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Hilbert’s first investigations into the foundations of arithmetic follow
chronologically as well as conceptually his investigations into the founda-
tions of geometry. Hilbert begins the paper “On the concept of number”1 by
applying to arithmetic, just as to geometry, the axiomatic method, which he
contrasts with the “genetic” method that is otherwise usually applied.

Let us first recall the manner of introducing the concept of
number. Starting from the concept of the number 1, usually one
thinks at first of the further rational positive numbers 2, 3, 4,. . . as
arising through the process of counting, and their laws of calcula-
tion as being developed in the same way; then one arrives at the
negative numbers by the requirement of the general execution of
subtraction; one further defines a rational number say as a pair
of numbers—then every linear function has a zero—, and finally
the real number as a cut or a fundamental sequence—thereby ob-
taining that every whole rational indefinite, and generally every
continuous indefinite function has a zero. We can call this method
of introducing the concept of number the genetic method, because

1Vide [?].
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the most general concept of real number is generated by successive
expansion of the simple concept of number.

One proceeds fundamentally differently with the development
of geometry. Here one tends to begin with the assumption of the
existence of all elements, i. e., one presupposes at the outset three
systems of things, namely the points, the lines, and the planes,
and then brings these elements—essentially after the example of
Euclid—into relation with each other by certain axioms, namely
the axioms of incidence, of ordering, of congruence, and of conti-
nuity. Then the necessary task arises of showing the consistency
and completeness of these axioms, i. e., it must be proven that the
application of the axioms that have been laid down can never lead
to contradictions, and moreover that the system of axioms suf-
fices to prove all geometric theorems. We shall call the procedure
of investigation sketched here the axiomatic method.

We raise the question, whether the genetic method is really
the only one appropriate for the study of the concept of number
and the axiomatic method for the foundations of geometry. It also
appears to be of interest to contrast both methods and to investi-
gate which method is the most advantageous if one is concerned
with the logical investigation of the foundations of mechanics or
other physical disciplines.

My opinion is this: Despite the great pedagogical and heuristic
value of the genetic method, the axiomatic method nevertheless
deserves priority for the final representation and complete logical
securing of the content of our knowledge.

Already Peano developed number theory axiomatically.2 Hilbert now
sets up an axiom system for analysis, by which the system of real number

2[1] G. Peano, The Principles of Arithmetic (vide [?]). The introduction of recursive
definitions is here not unobjectionable; the proof of the solvability of the recursion equa-
tions is missing. Such a proof was provided already by Dedekind in his essay The Nature
and Meaning of Numbers (vide [?]). If one bases the introduction of recursive functions
on Peano’s axioms, it is best to proceed by first proving the solvability of the recursion
equations for the sum following L. Kalmár by induction on the parameter argument, then
defining the concept “less than” with the help of the sum, and finally using Dedekind’s
consideration for the general recursive definition. This procedure is presented in Landau’s
textbook Foundations of Analysis (vide [?]). Admittedly here the concept of function is
used. If one wants to avoid it, the recursion equations of the sum and product have to be
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is characterized as a real Archimedean field which cannot be extended to a
more extensive field of the same kind.

A few illustrative remarks about dependencies follow the enumeration
of the axioms. In particular it is mentioned that the law of commutativity
of multiplication can be deduced from the remaining properties of a field
and the order properties with the help of the Archimedean axiom, but not
without it.

The requirement of non-extendibility is formulated by the “axiom of com-
pleteness.” This axiom has the advantage of conciseness; however, its logical
structure is complicated. In addition it is not immediately apparent from it
that it expresses a demand of continuity. If one wants, instead of this axiom,
one that clearly has the character of a demand of continuity and on the other
hand does not already include the requirement of the Archimedean axiom,
it is recommended to take Cantor’s axiom of continuity, which says that if
there is a series of intervals such that every interval includes the following
one, then there is a point which belongs to every interval. (The formulation
of this axiom requires the previous introduction of the concept of number
series).3

The aim which Hilbert pursues with the axiomatic version of analysis
appears particularly clearly at the end of the essay in the following words:

The objections that have been raised against the existence of the
totality of all real numbers and infinite sets in general lose all
their legitimacy with the view identified above: we do not have
to conceive of the set of real numbers as, say, the totality of all
possible laws according to which the elements of a fundamental
sequence can proceed, but rather—as has just been explained—as
a system of things whose relations between each other are given

introduced as axioms. The proof of the general solvability of recursion equations follows
then by a method by K. Gödel (cf. “On formally undecidable propositions of Principia
Mathematica and related systems I” (vide [?]), and also Hilbert-Bernays Foundations of
Mathematics I (vide [?], pp. 412)).

3[1] Concerning the independence of the Archimedean axiom from the mentioned axiom
of Cantor, cf. P. Hertz: “On the axioms of Archimedes and Cantor” (vide [?]).

R. Baldus has recently called attention to Cantor’s axiom. See his essay “On the ax-
iomatics of geometry:” “I. On Hilbert’s axiom of completeness,” “II. Simplifications of the
Archimedean and Cantorian axiom,” “III. On the Archimedean and Cantorian axiom”
(vide [?], [?], [?]) as well as the following essay by A. Schmidt: “The continuity in absolute
geometry” (vide [?]).
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by the finite and completed system of axioms I–IV, and about
which new propositions are valid only if they can be deduced
from those axioms in a finite number of logical inferences.

But the methodological benefit which this view brings also involves a
further requirement: for the axiomatic formulation necessarily entails the
task of proving the consistency of the axiom system in question.

Therefore, the problem of the proof of consistency for the arithmetical
axioms was mentioned in the list of problems that Hilbert posed in his lecture
in Paris “Mathematical problems.”4

To accomplish the proof Hilbert thought to get by with a suitable mod-
ification of the methods used in the theory of real numbers.

But in the more detailed engagement with the problem he was immedi-
ately confronted with the considerable difficulties that exist for this task. In
addition, the set theoretic paradox that was discovered in the meantime by
Russell and Zermelo prompted increased caution in the inference rules. Frege
and Dedekind were forced to withdraw their investigations in which they
thought they had provided unobjectionable foundations of number theory—
Dedekind using the general concepts of set theory, Frege the framework of
pure logic5—since it resulted from that paradox that their considerations
contained inadmissible inferences.

The talk6 “On the foundations of logic and arithmetic” held in 1904 shows
us a completely novel point of view. Here first the fundamental difference
is pointed out between the problem of the consistency proof for arithmetic
and for geometry. The proof of consistency for the axioms of geometry uses
an arithmetical interpretation of the geometric axiom system. However, for
the proof of consistency of arithmetic “it seems that the appeal to another
foundational discipline is not allowed.”

To be sure, one could think of a reduction to logic.

But on close inspection we become aware that certain arithmetical
basic concepts are already used in the traditional formulation
of the laws of logic, e. g., the concept of set, in part also the
concept of number, in particular cardinal number. So we get

4[2] Held at the International Congress of Mathematicians 1900 in Paris (vide [?]).
5[1] R. Dedekind: The Meaning and Nature of Numbers (vide [?]). G. Frege: Basic

Laws of Arithmetic (vide [?]).
6[2] At the International Congress of Mathematicians in Heidelberg 1904 (vide [?]).
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into a quandary, and to avoid paradoxes a partly simultaneous
development of the laws of logic and arithmetic is required.

Hilbert now presents the plan of such a joint development of logic and
arithmetic. This plan already contains in great part the leading viewpoints
for proof theory, in particular the idea of transforming the proof of consis-
tency into a problem of elementary-arithmetic character by translating the
mathematical proofs into the formula language of symbolic logic. Also rudi-
ments of the consistency proofs can be already found here.

But the execution still remains in its beginnings. In particular, the proof
of the “existence of the infinite” is carried out only in the framework of a
very restricted formalism.

The methodological standpoint of Hilbert’s proof theory is also not yet
developed to its full clarity in the Heidelberg talk. Some passages suggest
that Hilbert wants to avoid the intuitive idea of number and replace it with
the axiomatic introduction of the concept of number. Such a procedure would
lead to a circle in the proof theoretic considerations. Also the viewpoint of
the restriction in the contentual application of the forms of the existential
and general judgment is not yet brought to bear explicitly and completely.

In this preliminary state Hilbert interrupted his investigations of the foun-
dations of arithmetic for a long period of time.7 Their resumption is found
announced in the 1917 talk8 “Axiomatic thought.”

This talk comes in the wake of the numerous successful axiomatic inves-
tigations that had been pursued by Hilbert himself and other researchers in
the various fields of mathematics and physics. In particular in the field of
the foundations of mathematics the axiomatic method had led in two ways
to an extensive systematization of arithmetic and set theory. Zermelo formu-
lated in 1907 his axiom system for set theory9 by which the processes of set
formation are delimited in such a way that on the one hand the set theoretic

7[1] A continuation of the direction of research that was inspired by Hilbert’s Heidelberg
talk was carried out by J. König, who, in his book New Foundations for Logic, Arithmetic,
and Set Theory (vide [?]), surpasses the Heidelberg talk both by a more exact formulation
and a more thorough presentation of the methodological standpoint, as well as in the
execution. Julius König died before finishing the book; it was edited by his son as a
fragment. This work, which is a precursor of Hilbert’s later proof theory, exerted no
influence on Hilbert. But later J. v. Neumann followed the approach of König in his
investigation “Concerning Hilbert’s proof theory” (vide [?]).

8[2] At Naturforscherversammlung Zürich (vide [?]).
9[3] E. Zermelo, “Research in the foundations of set theory I” (vide [?]). More recently
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paradoxes are avoided and on the other hand the set theoretic inferences
that are customary in mathematics are retained. And Frege’s project of a
logical foundation of arithmetic—for which to be sure the method that Frege
employed himself turned out to be faulty—was reconstructed by Russell and
Whitehead in their work Principia Mathematica10.11

Hilbert says about this axiomatization of logic that one could “see the
crowning of the work of axiomatization in general” in the completion of this
enterprise. But this praise and acknowledgment is immediately followed by
the remark that the completion of the project “still needs new work on many
fronts.”

In fact, the viewpoint of Principia Mathematica contains an unsolved
problem. What is supplied by this work is the elaboration of a clear sys-
tem of assumptions for a simultaneous deductive development of logic and
mathematics, as well as the proof that this set-up in fact succeeds. For the
reliability of the assumptions, besides their contentual plausibility (which
also from the point of view of Russell and Whitehead does not yield a guar-

there have been various investigations building on this axiom system. A. Fraenkel added
the axiom of replacement, an extension of the admissible formation of sets in the spirit of
Cantor’s set theory; J. v. Neumann added an axiom, which rules out that the process of
going from a set to one of its elements can, for any given set, be iterated arbitrarily many
times. Moreover, Th. Skolem, Fraenkel, and J. v. Neumann have made more precise, all
in a different way, in the sense of a sharper implicit characterization of the concept of
set, the concept of “definite proposition” which was used by Zermelo in vague generality.
The result of these refinements is presented in the most concise way in v. Neumann’s
axiomatics; namely it is achieved here, that all axioms are of the “first order” (in the sense
of the terminology of symbolic logic). Zermelo rejects such a refinement of the concept of
set, in particular in the light of the consequence that was first discovered by Skolem that
such a sharper axiom system of set theory can be realized in the domain of individuals
of the whole numbers.—A presentation of these investigations up to the year 1928, with
detailed references, is contained in the textbook by A. Fraenkel, Introduction to Set Theory
(vide [?]). See also: J. v. Neumann, “Concerning a consistency question in axiomatic set
theory,” Th. Skolem, “On a foundational question of mathematics,” E. Zermelo, “On limit
numbers and domains of sets” (vide [?], [?], [?]).

10[1] Vide [?].
11[2] The axiomatic form of the set up is also present in Frege’s system. In Russell and

Whitehead’s way of proceeding, the contradiction found in Frege’s system is removed by
refusing to treat concept-extensions (classes) as individuals (objects): rather, a statement
about the extension of a concept is treated as a re-formulation of a statement about the
concept itself. In this way the distinction between levels is transferred from concepts to
classes. Incidentally, for this way of removing the contradiction a simpler distinction of
levels, already to be found in Frege, is sufficient.
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antee of consistency), only their testing in the deductive use is put forward.
But this testing too provides us only empirical confidence with respect to
consistency, not complete certainty. The complete certainty of consistency,
however, is regarded by Hilbert as a requirement of mathematical rigor.

Thus the task of providing a consistency proof remains also for those
assumptions, according to Hilbert. To handle this task as well as various fur-
ther fundamental questions, e. g., “the problem of the solvability in principle
of every mathematical question” or “the question of the relation between
content and formalism in mathematics and logic,” Hilbert thinks it neces-
sary to make “the concept of specifically mathematical proof itself the object
of investigation.”

In the following years, in particular since 1920, Hilbert devoted himself
especially to the plan, hereby taken up anew, of a proof theory.12 His drive in
this direction was strengthened by the opposition which Weyl and Brouwer
directed at the usual procedure in analysis and set theory.13.

Thus Hilbert begins his first communication about his “New foundation
of mathematics”14 by discussing the objections of Weyl and Brouwer. It is
noteworthy in this dispute that Hilbert, despite his energetic rejection of the
objections that have been raised against analysis, and despite his advocacy
for the legitimacy of the usual inferences, agrees with the opposing standpoint
that the usual treatment of analysis is not immediately evident and does not
conform to the requirements of mathematical rigor. The “legitimacy” that
Hilbert, from this point of view, grants to the usual procedure is not based
on evidence, but on the reliability of the axiomatic method, about which
Hilbert explains that, if it is appropriate anywhere at all, then it is here.
This is a conception from which the problem of a proof of consistency for the
assumptions of analysis arises.

Moreover, as for the methodological attitude on which Hilbert bases his
proof theory and which he explains using the intuitive treatment of number

12[1] To collaborate on this enterprise Hilbert then invited P. Bernays with whom he has
regularly discussed his investigations since then.

13[2] H. Weyl, The Continuum. Critical Investigations Into the Foundations of Analysis,
“The vicious circle in the current founding of analysis,” “On a new foundational crisis in
mathematics” (vide [?], [?], [?]). – L. E. J. Brouwer, “Intuitionism and formalism”, “Foun-
dation of set theory independent of the principle of excluded middle. I–II,” “Intuitionistic
set theory,” “Has every real number a decimal expansion” (vide [?], [?], [?], [?], [?]).

14[3] Talk, given in Hamburg 1922 (vide [?]).
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theory, he draws quite near to the standpoint of Kronecker15—despite the
position Hilbert took against Kronecker. This consists in particular in the
application of the intuitive concept of number, and also in the fact that the
intuitive form of complete induction (i. e., the inference which is based on
the intuitive idea of the “construction” of the numerals) is regarded as ac-
ceptable and as not requiring any further reduction. By deciding to adopt
this methodological assumption Hilbert also got rid of the basis of the objec-
tion that Poincaré had raised at that time against Hilbert’s enterprise of the
foundation of arithmetic based on the exposition in the talk in Heidelberg.16

The beginning of proof theory, as it is laid down in the first communica-
tion, already contains the detailed formulation of the formalism. In contrast
to the Heidelberg talk, the sharp separation of the logical-mathematical for-
malism and the contentful “metamathematical” consideration is prominent,
and is expressed in particular by the distinction of signs “for communication”
and symbols and variables of the formalism.

But the formal restriction of negation to inequalities appears as a rem-
nant of the stage when this separation had not yet been performed, while
a restriction is really only needed in the metamathematical application of
negation.

A characteristic of Hilbert’s approach, the formalization of the tertium
non datur by transfinite functions, appears already in the first communica-
tion. In particular, the tertium non datur for the whole numbers is formalized
with the function function χ(f), whose argument is a number theoretic func-
tion, and which has the value 0 if f(a) has the value 1 for all number values
a, but otherwise represents the smallest number value a for which f(a) has
a value different than 1.

The leading idea for the proof of the consistency of the transfinite func-
tions (i. e., of their axioms), which Hilbert already possessed, is not presented
in this communication. A proof of consistency is rather provided here only
for a certain part of the formalism; but this proof is only important as an
example of a metamathematical proof.17

15[1] In a later talk “The founding of elementary arithmetic” (held in Hamburg, vide [?]),
Hilbert has spoken more clearly about this. After mentioning Dedekind’s investigation
The meaning and nature of numbers he explains: “Around the same time, thus already
more than a generation ago, Kronecker clearly articulated a view which today in essence
coincides with our finite attitude, and illustrated it with many examples.”

16[2] H. Poincaré, “Mathematics and logic” (vide [?]).
17[1] The method of proof rests here mainly on the fact that the elementary inference rules
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In the Leipzig talk “The logical foundations of mathematics,”18 which
followed soon after the first communication, we find the approach and re-
alization of proof theory developed further in various respects. I want to
mention briefly the main respects in which the presentation of the Leipzig
talk goes beyond those of the first communication:

1. The fundamental way in which ordinary mathematics goes beyond
the intuitive approach (which consists in the unrestricted application of the
concepts “all,” “there exists” to infinite totalities) is pointed out, and the
concept of “finite logic” is elaborated. Furthermore, a comparison between
the role of “transfinite” formulas and that of ideal elements is carried out
here for the first time.

2. The formalism is freed from unnecessary restrictions (in particular the
avoidance of negation).

3. The formalization of the tertium non datur , and also of the principle
of choice using transfinite functions, is simplified.

4. The main features of the formalism of analysis are developed.
5. The proof of consistency is provided for the elementary number theo-

retic formalism that results from the exclusion of bound variables. The task
of proving the consistency of number theory and analysis is then focused on
the treatment of the “transfinite axiom”

A(τ(A)) → A(a),

which is employed in two ways, since the argument of A is related on the
one hand to the domain of ordinary numbers and on the other hand to the
number series (functions).

6. A method (which is successful at least in the simplest cases) is stated
for the treatment of the “transfinite axiom” in the consistency proof.

The basic structure of proof theory was reached with its formulation as
presented in the Leipzig talk.

Hilbert’s next two publications on proof theory, the Münster talk “On
the infinite”19 and the (second) talk in Hamburg “The foundations of mathe-
matics,”20 in which the basic idea and the formal approach of proof theory is

for the implication, which are formalized by the “Axioms of logical inference” (numbered
10 through 13), are not included in the part of the formalism under consideration.

18[2] Held at the Deutscher Naturforscher-Kongreß 1922 (vide [?]).
19[1] Presented in 1925 on the occasion of a meeting organized in honor of the memory

of Weierstrass (vide [?]).
20[2] Presented in 1927 (vide [?]).
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presented anew and in more detail, still show various changes and extensions
in the formalism. However, they serve only in smaller part the original goal
of proof theory; they are used mainly with respect to the plan to solve Can-
tor’s continuum problem, i. e., the proof of the theorem that the continuum
(the set of real numbers) has the same cardinality as the set of numbers of
the second number class.

Hilbert had the idea of ordering the number theoretic functions, i. e., the
functions that map every natural number to another (the elements of the
continuum surely can be represented by such functions) in accordance with
the type of the variables which are needed for their definition, and to achieve
a mapping of the continuum to the set of numbers of the second number class
on the basis of the ascent of the variable types, which is analogous to that
of the transfinite ordinal numbers. But the pursuit of this goal did not get
beyond a sketch, and Hilbert therefore left out the parts which refer to the
continuum problem in the reprints of both mentioned talks in Foundations
of Geometry.21

Hilbert’s considerations about the treatment of the continuum problem
have nevertheless produced various fruitful suggestions and viewpoints.

Thus W. Ackermann has been inspired to his investigation “Concerning
Hilbert’s construction of the real numbers”22 by the considerations regarding
recursive definitions. In his lecture in Münster, Hilbert discusses the question
and the result of this paper (which had not been published at the time):

Consider the function
a + b,

by iterating n times and equating, it follows that:

a + a + · · ·+ a = a · n.

Likewise from a · b, one arrives at

a · a · · · a = an,

and further from ab one has

a(aa), a(a(aa)), . . . .

21[3] Both talks are included in the seventh edition of Foundations of Geometry as ap-
pendix VIII and IX. Other than the omissions also small editorial changes have been made,
in particular with respect to the notation of the formulas.

22[4] Vide [?].
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So we successively obtain the functions:

a + b = ϕ1(a, b),

a · b = ϕ2(a, b),

ab = ϕ3(a, b).

The function ϕ4(a, b) is the bth value in the series:

a, aa, a(aa), a(a(aa)), . . . .

In an analogous way one obtains ϕ5(a, b), ϕ6(a, b) etc.
It would now be possible to define ϕn(a, b) for variable n by

substitution and recursion; but these recursions would not be or-
dinary successive ones, but rather one would be led to a crossed
(simultaneous) recursion of different variables at the same time,
and it is only possible to resolve this into ordinary successive re-
cursions by using the concept of a function variable: the function
ϕa(a, a) is an example of a function of the number variable a,
which can not be defined by substitution and ordinary successive
recursion alone, if one allows only for number variables.23 How
the function ϕa(a, a) can be defined using function variables is
shown by the following formulas:

ι(f, a, 1) = a,

ι(f, a, n + 1) = f(a, ι(f, a, n));

ϕ1(a, b) = a + b,

ϕn+1(a, b) = ι(ϕn, a, b).

Here ι stands for an individual function with two arguments, of
which the first one is itself a function of two ordinary number
variables.

The investigation of recursive definitions has been recently carried forward
by Rozsa Péter. She proved that all recursive definitions which proceed only
after the values of one variable and which do not require any other sort of
variables than free number variables, can be reduced to the simplest recursion

23[1] W. Ackermann has provided a proof for this claim. (Footnote in Hilbert’s text.)
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schema. Using this result she also substantially simplified the proof in the
paper of Ackermann just mentioned.24

These results concern the use of recursive definitions to obtain number
theoretic functions. In Hilbert’s proof plan recursive definitions also occur
in a different way, namely, as a procedure for constructing numbers of the
second number class and also types of variables. Here Hilbert presupposes
certain general ideas concerning the sorts of variables, of which he gives the
following short summary in the talk “The foundations of mathematics:”

The mathematical variables are of two sorts:
1. the basic variables,
2. the types of variables.

1. While one gets by with the ordinary whole number as the
only basic variable in all of arithmetic and analysis, now a basic
variable for each one of Cantor’s transfinite number classes is
added, which is able to assume the ordinal numbers belonging to
this class. To each basic variable there accordingly corresponds a
proposition that characterizes it as such; this is defined implicitly
by axioms.

To each basic variable belongs a kind of recursion, which is
used to define functions whose argument is such a basic variable.
The recursion belonging to the number variable is the “usual
recursion” by which a function of a number variable n is defined
by specifying which value it has for n = 0 and how the value for
n′ is obtained from the value at n.25 The generalization of the
usual recursion is transfinite recursion, whose general principle is
to determine the value of the function for a value of the variable
using the previous values of the function.

2. We derive further kinds of variables from the basic vari-
ables by applying logical connectives to the propositions for the
basic variables, e. g., to Z.26 The so defined variables are called
types of variables, and the statements defining them are called
type-statements; for each of these a new individual symbol is in-

24[1] See R. Péter, “On the relation between the different notions of the recursive func-
tions” and “Construction of non-recursive functions” (vide [?], [?]).

25[2] Here n′ is the formal expression for “the number following n.”
26[3] The formula Z(a) corresponds to the proposition “a is an ordinary whole number.”
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troduced. Thus the formula

Φ(f) ∼ (x)(Z(x) → Z(f(x)))

yields the simplest example of a type of variables; this formula de-
fines the type of function variables (being a function). A further
example is the formula

Ψ(g) ∼ (f)(Φ/ /Ψ(f) → Z(g(f)));

it defines “being a function-function;” the argument g is the new
function-function variable.

For the construction of higher variable types the type-statements
have to be equipped with indices which enables a method of re-
cursion.

These concept formations are applied in particular in the theory of num-
bers of the second number class. Here a new suggestion emerged from
Hilbert’s conjecture that every number of the second number class can be
defined without transfinite recursion, but using ordinary recursion alone—
assuming a basic element 0, the operation of progression by one (“stroke-
function”) and the limit process, as well as the number variable and the
basic variable of the second number class.

The first examples of such definitions that go beyond the most elementary
cases, namely the definition of the first ε-number (in Cantor’s terminology)
and the first critical ε-number,27 have already been given by P. Bernays and
J. v. Neumann. Hereby already recursively defined types of variables are
used.28

27[1] An ε-number is a transfinite ordinal number α with the property α = ωα. The first
ε-number is the limit of the series

α0, α1, α2, . . . ,

where α0 = 1, αn+1 = ωαn ; the first critical ε-number is the limit of the series

β0, β1, β2, . . . ,

where β0 = 1, βn+1 is the βn-th ε-number.
28[2] Cf. the statement in Hilbert’s talk “The foundations of mathematics” ([?], pp. 81.).

The examples mentioned have not been published yet.
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But these various considerations, which refer to the recursive definitions,
already go beyond the narrower domain of proof theoretic questions. Since
Hilbert’s Leipzig talk it was the task of this narrower field of investigation of
proof theory to prove consistency according to Hilbert’s approach, including
the transfinite axiom. Shortly after the talk in Leipzig the transfinite axiom
was brought into the form of the logical “ε-axiom”

A(a) → A(εxA(x))

by the introduction of the choice function ε(A) (in detail: εxA(x)) replacing
the earlier function τ(A). The role of this ε-axiom is explained by Hilbert in
his talk in Hamburg with the following words:

The ε-function is applied in the formalism in three ways.
1. It is possible to define “all” and “there exists” with the

help of ε, namely as follows:29

(x)A(x) ∼ A(εxA(x)),

(Ex)A(x) ∼ A(εxA(x)).

Based on this definition the ε axioms yields the valid logical
notations for the “for all” and “there exists” symbols, like

(x)A(x) → A(a) (Aristotelian axiom),

(x)A(x) → (Ex)A(x) (Tertium non datur).

2. If a proposition A is true of one and only one thing, then

ε(A) is the thing, for which A holds.

Thus, the ε-function allows one to resolve such a proposition
A that holds of only one thing into the form

a = ε(A).

3. Moreover, the ε plays the role of a choice function, i. e., in
the case that A holds of more than one thing, ε(A) is any of the
things a of which A holds.

29[1] Instead of the double arrow used by Hilbert the symbol of equivalence ∼ is applied
in both of the following formulas; the remarks on the introduction of the symbol ∼ in
Hilbert’s text are thus dispensable.
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The ε-axiom can be applied to different types of variables. For a formal-
ization of number theory the application to number variables suffices, i. e.,
the type of natural numbers. In this case the number theoretic axioms

a′ 6= 0,
a′ = b′ → a = b,

as well as the recursion equations for addition and multiplication30 and the
principle of inference of complete induction, have to be added to the the
logical formalism and the axioms of equality. This principle of inference can
be formalized using the ε symbol by the formula

εxA(x) = b′ → A(b)

in connection with the elementary formula

a 6= 0 → a = (δ(a))′.

The additional formula for the ε symbols corresponds to a part of the state-
ment of the least number principle 31 and the added elementary formula
represents the statement that for every number different than 0 there is a
preceeding one.

For the formalization of analysis one has to apply the ε-axiom also to a
higher type of variables. Different alternatives are possible here, depending
on whether one prefers the general concept of predicate, set, or function.
Hilbert chooses the type of function variables, i. e., more precisely, of the
variable number theoretic function of one argument.

The introduction of higher types of variables allows for the replacement
of the inference principle of complete induction by a definition of the concept
of natural number following the method of Dedekind.

The essential factor in the extension of this formalism is based on the
connection between the ε-axiom and the replacement rule for the function
variable, whereby the “impredicative definitions” of functions, i. e., the defi-
nitions of functions in reference to the totality of functions, are incorporated
into the formalism.

30[2] Cf. footnote 1 on p. 197 of this report.
31[1] That is, the principle of the existence of a least number in every nonempty set of

numbers.
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The task of proving consistency for the number theoretic formalism and
for analysis is hereby mathematically sharply delimited. For its treatment
one had Hilbert’s approach at one’s disposal, and at first it seemed that only
an insightful and extensive effort was needed to develop this approach to a
complete proof.

However, this vision has been proved mistaken. In spite of intensive ef-
forts and a multitude of contributed proof ideas the desired goal has not
been achieved. The expectations that had been entertained have been disap-
pointed step by step, and in the same process it also became apparent that
the danger of mistake is particularly great in the domain of metamathemat-
ical considerations.

At first the proof of the consistency of analysis seemed to succeed, but
this appearance soon revealed itself as an illusion. Thereafter it was believed
that the goal had been reached at least for the number theoretic formalism.
Hilbert’s talk in Hamburg “The foundations of mathematics” falls in this
stage, where at the end he cites a report on a consistency proof by Acker-
mann, as well as the talk “Problems in founding mathematics,”32 held in
1928 in Bologna, where Hilbert gave an overview of the situation in proof
theory at that time and put forward in part problems of consistency and in
part problems of completeness.

Here Hilbert connects all problems of consistency to the ε-axiom, present-
ing the mathematical domains that are encompassed in place of the various
formalisms.

In this presentation is expressed the view, shared at that time by all
parties, that the proof for the consistency of the formalism of number theory
had been given already by the investigations of Ackermann and v. Neumann.

That in fact this goal had not yet been achieved was only realized when
it became dubious, based on a general theorem of K. Gödel, whether it was
at all possible to provide a proof for the consistency of the number theoretic
formalism with elementary combinatorial methods in the sense of the “finite
standpoint.”

The theorem mentioned is one of the various important results of Gödel’s
paper “On formally undecidable propositions of Principia Mathematica and
related systems I,”33 which has clarified in a fundamental way the relation
between content and formalism—the investigation of which was mentioned

32[2] Vide [?].
33[1] Vide [?].
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by Hilbert in “Axiomatic thought” as one of the aims of proof theory.
The basic message of the theorem is that a proof of the consistency of

a consistent formalism encompassing the usual logical calculus and number
theory cannot be represented in this formalism itself; more precisely: it is
not possible to deduce the elementary arithmetical theorem which represents
the claim of the consistency of the formalism—based on a certain kind of
enumeration of the symbols and variables and an enumeration of the formulas
and of the finite series of formulas derived from it—in the formalism itself.

To be sure, nothing is said hereby directly about the possibility of finite
consistency proofs; but a criterion follows, which every proof of the consis-
tency for a formalism of number theory or a more comprehensive formalism
has to meet: a consideration must occur in the proof which can not be
represented—based on the arithmetical translation—in the given formalism.

By means of this criterion one became aware that the existing consistency
proofs were not yet sufficient for the full formalism of number theory.34

Moreover, the conjecture was prompted that it was in general impossi-
ble to provide a proof for the consistency of the number theoretic formal-
ism within the framework of the elementary intuitive considerations that
conformed to the “finite standpoint” upon which Hilbert had based proof
theory.

This conjecture has not been disproved yet.35 However, K. Gödel and
G. Gentzen have noticed36 that it is rather easy, assuming the consistency of
intuitionistic arithmetic as formalized by A. Heyting37, to prove the consis-
tency of the usual formalism of number theory.38

From the standpoint of Brouwer’s Intuitionism the proof of the consis-
tency of the formalism of number theory has hereby been achieved. But this

34[2] The proof by v. Neumann referred to a narrower formalism from the outset; but it
appeared that the extension to the entire formalism of number theory would be possible
without difficulties.

35[1] But see postscriptum on p. 21.
36[2] K. Gödel, “On intuitionistic arithmetic and number theory” (vide [?]). G. Gentzen

has withdrawn his paper about the subject matter which was already in print because of
the publication of Gödel’s note.

37[3] A. Heyting: “The formal rules of intuitionistic logic” and “The formal rules of
intuitionistic mathematics” (vide [?] and [?]).

38[4] Namely, it is possible to show that every formula that is deducible in the usual
formalism of number theory, which does not contain any formula variable, disjunction, or
existential quantifier, can be deduced also in Heyting’s formalism.
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does not disprove the conjecture mentioned above, since intuitionistic arith-
metic goes beyond the realm of intuitive, finite considerations by having also
contentful proofs as objects besides the proper mathematical objects, and
therefore needs the abstract general concept of an intelligible inference.

A brief compilation of various finite consistency proofs for formalisms of
parts of number theory that have been given will be presented here. Let the
formalism which is obtained from the logical calculus (of first order) by adding
axioms for equality and number theory, but where the application of complete
induction is restricted to formulas without bound variables, be denoted by F1;
with F2 we denote the formalism that results from F1 by adding the ε-symbol
and the ε-axiom,—whereby the formulas and schemata for the universal and
existential quantifiers can be replaced by explicit definitions of the universal
and existential quantifiers.39 A consistency proof for F2 immediately results
in the consistency of F1.

The consistency of F2 is shown:
1. by a proof of W. Ackermann, which proceeds from the approach pre-

sented in Hilbert’s Leipzig talk “The logical foundations of mathematics”40;

39[5] See in this paper p. 14. With regard to the axioms of equality it is to be observed
that they appear in the formalism in the more general form,

a = a, a = b → (A(a) → A(b))

so that in particular the formula,

a = b → εxA(x, a) = εxA(x, b)

can be deduced. In the formalism F1 the formula

a = b → (A(a) → A(b))

can be replaced by the more special axioms

a = b → (a = c → b = c), a = b → a′ = b′.

40[1] The concluding portion of the proof is not yet carried out in detail in Ackermann’s
dissertation “Justification of the tertium non datur by Hilbert’s theory of consistency”
(vide [?]). Later Ackermann provided a complete and at the same time more simple
proof. This definitive version of Ackermann’s proof has not been published yet; so far only
Hilbert’s already mentioned report in his second talk in Hamburg “The foundations of
mathematics” and the more detailed “Appendix” by P. Bernays which appeared with the
talk are available (vide [?], [?] (this edition ch. ??, pp. ?? seqq.)). (The remark at the end

18



2. by a proof by J. v. Neumann, who proceeds from the same assump-
tions41;

3. using a second so far unpublished approach of Hilbert’s executed by
Ackermann; the idea behind this approach consists in applying a disjunctive
rule of inference to eliminate the ε symbol instead of replacing the ε by
number values.42

The consistency of F1 is shown:
1. by a proof of J. Herbrand which rests on a general theorem—which was

stated for the first time and proved by Herbrand in his thesis “Investigations
in proof theory”43—about the logical calculus44;

2. by a proof of G. Gentzen, which results from a sharpening and exten-
sion of Herbrand’s theorem mentioned above found by Gentzen.45

For the time being one has not gone beyond these results, which are
important mainly for theoretical logic and elementary axiomatics, and for
the clarification mentioned above of the relation between the usual number
theoretic formalism and that of intuitionistic arithmetic.

But all the problems of completeness which Hilbert posed in his talk
“Problems in founding mathematics” have been treated in various directions.

One of these problems deals with the proof of the completeness of the
system of logical rules which are formalized in the logical calculus (of first
order). This proof has been given by K. Gödel, in the sense that he estab-
lished46: the following: if it can be shown that a formula of the first order
logical calculus is not deducible, then it is possible to give a counterexample
to the universal validity of that formula in the framework of number the-
ory (using tertium non datur , in particular in the form of the least number
principle).

The other problem of completeness concerns the axioms of number theory;
here it is to be established that if it can be shown that a number theoretic
statement is consistent (on the basis of the axioms of number theory), then

of the appendix with regard to the inclusion of complete induction has to be abandoned.)
41J. v. Neumann, “Concerning Hilbert’s proof theory” (vide [?]).
42[3] Cf. the statement in the talk “Methods for demonstrating consistency and their

limitations” by P. Bernays (vide [?], (this edition ch. ??, pp. ?? seqq.)).
43[4] Vide [?].
44[5] J. Herbrand, “On the consistency of arithmetic” (vide [?]).
45[1] G. Gentzen, “ Investigations in logical reasoning” (vide [?]).
46[2] K. Gödel, “The completeness of the axioms of the functional calculus of logic” (vide

[?]).
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it is also provable. This claim implies also the following: “If it can be shown
that a sentence47 S is consistent with the axioms of number theory, then the
consistency with those axioms cannot also be shown for the sentence S (the
converse of S).”

This problem is in so far indeterminate, as it is not specified which for-
malism of logical inference should be used. However, it was shown that the
claim of completeness is unjustified for all logical formalisms, as long as one
maintains the requirement of the rigorous formalization of the proofs.

This result stems again from K. Gödel, who proved the following general
theorem in the paper mentioned above “On formally undecidable proposi-
tions of Principia Mathematica and related systems I”: If a formalism F is
consistent in the sense that it is impossible to deduce the negation of a for-
mula (x)A(x) provided that the formula A(z) can be deduced in F for all
numerals z, and if the formalism is sufficiently comprehensive to contain the
formalism of number theory (or an equivalent formalism), then it is possible
to state a formula with the property that neither it itself nor its negation is
deducible.48 Thus, under these conditions, the formalism F does not have
the property of deductive completeness (in the sense of Hilbert’s claim for
the case of number theory).49

47[3] Here is meant a sentence that can be represented in the formalism of number theory
without free variables.

48[1] Moreover this formula has the special form

(x)(ϕ(x) 6= 0),

where ϕ(x) is a function defined by elementary recursion, and the non-deducibility of
this formula as well as the correctness and deduciblity of the formula ϕ(z) 6= 0 for every
given numeral z follows already from consistency in the ordinary sense without the more
restricted requirement mentioned above.

49[2] A different kind of incompleteness has been shown recently by Th. Skolem for the
formalism of number theory (“On the impossibility of a complete characterization of the
number series by a finite axiom system” (vide [?])). The formalism is not “categorical”
(the term is used in analogy to O. Veblen’s expression), as it is possible to state an
interpretation of the relations =, < and of the functions a′, a+b, a·b in relation to a system
of things (they are number theoretic functions)—using tertium non datur contentually for
whole numbers— such that on the one hand every number theoretic theorem that can
be deduced in the formalism of number theory remains true also for that interpretation,
but on the other hand that the system is by no means isomorphic to the number sequence
(with regard to the relations under consideration), but it contains in addition to the subset
that is isomorphic to the number sequence also elements that are greater (in the sense of
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Even before this result of Gödel was known Hilbert already had given up
the original form of his problem of completeness. In his talk “The founding
of elementary arithmetic”50 he treated the problem for the special case of
formulas of the form (x)A(x), which do not contain any bound variables
other than x. He modified the task by adding an inference rule which says
that a formula (x)A(x) of the kind under consideration can be always taken
as a basic formula if it is possible to show that the formula A(z) represents
a true statement (according to the elementary arithmetic interpretation) for
all numerals z.

With the addition of this rule the result follows very easily from the fact
that if a formula of the special form under consideration is consistent, then
it is also true under the contentful interpretation.51

The method by which Hilbert forces, so to speak, the positive solution of
the completeness problem (for the special case that he considers) represents a
deviation from the previous program of proof theory. In fact, the requirement
of a complete formalization of the rules of inference is abandoned by the
introduction of the additional inference rule.

One does not have to regard this step as final. But in light of the dif-
ficulties that have arisen with the problem of consistency, one will have to
consider the possibility of expanding the previous methodological framework
of the metamathematical considerations.

This previous framework is not explicitly required by the basic ideas of
Hilbert’s proof theory. It will be crucial for the further development of proof
theory if one succeeds in developing the finite standpoint appropriately, such
that the main goal, the proof of the consistency of usual analysis, remains
achievable—regardless of the restrictions of the goals of proof theory that
follow from Gödel’s results.

During the printing of this report the proof for the consistency of the
full number theoretic formalism has been presented by G. Gentzen,52 using a
method that conforms to the fundamental demands of the finite standpoint.

the interpretation) than all elements of that subset.
50[3] Held 1930 in Hamburg (vide [?]).
51[1] Hilbert had already mentioned earlier this fact in his second Hamburg talk “The

foundations of mathematics” (vide [?], p. ). There he used it to show that the finite
consistency proof for a formalism also yields a general method for obtaining a finite proof
from a proof of an elementary arithmetical theorem in the formalism, for example of the
character of Fermat’s theorem.

52This proof will be published soon in the Mathematische Annalen (vide [?]).
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Thereby the mentioned conjecture about the range of the finite methods
(p. 17) is disproved.
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