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PREFACE TO THE SECOND EDITION

This second edition of Category Theory differs from the first in two respects:
firstly, numerous corrections and revisions have been made to the text, including
correcting typographical errors, revising details in exposition and proofs,
providing additional diagrams, and finally adding an entirely new section on
monoidal categories. Secondly, dozens of new exercises were added to make the
book more useful as a course text and for self-study. To the same end, solutions
to selected exercises have also been provided; for these, I am grateful to Spencer
Breiner and Jason Reed.

Steve Awodey
Pittsburgh

September 2009
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PREFACE

Why write a new textbook on Category Theory, when we already have Mac
Lane’s Categories for the Working Mathematician? Simply put, because Mac
Lane’s book is for the working (and aspiring) mathematician. What is needed
now, after 30 years of spreading into various other disciplines and places in the
curriculum, is a book for everyone else.

This book has grown from my courses on Category Theory at Carnegie
Mellon University over the last 10 years. In that time, I have given numerous
lecture courses and advanced seminars to undergraduate and graduate students
in Computer Science, Mathematics, and Logic. The lecture course based on the
material in this book consists of two, 90-minute lectures a week for 15 weeks.
The germ of these lectures was my own graduate student notes from a course on
Category Theory given by Mac Lane at the University of Chicago. In teaching
my own course, I soon discovered that the mixed group of students at Carnegie
Mellon had very different needs than the Mathematics graduate students at
Chicago and my search for a suitable textbook to meet these needs revealed a
serious gap in the literature. My lecture notes evolved over a time to fill this gap,
supplementing and eventually replacing the various texts I tried using.

The students in my courses often have little background in Mathematics
beyond a course in Discrete Math and some Calculus or Linear Algebra or
a course or two in Logic. Nonetheless, eventually, as researchers in Computer
Science or Logic, many will need to be familiar with the basic notions of
Category Theory, without the benefit of much further mathematical training.
The Mathematics undergraduates are in a similar boat: mathematically talented,
motivated to learn the subject by its evident relevance to their further studies, yet
unable to follow Mac Lane because they still lack the mathematical prerequisites.
Most of my students do not know what a free group is (yet), and so they are not
illuminated to learn that it is an example of an adjoint.

This, then, is intended as a text and reference book on Category Theory,
not only for students of Mathematics, but also for researchers and students in
Computer Science, Logic, Linguistics, Cognitive Science, Philosophy, and any of
the other fields that now make use of it. The challenge for me was to make
the basic definitions, theorems, and proof techniques understandable to this
readership, and thus without presuming familiarity with the main (or at least
original) applications in algebra and topology. It will not do, however, to develop
the subject in a vacuum, simply skipping the examples and applications. Material
at this level of abstraction is simply incomprehensible without the applications
and examples that bring it to life.
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x PREFACE

Faced with this dilemma, I have adopted the strategy of developing a few
basic examples from scratch and in detail—namely posets and monoids—and
then carrying them along and using them throughout the book. This has
several didactic advantages worth mentioning: both posets and monoids are
themselves special kinds of categories, which in a certain sense represent the two
“dimensions” (objects and arrows) that a general category has. Many phenomena
occurring in categories can best be understood as generalizations from posets or
monoids. On the other hand, the categories of posets (and monotone maps) and
monoids (and homomorphisms) provide two further, quite different examples
of categories in which to consider various concepts. The notion of a limit,
for instance, can be considered both in a given poset and in the category of
posets.

Of course, many other examples besides posets and monoids are treated as
well. For example, the chapter on groups and categories develops the first steps of
Group Theory up to kernels, quotient groups, and the homomorphism theorem,
as an example of equalizers and coequalizers. Here, and occasionally elsewhere
(e.g., in connection with Stone duality), I have included a bit more Mathematics
than is strictly necessary to illustrate the concepts at hand. My thinking is that
this may be the closest some students will ever get to a higher Mathematics
course, so they should benefit from the labor of learning Category Theory by
reaping some of the nearby fruits.

Although the mathematical prerequisites are substantially lighter than for
Mac Lane, the standard of rigor has (I hope) not been compromised. Full proofs
of all important propositions and theorems are given, and only occasional routine
lemmas are left as exercises (and these are then usually listed as such at the
end of the chapter). The selection of material was easy. There is a standard core
that must be included: categories, functors, natural transformations, equivalence,
limits and colimits, functor categories, representables, Yoneda’s lemma, adjoints,
and monads. That nearly fills a course. The only “optional” topic included here
is cartesian closed categories and the calculus, which is a must for computer
scientists, logicians, and linguists. Several other obvious further topics were
purposely not included: two-categories, topoi (in any depth), and monoidal
categories. These topics are treated in Mac Lane, which the student should be
able to read after having completed the course.

Finally, I take this opportunity to thank Wilfried Sieg for his exceptional
support of this project; Peter Johnstone and Dana Scott for helpful suggestions
and support; André Carus for advice and encouragement; Bill Lawvere for
many very useful comments on the text; and the many students in my courses
who have suggested improvements to the text, clarified the content with their
questions, tested all of the exercises, and caught countless errors and typos. For
the latter, I also thank the many readers who took the trouble to collect and send
helpful corrections, particularly Brighten Godfrey, Peter Gumm, Bob Lubarsky,
and Dave Perkinson. Andrej Bauer and Kohei Kishida are to be thanked for
providing Figures 9.1 and 8.6, respectively. Of course, Paul Taylor’s macros for
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PREFACE xi

commutative diagrams must also be acknowledged. And my dear Karin deserves
thanks for too many things to mention. Finally, I wish to record here my debt of
gratitude to my mentor Saunders Mac Lane, not only for teaching me Category
Theory, and trying to teach me how to write, but also for helping me to find my
place in Mathematics. I dedicate this book to his memory.

Steve Awodey
Pittsburgh

September 2005
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