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Abstract

Notes for a seminar in the IST TQFT Club about the Baez-Dolan
groupoidification and its extensions, as applied to some toy models in
physics.

1 Introduction

1.1 Outline

Motivation: Categorify a quantum mechanical description of states and
processes.

Sets Categories

Classical
S: A set whose elements are con-

figurations of a system

X: A groupoid with:

•Ob: configurations

•Mor: symmetries of configura-

tions

Quantum
L2(S): Vector space of states (in

fact, Hilbert space)

Λ(X): 2-vector space of states

(in fact, 2-Hilbert space)

We propose that the configuration spaces of physical systems should
be represented as groupoids (or stacks), based on local symmetries. A
process relating two systems through time is described using a groupoid
of “histories” in a span of groupoids, with maps to “start” and “end”
configurations. This is “doing physics in” the monoidal (2-)category
Span(Gpd).

Degroupoidification is a functor turning this into physics in Vect
(or Hilb), as usual in quantum mechanics. 2-Linearization gives a more
complete equivalence-invariant Λ for Span(Gpd). It provides a way to do
physics in 2Hilb.

Both invariants rely on a pull-push process, and some form of ad-
jointness.

Applications: Foundational physics such as quantum harmonic os-
cillator; Witten-type ETQFT (help interpret physical examples).
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2 Groupoids and Spans

2.1 Groupoids and Stacks

Definition 1 A groupoid G (in Set) is a category in which all mor-
phisms are invertible. That is, as a category, consists of two sets G0 (of
objects) and G1 (of morphisms/arrows) together with structure maps:

G1 ×G0 G1
◦→ G1

s,t→ G0
i→ G1

(−)−1

→ G1 (1)

which define source, target, identities, partially-defined composition, and
inverses, satysifying some properties making a groupoid a “multi-object”
generalization of a group.

Morphisms (arrows) of a groupoid can be composed if the source of
one arrow is the target of the other. This can be defined where G0 and
G1 are sets, topological spaces, manifolds, etc. (Then the maps must be
“nice” in a suitable sense in each case.)

Definition 2 There is a 2-category Gpd with:

• Objects: Groupoids (categories whose morphisms are all invertible)

• Morphisms: Functors between groupoids

• 2-Morphisms: Natural transformations between functors

Groupoids provide a good way of thinking about local symmetry. E.g.
the transformation groupoid S//G comes from a set S with an action of
the group G: objects are elements of S, morphisms correspond to group
elements.

Example 1 Some relevant groupoids:

• Any set S can be seen as a groupoid with only identity morphisms

• Any group G is a groupoid with one object

• Given a set S with a group-action G×S→S yields a transformation
groupoid S//G whose objects are elements of S; if g(s) = s′ then
there is a morphism gs : s→ s′

• Given a differentiable manifold M , the fundamental groupoid
Π1(M) which has objects x ∈ M and morphisms homotopy classes
of paths in M .

• Given a differentiable manifold M and Lie group G, the groupoid
AG(M) of principal G-bundles and bundle maps; and the groupoid
AG(M) of FLAT G-bundles and maps.

Physically, groupoids can describe configuration spaces for physical
systems. (Many physically realistic cases will also be, e.g. symplectic
manifolds, whose points are the objects of the groupoid).

Since groupoids are categories, it is usual to think of them up to equiv-
alence (the weaker notion of isomorphism), to treat different but “indistin-
guishable” groupoids as the same. For topological and smooth groupoids,
the best version of this is a “homotopy”-like notion:

Definition 3 Two groupoids G and G′ are (strongly) Morita equiva-
lent if there is a pair of morphisms:

X
f

~~~~~~~~~~
g

  AAAAAAAA

G G′

(2)
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where both f and g are suitably nice maps (otherwise this is a Morita
morphism). A stack is a Morita-equivalence class of groupoids.

This implies that the categories of representations are equivalent as
categories (weak Morita equivalence). This definition coincides with the
more familiar one for C? algebras, in the case of groupoid algebras.

Morita equivalent groupoids are “physically indistinguishable”. (E.g.
full action groupoid; skeleton, with quotient space of objects). So our
proposal is that configuration spaces should be (topological, smooth, etc.)
stacks.

2.2 Span(Gpd)

Definition 4 A span in a category C is a diagram of the form:

X

s
~~~~~~~~~

t
  

@@@@@@@@

A B

A span map f between two spans consists of a compatible map of the
central objects:

X

s

��~~~~~~~~

t

((PPPPPPPPPPPPPPP
f
// X ′

s′

wwnnnnnnnnnnnnnn
t′

  
AAAAAAAA

A B

A cospan is a span in Cop (i.e. C with arrows reversed).

We’ll use C = Gpd, so s and t are functors (i.e. also map morphisms,
representing symmetries).

Definition 5 The bicategory Span2(Gpd) has:

• Objects: Groupoids

• Morphisms: Spans of groupoids

• Composition defined by weak pullback:

X ′ ◦X
S

{{xxxxxxxxx
T

##GGGGGGGGG
s◦S

��

t′◦T

��

X

s
~~}}}}}}}}

t
##FFFFFFFFF
α

∼
+3 X ′

s′
{{wwwwwwwww

t′
!!BBBBBBBB

A1 A2 A3

(3)

• 2-Morphisms : isomorphism classes of spans of span maps

• monoidal structure from the product in Gpd, and duals for mor-
phisms and 2-morphisms.

Note: This weak pullback of groupoids has objects (x, α, x′), where α :
f(x)→ g(x′), and its morphisms are commuting squares.

We can look at this two ways:
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• Span C is the universal 2-category containing C, and for which ev-
ery morphism has a (two-sided) adjoint. The fact that arrows have
adjoints means that Span(C) is a †-monoidal category. This is useful
to describe quantum physics. (See Abramsky and Coecke, Vicary).

• Physically, X will represent an object of histories leading the system
A to the system B. Maps s and t pick the starting and terminating
configurations in A and B for a given history (in the sense internal
to C).

Definition 6 A state for an object A in a monoidal category is a mor-
phism from the monoidal unit, ψ : I→A.

In Hilb, this determines a vector by ψ : C→H. In Span(Gpd), the
unit is 1, the terminal groupoid, so this is determined by:

S
Ψ→ A

where S is a groupoid, “fibred over A”.
An example is the Baez-Dolan “stuff type”, where A = FinSet0.

Think of such a state as an ensemble over the base groupoid A.
Acting on a state by a span produces a groupoid whose objects include

a history:

This new state is an ensemble with these more complicated objects,
which encode the history of the spans (groupoidified operators) that have
been applied.

3 Representing Span(Gpd)

There is also a category Span1(Gpd), taking spans only up to isomor-
phism and neglecting the 2-morphisms, but still composing via weak pull-
back.

There are two interesting functors for our purposes. “Degroupoidifi-
catidon” (Baez-Dolan):

D : Span1(Gpd)→Hilb

and “2-linearization” (Morton):

Λ : Span2(Gpd)→2Hilb

3.1 Groupoidification

Degroupoidification works like this:
To linearize a (finite) groupoid, just take the free vector space on its

space of isomorphism classes of objects, CA.

Definition 7 The cardinality of a groupoid G is

|G| =
∑

[g]∈G

1

# Aut(g)

where G is the set of isomorphism classes of objects of G. We call a
groupoid tame if this sum converges.
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This has the nice property that it “gets along with quotients”:

Theorem 1 (Baez, Dolan) If S is a set with a G-action G × S→S,
then

|S//G| = #S

#G

where # denotes ordinary set-cardinality.

Then there is a pair of linear maps associated to map f : A→B:

• f∗ : CB→CA, with f∗(g) = g ◦ f

• f∗ : CA→CB , with f∗(g)(b) =
∑
f(a)=b

# Aut(b)
# Aut(a)

g(a)

The first is just composition with f . The second is the map sending the
vector δa to δf(a). These are adjoint with respect to an inner product
such that 〈[gi], [gj ]〉 = 1

# Aut(gi)
· δi,j .

This gives D = t∗ ◦ s∗ as a modified “sum over histories”: when the
groupoids are sets, this just counts the number of histories from gi to gj .
The general case counts with groupoid cardinality.

Definition 8 The functor

D : Span(Gpd)→ Vect

is defined by with D(G) = C(G), and

D(X)(f)([b]) =
∑

[x]∈t−1(b)

# Aut(b)

# Aut(x)
[f(s(x))]

In the case the groupoids are sets, this just gives multiplication by a matrix
counting the number of histories from x to y. In general, the matrix D(X)
has:

D(X)([a],[b]) = |(s, t)−1(a, b)|

3.2 The Measured Groupoid Case

The groupoid cardinality is a special case of the volume of a stack, which
we need to deal with physically interesting examples.

Definition 9 A left Haar system for a (loc.cpt.) groupoid G is a
family {λx}x∈G0 , where λx is a (positive, regular, Borel) measure on
Gx = s−1(x).

Unlike for Haar measure on a Lie group, a (left) Haar system λx is not
uniquely defined. It is only unique up to a (quasi-invariant, i.e. equivari-
ant) measure µ on M .

Definition 10 If G is a groupoid, the space of objects is a measure space
(G0, µ), and λx is a left Haar system, the stack volume of G is:

vol(X) =

∫
X

(∫
s−1(x)

dλx
)−1

dµ

This is a stack invariant. (Based on Weinstein, where measures come
from volume forms.)
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3.3 2-Linearization

Recall that the 2-morphisms of Span2(Gpd) are (iso. classes of) spans
of span maps:

X

s

~~}}}}}}}}
t

  
BBBBBBBB

A Y //oo

σ

OO

τ

��

B

X ′
s′

``AAAAAAAA t′

>>}}}}}}}}

Composition is by weak pullback taken up to isomorphism.
Sometimes one just uses span maps: here, we want 2-morphisms as

well as morphisms to have adjoints. Again: taking spans means allowing
adjointness!

We want a representation of Span2(Gpd) that captures more than D.

3.3.1 2-Hilbert Spaces

Definition 11 A finite dimensional Kapranov–Voevodsky 2-vector space
is a C-linear finitely semisimple abelian category (one with a “direct sum”,
a.k.a. biproduct) generated by simple objects x, where hom(x, x) ∼= C). A
2-linear map between 2-vector spaces is a C-linear (hence additive) func-
tor. 2Vect is the 2-category of KV 2-vector spaces, whose morphisms are
2-linear maps and whose 2-morphisms are natural transformations.

Note: 2Vect is a monoidal 2-category with the Deligne product and unit
Vect.

Lemma 1 If B is an essentially finite groupoid, the functor category
Λ(B) = [B,Vect] is a KV 2-vector space.

Note: If the automorphism groups of (isomorphism classes of) objects
of B are B1, . . . , Bn, then we have

[B,Vect] ∼=
∏
j

Rep(Bj)

So the “basis elements” (simple objects) in [B,Vect] are labeled by
([b], V ), where [b] ∈ B and V an irreducible rep of Aut(b).

Definition 12 A 2-Hilbert space is an abelian H?-category.

Unpacking this definition, a 2-Hilbert space H is an abelian category
such that:

• each hom-set has the structure of a Hilbert space, and composition
of morphisms is bilinear.

• H is equipped with a star structure—a contravariant functor ∗ :
H→H which is the identity on objects and ∗2 = 1H .

• The star structure on H induces an antinatural isomorphism

hom(x, y) ∼= (hom(y, x))∗
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In finite dimensions, this is much like 2Vect, in that all 2-Hilbert
spaces are equivalent to Hilbn, in which case 2-linear maps are equivalent
to matrix multiplication with Hilbert space entries (using ⊗ and ⊕ in place
of + and ×).

Baez, Freidel et. al. conjecture the following for the infinite-dimensional
case (incompletely understood):

Conjecture 1 Any 2-Hilbert spaces is of the following form: Rep(A),
the category of representations of a von Neumann algebra A on Hilbert
spaces. The star structure takes the adjoint of a map.

In this context:

• For our physical interpretation A is the algebras of symmetries
of a system. The algebra of observables will be its commutant -
which depends on the choice of representation!

• Basis elements are irreducible representations of the vN algebra -
physically, these can be interpreted as superselection sectors.
Any representation is a direct sum/integral of these.

• Then 2-linear maps are functors, but can also be represented as
Hilbert bimodules between algebras. The simple components of
these bimodules are like matrix entries.

Special examples of this kind:

• Rep(X) for a groupoid X, by taking A to be the completion of the
groupoid C∗-algebra Cc(X).

• Rep(L∞(X,µ)), for a measure space, gives the category of measur-
able fields of Hilbert spaces on (X,µ)

3.3.2 2-Linearization Functor

Theorem 2 If X and B are essentially finite groupoids, a functor f :
X→B gives two 2-linear maps:

f∗ : Λ(B)→Λ(X)

namely composition with f , with f∗F = F ◦ f and

f∗ : Λ(X)→Λ(B)

called “pushforward along f”. Furthermore, f∗ is the two-sided adjoint to
f∗ (i.e. both left-adjoint and right-adjoint).

In fact, the adjoint map f∗ acts by:

f∗(F )(b) ∼=
⊕
f(x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

This is the left adjoint. But there is also a right adjoint:

f!(F )(b) ∼=
⊕

[x]|f(x)∼=b

homC[Aut(x)](C[Aut(b)], F (x))

In fact, this is a two-sided adjunction, by using the Nakayama isomor-
phism, a canonical isomorphism:

N(f,F,b) : f!(F )(b)→ f∗(F )(b)
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given by the exterior trace map in each factor of the sum (which uses a
modified group average).

N :
⊕

[x]|f(x)∼=b

φx 7→
⊕

[x]|f(x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification, the left and right adjoints are isomorphic. By
composing units/counits with N , we get that f∗ and f∗ are ambidextrous
adjoints.

(Note: In general, Span2(C) will be the universal 2-category for which
morphisms in C have ambidextrous adjoints. We want to preserve this
property.)

Call the adjunctions in which f∗ is left or right adjoint to f∗ the left
and right adjunctions respectively. We want to use the counit for the left
adjunction, which is the evaluation map:

ηR(G)(x) :G(x) →
⊕

y|f(y)∼=x

homC[Aut(x)](C[Aut(y)], G(x))

v 7→
⊕

y|f(y)∼=x

(g 7→ g(v))

and the unit for the right adjunction, which just uses the action:

εL(G)(x) :
⊕

[y]|f(y)∼=x

C[Aut(x)]⊗C[Aut(y)] f
∗G(x) →G(x)

⊕
[y]|f(y)∼=x

gy ⊗ v 7→
∑

[y]|f(y)∼=x

f(gy)v

Definition 13 Define the 2-functor Λ as follows:

• Objects: Λ(B) = Rep(B) := [B,Vect]

• Morphisms Λ(X, s, t) = t∗ ◦ s∗ : Λ(a) −→ Λ(B)

• 2-Morphisms: Λ(Y, σ, τ) = εL,τ ◦N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t′)∗ ◦ (s′)∗

Picking basis elements ([a], V ) ∈ Λ(A), and ([b],W ) ∈ Λ(B), we get
that Λ(X, s, t) is represented by the matrix with coefficients:

Λ(X, s, t)([a],V ),([b],W ) = homRep(Aut(b))(t∗ ◦ s∗(V ),W )

'
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))(s
∗(V ), t∗(W ))

This is an intertwiner space, given by the analog of the inner product
〈s∗ψ, t∗φ〉 in a Hilbert space.

In the case where source and target are 1, there is only one basis object
in Λ(1) (the trivial representation), so the 2-linear maps are represented
by a single vector space. Then it turns out:

Theorem 3 Restricting to homSpan2(Gpd)(1,1):

A

!

��~~~~~~~
!

��
@@@@@@@

1 X

s

OO

t

��

1

B

!

__@@@@@@@ !

??~~~~~~~
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where 1 is the (terminal) groupoid with one object and one morphism, Λ
on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in
N .

4 2-Linearized Physics

4.1 Harmonic Oscillator

Example 2 In the case where A = B = FinSet0 (equivalently, the
symmetric groupoid

∐
n≥0 Σn - note no longer finite), we find

D(FinSet0) = C[[t]]

where tn marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).

The operators a = ∂t and a† = Mt, generate the Weyl algebra of
operators for the QHO. These are given under D by the span A:

FinSet0

∪?
xxqqqqqqqqqq

id
&&MMMMMMMMMM

FinSet0 FinSet0

and its dual A†. Composites of these give a categorification of operators
explicitly in terms of Feynman diagrams.

Such composites are described in terms of groupoids whose objects
look like this:

The source and target maps for the span pick the set of start and end
points. The morphisms of the groupoid are graph symmetries.

Degroupoidification D calculates operators which (after small mod-
ification involving U(1)-labels) agree with the usual Feynman rules for
calculating amplitudes.

An ongoing project (with Jamie Vicary) is to study the 2-categorical
version of this picture. There are analogs of creation and annihilation
operators in other hom-categories than hom(1, 1):

FinSet0

id

&&MMMMMMMMMM
∪{∗}

xxqqqqqqqqqq

FinSet0 FinSet0

∪{?}

OO

id

��

∪{?}
//

∪{?,∗}
oo FinSet0

FinSet0

∪?

88qqqqqqqqqq∪{?,∗}

ffMMMMMMMMMM
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This is a 2-morphism αA : A→AAA† creates a “creation/annihilation
pair” at the 1-morphism level.

Composites of these act as rewrite rules on the Feynman diagrams like
those seen previously (now with “boundary” maps).

The image of this picture under Λ involves representation theory of
the symmetric groups as Λ(FinSet0) ∼=

∏
nRep(Σn), and gives rise to

“paraparticle statistics”:

C
��

wwoooo
''OOOO

������
��

????

������
��

//

zztttttt
�� zztttttt

�� $$JJJJJJ
��

$$JJJJJJJJ

�����������

�� ����������

�� ��
???????

����������

��
????????

�� ��
????????

���������

��
��

?????????

Irreducible representations of FinSet0 are labelled by Young dia-
grams. Restriction and induction of representations amounts to counting
paths through the lattice above. The usual bosonic Fock space represen-
tation F consists of the symmetric reps (the extreme left-hand entries of
each row). This applies to states ψ : C → F - without the history as
encoded in the diagram of composite states.

4.2 Extended TQFT

Example 3 An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→2Vect

where nCob2 has

• Objects: (n− 2)-dimensional manifolds

• Morphisms: (n−1)-dimensional cobordisms (manifolds with bound-
ary, with ∂M a union of source and target objects)

• 2-Morphisms: n-dimensional cobordisms with corners

One construction uses gauge theory, for gauge group G (here a finite
group). Given M , the groupoid A0(M,G) = hom(π1(M), G)//G has:

• Objects: Flat connections on M

• Morphisms Gauge transformations

Then A0(−, G) : nCob2→Span2(Gpd), and there is an ETQFT
ZG = Λ ◦ A0(−, G).

This relies on the fact that cobordisms in nCob2 can be transformed
into products of cospans:

Then A0(−, G) maps these into Span2(Gpd). Suppose S : S1 +
S1→S1 is the “pair of pants”, showing two “particles” fusing into one.
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nCob2 Span2(Top)

S1
iA //

i1

��

(A
∐
D)

ι1

��

S1∐S1
i′A⊗iDoo

i2

��

Y
ι3 // M Y

ι4oo

S1∐S1

i2

//

i2

OO

Y

ι2

OO

S1

i1

OO

i1

oo

Then we have the diagram:

(G×G)//G

∆

xxqqqqqqqqqq
m

%%KKKKKKKKKK

(G//G)2 G//G

(4)

Where the map ∆ leaves connections fixed, and acts as the diagonal
on gauge transformations; and m is the multiplication map.

• View S1 as the boundary around a system (e.g. particle).

• Irreducible objects of ZG(S1) ' [G//G,Vect] are labelled by ([g],W ),
for [g] a conjugacy class in G and W an irrep of its stabilizer sub-
group

• For G = SU(2), this is an angle m ∈ [0, 2π], a particle; and an irrep
of U(1) (or SU(2) for m = 0) is labelled by an integer j

• This theory then looks like 3D quantum gravity coupled to particles
with mass and spin. with mass m and spin j

• Under the topology change of the pair of pants, a pair of such reps is
taken to one with nontrivial representations (superselection sectors)
for all [mm′] for any representatives of [m], [m′] (each possible total
mass and spin for the combined system).

Physics in this Hilbert space arises from the 3D 2-morphisms.
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