construction mentioned in the text for
coproducts of rooted posets, that is, posets with a least element 0 and
monotone maps preserving 0. Specifically, show that the coproduct P +0 Q
of two such posets can be constructed as a coequalizer in posets,

1
0P �

0Q

� P + Q � P +0 Q.

(You may assume as given the fact that the category of posets has all
coequalizers.)

13. Show that the category of monoids has all coequalizers as follows.
1. Given any pair of monoid homomorphisms f, g : M → N , show that the
following equivalence relations on N agree:

(a) n ∼ n′ ⇔ for all monoids X and homomorphisms h : N → X, one has
hf = hg implies hn = hn′,

(b) the intersection of all equivalence relations ∼ on N satisfying fm ∼ gm
for all m ∈ M as well as

n ∼ n′ and m ∼ m′ ⇒ n · m ∼ n′ · m′

2. Taking ∼ to be the equivalence relation defined in (1), show that the
quotient set N/∼ is a monoid under [n] · [m] = [n ·m], and the projection
N → N/∼ is the coequalizer of f and g.

14. Consider the following category of sets:

(a) Given a function f : A → B, describe the equalizer of the functions
f ◦ p1, f ◦ p2 : A × A → B as a (binary) relation on A and show that
it is an equivalence relation (called the kernel of f).

(b) Show that the kernel of the quotient A → A/R by an equivalence
relation R is R itself.

(c) Given any binary relation R ⊆ A × A, let 〈R〉 be the equivalence
relation on A generated by R (the least equivalence relation on A
containing R). Show that the quotient A → A/〈R〉 is the coequalizer
of the two projections R ⇒ A.

(d) Using the foregoing, show that for any binary relation R on a set A,
one can characterize the equivalence relation 〈R〉 generated by R as
the kernel of the coequalizer of the two projections of R.

15. Construct coequalizers in Top as follows. Given a parallel pair of maps
f, g : X ⇒ Y , make a quotient space q : Y → Q by (i) taking the
coequalizer of |f | and |g| in Sets to get the function |q| : |Y | → |Q|,
then (ii) equip |Q| with the quotient topology, under which a set V ⊆ Q
is open iff q−1(V ) ⊆ Y is open. This is plainly the finest topology on |Q|
that makes the projection |q| continuous.
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