
�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 29 — #1
�

�

�

�

�

�

2

ABSTRACT STRUCTURES

We begin with some remarks about category-theoretical definitions. These are
characterizations of properties of objects and arrows in a category solely in terms
of other objects and arrows, that is, just in the language of category theory.
Such definitions may be said to be abstract, structural, operational, relational,
or perhaps external (as opposed to internal). The idea is that objects and arrows
are determined by the role they play in the category via their relations to other
objects and arrows, that is, by their position in a structure and not by what
they “are” or “are made of” in some absolute sense. The free monoid or category
construction of the foregoing chapter was an example of one such definition, and
we see many more examples of this kind later; for now, we start with some very
simple ones. Let us call them abstract characterizations. We see that one of the
basic ways of giving such an abstract characterization is via a Universal Mapping
Property (UMP).

2.1 Epis and monos

Recall that in Sets, a function f : A → B is called

injective if f(a) = f(a′) implies a = a′ for all a, a′ ∈ A,
surjective if for all b ∈ B there is some a ∈ A with f(a) = b.

We have the following abstract characterizations of these properties.

Definition 2.1. In any category C, an arrow

f : A → B

is called

monomorphism, if given any g, h : C → A, fg = fh implies g = h,

C
g �

h
� A

f � B

epimorphism, if given any i, j : B → D, if = jf implies i = j,

A
f � B

i �

j
� D.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 30 — #2
�

�

�

�

�

�

30 CATEGORY THEORY

We often write f : A � B if f is a monomorphism and f : A � B if f is an
epimorphism.

Proposition 2.2. A function f : A → B between sets is monic just in case it
is injective.

Proof. Suppose f : A � B. Let a, a′ ∈ A such that a �= a′, and let {x} be any
given one-element set. Consider the functions

ā, ā′ : {x} → A

where

ā(x) = a, ā′(x) = a′.

Since ā �= ā′, it follows, since f is a monomorphism, that fā �= fā′. Thus,
f(a) = (fā)(x) �= (fā′)(x) = f(a′). Whence f is injective.

Conversely, if f is injective and g, h : C → A are functions such that g �= h,
then for some c ∈ C, g(c) �= h(c). Since f is injective, it follows that f(g(c)) �=
f(h(c)), whence fg �= fh.

Example 2.3. In many categories of “structured sets” like monoids, the monos
are exactly the “injective homomorphisms.” More precisely, a homomorphism
h : M → N of monoids is monic just if the underlying function |h| : |M | →
|N | is monic, that is, injective by the foregoing. To prove this, suppose h is
monic and take two different “elements” x, y : 1 → |M |, where 1 = {∗} is
any one-element set. By the UMP of the free monoid M(1) there are distinct
corresponding homomorphisms x̄, ȳ : M(1) → M , with distinct composites h ◦
x̄, h◦ ȳ : M(1) → M → N , since h is monic. Thus, the corresponding “elements”
hx, hy : 1 → N of N are also distinct, again by the UMP of M(1).

M(1)
x̄ �

ȳ
� M

h � N

1
x �

y
� |M | |h| � |N |

Conversely, if |h| : |M | → |N | is monic and f, g : X → M are any distinct
homomorphisms, then |f |, |g| : |X| → |M | are distinct functions, and so |h| ◦
|f |, |h| ◦ |g| : |X| → |M | → |N | are distinct, since |h| is monic. Since therefore
|h ◦ f | = |h| ◦ |f | �= |h| ◦ |g| = |h ◦ g|, we also must have h ◦ f �= h ◦ g.

A completely analogous situation holds, for example, for groups, rings, vector
spaces, and posets. We shall see that this fact follows from the presence, in each
of these categories, of certain objects like the free monoid M(1).

Example 2.4. In a poset P, every arrow p ≤ q is both monic and epic. Why?



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 31 — #3
�

�

�

�

�

�

ABSTRACT STRUCTURES 31

Now, dually to the foregoing, the epis in Sets are exactly the surjective
functions (exercise!); by contrast, however, in many other familiar categories they
are not just the surjective homomorphisms, as the following example shows.

Example 2.5. In the category Mon of monoids and monoid homomorphisms,
there is a monic homomorphism

N � Z

where N is the additive monoid (N,+, 0) of natural numbers and Z is the additive
monoid (Z,+, 0) of integers. We show that this map, given by the inclusion
N ⊂ Z of sets, is also epic in Mon by showing that the following holds:

Given any monoid homomorphisms f, g : (Z,+, 0) → (M, ∗, u), if the
restrictions to N are equal, f |N= g |N , then f = g.

Note first that

f(−n) = f((−1)1 + (−1)2 + · · · + (−1)n)

= f(−1)1 ∗ f(−1)2 ∗ · · · ∗ f(−1)n

and similarly for g. It, therefore, suffices to show that f(−1) = g(−1). But

f(−1) = f(−1) ∗ u

= f(−1) ∗ g(0)

= f(−1) ∗ g(1 − 1)

= f(−1) ∗ g(1) ∗ g(−1)

= f(−1) ∗ f(1) ∗ g(−1)

= f(−1 + 1) ∗ g(−1)

= f(0) ∗ g(−1)

= u ∗ g(−1)

= g(−1).

Note that, from an algebraic point of view, a morphism e is epic if and only
if e cancels on the right: xe = ye implies x = y. Dually, m is monic if and only
if m cancels on the left: mx = my implies x = y.

Proposition 2.6. Every iso is both monic and epic.

Proof. Consider the following diagram:

A
x �

y
� B

m � C

B

e

� ��

1
�

D



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 32 — #4
�

�

�

�

�

�

32 CATEGORY THEORY

If m is an isomorphism with inverse e, then mx = my implies x = emx =
emy = y. Thus, m is monic. Similarly, e cancels on the right and thus is epic.

In Sets, the converse of the foregoing also holds: every mono-epi is iso. But this
is not in general true, as shown by the example in monoids above.

2.1.1 Sections and retractions

We have just noted that any iso is both monic and epic. More generally, if an
arrow

f : A → B

has a left inverse

g : B → A, gf = 1A

then f must be monic and g epic, by the same argument.

Definition 2.7. A split mono (epi) is an arrow with a left (right) inverse. Given
arrows e : X → A and s : A → X such that es = 1A, the arrow s is called a
section or splitting of e, and the arrow e is called a retraction of s. The object
A is called a retract of X.

Since functors preserve identities, they also preserve split epis and split
monos. Compare example 2.5 above in Mon where the forgetful functor

Mon → Set

did not preserve the epi N → Z.

Example 2.8. In Sets, every mono splits except those of the form

∅ � A.

The condition that every epi splits is the categorical version of the axiom of
choice. Indeed, consider an epi

e : E � X.

We have the family of nonempty sets:

Ex = e−1{x}, x ∈ X.

A choice function for this family (Ex)x∈X is exactly a splitting of e, that is, a
function s : X → E such that es = 1X , since this means that s(x) ∈ Ex for all
x ∈ X.

Conversely, given a family of nonempty sets,

(Ex)x∈X

take E = {(x, y) | x ∈ X, y ∈ Ex} and define the epi e : E � X by (x, y) 
→ x.
A splitting s of e then determines a choice function for the family.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 33 — #5
�

�

�

�

�

�

ABSTRACT STRUCTURES 33

The idea that a “family of objects” (Ex)x∈X can be represented by a single
arrow e : E → X by using the “fibers” e−1(x) has much wider application than
this, and is considered further in Section 7.10.

A notion related to the existence of “choice functions” is that of being
“projective”: an object P is said to be projective if for any epi e : E � X
and arrow f : P → X there is some (not necessarily unique) arrow f̄ : P → E
such that e ◦ f̄ = f , as indicated in the following diagram:

E

P
f

�

f̄
.....

.....
.....

.....
.....

.....
..�

X

e

��

One says that f lifts across e. Any epi into a projective object clearly splits.
Projective objects may be thought of as having a more “free” structure, thus
permitting “more arrows.”

The axiom of choice implies that all sets are projective, and it follows that
free objects in many (but not all!) categories of algebras then are also projective.
The reader should show that, in any category, any retract of a projective object
is also projective.

2.2 Initial and terminal objects

We now consider abstract characterizations of the empty set and the one-
element sets in the category Sets and structurally similar objects in general
categories.

Definition 2.9. In any category C, an object

0 is initial if for any object C there is a unique morphism

0 → C,

1 is terminal if for any object C there is a unique morphism

C → 1.

As in the case of monos and epis, note that there is a kind of “duality” in
these definitions. Precisely, a terminal object in C is exactly an initial object in
Cop. We consider this duality systematically in Chapter 3.

First, observe that since the notions of initial and terminal object are simple
UMPs, such objects are uniquely determined up to isomorphism, just like the
free monoids were.

Proposition 2.10. Initial (terminal) objects are unique up to isomorphism.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 34 — #6
�

�

�

�

�

�

34 CATEGORY THEORY

Proof. In fact, if C and C ′ are both initial (terminal) in the same category, then
there is a unique isomorphism C → C ′. Indeed, suppose that 0 and 0′ are both
initial objects in some category C; the following diagram then makes it clear
that 0 and 0′ are uniquely isomorphic:

0
u � 0′

0

v

�

u
�

10
�

0′

10′

�

For terminal objects, apply the foregoing to Cop.

Example 2.11.

1. In Sets, the empty set is initial and any singleton set {x} is terminal.
Observe that Sets has just one initial object but many terminal objects
(answering the question of whether Sets ∼= Setsop).

2. In Cat, the category 0 (no objects and no arrows) is initial and the category
1 (one object and its identity arrow) is terminal.

3. In Groups, the one-element group is both initial and terminal (similarly
for the category of vector spaces and linear transformations, as well as
the category of monoids and monoid homomorphisms). But in Rings
(commutative with unit), the ring Z of integers is initial (the one-element
ring with 0 = 1 is terminal).

4. A Boolean algebra is a poset B equipped with distinguished elements 0, 1,
binary operations a∨ b of “join” and a∧ b of “meet,” and a unary operation
¬b of “complementation.” These are required to satisfy the conditions

0 ≤ a

a ≤ 1

a ≤ c and b ≤ c iff a ∨ b ≤ c

c ≤ a and c ≤ b iff c ≤ a ∧ b

a ≤ ¬b iff a ∧ b = 0

¬¬a = a.

There is also an equivalent, fully equational characterization not involving
the ordering. A typical example of a Boolean algebra is the powerset
P(X) of all subsets A ⊆ X of a set X, ordered by inclusion A ⊆ B,
and with the Boolean operations being the empty set 0 = ∅, the whole
set 1 = X, union and intersection of subsets as join and meet, and the
relative complement X−A as ¬A. A familiar special case is the two-element



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 35 — #7
�

�

�

�

�

�

ABSTRACT STRUCTURES 35

Boolean algebra 2 = {0, 1} (which may be taken to be the powerset P(1)),
sometimes also regarded as “truth values” with the logical operations of
disjunction, conjunction, and negation as the Boolean operations. It is an
initial object in the category BA of Boolean algebras. BA has as arrows
the Boolean homomorphisms, that is, functors h : B → B′ that preserve
the additional structure, in the sense that h(0) = 0, h(a ∨ b) = h(a) ∨ h(b),
etc. The one-element Boolean algebra (i.e., P(0)) is terminal.

5. In a poset, an object is plainly initial iff it is the least element, and terminal
iff it is the greatest element. Thus, for instance, any Boolean algebra has
both. Obviously, a category need not have either an initial object or a
terminal object; for example, the poset (Z,≤) has neither.

6. For any category C and any object X ∈ C, the identity arrow 1X : X → X
is a terminal object in the slice category C/X and an initial object in the
coslice category X/C.

2.3 Generalized elements

Let us consider arrows into and out of initial and terminal objects. Clearly only
certain of these will be of interest, but those are often especially significant.

A set A has an arrow into the initial object A → 0 just if it is itself initial,
and the same is true for posets. In monoids and groups, by contrast, every object
has a unique arrow to the initial object, since it is also terminal.

In the category BA of Boolean algebras, however, the situation is quite
different. The maps p : B → 2 into the initial Boolean algebra 2 correspond
uniquely to the so-called ultrafilters U in B. A filter in a Boolean algebra B is a
nonempty subset F ⊆ B that is closed upward and under meets:

a ∈ F and a ≤ b implies b ∈ F

a ∈ F and b ∈ F implies a ∧ b ∈ F

A filter F is maximal if the only strictly larger filter F ⊂ F ′ is the “improper”
filter, namely all of B. An ultrafilter is a maximal filter. It is not hard to see that
a filter F is an ultrafilter just if for every element b ∈ B, either b ∈ F or ¬b ∈ F ,
and not both (exercise!). Now if p : B → 2, let Up = p−1(1) to get an ultrafilter
Up ⊂ B. And given an ultrafilter U ⊂ B, define pU (b) = 1 iff b ∈ U to get a
Boolean homomorphism pU : B → 2. This is easy to check, as is the fact that
these operations are mutually inverse. Boolean homomorphisms B → 2 are also
used in forming the “truth tables” one meets in logic. Indeed, a row of a truth
table corresponds to such a homomorphism on a Boolean algebra of formulas.

Ring homomorphisms A → Z into the initial ring Z play an analogous and
equally important role in algebraic geometry. They correspond to so-called prime
ideals, which are the ring-theoretic generalizations of ultrafilters.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 36 — #8
�

�

�

�

�

�

36 CATEGORY THEORY

Now let us consider some arrows from terminal objects. For any set X, for
instance, we have an isomorphism

X ∼= HomSets(1,X)

between elements x ∈ X and arrows x̄ : 1 → X, determined by x̄(∗) = x, from
a terminal object 1 = {∗}. We have already used this correspondence several
times. A similar situation holds in posets (and in topological spaces), where the
arrows 1 → P correspond to elements of the underlying set of a poset (or space)
P . In any category with a terminal object 1, such arrows 1 → A are often called
global elements, or points, or constants of A. In sets, posets, and spaces, the
general arrows A → B are determined by what they do to the points of A, in
the sense that two arrows f, g : A → B are equal if for every point a : 1 → A the
composites are equal, fa = ga.

But be careful; this is not always the case! How many points are there for
an object M in the category of monoids? That is, how many arrows of the form
1 → M for a given monoid M? Just one! And how many points does a Boolean
algebra have?

Because, in general, an object is not determined by its points, it is convenient
to introduce the device of generalized elements. These are arbitrary arrows,

x : X → A

(with arbitrary domain X), which can be regarded as generalized or variable
elements of A. Computer scientists and logicians sometimes think of arrows
1 → A as constants or closed terms and general arrows X → A as arbitrary
terms. Summarizing:

Example 2.12.

1. Consider arrows f, g : P → Q in Pos. Then f = g iff for all x : 1 → P , we
have fx = gx. In this sense, posets “have enough points” to separate the
arrows.

2. By contrast, in Mon, for homomorphisms h, j : M → N , we always have
hx = jx, for all x : 1 → M , since there is just one such point x. Thus,
monoids do not “have enough points.”

3. But in any category C, and for any arrows f, g : C → D, we always have
f = g iff for all x : X → C, it holds that fx = gx (why?). Thus, all objects
have enough generalized elements.

4. In fact, it often happens that it is enough to consider generalized elements
of just a certain form T → A, that is, for certain “test” objects T . We shall
consider this presently.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 37 — #9
�

�

�

�

�

�

ABSTRACT STRUCTURES 37

Generalized elements are also good for “testing” for various conditions. Consider,
for instance, diagrams of the following shape:

X
x �

x′
� A

f � B

The arrow f is monic iff x �= x′ implies fx �= fx′ for all x, x′, that is, just if f is
“injective on generalized elements.”

Similarly, in any category C, to test whether a square commutes,

A
f � B

D

g

�

β
� C

α

�

we shall have αf = βg just if αfx = βgx for all generalized elements x : X → A
(just take x = 1A : A → A).

Example 2.13. Generalized elements can be used to “reveal more structure” than
do the constant elements. For example, consider the following posets X and A:

X = {x ≤ y, x ≤ z}
A = {a ≤ b ≤ c}

There is an order-preserving bijection f : X → A defined by

f(x) = a, f(y) = b, f(z) = c.

It is easy to see that f is both monic and epic in the category Pos; however, it is
clearly not an iso. One would like to say that X and A are “different structures,”
and indeed, their being nonisomorphic says just this. But now, how to prove that
they are not isomorphic (say, via some other X → A)? In general, this sort of
thing can be quite difficult.

One way to prove that two objects are not isomorphic is to use “invariants”:
attributes that are preserved by isomorphisms. If two objects differ by an
invariant they cannot be isomorphic. Generalized elements provide an easy way
to define invariants. For instance, the number of global elements of X and A
is the same, namely the three elements of the sets. But consider instead the
“2-elements” 2 → X, from the poset 2 = {0 ≤ 1} as a “test-object.” Then
X has 5 such elements, and A has 6. Since these numbers are invariants, the
posets cannot be isomorphic. In more detail, we can define for any poset P the
numerical invariant

|Hom(2, P )| = the number of elements of Hom(2, P ).



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 38 — #10
�

�

�

�

�

�

38 CATEGORY THEORY

Then if P ∼= Q, it is easy to see that |Hom(2, P )| = |Hom(2, Q)|, since any
isomorphism

P
i ��
j

Q

also gives an iso

Hom(2, P )
i∗ ��
j∗

Hom(2, Q)

defined by composition:

i∗(f) = if

j∗(g) = jg

for all f : 2 → P and g : 2 → Q. Indeed, this is a special case of the very general
fact that Hom(X,−) is always a functor, and functors always preserve isos.

Example 2.14. As in the foregoing example, it is often the case that generalized
elements t : T → A “based at” certain objects T are especially “revealing.” We
can think of such elements geometrically as “figures of shape T in A,” just as an
arrow 2 → P in posets is a figure of shape p ≤ p′ in P . For instance, as we have
already seen, in the category of monoids, the arrows from the terminal monoid are
entirely uninformative, but those from the free monoid on one generator M(1)
suffice to distinguish homomorphisms, in the sense that two homomorphisms
f, g : M → M ′ are equal if their composites with all such arrows are equal.
Since we know that M(1) = N, the monoid of natural numbers, we can think of
generalized elements M(1) → M based at M(1) as “figures of shape N” in M .
In fact, by the UMP of M(1), the underlying set |M | is therefore (isomorphic
to) the collection HomMon(N,M) of all such figures, since

|M | ∼= HomSets(1, |M |) ∼= HomMon(N,M).

In this sense, a map from a monoid is determined by its effect on all of the figures
of shape N in the monoid.

2.4 Products

Next, we are going to see the categorical definition of a product of two objects in a
category. This was first given by Mac Lane in 1950, and it is probably the earliest
example of category theory being used to define a fundamental mathematical
notion.

By “define” here I mean an abstract characterization, in the sense already
used, in terms of objects and arrows in a category. And as before, we do this by
giving a UMP, which determines the structure at issue up to isomorphism, as



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 39 — #11
�

�

�

�

�

�

ABSTRACT STRUCTURES 39

usual in category theory. Later in this chapter, we have several other examples
of such characterizations.

Let us begin by considering products of sets. Given sets A and B, the cartesian
product of A and B is the set of ordered pairs

A × B = {(a, b) | a ∈ A, b ∈ B}.

Observe that there are two “coordinate projections”

A � π1
A × B

π2 � B

with

π1(a, b) = a, π2(a, b) = b.

And indeed, given any element c ∈ A × B, we have

c = (π1c, π2c).

The situation is captured concisely in the following diagram:

1

A �
π1

a

�

A × B

(a,b)

�

.................

π2

� B

b

�

Replacing elements by generalized elements, we get the following definition.

Definition 2.15. In any category C, a product diagram for the objects A and
B consists of an object P and arrows

A � p1
P

p2 � B

satisfying the following UMP:
Given any diagram of the form

A � x1
X

x2 � B

there exists a unique u : X → P , making the diagram

X

A �
p1

x1

�

P

u

�

.................

p2

� B

x2

�

commute, that is, such that x1 = p1u and x2 = p2u.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 40 — #12
�

�

�

�

�

�

40 CATEGORY THEORY

Remark 2.16. As in other UMPs, there are two parts:

Existence: There is some u : X → U such that x1 = p1u and x2 = p2u.
Uniqueness: Given any v : X → U , if p1v = x1 and p2v = x2, then v = u.

Proposition 2.17. Products are unique up to isomorphism.

Proof. Suppose

A � p1
P

p2 � B

and

A � q1
Q

q2 � B

are products of A and B. Then, since Q is a product, there is a unique i : P → Q
such that q1 ◦ i = p1 and q2 ◦ i = p2. Similarly, since P is a product, there is a
unique j : Q → P such that p1 ◦ j = q1 and p2 ◦ j = q2.

P

A �
q1

p1

�

Q

i

�

.................

q2

� B

p2

�

P

j

�

................
p2

�

p1

�

Composing, p1 ◦ j ◦ i = p1 and p2 ◦ j ◦ i = p2. Since also p1 ◦ 1P = p1 and
p2 ◦ 1P = p2, it follows from the uniqueness condition that j ◦ i = 1P . Similarly,
we can show i ◦ j = 1Q. Thus, i : P → Q is an isomorphism.

If A and B have a product, we write

A � p1
A × B

p2 � B

for one such product. Then given X,x1, x2 as in the definition, we write

〈x1, x2〉 for u : X → A × B.

Note, however, that a pair of objects may have many different products in a
category. For example, given a product A×B, p1, p2, and any iso h : A×B → Q,
the diagram Q, p1 ◦ h, p2 ◦ h is also a product of A and B.

Now an arrow into a product

f : X → A × B



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 41 — #13
�

�

�

�

�

�

ABSTRACT STRUCTURES 41

is “the same thing” as a pair of arrows

f1 : X → A, f2 : X → B.

So we can essentially forget about such arrows, in that they are uniquely
determined by pairs of arrows. But something useful is gained if a category
has products; namely, consider arrows out of the product,

g : A × B → Y.

Such a g is a “function in two variables”; given any two generalized elements
f1 : X → A and f2 : X → B, we have an element g〈f1, f2〉 : X → Y . Such
arrows g : A × B → Y are not “reducible” to anything more basic, the way
arrows into products were (to be sure, they are related to the notion of an
“exponential” Y B , via “currying” λf : A → Y B; we discuss this further in
Chapter 6).

2.5 Examples of products

1. We have already seen cartesian products of sets. Note that if we choose a
different definition of ordered pairs 〈a, b〉, we get different sets

A × B and A ×′ B

each of which is (part of) a product, and so are isomorphic. For instance,
we could set

〈a, b〉 = {{a}, {a, b}}
〈a, b〉′ = 〈a, 〈a, b〉〉.

2. Products of “structured sets” like monoids or groups can often be
constructed as products of the underlying sets with componentwise
operations: If G and H are groups, for instance, G×H can be constructed
by taking the underlying set of G×H to be the set {〈g, h〉 | g ∈ G, h ∈ H}
and defining the binary operation by

〈g, h〉 · 〈g′, h′〉 = 〈g · g′, h · h′〉

the unit by

u = 〈uG, uH〉

and inverses by

〈a, b〉−1 = 〈a−1, b−1〉.

The projection homomorphisms G × H → G (or H) are the evident ones
〈g, h〉 
→ g (or h).



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 42 — #14
�

�

�

�

�

�

42 CATEGORY THEORY

3. Similarly, for categories C and D, we already defined the category of pairs
of objects and arrows,

C × D.

Together with the evident projection functors, this is indeed a product in
Cat (when C and D are small). (Check this: verify the UMP for the product
category so defined.)

As special cases, we also get products of posets and of monoids as
products of categories. (Check this: the projections and unique paired
function are always monotone and so the product of posets, constructed
in Cat, is also a product in Pos, and similarly for Mon.)

4. Let P be a poset and consider a product of elements p, q ∈ P . We must
have projections

p × q ≤ p

p × q ≤ q

and if for any element x,

x ≤ p, and x ≤ q

then we need

x ≤ p × q.

Do you recognize this operation p × q ? It is just what is usually called
the greatest lower bound : p× q = p∧ q. Many other order-theoretic notions
are also special cases of categorical ones, as we shall see later.

5. (For those who know something about Topology.) Let us show that the
product of two topological spaces X,Y , as usually defined, really is a product
in Top, the category of spaces and continuous functions. Thus, suppose we
have spaces X and Y and the product spaces X × Y with its projections

X
p1←− X × Y

p2−→ Y.

Recall that O(X × Y ) is generated by basic open sets of the form U × V
where U ∈ O(X) and V ∈ O(Y ), so every W ∈ O(X×Y ) is a union of such
basic opens.

• Clearly p1 is continuous, since p−1
1 U = U × Y .

• Given any continuous f1 : Z → X, f2 : Z → Y, let f : Z → X × Y be
the function f = 〈f1, f2〉. We just need to see that f is continuous.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 43 — #15
�

�

�

�

�

�

ABSTRACT STRUCTURES 43

• Given any W =
⋃

i(Ui × Vi) ∈ O(X × Y ), f−1(W ) =
⋃

i f−1(Ui × Vi),
so it suffices to show f−1(U × V ) is open. But

f−1(U × V ) = f−1((U × Y ) ∩ (X × V ))

= f−1(U × Y ) ∩ f−1(X × V )

= f−1 ◦ p−1
1 (U) ∩ f−1 ◦ p−1

2 (V )

= (f1)−1(U) ∩ (f2)−1(V )

where (f1)−1(U) and (f2)−1(V ) are open, since f1 and f2 are
continuous.

The following diagram concisely captures the situation at hand:

O(Z)

O(X)
p−1
1

�

f−1
1

�

O(X × Y )

f−1

�
.................

�
p−1
2

O(Y )

f−1
2

�

6. (For those familiar with type theory.) Let us consider the category of
types of the (simply typed) λ-calculus. The λ–calculus is a formalism for
the specification and manipulation of functions, based on the notions of
“binding of variables” and functional evaluation. For example, given the
real polynomial expression x2 + 2y, in the λ-calculus one writes λy.x2 + 2y
for the function y 
→ x2 + 2y (for each fixed value x), and λxλy.x2 + 2y for
the function-valued function x 
→ (y 
→ x2 + 2y).

Formally, the λ-calculus consists of

• Types: A × B, A → B, . . . (generated from some basic types)

• Terms:

x, y, z, . . . : A (variables for each type A)

a : A, b : B, . . . (possibly some typed constants)

〈a, b〉 : A × B (a : A, b : B)

fst(c) : A (c : A × B)

snd(c) : B (c : A × B)

ca : B (c : A → B, a : A)

λx.b : A → B (x : A, b : B)



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 44 — #16
�

�

�

�

�

�

44 CATEGORY THEORY

• Equations:

fst(〈a, b〉) = a

snd(〈a, b〉) = b

〈fst(c), snd(c)〉 = c

(λx.b)a = b[a/x]

λx.cx = c (no x in c)

The relation a ∼ b (usually called βη-equivalence) on terms is defined to be
the equivalence relation generated by the equations, and renaming of bound
variables:

λx.b = λy.b[y/x] (no y in b)

The category of types C(λ) is now defined as follows:

• Objects: the types,

• Arrows A → B: closed terms c : A → B, identified if c ∼ c′,

• Identities: 1A = λx.x (where x : A),

• Composition: c ◦ b = λx.c(bx).

Let us verify that this is a well-defined category:
Unit laws:

c ◦ 1B = λx(c((λy.y)x)) = λx(cx) = c

1C ◦ c = λx((λy.y)(cx)) = λx(cx) = c

Associativity:

c ◦ (b ◦ a) = λx(c((b ◦ a)x))

= λx(c((λy.b(ay))x))

= λx(c(b(ax)))

= λx(λy(c(by))(ax))

= λx((c ◦ b)(ax))

= (c ◦ b) ◦ a

This category has binary products. Indeed, given types A and B, let

p1 = λz.fst(z), p2 = λz.snd(z) (z : A × B).



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 45 — #17
�

�

�

�

�

�

ABSTRACT STRUCTURES 45

And given a and b as in

X

A �
p1

a

�
A × B

(a, b)

�

.................

p2

� B

b

�

let

(a, b) = λx.〈ax, bx〉.

Then

p1 ◦ (a, b) = λx(p1((λy.〈ay, by〉)x))

= λx(p1〈ax, bx〉)
= λx(ax)

= a.

Similarly, p2 ◦ (a, b) = b.
Finally, if c : X → A × B also has

p1 ◦ c = a, p2 ◦ c = b

then

(a, b) = λx.〈ax, bx〉
= λx.〈(p1 ◦ c)x, (p2 ◦ c)x〉
= λx.〈(λy(p1(cy)))x, (λy(p2(cy)))x〉
= λx.〈(λy((λz.fst(z))(cy)))x, (λy((λz.snd(z))(cy)))x〉
= λx.〈λy(fst(cy))x, λy(snd(cy))x〉
= λx.〈fst(cx), snd(cx)〉
= λx.(cx)

= c.

Remark 2.18. The λ-calculus had another surprising interpretation, namely as
a system of notation for proofs in propositional calculus; this is known as the
“Curry–Howard” correspondence. Briefly, the idea is that one interprets types as
propositions (with A×B being conjunction and A → B implication) and terms
a : A as proofs of the proposition A. The term-forming rules such as

a : A b : B

〈a, b〉 : A × B



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 46 — #18
�

�

�

�

�

�

46 CATEGORY THEORY

can then be read as annotated rules of inference, showing how to build
up labels for proofs inductively. So, for instance, a natural deduction proof
such as

[A] [B]
A × B

B → (A × B)
A → (B → (A × B))

with square brackets indicating cancellation of premisses, is labeled as
follows:

[x : A] [y : B]
〈x, y〉 : A × B

λy.〈x, y〉 : B → (A × B)
λxλy.〈x, y〉 : A → (B → (A × B))

The final “proof term” λxλy.〈x, y〉, thus, records the given proof of the
“proposition” A → (B → (A×B)), and a different proof of the same proposition
would give a different term.

Although one often speaks of a resulting “isomorphism” between logic and
type theory, what we in fact have here is simply a functor from the category of
proofs in the propositional calculus with conjunction and implication (as defined
in example 10.), into the category of types of the λ-calculus. The functor will notAu: Please

specify
“example
10.”

generally be an isomorphism unless we impose some further equations between
proofs.

2.6 Categories with products

Let C be a category that has a product diagram for every pair of objects. Suppose
we have objects and arrows

A � p1
A × A′ p2� A′

B

f

�
�

q1

B × B′
q2

� B′

f ′

�

with indicated products. Then, we write

f × f ′ : A × A′ → B × B′



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 47 — #19
�

�

�

�

�

�

ABSTRACT STRUCTURES 47

for f×f ′ = 〈f ◦p1, f
′◦p2〉. Thus, both squares in the following diagram commute:

A � p1
A × A′ p2� A′

B

f

�
�

q1

B × B′

f × f ′

�

................

q2

� B′

f ′

�

In this way, if we choose a product for each pair of objects, we get a functor

× : C × C → C

as the reader can easily check, using the UMP of the product. A category which
has a product for every pair of objects is said to have binary products.

We can also define ternary products

A1 × A2 × A3

with an analogous UMP (there are three projections pi : A1 × A2 × A3 → Ai,
and for any object X and three arrows xi : X → Ai, there is a unique arrow
u : X → A1 ×A2 ×A3 such that piu = xi for each of the three i’s). Plainly, such
a condition can be formulated for any number of factors.

It is clear, however, that if a category has binary products, then it has all
finite products with two or more factors; for instance, one could set

A × B × C = (A × B) × C

to satisfy the UMP for ternary products. On the other hand, one could instead
have taken A×(B×C) just as well. This shows that the binary product operation
A × B is associative up to isomorphism, for we must have

(A × B) × C ∼= A × (B × C)

by the UMP of ternary products.
Observe also that a terminal object is a “nullary” product, that is, a product

of no objects:

Given no objects, there is an object 1 with no maps, and given any other
object X and no maps, there is a unique arrow

! : X → 1

making nothing further commute.

Similarly, any object A is the unary product of A with itself one time.
Finally, one can also define the product of a family of objects (Ci)i∈I indexed

by any set I, by giving a UMP for “I-ary products” analogous to those for
nullary, unary, binary, and n-ary products. We leave the precise formulation of
this UMP as an exercise.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 48 — #20
�

�

�

�

�

�

48 CATEGORY THEORY

Definition 2.19. A category C is said to have all finite products, if it has a
terminal object and all binary products (and therewith products of any finite
cardinality). The category C has all (small) products if every set of objects in C
has a product.

2.7 Hom-sets

In this section, we assume that all categories are locally small.
Recall that in any category C, given any objects A and B, we write

Hom(A,B) = {f ∈ C | f : A → B}
and call such a set of arrows a Hom-set. Note that any arrow g : B → B′ in C
induces a function

Hom(A, g) : Hom(A,B) → Hom(A,B′)

(f : A → B) 
→ (g ◦ f : A → B → B′)

Thus, Hom(A, g) = g ◦ f ; one sometimes writes g∗ instead of Hom(A, g), so

g∗(f) = g ◦ f.

Let us show that this determines a functor

Hom(A,−) : C → Sets,

called the (covariant) representable functor of A. We need to show that

Hom(A, 1X) = 1Hom(A,X)

and that

Hom(A, g ◦ f) = Hom(A, g) ◦ Hom(A, f).

Taking an argument x : A → X, we clearly have

Hom(A, 1X)(x) = 1X ◦ x

= x

= 1Hom(A,X)(x)

and

Hom(A, g ◦ f)(x) = (g ◦ f) ◦ x

= g ◦ (f ◦ x)

= Hom(A, g)(Hom(A, f)(x)).

We will study such representable functors much more carefully later. For now,
we just want to see how one can use Hom-sets to give another formulation of the
definition of products.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 49 — #21
�

�

�

�

�

�

ABSTRACT STRUCTURES 49

For any object P , a pair of arrows p1 : P → A and p2 : P → B determine an
element (p1, p2) of the set

Hom(P,A) × Hom(P,B).

Now, given any arrow

x : X → P

composing with p1 and p2 gives a pair of arrows x1 = p1 ◦ x : X → A and
x2 = p2 ◦ x : X → B, as indicated in the following diagram:

X

A �
p1

x1

�

P

x

�

p2

� B

x2

�

In this way, we have a function

ϑX = (Hom(X, p1),Hom(X, p2)) : Hom(X,P ) → Hom(X,A) × Hom(X,B)

defined by
ϑX(x) = (x1, x2) (2.1)

This function ϑX can be used to express concisely the condition of being a
product as follows.

Proposition 2.20. A diagram of the form

A �
p1

P
p2

� B

is a product for A and B iff for every object X, the canonical function ϑX given
in (2.1) is an isomorphism,

ϑX : Hom(X,P ) ∼= Hom(X,A) × Hom(X,B).

Proof. Examine the UMP of the product: it says exactly that for every element
(x1, x2) ∈ Hom(X,A)×Hom(X,B), there is a unique x ∈ Hom(X,P ) such that
ϑX(x) = (x1, x2), that is, ϑX is bijective.

Definition 2.21. Let C, D be categories with binary products. A functor F :
C → D is said to preserve binary products if it takes every product diagram

A �
p1

A × B
p2

� B in C

to a product diagram

FA �
Fp1

F (A × B)
Fp2

� FB in D.



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 50 — #22
�

�

�

�

�

�

50 CATEGORY THEORY

It follows that F preserves products just if

F (A × B) ∼= FA × FB

“canonically,” that is, iff the canonical “comparison arrow”

〈Fp1, Fp2〉 : F (A × B) → FA × FB

in D is an iso.

For example, the forgetful functor U : Mon → Sets preserves binary
products.

Corollary 2.22. For any object X in a category C with products, the
(covariant) representable functor

HomC(X,−) : C → Sets

preserves products.

Proof. For any A,B ∈ C, the foregoing proposition 2.20 says that there is a
canonical isomorphism:

HomC(X,A × B) ∼= HomC(X,A) × HomC(X,B)

2.8 Exercises

1. Show that a function between sets is an epimorphism if and only
if it is surjective. Conclude that the isos in Sets are exactly the
epi-monos.

2. Show that in a poset category, all arrows are both monic and epic.
3. (Inverses are unique.) If an arrow f : A → B has inverses g, g′ : B → A

(i. e., g ◦ f = 1A and f ◦ g = 1B , and similarly for g′), then g = g′.
4. With regard to a commutative triangle,

A
f � B

C

g

�
h

�

in any category C, show

(a) if f and g are isos (resp. monos, resp. epis), so is h;
(b) if h is monic, so is f ;
(c) if h is epic, so is g;



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 51 — #23
�

�

�

�

�

�

ABSTRACT STRUCTURES 51

(d) (by example) if h is monic, g need not be.

5. Show that the following are equivalent for an arrow

f : A → B

in any category:

(a) f is an isomorphism.
(b) f is both a mono and a split epi.
(c) f is both a split mono and an epi.
(d) f is both a split mono and a split epi.

6. Show that a homomorphism h : G → H of graphs is monic just if it is
injective on both edges and vertices.

7. Show that in any category, any retract of a projective object is also
projective.

8. Show that all sets are projective (use the axiom of choice).
9. Show that the epis among posets are the surjections (on elements), and

that the one-element poset 1 is projective.
10. Show that sets, regarded as discrete posets, are projective in the category

of posets (use the foregoing exercises). Give an example of a poset that is
not projective. Show that every projective poset is discrete, that is, a set.
Conclude that Sets is (isomorphic to) the “full subcategory” of projectives
in Pos, consisting of all projective posets and all monotone maps between
them.

11. Let A be a set. Define an A-monoid to be a monoid M equipped with
a function m : A → U(M) (to the underlying set of M). A morphism
h : (M,m) → (N,n) of A-monoids is to be a monoid homomorphism
h : M → N such that U(h) ◦ m = n (a commutative triangle). Together
with the evident identities and composites, this defines a category A-Mon
of A-monoids.

Show that an initial object in A-Mon is the same thing as a free monoid
M(A) on A. (Hint: compare their respective UMPs.)

12. Show that for any Boolean algebra B, Boolean homomorphisms h : B → 2
correspond exactly to ultrafilters in B.

13. In any category with binary products, show directly that

A × (B × C) ∼= (A × B) × C.

14. (a) For any index set I, define the product
∏

i∈I Xi of an I-indexed family
of objects (Xi)i∈I in a category, by giving a UMP generalizing that
for binary products (the case I = 2).

(b) Show that in Sets, for any set X the set XI of all functions f : I → X
has this UMP, with respect to the “constant family” where Xi = X



�

�

“02-Awodey-c02” — 2009/12/18 — 17:10 — page 52 — #24
�

�

�

�

�

�

52 CATEGORY THEORY

for all i ∈ I, and thus

XI ∼=
∏

i∈I

X,

15. Given a category C with objects A and B, define the category CA,B to
have objects (X,x1, x2), where x1 : X → A, x2 : X → B, and with arrows
f : (X,x1, x2) → (Y, y1, y2) being arrows f : X → Y with y1 ◦ f = x1 and
y2 ◦ f = x2.

Show that CA,B has a terminal object just in case A and B have a
product in C.

16. In the category of types C(λ) of the λ-calculus, determine the product
functor A,B 
→ A × B explicitly. Also show that, for any fixed type A,
there is a functor A → (−) : C(λ) → C(λ), taking any type X to A → X.

17. In any category C with products, define the graph of an arrow f : A → B
to be the monomorphism

Γ(f) = 〈1A, f〉 : A � A × B

(Why is this monic?). Show that for C = Sets this determines a functor
Γ : Sets → Rel to the category Rel of relations, as defined in the exercises
to Chapter 1. (To get an actual relation R(f) ⊆ A×B, take the image of
Γ(f) : A � A × B.)

18. Show that the forgetful functor U : Mon → Sets from monoids to sets is
representable. Infer that U preserves all (small) products.


