
Lecture Notes:

Introduction to Categorical Logic

[DRAFT: June 1, 2009]

Steven Awodey Andrej Bauer

June 1, 2009

Contents

1 Review of Category Theory 5
1.1 Categories . 5

1.1.1 The empty category 0 . 6
1.1.2 The unit category 1 . 6
1.1.3 Other finite categories . 6
1.1.4 Groups as categories . 6
1.1.5 Posets as categories . 7
1.1.6 Sets as categories . 7
1.1.7 Structures as categories 7
1.1.8 Further Definitions . 8

1.2 Functors . 9
1.2.1 Functors between sets, monoids and posets 10
1.2.2 Forgetful functors . 10

1.3 Constructions of Categories and Functors 10
1.3.1 Product of categories . 10
1.3.2 Slice categories . 11
1.3.3 Opposite categories . 12
1.3.4 Representable functors . 12
1.3.5 Group actions . 14

1.4 Natural Transformations and Functor Categories 14
1.4.1 Directed graphs as a functor category 16
1.4.2 The Yoneda Embedding 17
1.4.3 Equivalence of Categories 19

1.5 Adjoint Functors . 21
1.5.1 Adjoint maps between preorders 22
1.5.2 Adjoint Functors . 24
1.5.3 The Unit of an Adjunction 26
1.5.4 The Counit of an Adjunction 28

1.6 Limits and Colimits . 29
1.6.1 Binary products . 29
1.6.2 Terminal object . 30
1.6.3 Equalizers . 30
1.6.4 Pullbacks . 31
1.6.5 Limits . 33

[DRAFT: June 1, 2009]

4

1.6.6 Colimits . 37
1.6.7 Binary Coproducts . 37
1.6.8 The initial object . 38
1.6.9 Coequalizers . 38
1.6.10 Pushouts . 39
1.6.11 Limits and Colimits as Adjoints 40
1.6.12 Preservation of Limits and Colimits by Functors 41

[DRAFT: June 1, 2009]

Chapter 1

Review of Category Theory

1.1 Categories

Definition 1.1.1 A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain
cod f , which are objects. This is written as

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely
determined composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A→ A which
is a unit for composition:

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not
actually have to be functions, and objects need not be sets or spaces of any
sort. We often write C instead of C0.

[DRAFT: June 1, 2009]

6 Review of Category Theory

Definition 1.1.2 A category C is small when the objects C0 and the mor-
phisms C1 are sets (as opposed to proper classes). A category is locally small
when for all objects A,B ∈ C0 the class of morphisms with domain A and
codomain B is a set.

We normally restrict attention to locally small categories, so unless we spec-
ify otherwise all categories are taken to be locally small. Next we consider
several examples of categories.

1.1.1 The empty category 0

The empty category has no objects and no arrows.

1.1.2 The unit category 1

The unit category, also called the terminal category, has one object ? and one
arrow 1?:

? 1?dd

1.1.3 Other finite categories

There are other finite categories, for example the category with two objects and
one (non-identity) arrow, and the category with two parallel arrows:

? // • ? 77
'' •

1.1.4 Groups as categories

Every group (G, ·), is a category with a single object ? and each element of G
as a morphism:

?

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the
group operation is associative and the group unit is the unit for the composition.
In order to get a category, we do not actually need to know that every element
in G has an inverse. It suffices to take a monoid, also known as semigroup,
which is an algebraic structure with an associative operation and a unit.

We can turn things around and define a monoid to be a category with a
single object. A group is then a category with a single object in which every
arrow is an isomorphism.

[DRAFT: June 1, 2009]

1.1 Categories 7

1.1.5 Posets as categories

Recall that a partially ordered set, or a poset (P,≤), is a set with a reflexive,
transitive, and antisymmetric relation:

x ≤ x (reflexive)
x ≤ y ∧ y ≤ z =⇒ x ≤ z (transitive)
x ≤ y ∧ y ≤ z =⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a
single arrow p → q between p, q ∈ P if, and only if, p ≤ q. Composition of
p → q and q → r is the unique arrow p → r, which exists by transitivity of ≤.
The identity arrow on p is the unique arrow p → p, which exists by reflexivity
of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We
do not need antisymmetry in order to obtain a category, i.e., a preorder would
suffice.

Again, we may define a preorder to be a category in which there is at most
one arrow between any two objects. A poset is a skeletal preorder. We allow
for the possibility that a preorder or a poset is a proper class rather than a set.

A particularly important example of a poset category is the posets of open
sets OX of a topological space X, ordered by inclusion.

1.1.6 Sets as categories

Any set S is a category whose objects are the elements of S and the only arrows
are the identity arrows. A category in which the only arrows are the identity
arrows is a discrete category.

1.1.7 Structures as categories

In general structures like groups, topological spaces, posets, etc., determine cat-
egories in which composition is composition of functions and identity morphisms
are identity functions:

• Group is the category whose objects are groups and whose morphisms are
group homomorphisms.

• Top is the category whose objects are topological spaces and whose mor-
phisms are continuous maps.

• Set is the category whose objects are sets and whose morphisms are func-
tions.2

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A×B such that for every x ∈ A there

exists a unique y ∈ B for which 〈x, y〉 ∈ f . A morphism in Set is a triple 〈A, f, B〉 such that
f ⊆ A×B is a function.

[DRAFT: June 1, 2009]

8 Review of Category Theory

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

Such categories of structures are generally large.

1.1.8 Further Definitions

We recall some further basic notions in category theory.

Definition 1.1.3 A subcategory C′ of a category C is given by a subclass of
objects C′0 ⊆ C0 and a subclass of morphisms C′1 ⊆ C1 such that f ∈ C′1 implies
dom f, cod f ∈ C′0, 1A ∈ C′1 for every A ∈ C′0, and g ◦ f ∈ C′1 whenever f, g ∈ C′1
are composable.

A full subcategory C′ of C is a subcategory of C such that, for all A,B ∈ C′0,
if f : A→ B is in C1 then it is also in C′1.

Definition 1.1.4 An inverse of a morphism f : A → B is a morphism f−1 :
B → A such that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or an iso. If there exists
a pair of inverse morphisms f : A → B and f−1 : B → A we say that the
objects A and B are isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A
left inverse is a morphism g : B → A such that g ◦ f = 1A, and a right inverse
is a morphism g : B → A such that f ◦ g = 1B . A left inverse is also called a
retraction, whereas a right inverse is called a section.

Definition 1.1.5 A monomorphism, or mono, is a morphism f : A → B that
can be canceled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h =⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be canceled on the
right: for all g : B → C, h : B → A,

g ◦ f = h ◦ f =⇒ g = h .

In Set monomorphisms are the injective functions and epimorphisms are the
surjective functions. Isomorphisms in Set are the bijective functions. Thus, in
Set a morphism is iso if, and only if, it is both mono and epi. However, this
example is misleading! In general, a morphism can be mono and epi without
being an iso. For example, the non-identity morphism in the category consisting
of two objects and one morphism between them is both epi and mono, but it
has no inverse. (See examples in the next section.)

[DRAFT: June 1, 2009]

1.2 Functors 9

A more realistic example of morphisms that are both epi and mono but are
not iso occurs in the category Top of topological spaces and continuous map
because not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are
objects of a category and edges are morphisms between them, for example:

A
f //

g

��

B
h // C

j
��~~~~~~~~~~~~

D
k

//

m

??~~~~~~~~~~~~
E

Such a diagram is said to commute when the composition of morphisms along
any two paths with the same beginning and end gives equal morphisms. Com-
mutativity of the above diagram is equivalent to the following two equations:

f = m ◦ g , j ◦ h ◦m = k .

From these we can derive k ◦ g = h ◦ h ◦ f .

1.2 Functors

Definition 1.2.1 A functor F : C → D from a category C to a category D
consists of functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,
F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor maps commutative diagrams to commutative diagrams because it
preserves composition.

We may form the “category of categories” Cat whose objects are small cat-
egories and whose morphisms are functors. Composition of functors is com-
position of the corresponding functions, and the identity functor is one that is
identity on objects and on morphisms. The category Cat is large and locally
small.

Definition 1.2.2 A functor F : C → D is faithful when it is injective on mor-
phisms: for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is surjective on morphisms: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.

[DRAFT: June 1, 2009]

10 Review of Category Theory

1.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors
turn out to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G
to H.

• A functor between posets P and Q is a monotone function from P to Q.

Exercise 1.2.3 Verify that the above claims are correct.

1.2.2 Forgetful functors

For categories of structures Group, Top, Graphs, Poset, . . . , there is a forgetful
functor U which maps an object to the underlying set and a morphism to the
underlying function. For example, the forgetful functor U : Group → Set maps
a group (G, ·) to the set G and a group homomorphism f : (G, ·) → (H, ?) to
the function f : G→ H.

There are also forgetful functors that forget only part of the structure, for ex-
ample the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the
additive group (R,+) and a ring homomorphism f : (R,+R, ·S) → (S,+S , ·S)
to the group homomorphism f : (R,+R)→ (S,+S).

1.3 Constructions of Categories and Functors

1.3.1 Product of categories

Given categories C and D, we form the product category C×D whose objects are
pairs of objects 〈C,D〉 with C ∈ C and D ∈ D, and whose morphisms are pairs
of morphisms 〈f, g〉 : 〈C,D〉 → 〈C ′, D′〉 with f : C → C ′ in C and g : D → D′

in D. Composition is given by 〈f, g〉 ◦ 〈f ′, g′〉 = 〈f ◦ f ′, g ◦ g′〉.
There are evident projection functors

C × D

π0

}}zzzzzzzzzzzzz
π1

""DDDDDDDDDDDDD

C D

which act as indicated in the following diagrams:

〈C,D〉9
π0

||yyyyyyyyy � π1

""FFFFFFFF

C D

〈f, g〉;
π0

}}{{{{{{{{ �
π1

!!BBBBBBBB

f g

[DRAFT: June 1, 2009]

1.3 Constructions of Categories and Functors 11

Exercise 1.3.1 Show that, for any categories A, B, C,

1× C ∼= C
B × C ∼= C × B

A× (B × C) ∼= (A× B)× C

What does ∼= mean here?

1.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects
morphisms into A,

B

f
��
A

(1.1)

and as morphisms commutative diagrams over A,

B

f ��@@@@@@@
g // B′

f ′~~}}}}}}}

A

(1.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′

such that f = f ′ ◦ g. Composition of morphisms in C/A is composition of
morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (1.1) to its
domain B, and a morphism (1.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “compo-
sition by h”,

C/h : C/A→ C/A′

which maps an object (1.1) to the object h ◦ f : B → A′ and a morphisms (1.2)
to the morphism

B

h ◦ f @@@@@@@@
g // B′

h ◦ f ′~~}}}}}}}}

A′

The construction of slice categories itself is a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A
and each morphism h : A→ A′ to the functor C/h : C/A→ C/A′.

[DRAFT: June 1, 2009]

12 Review of Category Theory

Since Cat is a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− factors through the forgetful functor UC :
Cat/C → Cat via a functor C : C → Cat/C,

C C //

C/−
!!CCCCCCCCCCCCC Cat/C

UC

��
Cat

where, for A ∈ C, CA is the object

C/A

UA

��
C

and, for h : A→ A′ in C, Ch is the morphism

C/A

UA BBBBBBBB

C/h
// C/A′

UA′}}{{{{{{{{

C

1.3.3 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all
the morphisms are turned around, that is, a morphism f : A → B in Cop is
a morphism f : B → A in C. Composition and identity arrows in Cop are the
same as in C. Clearly, the opposite of the opposite of a category is the original
category.

A functor F : Cop → D is sometimes called a contravariant functor (from C
to D), and a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P
turned upside down, (P,≥).

Exercise 1.3.2 Given a functor F : C → D, can you define a functor F op :
Cop → Dop such that −op itself becomes a functor? On what category is it a
functor?

1.3.4 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the
collection of all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B)

[DRAFT: June 1, 2009]

1.3 Constructions of Categories and Functors 13

or C(A,B). For every A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is
indeed a functor because, for any morphisms

A
f // B

g // C
h // D (1.3)

we have

C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f . We may also ask whether C(−, B) is
a functor. If we define its action on morphisms to be precomposition,

C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (1.3) we
have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a
functor of the form C(−, B) is a (contravariant) representable functor.

To summarize, hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A
to B, and it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the
function

C(f, g) : C(A,B)→ C(A′, B′)

defined by

C(f, g) : h 7→ g ◦ h ◦ f .

[DRAFT: June 1, 2009]

14 Review of Category Theory

1.3.5 Group actions

A group (G, ·) is a category with one object ? and elements of G as the mor-
phisms. Thus, a functor F : G → Set is given by a set F? = S and for each
a ∈ G a function Fa : S → S such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a · x instead of (Fa)x, the above
two equations become the familiar requirements for a left group action:

e · x = x , (a · b) · x = a · (b · x) .

Exercise 1.3.3 A right group action by a group (G, ·) on a set S is an operation
· : S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.

1.4 Natural Transformations and Functor Cat-
egories

Definition 1.4.1 Let F : C → D and G : C → D be functors. A natural
transformation η : F =⇒ G from F to G is a map η : C0 → D1 which assigns
to every object A ∈ C a morphism ηA : FA → GA, called the component of η
at A, such that, for every f : A → B, ηB ◦ Ff = Gf ◦ ηA, i.e., the following
diagram commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

As an example of a natural transformation, consider groups G and H as
categories and two homomorphisms f, g : G→ H as functors between them. A
natural transformation η : f =⇒ g is given by a single element η? = b ∈ H such
that, for every a ∈ G, the following diagram commutes:

?
b //

fa
��

?

ga
��

?
b
// ?

[DRAFT: June 1, 2009]

1.4 Natural Transformations and Functor Categories 15

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words,
a natural transformation f =⇒ g is a conjugation operation b−1 · − · b which
transforms f into g.

For every functor F : C → D there exists the identity transformation 1F :
F =⇒ F defined by (1F)A = 1A. If η : F =⇒ G and θ : G =⇒ H are
natural transformations, then their composition θ ◦ η : F =⇒ H, defined by
(θ ◦ η)A = θA ◦ ηA is also a natural transformation. Composition of natural
transformations is associative because it is function composition. This leads to
the definition of functor categories.

Definition 1.4.2 Let C and D be categories. The functor category DC is the
category whose objects are functors from C to D and whose morphisms are
natural transformations between them.

A functor category may be quite large, too large in fact. In order to avoid
problems with size we normally require C to be a locally small category. The
“hom-class” of all natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC (F,G).
Suppose we have functors F , G, and H with a natural transformation θ :

G =⇒ H, as in the following diagram:

C F // D
G

''

H

77
�� ��
�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose
component at A ∈ C is (θ ◦ F)A = θFA.

Similarly, if we have functors and a natural transformation

C
G

''

H

77
�� ��
�� θ D F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component
at A ∈ C is (F ◦ θ)A = FθA.

A natural isomorphism is an isomorphism in a functor category. Thus, if F :
C → D and G : C → D are two functors, a natural isomorphism between them
is a natural transformation η : F =⇒ G whose components are isomorphisms.
In this case, the inverse natural transformation η−1 : G =⇒ F is given by
(η−1)A = (ηA)−1. We write F ∼= G when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact
that, for any small categories A, B, C,

Cat(A× B, C) ∼= Cat(A, CB) . (1.4)

[DRAFT: June 1, 2009]

16 Review of Category Theory

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB
defined on objects A ∈ A, B ∈ B by

(F̃A)B = F 〈A,B〉

and on a morphism f : A→ A′ by

(F̃ f)B = F 〈f, 1B〉 .

The functor F̃ is called the transpose of F .
The inverse isomorphism takes a functor G : A → CB to the functor G̃ :

A× B → C, defined on objects by

G̃〈A,B〉 = (GA)B

and on a morphism 〈f, g〉 : A×B → A′ ×B′ by

G̃〈f, g〉 = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

1.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of
edges GE . Each edge e ∈ GE has a uniquely determined source srcG e ∈ GV

and target trgG e ∈ GV . We write e : a → b when a is the source and b is
the target of e. A graph homomorphism φ : G → H is a pair of functions
φ0 : GV → HV and φ1 : GE → HE , where we usually write φ for both φ0

and φ1, such that whenever e : a → b then φ1e : φ0a → φ0b. The category of
directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇒ · be the category with two objects and two parallel morphisms,
depicted by the following “sketch”:

E

t

66

s
((
V

An object of the functor category Set·⇒· is a functor G : (·⇒ ·) → Set, which
consists of two sets GE and GV and two functions Gs : GE → GV and Gt :
GE → GV . But this is precisely a directed graph whose vertices are GV , the

[DRAFT: June 1, 2009]

1.4 Natural Transformations and Functor Categories 17

edges are GE, the source of e ∈ GE is (Gs)e and the target is (Gt)e. Conversely,
any graph G is a functor G : (·⇒ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

If category theory is worth anything, it should be the case that the morphisms
in Set·⇒· are precisely the graph homomorphisms. Indeed, a natural transfor-
mation φ : G =⇒ H between graphs is a pair of functions,

φE : GE → HE and φV : GV → HV

whose naturality is expressed by the commutativity of the following two dia-
grams:

GE

φE //

srcG

��

HE

srcH

��
GV

φV

// HV

GE

φE //

trgG

��

HE

trgH

��
GV

φV

// HV

This is precisely the requirement that e : a→ b implies φEe : φV a→ φV b.

1.4.2 The Yoneda Embedding

The example Graph = Set·⇒· leads one to wonder which categories C can be
represented as functor categories SetD for a suitably chosen D or, when that is
not possible, at least as full subcategories of SetD.

For a locally small category C, there is the hom-set functor

C(−,−) : Cop × C → Set .

By transposing it we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A→ A′ in C to the natural transformation yf : yA =⇒ yA′

whose component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor is called the Yoneda embedding.

Theorem 1.4.3 (Yoneda embedding) For any locally small category C the
Yoneda embedding y : C → SetC

op

is full and faithful, and injective on objects.
Therefore, C is a full subcategory of SetC

op

.

[DRAFT: June 1, 2009]

18 Review of Category Theory

The proof of the theorem uses Yoneda Lemma.

Lemma 1.4.4 (Yoneda) Every functor F : Cop → Set is naturally isomorphic
to the functor Nat(y−, F). That is, for every A ∈ C,

Nat(yA,F) ∼= FA ,

and this isomorphism is natural in A.

Proof. The desired natural isomorphism θA maps a natural transformation
η ∈ Nat(yA,F) to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the
natural transformation (θA

−1x) whose component at B maps f ∈ C(B,A) to
(Ff)x. To summarize, for η : C(−, A) =⇒ F , x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F)→ FA , θA
−1 : FA→ Nat(yA,F) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f,A)

��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the com-
mutativity of the following diagram, with g : A→ A′:

Nat(yA,F)
θA // FA

Nat(yA′, F)
θA′

//

Nat(yg, F)

OO

FA′

Fg

OO

The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =
ηA(g ◦ 1A) = (Nat(yg, F)η)A1A = θA(Nat(yg, F)η) ,

where the second equality is justified by naturality of η.

[DRAFT: June 1, 2009]

1.4 Natural Transformations and Functor Categories 19

Proof. [Proof of Theorem 1.4.3] That the Yoneda embedding is full and
faithful means that for all A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A → B to yf : yA =⇒ yB is an isomorphism. But this is just
Yoneda Lemma applied to the case F = yB. Indeed, with notation as in the
proof of Yoneda Lemma and g : C → A, we see that the isomorphism

θ−1
A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA
−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A)
which can only happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary 1.4.5 For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also
reflects them. A functor F : C → D is said to reflect isomorphisms when Ff :
FA→ FB being an isomorphisms implies that f : A→ B is an isomorphism.

Exercise 1.4.6 Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are
called presheaf categories, and a functor F : Cop → Set is a presheaf on C. We
also use the notation Ĉ = SetC

op

.

1.4.3 Equivalence of Categories

An isomorphism of categories C and D in Cat consists of functors

C
F

** D
G

ii

such that G ◦ F = 1C and F ◦ G = 1D. This is often too restrictive a no-
tion. A more general notion which replaces the above identities with natural
isomorphisms is required.

Definition 1.4.7 An equivalence of categories is a pair of functors

C
F

** D
G

ii

[DRAFT: June 1, 2009]

20 Review of Category Theory

such that

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ' D.
A functor F : C → D is called an equivalence functor if there exists G : D →

C such that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all cate-
gorical properties, but ignores those concepts that are not at interest from a
categorical point of view, such as identity of objects.

The following proposition requires the Axiom of Choice as stated in general
form. However, in many specific cases a canonical choice can be made without
appeal to the Axiom of Choice.

Proposition 1.4.8 A functor F : C → D is an equivalence functor if, and only
if, F is full and faithful, and essentially surjective on objects, which means that
for every B ∈ D there exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they
are sufficient. Suppose F : C → D is full and faithful, and essentially surjective
on objects. For each B ∈ D, choose an object GB ∈ C and an isomorphism
ηB : F (GB)→ B. If f : B → C is a morphism in D, let Gf : GB → GC be the
unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (1.5)

Such a unique morphism exists because F is full and faithful. This defines a
functor G : D → C, as can be easily checked. In addition, (1.5) ensures that η
is a natural isomorphism F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C . For A ∈ C, let θA : G(FA) → A
be the unique morphism such that FθA = ηFA. Naturality of θA follows from
functoriality of F and naturality of η. Because F reflects isomorphisms, θA is
an isomorphism for every A.

Example 1.4.9 As an example of equivalence of categories we consider the
category of sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆
A, called the support3 of f , and taking values in B. Composition of partial
functions f : A ⇀ B and g : B ⇀ C is the partial function g ◦ f : A ⇀ C
defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)

3The support of a partial function f : A ⇀ B is usually called its domain, but this
terminology conflicts with A being the domain of f as a morphism.

[DRAFT: June 1, 2009]

1.5 Adjoint Functors 21

Composition of partial functions is associative. This way we obtain a category
Par of sets and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed
function f : (A, a)→ (B, b) between pointed sets is a function f : A→ B such
that fa = b. The category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F :
Set• → Par maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed
function f : (A, a) → (B, b) to the partial function Ff : F (A, a) ⇀ F (B, b)
defined by

supp (Ff) =
{
x ∈ A

∣∣ fx 6= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the
pointed set GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not
belong to A. A partial function f : A ⇀ B is mapped to the pointed function
Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A as a special “undefined
value”. Let us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .
F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example 1.4.10 Another example of an equivalence of categories arises when
we take the poset reflection of a preorder. Let (P,≤) be a preorder, If we think
of P as a category, then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a.
Isomorphism ∼= is an equivalence relation, therefore we may form the quotient
set P/∼=. The set P/∼= is a poset for the order relation v defined by

[a] v [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,v) the poset reflection
of P . The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed
as categories. By Proposition 1.4.8, q is an equivalence functor. Trivially, it
is faithful and surjective on objects. It is also full because a ≤ b in P implies
qa v qb in P/∼=.

1.5 Adjoint Functors

The notion of adjunction is arguably the most important concept unveiled by
category theory. It is a general logical and mathematical concept that occurs
everywhere and often marks an important and interesting connection between
two objects of interest. In logic, adjoint functors are pervasive, although this is
only recognizable from the category-theoretic approach to logic.

[DRAFT: June 1, 2009]

22 Review of Category Theory

1.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder
(P,≤) is a category in which there is at most one morphism between any two
objects. A functor between preorders is a monotone map. Suppose we have
preorders P and Q with two monotone maps between them,

P

f
**
Q

g
jj

We say that f and g are adjoint, and write f a g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (1.6)

Note that adjointness is not a symmetric relation. The map f is the left adjoint
and g is the right adjoint.4

Equivalence (1.6) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies
the bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication

Consider a propositional calculus whose only logical operations are conjunc-
tion ∧ and implication ⇒.5 The formulas of this calculus are built from vari-
ables x0, x1, x2, . . . , the truth values ⊥ and >, and the logical connectives ∧
and ⇒. The logical rules are given in natural deduction style:

>
⊥
A

A B

A ∧B
A ∧B
A

A ∧B
B

A⇒ B A

B

[u : A]
...
B

A⇒ B
u

For example, we read the last two inference rules as “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions)

4Remember it like this: the left adjoint stands on the left side of ≤, the right adjoint stands
on the right side of ≤.

5Nothing changes if we consider a calculus with more connectives.

[DRAFT: June 1, 2009]

1.5 Adjoint Functors 23

we infer A ⇒ B”, respectively. We indicate assumptions by enclosing them in
brackets. The symbol u in [u : A] is a label for the assumption. When an
assumption is discharged its label is written to the right of the inference rule
that discharges it, as above.

Logical entailment ` between formulas of the propositional calculus is the
relation A ` B which holds if, and only if, from assuming A we can prove B
(by using only the inference rules of the calculus). It is trivially the case that
A ` A, and also

if A ` B and B ` C then A ` C .

In other words, ` is a reflexive and transitive relation on the set P of all propo-
sitional formulas so that (P,`) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the
maps

fB = (A ∧B) , gB = (A⇒ B) .

The maps f and g are functors because they respect entailment. Indeed, if
B ` B′ then A ∧ B ` A ∧ B′ and A ⇒ B ` A ⇒ B′ by the following two
derivations:

[A ∧B]
A

[A ∧B]
B
...
B′

A ∧B′

[A⇒ B] [u : A]
B
...
B′

A⇒ B′
u

We claim that f a g. For this we need to prove that A ∧B ` C if, and only if,
B ` A⇒ C. The following two derivations establish the equivalence:

[u : A] [B]
A ∧B

...
C

A⇒ C
u

[A ∧B]
B
...

A⇒ C
[A ∧B]
A

C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint

Recall that a topological space (X,OX) is a set X together with a family
OX ⊆ PX of subsets of X which contains ∅ and X, and is closed under fi-
nite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained
in S:

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S} .

[DRAFT: June 1, 2009]

24 Review of Category Theory

Both OX and PX are posets ordered by subset inclusion. The inclusion i :
OX → PX is a monotone map, and so is the interior int : PX → OX:

OX
i ++

PX
int

kk

For U ∈ OX and S ∈ PX we have

iU ⊆ S

U ⊆ intS

Therefore, topological interior is a right adjoint to the inclusion of OX into PX.

1.5.2 Adjoint Functors

Let us now generalize the notion of adjoint monotone maps to the general situ-
ation

C
F

** D
G

ii

with arbitrary categories and functors. For monotone maps f a g, the adjunc-
tion is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy.
This is the notion that generalizes the special case; for any A ∈ C, B ∈ D we
require a bijection between D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition 1.5.1 An adjunction F a G between functors

C
F

** D
G

ii

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B)→ C(A,GB) ,

[DRAFT: June 1, 2009]

1.5 Adjoint Functors 25

and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the
following diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)

��

D(A,GB)

C(f,Gg)

��
D(FA′, B′)

θA′,B′

// C(A′, GB′)

Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is a left adjoint and G is a right adjoint.

We have already seen examples of adjoint functors. For any category B we
have functors −× B and −B from Cat to Cat. Recall the isomorphism (1.4),

Cat(A× B, C) ∼= Cat(A, CB) .

This isomorphism is in fact natural so that

−× B a −B .

Similarly, for any set B ∈ Set there are functors

−×B : Set→ Set , −B : Set→ Set ,

where A × B is the cartesian product of A and B, and CB is the set of all
functions from B to C. For morphisms, f ×B = f × 1B and fB = f ◦−. Then
we have, for all A,C ∈ Set, a natural isomorphism

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A× B → C to the function (f̃x)y = f〈x, y〉. There-
fore, −×B a −B .

Exercise 1.5.2 Verify that the definition (1.6) of adjoint monotone maps be-
tween preorders is a special case of Definition 1.5.1.

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint
P a U . The functor P is the free construction of a category from a graph; it

[DRAFT: June 1, 2009]

26 Review of Category Theory

maps a graph G to the category of paths P (G). The objects of P (G) are the
vertices of G. The morphisms of P (G) are finite paths

v1
e1 // v2

e2 // · · · en // vn+1

of edges in G, composition is concatenation of paths, and the identity morphism
on a vertex v is the empty path starting and ending at v.

By using Yoneda Lemma we can easily prove that adjoints are unique up to
natural isomorphism.

Proposition 1.5.3 Let F : C → D and G : D → C be functors. If F a G,
F a G′ and F ′ a G then F ∼= F ′ and G ∼= G′.

Proof. Suppose F a G and F a G′. By Yoneda Embedding, GB ∼= G′B if,
and only if, C(−, GB) ∼= C(−, G′B), which holds because, for any A ∈ C,

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) .

Therefore, G ∼= G′. That F a G and F ′ a G implies F ∼= F ′ is proved similarly,
except that the Yoneda Embedding must be replaced by its covariant version.

1.5.3 The Unit of an Adjunction

Let F : C → D and G : D → C be adjoint functors, F a G, and let θ :
D(F−,−) → C(−, G−) be the natural isomorphism witnessing the adjunction.
For any object A ∈ C there is a distinguished morphism ηA = θA,FA1FA : A→
G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

The transformation η : 1C =⇒ G ◦ F is natural. It is called the unit of the
adjunction F a G. In fact, we can recover θ from η as follows, for f : FA→ B:

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any
f : FA→ B, the following diagram commutes:

A
ηA //

θA,Bf
""DDDDDDDDDDDDDD G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the
form g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA)

[DRAFT: June 1, 2009]

1.5 Adjoint Functors 27

is a universal morphism to G, or that η has the following universal mapping
property : for every A ∈ C, B ∈ D, and g : A → GB, there exists a unique
f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g

""DDDDDDDDDDDDDD G(FA)

Gf

��

FA

f

��
GB B

This means that an adjunction can be given in terms of its unit. The isomor-
phism θ : D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition 1.5.4 A functor F : C → D is left adjoint to a functor G : D → C
if, and only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map
θA,B : D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an ad-
junction appears as a well known construction in algebra. Consider the forgetful
functor from monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a
“most economical” way of making a monoid FX from a given set X. Such a
construction readily suggests itself, namely the free monoid on X, consisting of
finite sequences of elements of X,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 ∧ x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor,
it should also map morphisms to morphisms. If f : X → Y is a function, define
Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .

[DRAFT: June 1, 2009]

28 Review of Category Theory

There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the
singleton sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The free monoid FX is “free” in the sense that for every every monoid M
and a function f : X → UM there exists a unique homomorphism f : FX →M
such that the following diagram commutes:

X
ηX //

f
""EEEEEEEEEEEEE U(FX)

Uf

��
UM

This is precisely the condition required by Proposition 1.5.4 for η to be the unit
of the adjunction F a U . In this case, the universal mapping property of η is
just the usual characterization of free monoid FX generated by the set X: a
homomorphism from FX is uniquely determined by its values on the generators.

1.5.4 The Counit of an Adjunction

Let F : C → D and G : D → C be adjoint functors, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object
B ∈ D there is a distinguished morphism εB = θ−1

GB,B1GB : F (GB)→ B,

1GB : GB → GB

εB : F (GB)→ B

The transformation ε : F ◦ G =⇒ 1D is natural and is called the counit of the
adjunction F a G. It is the dual notion to the unit of an adjunction. We state
briefly the basic properties of counit, which are easily obtained by “turning
around” all morphisms in the previous section and exchanging the roles of the
left and right adjoints.

The bijection θ−1
A,B can be recovered from the counit. For g : A→ GB in C,

we have
θ−1

A,Bg = θ−1
A,B(1GB ◦ g) = θ−1

A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D,
and f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bbEEEEEEEEEEEEE
A

g

OO

The following is the dual of Proposition 1.5.4.

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 29

Proposition 1.5.5 A functor F : C → D is left adjoint to a functor G : D → C
if, and only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map
θ−1

A,B : C(A,GB)→ D(FA,B), defined by

θ−1
A,Bg = εB ◦ Fg ,

is an isomorphism.

Let us consider again the forgetful functor U : Mon→ Set and its left adjoint
F : Set→ Mon, the free monoid construction. For a monoid (M,?) ∈ Mon, the
counit of the adjunction F a U is a monoid homomorphism εM : F (UM)→M ,
defined by

εM (x1x2 . . . xn) = x1 ? x2 ? · · · ? xn .

It has the following universal mapping property: for X ∈ Set, (M,?) ∈ Mon,
and a homomorphism f : FX →M there exists a unique function f : X → UM
such that f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the
left-hand side, and as an element of the free monoid FX on the right-hand side.
To summarize, the universal mapping property of the counit ε is the familiar
piece of wisdom that a homomorphism f : FX → M from a free monoid is
already determined by its values on the generators.

1.6 Limits and Colimits

1.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B
together with projections π0 : A × B → A and π1 : A × B → B such that, for
every object C ∈ C and all morphisms f : C → A, g : C → B there exists a
unique morphism h : C → A×B for which the following diagram commutes:

C

f

||zzzzzzzzzzzzz

h

��

g

""DDDDDDDDDDDDD

A A×Bπ0

oo
π1

// B

We normally refer to the product (A×B, π0, π1) just by its object A×B, but you
should keep in mind that a product is given by an object and two projections.

[DRAFT: June 1, 2009]

30 Review of Category Theory

The arrow h : C → A×B is denoted by 〈f, g〉. The property

∀C:C .∀ f :C → A .∀ g:C → B .∃!h:C → A×B .
(π0 ◦ h = f ∧ π1 ◦ h = g)

is the universal mapping property of the product A × B. It characterizes the
product of A and B uniquely up to isomorphism in the sense that if (P, p0:P →
A, p1:P → B) is another product of A and B then there exists a unique isomor-
phism r : P ∼→ A×B such that p0 = π0 ◦ r and p1 = π1 ◦ r.

If in a category C every two objects have a product, we can turn binary
products into an operation6 by choosing a product A × B for each pair of
objects A,B ∈ C. In general this requires the Axiom of Choice, but in many
specific cases a particular choice of products can be made without appeal to the
axiom of choice. When we view binary products as an operation, we say that “C
has chosen products”. The same holds for other specific and general instances
of limits and colimits.

For example, in Set the usual cartesian product of sets is a product. In
categories of structures, products are the usual construction: the product of
topological spaces in Top is their topological product, the product of directed
graphs in Graph is their cartesian product, the product of categories in Cat is
their product category, and so on.

1.6.2 Terminal object

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C
there exists a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton.
The terminal object in Cat is the unit category 1 consisting of one object and
one morphism.

Exercise 1.6.1 Prove that if 1 and 1′ are terminal objects in a category then
they are isomorphic.

Exercise 1.6.2 Let Field be the category whose objects are fields and mor-
phisms are field homomorphisms.7 Does Field have a terminal object?

1.6.3 Equalizers

Given objects and morphisms

E
e // A

f //
g

// B

6More precisely, binary product is a functor from C × C to C, cf. Section 1.6.11.
7A field (F, +, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses.

We also require that 0 6= 1. A homomorphism of fields preserves addition and multiplication,
and consequently also 0, 1 and inverses.

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 31

we say that e equalizes f and g when f ◦ e = g ◦ e.8 An equalizer of f and g
is a universal equalizing morphism; thus e : E → A is an equalizer of f and g
when it equalizes them and, for all k : K → A, if f ◦ k = g ◦ k then there exists
a unique morphism m : K → E such that k = e ◦m:

E
e // A

f //
g

// B

K

m

OO

k

??~~~~~~~~~~~~

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers
can be thought of as those subobjects (subsets, subgroups, subspaces, . . .) that
can be defined by a single equation.

Exercise 1.6.3 Show that an equalizer is a monomorphism, i.e., if e : E → A
is an equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition 1.6.4 A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the
category Top: a continuous map f : X → Y is mono when it is injective, whereas
it is a regular mono when it is a topological embedding.9

1.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms
p0 : P → A and p1 : P → B such that f ◦p0 = g ◦p1, and whenever r0 : R→ A,
r1 : R → B are such that f ◦ r0 = g ◦ r1, then there exists a unique h : R → P

8Note that this does not mean the diagram involving f , g and e is commutative!
9A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the

image f [U] is an open subset of the image im(f); this means that there exists V ∈ OY such
that f [U] = V ∩ im(f).

[DRAFT: June 1, 2009]

32 Review of Category Theory

such that r0 = p0 ◦ h and r1 = p1 ◦ h:

R
r1

!!

h

��

r0

��

P
_�

p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in
the above diagram. Sometimes we denote the pullback P by A×C B.

In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
〈x, y〉 ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0〈x, y〉 = x,
p1〈x, y〉 = y.

When we form the pullback of f : A → C and g : B → C we also say that
we pull back g along f and draw the diagram

f∗B
_� //

f∗g

��

B

g

��
A

f
// C

We think of f∗g : f∗B → A as the inverse image of B along f . This terminology
is explained by looking at the pullback of a subset inclusion u : U ↪→ C along a
function f : A→ C in the category Set:

f∗U
_� //

��

U� _

u

��
A

f
// B

In this case the pullback is
{
〈x, y〉 ∈ A× U

∣∣ fx = y
} ∼= {

x ∈ A
∣∣ fx ∈ U} =

f∗U , the inverse image of U along f .

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 33

Exercise 1.6.5 Prove that in a category C, a morphism f : A→ B is mono if,
and only if, the following diagram is a pullback:

A
1A //

1A

��

A

f

��
A

f
// B

1.6.5 Limits

Let us now define a general notion of a limit.
A diagram of shape I in a category C is a functor D : I → C, where the

category I is called the index category. We use letters i, j, k, . . . for objects
of an index category I, call them indices, and write Di, Dj , Dk, . . . instead of
Di, Dj, Dk, . . .

For example, if I is the category with three objects and three morphisms

1

13

��

12

��������������

2
23

// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~}}}}}}}}}}}}

D2
d23

// D3

(1.7)

Given an object A ∈ C, there is a constant diagram of shape I, which is the
constant functor ∆A : I → C that maps every object to A and every morphism
to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C
is a natural transformation α : ∆A =⇒ D. This means that for every index
i ∈ I there is a morphism αi : A→ Di such that whenever u : i→ j in I then
αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a
category Cone(D) whose objects are cones on D. A morphism between cones
f : (A,α)→ (B, β) is a morphism f : A→ B in C such that αi = βi ◦ f for all
i ∈ I. Morphisms in Cone(D) are composed as morphisms in C. A morphism

[DRAFT: June 1, 2009]

34 Review of Category Theory

f : (A,α)→ (B, β) is also called a factorization of the cone (A,α) through the
cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly,
a limit of D is given by a cone (L, λ) such that for every other cone (A,α) there
exists a unique morphism f : A → L such that αi = λi ◦ f for all i ∈ I. We
denote a limit of D by one of the following:

limD limi∈I Di lim←−i∈IDi .

Limits are also called projective limits. We say that a category has limits of
shape I when every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of
limits:

• a product A × B is the limit of the functor D : 2 → C where 2 is the
discrete category on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from
the empty category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇒ ·) → C
which maps one morphism to f and the other one to g.

• the pullback of f : A → C and g : B → C is the limit of the functor
D : I → C where I is the category

•

2
��

•
1
// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects{
Ai ∈ C

∣∣ i ∈ I} .

Such a family is a diagram of shape I, where I is viewed as a discrete category.
A product

∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai

such that, whenever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I} there
exists a unique morphism 〈fi〉i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that
a terminal object is the product of an empty family. It is not hard to show
that a category has finite products precisely when it has a terminal object and
binary products.

A diagram D : I → C is small when I is a small category. A small limit is
a limit of a small diagram. A finite limit is a limit of a diagram whose index
category is finite.

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 35

Exercise 1.6.6 Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary
limits from simpler ones. We omit detailed proofs as they can be found in any
standard textbook on category theory.

Proposition 1.6.7 The following are equivalent for a category C:

1. C has all pullbacks and a terminal object.

2. C has finite products and equalizers.

3. C has has finite limits.

Proof. We only show how to get binary products from pullbacks and a
terminal object. For objects A and B, let P be the pullback of !A and !B :

P
_�

π1 //

π0

��

B

!B

��
A

!A
// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and
g : X → B, it is trivially the case that !A ◦ f = !B ◦ g.

Proposition 1.6.8 The following are equivalent for a category C:

1. C has small products and equalizers.

2. C has small limits.

Proof. We indicate how to construct an arbitrary limit from a product and
an equalizer. Let D : I → C be a small diagram of an arbitrary shape I. First
form an I0-indexed product P and an I1-indexed product Q

P =
∏
i∈I0

Di , Q =
∏

u∈I1

Dcod u .

By the universal property of products, there are unique morphisms f : P → Q
and g : P → Q such that, for all morphisms u ∈ I1,

πQ
u ◦ f = Du ◦ πP

dom u , πQ
u ◦ g = πP

cod u .

Let E be the equalizer of f and g,

E
e // P

f //
g

// Q

[DRAFT: June 1, 2009]

36 Review of Category Theory

For every i ∈ I there is a morphism εi : E → Di, namely εi = πP
i ◦ e. We claim

that (E, ε) is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j
in I,

Du ◦ εi = Du ◦ πP
i ◦ e = πQ

u ◦ f ◦ e = πQ
u ◦ g ◦ e = πP

j ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A→ P such that αi = πP
i ◦ t

for all i ∈ I. For every u : i→ j in I we have

πQ
u ◦ g ◦ t = πP

j ◦ t = tj = Du ◦ ti = Du ◦ πP
i ◦ t = πQ

u ◦ f ◦ t ,

therefore g◦t = f ◦t. This implies that there is a unique factorization k : A→ E
such that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πP
i ◦ e ◦ k = πP

i ◦ t = αi

so that k : A → E is the required factorization of the cone (A,α) through the
cone (E, ε). To see that k is unique, suppose m : A→ E is another factorization
such that αi = εi ◦ m for all i ∈ I. Since e is mono it suffices to show that
e ◦m = e ◦ k, which is equivalent to proving πP

i ◦ e ◦m = πP
i ◦ e ◦ k for all i ∈ I.

This last equality holds because

πP
i ◦ e ◦ k = πP

i ◦ t = αi = εi ◦m = πP
i ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely
complete or lex when it has finite limits.

Limits of presheaves

Let C be a locally small category. Then the presheaf category Ĉ = SetC
op

has all
small limits and they are computed pointwise, e.g., (P ×Q)A = PA ×QA for
P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set
is small complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and
a natural transformation δA : ∆(lim DA) =⇒ DA. The value of LA is supposed
to be just the object part of limDA. From a morphism f : A→ B we obtain for
each i ∈ I a function Dif ◦ (δA)i : LA→ DiB, and thus a cone (LA,Df ◦ δA)
on DB. Presheaf L maps the morphism f : A→ B to the unique factorization
Lf : LA =⇒ LB of the cone (LA,Df ◦ δA) on DB through the limit cone LB
on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family
{Λi}i∈I is a natural transformation from ∆LA to DA. This gives us a cone

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 37

(L,Λ) on D, which is in fact a limit cone. Indeed, if (S,Σ) is another cone on D
then for every A ∈ C there exists a unique function φA : SA→ LA because SA
is a cone on DA and LA is a limit cone on DA. The family {φA}A∈C is the
unique natural transformation φ : S =⇒ L for which Σ = φ ◦ Λ.

1.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C
is a limit of the dual diagram Dop : Iop → Cop in the dual category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Equivalently, the colimit of a diagram D : I → C is the initial object in the
category of cocones Cocone(D) on D. A cocone (A,α) on D is a natural trans-
formation α : D =⇒ ∆A. It is given by an object A ∈ C and, for each i ∈ I,
a morphism αi : Di → A, such that αi = αj ◦Du whenever u : i → j in I. A
morphism between cocones f : (A,α) → (B, β) is a morphism f : A → B in C
such that βi = f ◦ αi for all i ∈ I.

Explicitly, a colimit of D : I → C is given by a cocone (C, ζ) on D such that,
for every other cocone (A,α) on D there exists a unique morphism f : C → A
such that αi = f ◦ ζi for all i ∈ D. We denote a colimit of D by one of the
following:

colimD colimi∈I Di colim−−−→i∈IDi .

Colimits are also called inductive limits.

Exercise 1.6.9 Formulate the dual of Proposition 1.6.7 and Proposition 1.6.8
for colimits (coequalizers are defined in Subsection 1.6.9).

1.6.7 Binary Coproducts

In a category C, the (binary) coproduct of objects A and B is an object A+B
together with injections ι0 : A → A + B and ι1 : B → A + B such that, for
every object C ∈ C and all morphisms f : A → C, g : B → C there exists a
unique morphism h : A+B → C for which the following diagram commutes:

A
ι0 //

f
""DDDDDDDDDDDDD A+B

h

��

B
ι1oo

g

||zzzzzzzzzzzzz

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A + B is the colimit of the diagram D : 2 → C, where I is

the discrete category on two objects 0 and 1, and D0 = A, D1 = B.

[DRAFT: June 1, 2009]

38 Review of Category Theory

In Set the coproduct is the disjoint union, defined by

X + Y =
{
〈0, x〉

∣∣ x ∈ X} ∪ {〈1, y〉 ∣∣ x ∈ Y } ,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X →
Z and g : Y → Z, the unique function [f, g] : X +Y → Z is the usual definition
by cases:

[f, g]u =

{
fx if u = 〈0, x〉
gx if u = 〈1, x〉 .

Exercise 1.6.10 Suppose A and B are Abelian groups.10 What is the dif-
ference between their coproduct in the category Group of groups, and their
coproduct in the category AbGroup of Abelian groups?

1.6.8 The initial object

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C
there exists a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise 1.6.11 What is the initial and what is the terminal object in the
category of groups?

A zero object is an object that is both initial and terminal.

Exercise 1.6.12 Show that in the category of Abelian groups finite products
and coproducts agree, that is 0 ∼= 1 and A×B ∼= A+B.

1.6.9 Coequalizers

Given objects and morphisms

A
f //
g

// B
q // Q

we say that q coequalizes f and g when e ◦ f = e ◦ g. A coequalizer of f and g is
a universal coequalizing morphism; thus q : B → Q is a coequalizer of f and g
when it coequalizes them and, for all s : B → S, if s◦ f = s◦ g then there exists
a unique morphism r : Q→ S such that s = r ◦ q:

A
f //
g

// B
q //

s

��???????????? Q

r

��
S

10An Abelian group is one that satisfies the commutative law x · y = y · x.

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 39

In Set the coequalizer of parallel functions f : A→ B and g : A→ B is the
quotient set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy =⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each
element x ∈ B its equivalence class [x] ∈ B/∼. In general, coequalizers can be
thought of as quotients of those equivalence relations that that can be defined
(generated) by a single equation.

Exercise 1.6.13 Show that a coequalizer is an epimorphism, i.e., if q : B → Q
is a coequalizer of f and g, then, for all u, v : Q→ T , u◦ q = v ◦ q implies u = v.
[Hint: use the duality between limits and colimits and Exercise 1.6.3.]

Definition 1.6.14 A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is best illustrated in the cate-
gory Top: a continuous map f : X → Y is epi when it is surjective, whereas it
is a regular epi when it is a topological quotient map.11

1.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms
q0 : B → Q and q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R,
r1 : C → R are such that r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R
such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

_�

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in
the above diagram. The above pushout Q is sometimes denotes by B +A C.

A pushout, as in the above diagram, is the colimit of the diagram D : I → C
where the index category I is

• 2 //

1
��

•

•
11A continuous map f : X → Y is a topological quotient map when it is surjective and, for

every U ⊆ Y , U is open if, and only if, f∗U is open.

[DRAFT: June 1, 2009]

40 Review of Category Theory

and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence
relation on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y],
where [x] is the equivalence class of x.

1.6.11 Limits and Colimits as Adjoints

An object A ∈ C can be viewed as a functor from the terminal category 1 to
C, namely the functor which maps the only object ? of 1 to A and the only
morphism 1? to 1A.

Now if C has a terminal object 1C we can ask whether the corresponding
functor 1C : 1→ C has any adjoints. Since 1 is the terminal object in Cat, there
exists a unique functor !C : C → 1, which maps every object of C to ?. This
functor is indeed adjoint to 1C because, for every A ∈ C we have a (trivially
natural) bijective correspondence

!A : A→ 1C

1? : !CA→ ?

Similarly, an initial object is left adjoint to !C :

0C a !C a 1C .

If C has binary products then they can be viewed as a functor

−×− : C × C → C

which maps 〈A,B〉 to A×B and a pair of morphisms 〈f : A→ A′, g : B → B′〉
to the unique morphism f × g : A×B → A′×B′ for which π0 ◦ (f × g) = f ◦π0

and π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×B
π0oo π1 //

f × g
��

B

g

��
A′ A′ ×B′π0

oo
π1

// B′

The binary product functor has a left adjoint, namely the diagonal diagram
functor

∆ : C → C × C

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 41

defined by ∆A = 〈A,A〉, ∆f = 〈f, f〉. Indeed, there is a natural bijective
correspondence

〈f, g〉 : 〈A,A〉 → 〈B,C〉

f × g : A→ B × C

Similarly, binary coproducts are left adjoint to the diagonal functor:

(−+−) a ∆ a (−×−) .

In general, suppose C has limits of shape I. Then the limit construction is a
functor

lim : CI → C

that maps each diagram D ∈ CI to its limit limD. In the opposite direction
there is the constant diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. These two are adjoint
because there is a natural bijective correspondence between cones α : ∆A =⇒ D
on D, and their factorizations through the limit of D,

α : ∆A =⇒ D

A→ limD

An analogous correspondence holds for colimits so that we obtain a pair of
adjunctions

colim a ∆ a lim .

Exercise 1.6.15 How are the functors lim : CI → C, colim : CI → C, and
∆ : C → CI defined on morphisms?

1.6.12 Preservation of Limits and Colimits by Functors

We say that a functor F : C → D preserves products when, given a product

A A×B
π0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves
binary products if, and only if, the unique morphism f : F (A×B)→ FA×FB

[DRAFT: June 1, 2009]

42 Review of Category Theory

which makes the following diagram commutative is an isomorphism: 12

F (A×B)

f

��

Fπ0

{{vvvvvvvvvvvvvv
Fπ1

##HHHHHHHHHHHHHH

FA FA× FBπ0

oo
π1

// FB

In general, a functor F : C → D is said to preserve limits of shape I when it
maps limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL,F ◦λ)
is a limit of F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when
it maps colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C
then (FC,F ◦ ζ) is a colimit of F ◦D : I → D.

Proposition 1.6.16 (a) A functor preserves finite (small) limits if, and only
if, it preserves equalizers and finite (small) products. (b) A functor preserves
finite (small) colimits if, and only if, it preserves coequalizers and finite (small)
coproducts.

Proof. This follows from the fact that limits are constructed from equaliz-
ers and products, cf. Proposition 1.6.8, and that colimits are constructed from
coequalizers and coproducts, cf. Exercise 1.6.9.

Proposition 1.6.17 For a locally small category C, the Yoneda embedding y :
C → Ĉ preserves all limits that exist in C.

Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding
maps D to the diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦D, consider a cone (M,µ) on y ◦D.
Then µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and
A ∈ C,

(µi)A : MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)
12Products are determined up to isomorphism only, so it would be too restrictive to require

F (A × B) = FA × FB. When that is the case, however, we say that the functor F strictly
preserves products.

[DRAFT: June 1, 2009]

1.6 Limits and Colimits 43

There exists a unique morphism φAm : A → L such that (µi)Am = λi ◦ φAm.
The family of functions

φA : MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization φ : M =⇒ yL of the cone (M,µ) through the cone (L, λ).
This factorization is unique because each φAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set
preserves existing limits,

C(A, lim
i∈I

Di) ∼= lim
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps
existing colimits to limits,

C(colim
i∈I

Di, A) ∼= lim
i∈I
C(Di, A) .

Exercise 1.6.18 Prove the above claim that a contravariant representable func-
tor C(−, A) : Cop → Set maps existing colimits to limits. Use duality between
limits and colimits. Does it also follow by a simple duality argument that a con-
travariant representable functor C(−, A) maps existing limits to colimits? How
about a covariant representable functor C(A,−) mapping existing colimits to
limits?

Exercise 1.6.19 Prove that a functor F : C → D preserves monos if it pre-
serves limits. In particular, the Yoneda embedding preserves monos. Hint:
Exercise 1.6.5.

Proposition 1.6.20 Right adjoints preserve limits, and left adjoints preserve
colimits.

Proof. Suppose we have adjoint functors

C
F

((
⊥ D
G

hh

and a diagram D : I → D whose limit exists in D. We would like to use the
following slick application of Yoneda Lemma to show that G preserves limits:
for every A ∈ C,

C(A,G(limD)) ∼= D(FA, limD) ∼= lim
i∈I
D(FA,Di) ∼=

lim
i∈I
C(A,GDi) ∼= C(A, lim(G ◦D)) ,

therefore G(limD) ∼= lim(G ◦ D). However, this argument only works if we
already know that the limit of G ◦D exists.

[DRAFT: June 1, 2009]

44 Review of Category Theory

We can also prove the stronger claim that whenever the limit of D : I → D
exists then the limit of G ◦D exists in C and its limit is G(limD). So suppose
(L, λ) is a limit cone of D. Then (GL,G ◦ λ) is a cone on G ◦ D. If (A,α) is
another cone on G ◦D, we have by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ).
Again by adjunction, we obtain a unique factorization g : A→ GL of the cone
(A,α) through the cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f
uniquely from α, and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.

[DRAFT: June 1, 2009]

	Review of Category Theory
	Categories
	The empty category 0
	The unit category 1
	Other finite categories
	Groups as categories
	Posets as categories
	Sets as categories
	Structures as categories
	Further Definitions

	Functors
	Functors between sets, monoids and posets
	Forgetful functors

	Constructions of Categories and Functors
	Product of categories
	Slice categories
	Opposite categories
	Representable functors
	Group actions

	Natural Transformations and Functor Categories
	Directed graphs as a functor category
	The Yoneda Embedding
	Equivalence of Categories

	Adjoint Functors
	Adjoint maps between preorders
	Adjoint Functors
	The Unit of an Adjunction
	The Counit of an Adjunction

	Limits and Colimits
	Binary products
	Terminal object
	Equalizers
	Pullbacks
	Limits
	Colimits
	Binary Coproducts
	The initial object
	Coequalizers
	Pushouts
	Limits and Colimits as Adjoints
	Preservation of Limits and Colimits by Functors

