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CATEGORIES

1.1 Introduction

What is category theory? As a first approximation, one could say that category
theory is the mathematical study of (abstract) algebras of functions. Just as
group theory is the abstraction of the idea of a system of permutations of a set
or symmetries of a geometric object, category theory arises from the idea of a
system of functions among some objects.

A
f � B

C

g

�
g ◦ f �

We think of the composition g ◦ f as a sort of “product” of the functions f
and g, and consider abstract “algebras” of the sort arising from collections of
functions. A category is just such an “algebra,” consisting of objects A,B,C, . . .
and arrows f : A → B, g : B → C, . . . , that are closed under composition
and satisfy certain conditions typical of the composition of functions. A precise
definition is given later in this chapter.

A branch of abstract algebra, category theory was invented in the tradition
of Felix Klein’s Erlanger Programm, as a way of studying and characterizing
different kinds of mathematical structures in terms of their “admissible
transformations.” The general notion of a category provides a characterization of
the notion of a “structure-preserving transformation,” and thereby of a species
of structures admitting such transformations.

The historical development of the subject has been, very roughly, as follows:

1945 Eilenberg and Mac Lane’s “General theory of natural equivalences” was
the original paper, in which the theory was first formulated.

Late 1940s The main applications were originally in the fields of algebraic
topology, particularly homology theory, and abstract algebra.
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2 CATEGORY THEORY

1950s A. Grothendieck et al. began using category theory with great success in
algebraic geometry.

1960s F.W. Lawvere and others began applying categories to logic, revealing
some deep and surprising connections.

1970s Applications were already appearing in computer science, linguistics,
cognitive science, philosophy, and many other areas.

One very striking thing about the field is that it has such wide-ranging
applications. In fact, it turns out to be a kind of universal mathematical
language like set theory. As a result of these various applications, category theory
also tends to reveal certain connections between different fields—like logic and
geometry. For example, the important notion of an adjoint functor occurs in
logic as the existential quantifier and in topology as the image operation along
a continuous function. From a categorical point of view, these turn out to be
essentially the same operation.

The concept of adjoint functor is in fact one of the main things that the reader
should take away from the study of this book. It is a strictly category-theoretical
notion that has turned out to be a conceptual tool of the first magnitude—on
par with the idea of a continuous function.

In fact, just as the idea of a topological space arose in connection with
continuous functions, so also the notion of a category arose in order to define
that of a functor, at least according to one of the inventors. The notion of a
functor arose—so the story goes on—in order to define natural transformations.
One might as well continue that natural transformations serve to define
adjoints:

Category
Functor

Natural transformation
Adjunction

Indeed, that gives a good outline of this book.
Before getting down to business, let us ask why it should be that category

theory has such far-reaching applications. Well, we said that it is the abstract
theory of functions, so the answer is simply this:

Functions are everywhere!

And everywhere that functions are, there are categories. Indeed, the subject
might better have been called abstract function theory, or, perhaps even better:
archery.
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CATEGORIES 3

1.2 Functions of sets

We begin by considering functions between sets. I am not going to say here what
a function is, anymore than what a set is. Instead, we will assume a working
knowledge of these terms. They can in fact be defined using category theory, but
that is not our purpose here.

Let f be a function from a set A to another set B, we write

f : A → B.

To be explicit, this means that f is defined in all of A and all the values of f are
in B. In set theoretic terms,

range(f) ⊆ B.

Now suppose we also have a function g : B → C,

A
f � B

C

g

�
g ◦ f

................................�

then there is a composite function g ◦ f : A → C, given by

(g ◦ f)(a) = g(f(a)) a ∈ A. (1.1)

Now this operation “◦” of composition of functions is associative, as follows. If
we have a further function h : C → D

A
f � B

C

g

�

h
�

g ◦ f �

D

h ◦ g

�

and form h ◦ g and g ◦ f , then we can compare (h ◦ g) ◦ f and h ◦ (g ◦ f) as
indicated in the diagram given above. It turns out that these two functions are
always identical,

(h ◦ g) ◦ f = h ◦ (g ◦ f)

since for any a ∈ A, we have

((h ◦ g) ◦ f)(a) = h(g(f(a))) = (h ◦ (g ◦ f))(a)

using (1.1).
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4 CATEGORY THEORY

By the way, this is, of course, what it means for two functions to be equal:
for every argument, they have the same value.

Finally, note that every set A has an identity function

1A : A → A

given by

1A(a) = a.

These identity functions act as “units” for the operation ◦ of composition, in
the sense of abstract algebra. That is to say,

f ◦ 1A = f = 1B ◦ f

for any f : A → B.

A
1A � A

B

f

�

1B

�

f ◦ 1A �

B

1B ◦ f

�

These are all the properties of set functions that we want to consider for the
abstract notion of function: composition and identities. Thus, we now want to
“abstract away” everything else, so to speak. That is what is accomplished by
the following definition.

1.3 Definition of a category

Definition 1.1. A category consists of the following data:

• Objects: A,B,C, . . .

• Arrows: f, g, h, . . .

• For each arrow f , there are given objects

dom(f), cod(f)

called the domain and codomain of f . We write

f : A → B

to indicate that A = dom(f) and B = cod(f).

• Given arrows f : A → B and g : B → C, that is, with

cod(f) = dom(g)
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CATEGORIES 5

there is given an arrow

g ◦ f : A → C

called the composite of f and g.

• For each object A, there is given an arrow

1A : A → A

called the identity arrow of A.

These data are required to satisfy the following laws:

• Associativity:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A → B, g : B → C, h : C → D.

• Unit:

f ◦ 1A = f = 1B ◦ f

for all f : A → B.

A category is anything that satisfies this definition—and we will have plenty of
examples very soon. For now I want to emphasize that, unlike in Section 1.2, the
objects do not have to be sets and the arrows need not be functions. In this sense,
a category is an abstract algebra of functions, or “arrows” (sometimes also called
“morphisms”), with the composition operation “◦” as primitive. If you are familiar
with groups, you may think of a category as a sort of generalized group.

1.4 Examples of categories

1. We have already encountered the category Sets of sets and functions.
There is also the category

Setsfin

of all finite sets and functions between them.
Indeed, there are many categories like this, given by restricting the sets
that are to be the objects and the functions that are to be the arrows.
For example, take finite sets as objects and injective (i.e., “1 to 1”)
functions as arrows. Since injective functions compose to give an injective
function, and since the identity functions are injective, this also gives
a category.

What if we take sets as objects and as arrows, those f : A → B such
that for all b ∈ B, the subset

f−1(b) ⊆ A
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6 CATEGORY THEORY

has at most two elements (rather than one)? Is this still a category? What
if we take the functions such that f−1(b) is finite or infinite? There are
lots of such restricted categories of sets and functions.

2. Another kind of example one often sees in mathematics is categories of
structured sets, that is, sets with some further “structure” and functions
that “preserve it,” where these notions are determined in some independent
way. Examples of this kind you may be familiar with are

• groups and group homomorphisms,

• vector spaces and linear mappings,

• graphs and graph homomorphisms,

• the real numbers R and continuous functions R → R,

• open subsets U ⊆ R and continuous functions f : U → V ⊆ R defined
on them,

• topological spaces and continuous mappings,

• differentiable manifolds and smooth mappings,

• the natural numbers N and all recursive functions N → N, or as in
the example of continuous functions, one can take partial recursive
functions defined on subsets U ⊆ N, and

• posets and monotone functions.

Do not worry if some of these examples are unfamiliar to you. Later on,
we take a closer look at some of them. For now, let us just consider the
last of the above examples in more detail.

3. A partially ordered set or poset is a set A equipped with a binary relation
a ≤A b such that the following conditions hold for all a, b, c ∈ A:

reflexivity: a ≤A a,
transitivity: if a ≤A b and b ≤A c, then a ≤A c,
antisymmetry: if a ≤A b and b ≤A a, then a = b.

For example, the real numbers R with their usual ordering x ≤ y form a
poset that is also linearly ordered: either x ≤ y or y ≤ x for any x, y.

An arrow from a poset A to a poset B is a function

m : A → B

that is monotone, in the sense that, for all a, a′ ∈ A,

a ≤A a′ implies m(a) ≤B m(a′).

What does it take for this to be a category? We need to know that 1A :
A → A is monotone, but that is clear since a ≤A a′ implies a ≤A a′.
We also need to know that if f : A → B and g : B → C are monotone,
then g ◦ f : A → C is monotone. This also holds, since a ≤ a′ implies
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CATEGORIES 7

f(a) ≤ f(a′) implies g(f(a)) ≤ g(f(a′)) implies (g ◦ f)(a) ≤ (g ◦ f)(a′).
Therefore, we have the category Pos of posets and monotone functions.

4. The categories that we have been considering so far are examples of what
are sometimes called concrete categories. Informally, these are categories in
which the objects are sets, possibly equipped with some structure, and the
arrows are certain, possibly structure-preserving, functions (we shall see
later on that this notion is not entirely coherent; see remark 1.7). But in
fact, one way of understanding what category theory is all about is “doing
without elements,” and replacing them by arrows instead. Let us now take
a look at some examples where this point of view is not just optional, but
essential.
Let Rel be the following category: take sets as objects and take binary
relations as arrows. That is, an arrow f : A → B is an arbitrary subset
f ⊆ A × B. The identity arrow on a set A is the identity relation.

1A = {(a, a) ∈ A × A | a ∈ A} ⊆ A × A.

Given R ⊆ A × B and S ⊆ B × C, define composition S ◦ R by

(a, c) ∈ S ◦ R iff ∃b. (a, b) ∈ R & (b, c) ∈ S

that is, the “relative product” of S and R. We leave it as an exercise to
show that Rel is in fact a category. (What needs to be done?)

For another example of a category in which the arrows are not
“functions,” let the objects be finite sets A,B,C and an arrow F : A → B
is a rectangular matrix F = (nij)i<a,j<b of natural numbers with a = |A|
and b = |B|, where |C| is the number of elements in a set C. The
composition of arrows is by the usual matrix multiplication, and the
identity arrows are the usual unit matrices. The objects here are serving
simply to ensure that the matrix multiplication is defined, but the matrices
are not functions between them.

5. Finite categories
Of course, the objects of a category do not have to be sets, either. Here
are some very simple examples:

• The category 1 looks like this:
∗

It has one object and its identity arrow, which we do not draw.

• The category 2 looks like this:

∗ � �

It has two objects, their required identity arrows, and exactly one
arrow between the objects.
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8 CATEGORY THEORY

• The category 3 looks like this:
∗ � �

•
�

�

It has three objects, their required identity arrows, exactly one arrow
from the first to the second object, exactly one arrow from the second
to the third object, and exactly one arrow from the first to the third
object (which is therefore the composite of the other two).

• The category 0 looks like this:

It has no objects or arrows.

As above, we omit the identity arrows in drawing categories from
now on.

It is easy to specify finite categories—just take some objects and start
putting arrows between them, but make sure to put in the necessary
identities and composites, as required by the axioms for a category. Also,
if there are any loops, then they need to be cut off by equations to keep
the category finite. For example, consider the following specification:

A
f ��
g

B

Unless we stipulate an equation like gf = 1A, we will end up with infinitely
many arrows gf, gfgf, gfgfgf, . . . . This is still a category, of course, but
it is not a finite category. We come back to this situation when we discuss
free categories later in this chapter.

6. One important slogan of category theory is

It’s the arrows that really matter!

Therefore, we should also look at the arrows or “mappings” between
categories. A “homomorphism of categories” is called a functor.

Definition 1.2. A functor

F : C → D

between categories C and D is a mapping of objects to objects and arrows
to arrows, in such a way that

(a) F (f : A → B) = F (f) : F (A) → F (B),



�

�

“01-Awodey-c01” — 2009/12/18 — 17:01 — page 9 — #9
�

�

�

�

�

�

CATEGORIES 9

(b) F (1A) = 1F (A),
(c) F (g ◦ f) = F (g) ◦ F (f).

That is, F preserves domains and codomains, identity arrows, and
compostion. A functor F : C → D, thus, gives a sort of “picture”—perhaps
distorted—of C in D.

A
f � B

C

C

g

�
g ◦ f

�

F (B)

D

F

�

F (A)
F (g ◦ f)

�

F (f)
�

F (C)

F (g)

�

Now, one can easily see that functors compose in the expected way, and
that every category C has an identity functor 1C : C → C. So we have
another example of a category, namely Cat, the category of all categories
and functors.

7. A preorder is a set P equipped with a binary relation p ≤ q that is both
reflexive and transitive: a ≤ a, and if a ≤ b and b ≤ c, then a ≤ c. Any
preorder P can be regarded as a category by taking the objects to be the
elements of P and taking a unique arrow,

a → b if and only if a ≤ b. (1.2)

The reflexive and transitive conditions on ≤ ensure that this is indeed a
category.

Going in the other direction, any category with at most one arrow
between any two objects determines a preorder, simply by defining a binary
relation ≤ on the objects by (1.2).

8. A poset is evidently a preorder satisfying the additional condition of
antisymmetry: if a ≤ b and b ≤ a, then a = b. So, in particular, a poset is
also a category. Such poset categories are very common; for example, for
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10 CATEGORY THEORY

any set X, the powerset P(X) is a poset under the usual inclusion relation
U ⊆ V between the subsets U, V of X.

What is a functor F : P → Q between poset categories P and Q? It
must satisfy the identity and composition laws . . . . Clearly, these are just
the monotone functions already considered above.
It is often useful to think of a category as a kind of generalized poset,
one with “more structure” than just p ≤ q. Thus, one can also think of a
functor as a generalized monotone map.

9. An example from topology: Let X be a topological space with collection of
open sets O(X). Ordered by inclusion, O(X) is a poset category. Moreover,
the points of X can be preordered by specialization by setting x ≤ y iff
x ∈ U implies y ∈ U for every open set U , that is, y is contained in
every open set that contains x. If X is sufficiently separated (“T1”), then
this ordering becomes trivial, but it can be quite interesting otherwise, as
happens in the spaces of algebraic geometry and denotational semantics.
It is an exercise to show that T0 spaces are actually posets under the
specialization ordering.

10. An example from logic: Given a deductive system of logic, there is an
associated category, category of proofs, in which the objects are formulas:

ϕ,ψ, . . .

An arrow from ϕ to ψ is a deduction of ψ from the (uncanceled)
assumption ϕ.

...

Ã

'

Composition of arrows is given by putting together such deductions in the
obvious way, which is clearly associative. (What should the identity arrows
1ϕ be?) Observe that there can be many different arrows

p : ϕ → ψ,

since there may be many different such proofs. This category turns out to
have a very rich structure, which we consider later in connection with the
λ-calculus.

11. An example from computer science: Given a functional programming
language L, there is an associated category, where the objects are the data
types of L, and the arrows are the computable functions of L (“processes,”
“procedures,” and “programs”). The composition of two such programs

X
f→ Y

g→ Z is given by applying g to the output of f , sometimes also
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CATEGORIES 11

written as

g ◦ f = f ; g.

The identity is the “do nothing” program.
Categories such as this are basic to the idea of denotational semantics of

programming languages. For example, if C(L) is the category just defined,
then the denotational semantics of the language L in a category D of, say,
Scott domains is simply a functor

S : C(L) → D

since S assigns domains to the types of L and continuous functions to
the programs. Both this example and the previous one are related to the
notion of “cartesian closed category” that is considered later.

12. Let X be a set. We can regard X as a category Dis(X) by taking the
objects to be the elements of X and taking the arrows to be just the
required identity arrows, one for each x ∈ X. Such categories, in which
the only arrows are identities, are called discrete. Note that discrete
categories are just very special posets.

13. A monoid (sometimes called a semigroup with unit) is a set M equipped
with a binary operation · : M × M → M and a distinguished “unit”
element u ∈ M such that for all x, y, z ∈ M ,

x · (y · z) = (x · y) · z
and

u · x = x = x · u.

Equivalently, a monoid is a category with just one object. The arrows of
the category are the elements of the monoid. In particular, the identity
arrow is the unit element u. Composition of arrows is the binary operation
m · n of the monoid.

Monoids are very common. There are the monoids of numbers like N,
Q, or R with addition and 0, or multiplication and 1. But also for any set
X, the set of functions from X to X, written as

HomSets(X,X)

is a monoid under the operation of composition. More generally, for any
object C in any category C, the set of arrows from C to C, written as
HomC(C,C), is a monoid under the composition operation of C.

Since monoids are structured sets, there is a category Mon whose
objects are monoids and whose arrows are functions that preserve the
monoid structure. In detail, a homomorphism from a monoid M to a
monoid N is a function h : M → N such that for all m,n ∈ M ,

h(m ·M n) = h(m) ·N h(n)
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12 CATEGORY THEORY

and

h(uM ) = uN .

Observe that a monoid homomorphism from M to N is the same thing
as a functor from M regarded as a category to N regarded as a category.
In this sense, categories are also generalized monoids, and functors are
generalized homomorphisms.

1.5 Isomorphisms

Definition 1.3. In any category C, an arrow f : A → B is called an
isomorphism, if there is an arrow g : B → A in C such that

g ◦ f = 1A and f ◦ g = 1B .

Since inverses are unique (proof!), we write g = f−1. We say that A is isomorphic
to B, written A ∼= B, if there exists an isomorphism between them.

The definition of isomorphism is our first example of an abstract, category
theoretic definition of an important notion. It is abstract in the sense that it
makes use only of the category theoretic notions, rather than some additional
information about the objects and arrows. It has the advantage over other
possible definitions that it applies in any category. For example, one sometimes
defines an isomorphism of sets (monoids, etc.) as a bijective function (resp.
homomorphism), that is, one that is “1-1 and onto”—making use of the elementsAu: Please

expand
“resp.”, if
appropriate,
and for reader
comprehension
in this and in
the
subsequent
occurrences.

of the objects. This is equivalent to our definition in some cases, such as
sets and monoids. But note that, for example in Pos, the category theoretic
definition gives the right notion, while there are “bijective homomorphisms”
between non-isomorphic posets. Moreover, in many cases only the abstract
definition makes sense, as for example, in the case of a monoid regarded as a
category.

Definition 1.4. A group G is a monoid with an inverse g−1 for every element g.
Thus, G is a category with one object, in which every arrow is an isomorphism.

The natural numbers N do not form a group under either addition or
multiplication, but the integers Z and the positive rationals Q

+, respectively, do.
For any set X, we have the group Aut(X) of automorphisms (or “permutations”)
of X, that is, isomorphisms f : X → X. (Why is this closed under “◦”?) A group
of permutations is a subgroup G ⊆ Aut(X) for some set X, that is, a group of
(some) automorphisms of X. Thus, the set G must satisfy the following:

1. The identity function 1X on X is in G.
2. If g, g′ ∈ G, then g ◦ g′ ∈ G.
3. If g ∈ G, then g−1 ∈ G.
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CATEGORIES 13

A homomorphism of groups h : G → H is just a homomorphism of monoids,
which then necessarily also preserves the inverses (proof!).

Now consider the following basic, classical result about abstract groups.

Theorem (Cayley). Every group G is isomorphic to a group of permutations.

Proof. (sketch)

1. First, define the Cayley representation Ḡ of G to be the following group of
permutations of a set: the set is just G itself, and for each element g ∈ G,
we have the permutation ḡ : G → G, defined for all h ∈ G by “acting on
the left”:

ḡ(h) = g · h.

This is indeed a permutation, since it has the action of g−1 as an inverse.
2. Next define homomorphisms i : G → Ḡ by i(g) = ḡ, and j : Ḡ → G by

j(ḡ) = ḡ(u).
3. Finally, show that i ◦ j = 1Ḡ and j ◦ i = 1G.

Warning 1.5. Note the two different levels of isomorphisms that occur in the
proof of Cayley’s theorem. There are permutations of the set of elements of G,
which are isomorphisms in Sets, and there is the isomorphism between G and
Ḡ, which is in the category Groups of groups and group homomorphisms.

Cayley’s theorem says that any abstract group can be represented as a “concrete”
one, that is, a group of permutations of a set. The theorem can in fact be
generalized to show that any category that is not “too big” can be represented
as one that is “concrete,” that is, a category of sets and functions. (There is a
technical sense of not being “too big” which is introduced in Section 1.8.)

Theorem 1.6. Every category C with a set of arrows is isomorphic to one in
which the objects are sets and the arrows are functions.

Proof. (sketch) Define the Cayley representation C̄ of C to be the following
concrete category:

• objects are sets of the form

C̄ = {f ∈ C | cod(f) = C}

for all C ∈ C,

• arrows are functions

ḡ : C̄ → D̄
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14 CATEGORY THEORY

for g : C → D in C, defined for any f : X → C in C̄ by ḡ(f) = g ◦ f .

X

C

f

�

g
� D

g ◦ f

�

Remark 1.7. This shows us what is wrong with the naive notion of a “concrete”
category of sets and functions: while not every category has special sets and
functions as its objects and arrows, every category is isomorphic to such a one.
Thus, the only special properties such categories can possess are ones that are
categorically irrelevant, such as features of the objects that do not affect the
arrows in any way (like the difference between the real numbers constructed
as Dedekind cuts or as Cauchy sequences). A better attempt to capture what
is intended by the rather vague idea of a “concrete” category is that arbitrary
arrows f : C → D are completely determined by their composites with arrows
x : T → C from some “test object” T , in the sense that fx = gx for all such
x implies f = g. As we shall see later, this amounts to considering a particular
representation of the category, determined by T . A category is then said to be
“concrete” when this condition holds for T a “terminal object,” in the sense of
Section 2.2; but there are also good reasons for considering other objects T , as
we see Chapter 2.

Note that the condition that C has a set of arrows is needed to ensure that
the collections {f ∈ C | cod(f) = C} really are sets—we return to this point in
Section 1.8.

1.6 Constructions on categories

Now that we have a stock of categories to work with, we can consider some
constructions that produce new categories from old.

1. The product of two categories C and D, written as

C × D

has objects of the form (C,D), for C ∈ C and D ∈ D, and arrows of the
form

(f, g) : (C,D) → (C ′,D′)

for f : C → C ′ ∈ C and g : D → D′ ∈ D. Composition and units are
defined componentwise, that is,

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g)

1(C,D) = (1C , 1D).
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CATEGORIES 15

There are two obvious projection functors

C � π1 C × D
π2 � D

defined by π1(C,D) = C and π1(f, g) = f , and similarly for π2.
The reader familiar with groups will recognize that for groups G and H,

the product category G × H is the usual (direct) product of groups.

2. The opposite (or “dual”) category Cop of a category C has the same objects
as C, and an arrow f : C → D in Cop is an arrow f : D → C in C. That
is, Cop is just C with all of the arrows formally turned around.

It is convenient to have a notation to distinguish an object (resp. arrow)
in C from the same one in Cop. Thus, let us write

f∗ : D∗ → C∗

in Cop for f : C → D in C. With this notation, we can define composition
and units in Cop in terms of the corresponding operations in C, namely,

1C∗ = (1C)∗

f∗ ◦ g∗ = (g ◦ f)∗.

Thus, a diagram in C

A
f � B

C

g

�
g ◦ f �

looks like this in Cop

A∗ � f∗
B∗

C∗

g∗

�

f∗ ◦ g∗

�

Many “duality” theorems of mathematics express the fact that one category
is (a subcategory of) the opposite of another. An example of this sort which
we prove later is that Sets is dual to the category of complete, atomic
Boolean algebras.

3. The arrow category C→ of a category C has the arrows of C as objects,
and an arrow g from f : A → B to f ′ : A′ → B′ in C→ is a “commutative
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16 CATEGORY THEORY

square”

A
g1 � A′

B

f

�

g2

� B′

f ′

�

where g1 and g2 are arrows in C. That is, such an arrow is a pair of arrows
g = (g1, g2) in C such that

g2 ◦ f = f ′ ◦ g1.

The identity arrow 1f on an object f : A → B is the pair (1A, 1B).
Composition of arrows is done componentwise:

(h1, h2) ◦ (g1, g2) = (h1 ◦ g1, h2 ◦ g2)

The reader should verify that this works out by drawing the appropriate
commutative diagram.

Observe that there are two functors:

C �dom
C→ cod� C

4. The slice category C/C of a category C over an object C ∈ C has

• Objects: all arrows f ∈ C such that cod(f) = C,

• Arrows: an arrow a from f : X → C to f ′ : X ′ → C is an arrow
a : X → X ′ in C such that f ′ ◦ a = f , as indicated in

X
a � X ′

C

f ′

�

f
�

The identity arrows and composites are inherited from those of C, just as in
the arrow category. Note that there is a functor U : C/C → C that “forgets
about the base object C.”

If g : C → D is any arrow, then there is a composition functor,

g∗ : C/C → C/D
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CATEGORIES 17

defined by g∗(f) = g ◦ f ,
X

C

f

�

g
� D

g ◦ f

�

and similarly for arrows in C/C. Indeed, the whole construction is a functor,

C/(−) : C → Cat

as the reader can easily verify. Compared to the Cayley representation,
this functor gives a “representation” of C as a category of categories
and functors—rather than sets and fuctions. Of course, the Cayley
representation was just this one followed by the forgetful functor U : Cat →
Sets that takes a category to its underlying set of objects.

If C = P is a poset category and p ∈ P, then

P/p ∼= ↓(p)

the slice category P/p is just the “principal ideal” ↓ (p) of elements q ∈ P
with q ≤ p. We will have more examples of slice categories soon.

The coslice category C/C of a category C under an object C of C has
as objects all arrows f of C such that dom(f) = C, and an arrow from
f : C → X to f ′ : C → X ′ is an arrow h : X → X ′ such that h ◦ f = f ′.
The reader should now carry out the rest of the definition of the coslice
category by analogy with the definition of the slice category. How can the
coslice category be defined in terms of the slice category and the opposite
construction?

Example 1.8. The category Sets∗ of pointed sets consists of sets A with a
distinguished element a ∈ A, and arrows f : (A, a) → (B, b) are functions
f : A → B that preserves the “points,” f(a) = b. This is isomorphic to the
coslice category,

Sets∗ ∼= 1/Sets

of Sets “under” any singleton 1 = {∗}. Indeed, functions a : 1 → A correspond
uniquely to elements, a(∗) = a ∈ A, and arrows f : (A, a) → (B, b) correspond
exactly to commutative triangles:

1
a � A

B

f

�
b

�
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18 CATEGORY THEORY

1.7 Free categories

Free monoid. Start with an “alphabet” A of “letters” a, b, c, . . . , that is, a set,

A = {a, b, c, . . .}.

A word over A is a finite sequence of letters:

thisword, categoriesarefun, asddjbnzzfj, . . .

We write “-” for the empty word. The “Kleene closure” of A is defined to be
the set

A∗ = {words over A}.

Define a binary operation “∗” on A∗ by w ∗ w′ = ww′ for words w,w′ ∈ A∗.
Thus, “∗” is just concatenation. The operation “∗” is thus associative, and the
empty word “-” is a unit. Thus, A∗ is a monoid—called the free monoid on
the set A. The elements a ∈ A can be regarded as words of length one, so we
have a function

i : A → A∗

defined by i(a) = a, and called the “insertion of generators.” The elements of A
“generate” the free monoid, in the sense that every w ∈ A∗ is a ∗-product of a’s,
that is, w = a1 ∗ a2 ∗ · · · ∗ an for some a1, a2, ..., an in A.

Now what does “free” mean here? Any guesses? One sometimes sees
definitions in “baby algebra” books along the following lines:

A monoid M is freely generated by a subset A of M , if the following conditions
hold:

1. Every element m ∈ M can be written as a product of elements of A:

m = a1 ·M . . . ·M an , ai ∈ A.

2. No “nontrivial” relations hold in M , that is, if a1 . . . aj = a′
1 . . . a′

k, then
this is required by the axioms for monoids.

The first condition is sometimes called “no junk,” while the second condition is
sometimes called “no noise.” Thus, the free monoid on A is a monoid containing
A and having no junk and no noise. What do you think of this definition of a
free monoid?

I would object to the reference in the second condition to “provability,” or
something. This must be made more precise for this to succeed as a definition. In
category theory, we give a precise definition of “free”—capturing what is meant
in the above—which avoids such vagueness.

First, every monoid N has an underlying set |N |, and every monoid
homomorphism f : N → M has an underlying function |f | : |N | → |M |. It
is easy to see that this is a functor, called the “forgetful functor.” The free
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CATEGORIES 19

monoid M(A) on a set A is by definition “the” monoid with the following so
called universal mapping property or UMP!

Universal Mapping Property of M(A)
There is a function i : A → |M(A)|, and given any monoid N and any function
f : A → |N |, there is a unique monoid homomorphism f̄ : M(A) → N such that
|f̄ | ◦ i = f , all as indicated in the following diagram:

in Mon:

M(A) ...............
f̄

� N

in Sets:

|M(A)| |f̄ |� |N |

A

i

�

f

�

Proposition 1.9. A∗ has the UMP of the free monoid on A.

Proof. Given f : A → |N |, define f̄ : A∗ → N by

f̄(−) = uN , the unit of N

f̄(a1 . . . ai) = f(a1) ·N . . . ·N f(ai).

Then, f̄ is clearly a homomorphism with

f̄(a) = f(a) for all a ∈ A.

If g : A∗ →N also satisfies g(a)= f(a) for all a ∈ A, then for all a1 . . . ai ∈ A∗:

g(a1 . . . ai) = g(a1 ∗ . . . ∗ ai)

= g(a1) ·N . . . ·N g(ai)

= f(a1) ·N . . . ·N f(ai)

= f̄(a1) ·N . . . ·N f̄(ai)

= f̄(a1 ∗ . . . ∗ ai)

= f̄(a1 . . . ai).

So, g = f̄ , as required.

Think about why the above UMP captures precisely what is meant by “no
junk” and “no noise.” Specifically, the existence part of the UMP captures the
vague notion of “no noise” (because any equation that holds between algebraic
combinations of the generators must also hold anywhere they can be mapped to,



�

�

“01-Awodey-c01” — 2009/12/18 — 17:01 — page 20 — #20
�

�

�

�

�

�

20 CATEGORY THEORY

and thus everywhere), while the uniqueness part makes precise the “no junk”
idea (because any extra elements not combined from the generators would be
free to be mapped to different values).

Using the UMP, it is easy to show that the free monoid M(A) is determined
uniquely up to isomorphism, in the following sense.

Proposition 1.10. Given monoids M and N with functions i : A→|M | and
j : A → |N |, each with the UMP of the free monoid on A, there is a (unique)
monoid isomorphism h : M ∼= N such that |h|i = j and |h−1|j = i.

Proof. From j and the UMP of M , we have j̄ : M → N with |j̄|i = j and from
i and the UMP of N , we have ī : N → M with |̄i|j = i. Composing gives a
homomorphism ī ◦ j̄ : M → M such that |̄i ◦ j̄|i = i. Since 1M : M → M also
has this property, by the uniqueness part of the UMP of M , we have ī ◦ j̄ = 1M .
Exchanging the roles of M and N shows j̄ ◦ ī = 1N :

in Mon:

M ...................
j̄

� N ...................
ī

� M

in Sets:

|M | |j̄| � |N | |̄i| � |M |

A

j

�

i

�

i

�

For example, the free monoid on any set with a single element is easily
seen to be isomorphic to the monoid of natural numbers N under addition (the
“generator” is the number 1). Thus, as a monoid, N is uniquely determined up
to isomorphism by the UMP of free monoids.

Free category. Now, we want to do the same thing for categories in general
(not just monoids). Instead of underlying sets, categories have underlying graphs,
so let us review these first.

A directed graph consists of vertices and edges, each of which is directed, that
is, each edge has a “source” and a “target” vertex.

A
z � B

C

x

�

D

y

�

u
�
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CATEGORIES 21

We draw graphs just like categories, but there is no composition of edges, and
there are no identities.

A graph thus consists of two sets, E (edges) and V (vertices), and two
functions, s : E → V (source) and t : E → V (target). Thus, in Sets, a graph is
just a configuration of objects and arrows of the form

E
s �

t
� V

Now, every graph G “generates” a category C(G), the free category on G. It
is defined by taking the vertices of G as objects, and the paths in G as arrows,
where a path is a finite sequence of edges e1, . . . , en such that t(ei) = s(ei+1),
for all i = 1 . . . n. We’ write the arrows of C(G) in the form enen−1 . . . e1.

v0
e1 � v1

e2 � v2
e3 � . . .

en � vn

Put

dom(en . . . e1) = s(e1)

cod(en . . . e1) = t(en)

and define composition by concatenation:

en . . . e1 ◦ e′m . . . e′1 = en . . . e1e
′
m . . . e′1.

For each vertex v, we have an “empty path” denoted by 1v, which is to be the
identity arrow at v.

Note that if G has only one vertex, then C(G) is just the free monoid on the
set of edges of G. Also note that if G has only vertices (no edges), then C(G) is
the discrete category on the set of vertices of G.

Later on, we will have a general definition of “free.” For now, let us see that
C(G) also has a UMP. First, define a “forgetful functor”

U : Cat → Graphs

in the obvious way: the underlying graph of a category C has as edges the arrows
of C, and as vertices the objects, with s = dom and t = cod. The action of U on
functors is equally clear, or at least it will be, once we have defined the arrows
in Graphs.

A homomorphism of graphs is of course a “functor without the conditions on
identities and composition,” that is, a mapping of edges to edges and vertices
to vertices that preserves sources and targets. We describe this from a slightly
different point of view, which will be useful later on.

First, observe that we can describe a category C with a diagram like this:

C2
◦ � C1

cod �
� i

dom
� C0
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22 CATEGORY THEORY

where C0 is the collection of objects of C, C1 the arrows, i is the identity arrow
operation, and C2 is the collection {(f, g) ∈ C1 × C1 : cod(f) = dom(g)}.

Then a functor F : C → D from C to another category D is a pair of
functions

F0 : C0 → D0

F1 : C1 → D1

such that each similarly labeled square in the following diagram commutes:

C2
◦ � C1

cod �
� i

dom
� C0

D2

F2

�

◦
� D1

F1

� cod �
� i

dom
� D0

F0

�

where F2(f, g) = (F1(f), F1(g)).
Now let us describe a homomorphism of graphs,

h : G → H.

We need a pair of functions h0 : G0 → H0, h1 : G1 → H1 making the two squares
(once with t’s, once with s’s) in the following diagram commute:

G1

t �

s
� G0

H1

h1

� t �

s
� H0

h0

�

In these terms, we can easily describe the forgetful functor,

U : Cat → Graphs

as sending the category

C2
◦ � C1

cod �
� i

dom
� C0

to the underlying graph

C1

cod �

dom
� C0.
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And similarly for functors, the effect of U is described by simply erasing some
parts of the diagrams (which is easier to demonstrate with chalk!). Let us again
write |C| = U(C), etc., for the underlying graph of a category C, in analogy to
the case of monoids above.

The free category on a graph now has the following UMP.

Universal Mapping Property of C(G)
There is a graph homomorphism i : G → |C(G)|, and given any category D and
any graph homomorphism h : G → |D|, there is a unique functor h̄ : C(G) → D
with |h̄| ◦ i = h.

in Cat:

C(G) ................
h̄

� D

in Graph:

|C(G)| |h̄|� |D|

G

i

�

h

�

The free category on a graph with just one vertex is just a free monoid on
the set of edges. The free category on a graph with two vertices and one edge
between them is the finite category 2. The free category on a graph of the form

A
e ��
f

B

has (in addition to the identity arrows) the infinitely many arrows:

e, f, ef, fe, efe, fef, efef, ...

1.8 Foundations: large, small, and locally small

Let us begin by distinguishing between the following things:

(i) categorical foundations for mathematics,
(ii) mathematical foundations for category theory.

As for the first point, one sometimes hears it said that category theory can be
used to provide “foundations for mathematics,” as an alternative to set theory.
That is in fact the case, but it is not what we are doing here. In set theory,
one often begins with existential axioms such as “there is an infinite set” and
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24 CATEGORY THEORY

derives further sets by axioms like “every set has a powerset,” thus building up a
universe of mathematical objects (namely sets), which in principle suffice for “all
of mathematics.” Our axiom that every arrow has a domain and a codomain is
not to be understood in the same way as set theory’s axiom that every set has a
powerset! The difference is that in set theory—at least as usually conceived—the
axioms are to be regarded as referring to (or determining) a single universe of sets.
In category theory, by contrast, the axioms are a definition of something, namely
of categories. This is just like in group theory or topology, where the axioms serve
to define the objects under investigation. These, in turn, are assumed to exist in
some “background” or “foundational” system, like set theory (or type theory).
That theory of sets could itself, in turn, be determined using category theory, or
in some other way.

This brings us to the second point: we assume that our categories are
comprised of sets and functions, in one way or another, like most mathematical
objects, and taking into account the remarks just made about the possibility
of categorical (or other) foundations. But in category theory, we sometimes run
into difficulties with set theory as usually practiced. Mostly these are questions
of size; some categories are “too big” to be handled comfortably in conventional
set theory. We already encountered this issue when we considered the Cayley
representation in Section 1.5. There we had to require that the category under
consideration had (no more than) a set of arrows. We would certainly not want to
impose this restriction in general, however (as one usually does for, say, groups);
for then even the “category” Sets would fail to be a proper category, as would
many other categories that we definitely want to study.

There are various formal devices for addressing these issues, and they are
discussed in the book by Mac Lane. For our immediate purposes, the following
distinction will be useful.

Definition 1.11. A category C is called small if both the collection C0 of
objects of C and the collection C1 of arrows of C are sets. Otherwise, C is
called large.

For example, all finite categories are clearly small, as is the category Setsfin of
finite sets and functions. (Actually, one should stipulate that the sets are only
built from other finite sets, all the way down, i.e., that they are “hereditarily
finite”.) On the other hand, the category Pos of posets, the category Groups of
groups, and the category Sets of sets are all large. We let Cat be the category
of all small categories, which itself is a large category. In particular, then, Cat
is not an object of itself, which may come as a relief to some readers.

This does not really solve all of our difficulties. Even for large categories like
Groups and Sets we will want to also consider constructions like the category
of all functors from one to the other (we define this “functor category” later).
But if these are not small, conventional set theory does not provide the means
to do this directly (these categories would be “too large”). Therefore, one needs
a more elaborate theory of “classes” to handle such constructions. We will not
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worry about this when it is just a matter of technical foundations (Mac Lane I.6
addresses this issue). However, one very useful notion in this connection is the
following.

Definition 1.12. A category C is called locally small if for all objects X, Y
in C, the collection HomC(X,Y ) = {f ∈ C1 | f : X → Y } is a set (called a
hom-set).

Many of the large categories we want to consider are, in fact, locally small. Sets
is locally small since HomSets(X,Y ) = Y X , the set of all functions from X to Y .
Similarly, Pos, Top, and Group are all locally small (is Cat?), and, of course,
any small category is locally small.

Warning 1.13. Do not confuse the notions concrete and small. To say that a
category is concrete is to say that the objects of the category are (structured)
sets, and the arrows of the category are (certain) functions. To say that a category
is small is to say that the collection of all objects of the category is a set, as is
the collection of all arrows. The real numbers R, regarded as a poset category, is
small but not concrete. The category Pos of all posets is concrete but not small.

1.9 Exercises

1. The objects of Rel are sets, and an arrow A → B is a relation from A to B,
that is, a subset R ⊆ A×B. The equality relation {〈a, a〉 ∈ A×A| a ∈ A}
is the identity arrow on a set A. Composition in Rel is to be given by

S ◦ R = {〈a, c〉 ∈ A × C | ∃b (〈a, b〉 ∈ R & 〈b, c〉 ∈ S)}

for R ⊆ A × B and S ⊆ B × C.

(a) Show that Rel is a category.
(b) Show also that there is a functor G : Sets → Rel taking objects to

themselves and each function f : A → B to its graph,

G(f) = {〈a, f(a)〉 ∈ A × B | a ∈ A}.

(c) Finally, show that there is a functor C : Relop → Rel taking each
relation R ⊆ A × B to its converse Rc ⊆ B × A, where,

〈a, b〉 ∈ Rc ⇔ 〈b, a〉 ∈ R.

2. Consider the following isomorphisms of categories and determine which
hold.

(a) Rel ∼= Relop

(b) Sets ∼= Setsop
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(c) For a fixed set X with powerset P (X), as poset categories P (X) ∼=
P (X)op (the arrows in P (X) are subset inclusions A ⊆ B for all
A,B ⊆ X).

3. (a) Show that in Sets, the isomorphisms are exactly the bijections.
(b) Show that in Monoids, the isomorphisms are exactly the bijective

homomorphisms.
(c) Show that in Posets, the isomorphisms are not the same as the

bijective homomorphisms.
4. Let X be a topological space and preorder the points by specialization:

x ≤ y iff y is contained in every open set that contains x. Show that this
is a preorder, and that it is a poset if X is T0 (for any two distinct points,
there is some open set containing one but not the other). Show that the
ordering is trivial if X is T1 (for any two distinct points, each is contained
in an open set not containing the other).

5. For any category C, define a functor U : C/C → C from the slice category
over an object C that “forgets about C.” Find a functor F : C/C → C→

to the arrow category such that dom ◦ F = U .
6. Construct the “coslice category” C/C of a category C under an object C

from the slice category C/C and the “dual category” operation −op.
7. Let 2 = {a, b} be any set with exactly 2 elements a and b. Define a functor

F : Sets/2 → Sets × Sets with F (f : X → 2) = (f−1(a), f−1(b)). Is this
an isomorphism of categories? What about the analogous situation with a
one-element set 1 = {a} instead of 2?

8. Any category C determines a preorder P (C) by defining a binary rela-
tion ≤ on the objects by

A ≤ B if and only if there is an arrow A → B

Show that P determines a functor from categories to preorders, by
defining its effect on functors between categories and checking the required
conditions. Show that P is a (one-sided) inverse to the evident inclusion
functor of preorders into categories.

9. Describe the free categories on the following graphs by determining their
objects, arrows, and composition operations.

(a)

a
e � b

(b)

a
e ��
f

b
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(c)

a
e � b

c

f

�

g
�

(d)

a
e ��
h

b d

c

f

�

g

�

10. How many free categories on graphs are there which have exactly six
arrows? Draw the graphs that generate these categories.

11. Show that the free monoid functor

M : Sets → Mon

exists, in two different ways:

(a) Assume the particular choice M(X) = X∗ and define its effect

M(f) : M(A) → M(B)

on a function f : A → B to be

M(f)(a1 . . . ak) = f(a1) . . . f(ak), a1, . . . ak ∈ A.

(b) Assume only the UMP of the free monoid and use it to determine M
on functions, showing the result to be a functor.

Reflect on how these two approaches are related.
12. Verify the UMP for free categories on graphs, defined as above with arrows

being sequences of edges. Specifically, let C(G) be the free category on the
graph G, so defined, and i : G → U(C(G)) the graph homomorphism
taking vertices and edges to themselves, regarded as objects and arrows in
C(G). Show that for any category D and graph homomorphism f : G →
U(D), there is a unique functor

h̄ : C(G) → D

with

U(h̄) ◦ i = h,
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where U : Cat → Graph is the underlying graph functor.
13. Use the Cayley representation to show that every small category is

isomorphic to a “concrete” one, that is, one in which the objects are sets
and the arrows are functions between them.

14. The notion of a category can also be defined with just one sort (arrows)
rather than two (arrows and objects); the domains and codomains are
taken to be certain arrows that act as units under composition, which is
partially defined. Read about this definition in section I.1 of Mac Lane’s
Categories for the Working Mathematician, and do the exercise mentioned
there, showing that it is equivalent to the usual definition.


