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(über

”
Die Grundlagen der Mathematik“)

(Abhandlungen aus dem mathematischen Seminar der Hamburgischen
Universität 6, pp. 89–92; engl. in [?], pp. 485–489)

Translation by: Stefan Bauer-Mengelberg, Dagfinn Føllesdal
Revised by: CMU

Final revision by: CMU

1. To supplement the preceding paper by Hilbert let me add some more
detailed explanations concerning the consistency proof by Ackermann that
was sketched there.

First, as for an upper bound on the number of steps of replacement in the
case of embedding, it is given by 2n, where n is the number of ε-functionals
distinct in form. The method of proof described furnishes yet another, sub-
stantially closer bound, which, for example, for the case in which there is no
embedding at all yields the upper bound n + 1.a

2. Let the argument by which we recognize that the procedure is finite
in the case of superposition be carried out under simple specializing assump-
tions.

The assumptions are the following: Let the ε-functionals occurring in the
proof be

εaA(a, εbK(a, b))

and
εbK(a1, b), εbK(a2, b), . . . , εbK(an, b),

aVide [?], pp. 96–97, for how this bound is obtained.
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where
a1, . . . , an

may contain εaA(a, εbK(a, b)) but no other ε-functional.
The procedure now consists in a succession of “total replacements;” each

of these consists of a function replacement χ(a) for εbK(a, b)), by means of
which εaA(a, εbK(a, b)) goes over into εaA(a, χ(a)), and a replacement for
εaA(a, χ(a)), by means of which a1, . . . , an go over into numerals z1, . . . , zn

and the values
χ(z1), . . . , χ(zn)

are obtained for
εbK(a1, b), . . . , εbK(an, b).

We begin with the function

χ0(a),

which has the value 0 for all a (“zero replacement”), and accordingly also
replace the terms

εbK(a1, b), . . . , εbK(an, b)

by 0.
Holding this replacement fixed, we apply to

εaA(a, χ0(a))

the original testing procedure, which after two steps at most leads to the
goal; that is, all the critical formulas corresponding to

εaA(a, χ0(a))

then become correct.
Thus we obtain one or two total replacements,

E0 resp. E0, E′
0,

respectively. Now either E0 (or E′
0) is final or one of the critical formulas

corresponding to
εbK(a1, b), εbK(a2, b), . . .
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becomes false. Assume that this formula corresponds to, say εbK(a1, b) and
that a1 goes into z1. Then we find a value z such that

K(z1, z)

is correct. Now that we have this value, we take as replacement function for

εbK(a, b)

not χ0(a), but the function
χ1(a)

defined by

χ1(z1) = z

χ1(a) = 0 for a 6= z1.

At this point we repeat the above procedure with χ1(a), the values of the

εbK(aν , b) (ν = 1, . . . , n)

now being determined only after a value has been chosen for

εaA(a, χ1(a)),

and thus we obtain one or two total replacements,

E1, resp. E1, E′
1.

Now either E1 (or E′
1) is final, or for one of the ε-functionals that result

from
εbK(a1, b), . . . , εbK(an, b),

by the previous total replacement we again find a value z′, such that for a
certain z2

K(z2, z
′)

is correct, while
K(z2, χ1(z))

is false. From this it directly follows that

z2 6= z1.
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Now, instead of χ1(a) we introduce χ2(a) as replacement function by
means of the following definition:

χ2(z1) = z

χ2(z2) = z′

χ2(a) = 0 for a 6= z1, z2.

The replacement procedure is now repeated with this function χ2(a).
As we continue in this way, we obtain a sequence of replacement functions

χ0(a), χ1(a), χ2(a), . . . ,

each of which is formed from the preceding one by addition, for a new argu-
ment value, of a function value different from 0; and for every function χ(a)
we have one or two replacements,

Ep, resp. Ep, E′
p.

The point is to show that this sequence of replacements terminates. To that
end, we first consider the replacements

E0, E1, E2, . . . .

In these,
εaA(a, εbK(a, b))

is always replaced by 0; the

εbK(aν , b) (ν = 1, . . . , n)

therefore always go over into the same ε-functionals; for each of these we
put either 0 or a numeral different from 0, and this is then kept as a final
replacement. Accordingly, at most n + 1 of the replacements

E0, E1, E2, . . .

can be distinct.b If, however, Ek is identical with El, then neither one has,
or else each has, a successor replacement

E′
k resp. E′

l,

bSee footnote a.
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and in these
εaA(a, εbK(a, b))

is then in both cases replaced by the same number found as a value, so that,
for both replacements, the

εbK(aν , b) (ν = 1, . . . , n)

also go over into the same ε-functionals.
Accordingly, of the replacements E′

l for which El coincides with a fixed
replacement Ek again at most n + 1 can be distinct.

Hence there cannot be more than (n + 1)2 distinct

Ep, resp. Ep, E′
p

altogether. From this it follows, however, that our procedure comes to an
end at the latest with the replacement function

χ(n+1)2(a).

For the replacements associated with two distinct replacement functions
χp(a) and χq(a), q > p, cannot coincide completely, since otherwise we would
by means of χq(a) be led to the same value z∗ that has already been found
by means of χp(a), whereas this value is already used in the definition of
the replacement functions following χp(a), hence in particular also in that of
χq(a).

3. Let us note, finally, that in order to take into consideration the axiom
of complete induction, which for the purpose of demonstrating consistency
may be given in the form

(εaA(a) = b′)→ A(b),

we need only, whenever we have found a value z for which a proposition B(a)
holds, go to the least such value by seeking out the first correct proposition
in the sequence

B(0), B(0′), . . . ,B(z)

of propositions that have been reduced to numerical formulas.c

cIn [?], p. 213, end of footnote 1, Bernays writes that this last paragraph, on mathe-
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matical induction, should be deleted. In 1927 Hilbert and his collaborators had not yet
gauged the difficulties facing consistency proofs of arithmetic and analysis. Ackermann
had set out (in [?]) to prove the consistency of analysis; but, while correcting the printer’s
proofs of his paper, he had to introduce a footnote, on page 9, that restricts his rule of
substitution. After the introduction of such a restriction it was no longer clear for which
system Ackermann’s proof establishes consistency. Certainly not for analysis. The proof
suffered, moreover, from imprecisions in its last part. Ackermann’s paper was received
for publication on 30 March 1924 and came out on 26 November 1924. In 1927, received
for publication on 29 July 1925 and published on 2 January 1927, von Neumann criti-
cized Ackermann’s proof and presented a consistency proof that followed lines somewhat
different from those of Ackermann’s. The proof came to be accepted as establishing the
consistency of a first-order arithmetic in which induction is applied only to quantifier-
free formulas. When he was already acquainted with von Neumann’s proof, Ackermann
communicated, in the form of a letter, a new consistency proof to Bernays. This proof
developed and deepened the arguments used in Ackermann’s 1924 proof, and, like von
Neumann’s, it applied to an arithmetic in which induction is restricted to quantifier-free
formulas. It is with this proof of Ackermann’s that Hilbert’s remarks above [BB: insert
explicit reference] (pp. 477-479) and Bernays’ present comments are concerned. It was
felt at that point, among the members of the Hilbert school, that the consistency of full
first-order arithmetic could be established by relatively straightforward extensions of the
arguments used by von Neumann or by Ackermann (vide [?], p. 137, lines 20-21; [?], p. 490,
line 4u, to p. 491, line 2; [?], p. 211, lines 4-7). These hopes were dashed by Gödel’s 1931.
Ackermann’s unpublished proof was presented in [?], pp. 93-130. In [?] Ackermann gave
a consistency proof for full first-order arithmetic, using a principle of transfinite induction
(up to ε0) that is not formalizable in this arithmetic.
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